1
|
Ge X, Zhou H, Shen F, Yang G, Zhang Y, Zhang X, Li H. SARS-CoV-2 subgenomic RNA: formation process and rapid molecular diagnostic methods. Clin Chem Lab Med 2024; 62:1019-1028. [PMID: 38000044 DOI: 10.1515/cclm-2023-0846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus disease-2019 (COVID-19) is spreading worldwide and posing enormous losses to human health and socio-economic. Due to the limitations of medical and health conditions, it is still a huge challenge to develop appropriate discharge standards for patients with COVID-19 and to use medical resources in a timely and effective manner. Similar to other coronaviruses, SARS-CoV-2 has a very complex discontinuous transcription process to generate subgenomic RNA (sgRNA). Some studies support that sgRNA of SARS-CoV-2 can only exist when the virus is active and is an indicator of virus replication. The results of sgRNA detection in patients can be used to evaluate the condition of hospitalized patients, which is expected to save medical resources, especially personal protective equipment. There have been numerous investigations using different methods, especially molecular methods to detect sgRNA. Here, we introduce the process of SARS-CoV-2 sgRNA formation and the commonly used molecular diagnostic methods to bring a new idea for clinical detection in the future.
Collapse
Affiliation(s)
- Xiao Ge
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Huizi Zhou
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Fangyuan Shen
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Guimao Yang
- Department of Medical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Yubo Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Xiaoyu Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Heng Li
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| |
Collapse
|
2
|
Pernet O, Weisenhaus M, Stafylis C, Williams C, Campan M, Pettersson J, Green N, Lee DM, Thomas PD, Ward P, Hu H, Klausner JD, Kovacs AAZ. SARS-CoV-2 viral variants can rapidly be identified for clinical decision making and population surveillance using a high-throughput digital droplet PCR assay. Sci Rep 2023; 13:7612. [PMID: 37165019 PMCID: PMC10170421 DOI: 10.1038/s41598-023-34188-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Epidemiologic surveillance of circulating SARS-CoV-2 variants is essential to assess impact on clinical outcomes and vaccine efficacy. Whole genome sequencing (WGS), the gold-standard to identify variants, requires significant infrastructure and expertise. We developed a digital droplet polymerase chain reaction (ddPCR) assay that can rapidly identify circulating variants of concern/interest (VOC/VOI) using variant-specific mutation combinations in the Spike gene. To validate the assay, 800 saliva samples known to be SARS-CoV-2 positive by RT-PCR were used. During the study (July 2020-March 2022) the assay was easily adaptable to identify not only existing circulating VAC/VOI, but all new variants as they evolved. The assay can discriminate nine variants (Alpha, Beta, Gamma, Delta, Eta, Epsilon, Lambda, Mu, and Omicron) and sub-lineages (Delta 417N, Omicron BA.1, BA.2). Sequence analyses confirmed variant type for 124/124 samples tested. This ddPCR assay is an inexpensive, sensitive, high-throughput assay that can easily be adapted as new variants are identified.
Collapse
Affiliation(s)
- Olivier Pernet
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, University of Southern California, Los Angeles, CA, USA.
| | - Maia Weisenhaus
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, University of Southern California, Los Angeles, CA, USA
| | - Chrysovalantis Stafylis
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christopher Williams
- Department of Preventive Medicine, Division of Bioinformatics, University of Southern California, Los Angeles, CA, USA
| | - Mihaela Campan
- Department of Pathology & Laboratory Medicine in Keck, University of Southern California, Los Angeles, CA, USA
| | - Jonas Pettersson
- Department of Pathology & Laboratory Medicine in Keck, University of Southern California, Los Angeles, CA, USA
| | - Nicole Green
- Los Angeles County Department of Public Health, Los Angeles, CA, USA
| | - David M Lee
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, University of Southern California, Los Angeles, CA, USA
| | - Paul D Thomas
- Department of Preventive Medicine, Division of Bioinformatics, University of Southern California, Los Angeles, CA, USA
| | - Pamela Ward
- Department of Pathology & Laboratory Medicine in Keck, University of Southern California, Los Angeles, CA, USA
| | - Howard Hu
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrea A Z Kovacs
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine in Keck, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hwang HS, Lo CM, Murphy M, Grudda T, Gallagher N, Luo CH, Robinson ML, Mirza A, Conte M, Conte A, Zhou R, Vergara C, Brooke CB, Pekosz A, Mostafa HH, Manabe YC, Thio CL, Balagopal A. Characterizing SARS-CoV-2 Transcription of Subgenomic and Genomic RNAs During Early Human Infection Using Multiplexed Droplet Digital Polymerase Chain Reaction. J Infect Dis 2023; 227:981-992. [PMID: 36468309 PMCID: PMC10319975 DOI: 10.1093/infdis/jiac472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission requires understanding SARS-CoV-2 replication dynamics. METHODS We developed a multiplexed droplet digital polymerase chain reaction (ddPCR) assay to quantify SARS-CoV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from genomic RNAs (gRNAs). We applied the assay to specimens from 144 people with single nasopharyngeal samples and 27 people with >1 sample. Results were compared to quantitative PCR (qPCR) and viral culture. RESULTS sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio sgRNA:gRNA was stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Daily testing of 6 persons revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. sgRNA:gRNA is constant during infection despite changes in viral culture. CONCLUSIONS Ct values from qPCR correlate with active viral replication. More work is needed to understand why some cultures are negative despite presence of sgRNA.
Collapse
Affiliation(s)
- Hyon S Hwang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Che-Min Lo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Murphy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanner Grudda
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew L Robinson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Agha Mirza
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madison Conte
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Candelaria Vergara
- Department of Microbiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C Manabe
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chloe L Thio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Morón-López S, Riveira-Muñoz E, Urrea V, Gutiérrez-Chamorro L, Ávila-Nieto C, Noguera-Julian M, Carrillo J, Mitjà O, Mateu L, Massanella M, Ballana E, Martinez-Picado J. Comparison of Reverse Transcription (RT)-Quantitative PCR and RT-Droplet Digital PCR for Detection of Genomic and Subgenomic SARS-CoV-2 RNA. Microbiol Spectr 2023; 11:e0415922. [PMID: 36943067 PMCID: PMC10100669 DOI: 10.1128/spectrum.04159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Most individuals acutely infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit mild symptoms. However, 10 to 20% of those infected develop long-term symptoms, referred to as post-coronavirus disease 2019 (COVID-19) condition (PCC). One hypothesis is that PCC might be exacerbated by viral persistence in tissue sanctuaries. Therefore, the accurate detection and quantification of SARS-CoV-2 are not only necessary for viral load monitoring but also crucial for detecting long-term viral persistence and determining whether viral replication is occurring in tissue reservoirs. In this study, the sensitivity and robustness of reverse transcription (RT)-droplet digital PCR (ddPCR) and RT-quantitative PCR (qPCR) techniques have been compared for the detection and quantification of SARS-CoV-2 genomic and subgenomic RNAs from oropharyngeal swabs taken from confirmed SARS-CoV-2-positive, SARS-CoV-2-exposed, and nonexposed individuals as well as from samples from mice infected with SARS-CoV-2. Our data demonstrated that both techniques presented equivalent results in the mid- and high-viral-load ranges. Additionally, RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, allowing the accurate detection of positive results in individuals exposed to the virus. Overall, these data suggest that RT-ddPCR might be an alternative to RT-qPCR for detecting low viral loads in samples and for assessing viral persistence in samples from individuals with PCC. IMPORTANCE We developed one-step reverse transcription (RT)-droplet digital PCR (ddPCR) protocols to detect SARS-CoV-2 RNA and compared them to the gold-standard RT-quantitative PCR (RT-qPCR) method. RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, while both techniques were equivalent in the mid- and high-viral-load ranges. Overall, these results suggest that RT-ddPCR might be a viable alternative to RT-qPCR when it comes to detecting low viral loads in samples, which is a highly relevant issue for determining viral persistence in as-yet-unknown tissue reservoirs in individuals suffering from post-COVID conditions or long COVID.
Collapse
Affiliation(s)
- Sara Morón-López
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | | | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | | | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Oriol Mitjà
- Fight Infections Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Lihir Medical Centre, International SOS, Londolovit, Lihir Island, Papua New Guinea
| | - Lourdes Mateu
- Fight Infections Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
6
|
Toppings NB, Oberding LK, Lin YC, Evans D, Pillai DR. The Role of Subgenomic RNA in Discordant Results From Reverse Transcription-Polymerase Chain Reaction Tests for COVID-19. Arch Pathol Lab Med 2022; 146:805-813. [PMID: 35380615 DOI: 10.5858/arpa.2021-0630-sa] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Reverse transcription-polymerase chain reaction (RT-PCR) is the standard method of diagnosing COVID-19. An inconclusive test result occurs when 1 RT-PCR target is positive for SARS-CoV-2 and 1 RT-PCR target is negative for SARS-CoV-2 within the same sample. An inconclusive result generally requires retesting. One reason why a sample may yield an inconclusive result is that one target is at a higher concentration than another target. OBJECTIVE.— To understand the role of subgenomic RNA transcripts in discordant results from RT-PCR tests for COVID-19. DESIGN.— A panel of 6 droplet digital PCR assays was designed to quantify the ORF1, E-gene, and N-gene of SARS-CoV-2. This panel was used to quantify viral cultures of SARS-CoV-2 that were harvested during the eclipse phase and at peak infectivity. Eleven clinical nasopharyngeal swabs were also tested with this panel. RESULTS.— In culture, infected cells showed higher N-gene/ORF1 copy ratios than culture supernatants. The same trends in the relative abundance of copies across different targets observed in infected cells were observed in clinical samples, although trends were more pronounced in infected cells. CONCLUSIONS.— This study showed that a greater copy number of N-gene relative to E-gene and ORF1 transcripts could potentially explain inconclusive results for some RT-PCR tests on low viral load samples. The use of N-gene RT-PCR target(s) as opposed to ORF1 targets for routine testing is supported by these data.
Collapse
Affiliation(s)
- Noah B Toppings
- From the Department of Microbiology, Immunology, and Infectious Diseases (Toppings, Pillai), University of Calgary, Calgary, Alberta, Canada
| | - Lisa K Oberding
- From the Department of Pathology and Laboratory Medicine (Oberding, Pillai), University of Calgary, Calgary, Alberta, Canada
| | - Yi-Chan Lin
- From the Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada (Lin, Evans)
| | - David Evans
- From the Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada (Lin, Evans)
| | - Dylan R Pillai
- From the Department of Microbiology, Immunology, and Infectious Diseases (Toppings, Pillai), University of Calgary, Calgary, Alberta, Canada.,From the Department of Pathology and Laboratory Medicine (Oberding, Pillai), University of Calgary, Calgary, Alberta, Canada.,From the Clinical Section of Infectious Diseases, Department of Medicine (Pillai), University of Calgary, Calgary, Alberta, Canada.,From the Clinical Section of Microbiology, Alberta Precision Laboratories, Calgary, Alberta, Canada (Pillai)
| |
Collapse
|
7
|
Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods 2022; 201:82-95. [PMID: 33839286 PMCID: PMC8501152 DOI: 10.1016/j.ymeth.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Sensitive PCR detection of viral nucleic acids plays a critical role in infectious disease research, diagnosis and monitoring. In the context of SARS-CoV-2 detection, recent reports indicate that digital PCR-based tests are significantly more sensitive than traditional qPCR tests. Numerous factors can influence digital PCR reaction sensitivity. In this review, using a model for human HIV infection and the Raindance ddPCR platform as an example, we describe technical aspects that contribute to sensitive viral signal detection in DNA and RNA from tissue samples, which often harbor viral reservoirs and serve as better predictors of disease outcome and indicators of treatment efficacy.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| |
Collapse
|
8
|
Telwatte S, Martin HA, Marczak R, Fozouni P, Vallejo-Gracia A, Kumar GR, Murray V, Lee S, Ott M, Wong JK, Yukl SA. Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts. Methods 2022; 201:15-25. [PMID: 33882362 PMCID: PMC8105137 DOI: 10.1016/j.ymeth.2021.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The replication of SARS-CoV-2 and other coronaviruses depends on transcription of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and multiple different subgenomic mRNAs (sgRNAs) encompassing fragments arising from discontinuous transcription. Recent studies have aimed to characterize the expression of subgenomic SARS-CoV-2 transcripts in order to investigate their clinical significance. Here, we describe a novel panel of reverse transcription droplet digital PCR (RT-ddPCR) assays designed to specifically quantify multiple different subgenomic SARS-CoV-2 transcripts and distinguish them from transcripts that do not arise from discontinuous transcription at each locus. These assays can be applied to samples from SARS-CoV-2 infected patients to better understand the regulation of SARS-CoV-2 transcription and how different sgRNAs may contribute to viral pathogenesis and clinical disease severity.
Collapse
Affiliation(s)
- Sushama Telwatte
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Holly Anne Martin
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Ryan Marczak
- University of California, Santa Barbara, CA, United States
| | - Parinaz Fozouni
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - Albert Vallejo-Gracia
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - G Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - Victoria Murray
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Sulggi Lee
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Melanie Ott
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - Joseph K Wong
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Steven A Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States.
| |
Collapse
|
9
|
Long S, Berkemeier B. Ultrasensitive detection and quantification of viral nucleic acids with Raindance droplet digital PCR (ddPCR). Methods 2022; 201:49-64. [PMID: 33957204 PMCID: PMC8563494 DOI: 10.1016/j.ymeth.2021.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Sensitive detection of viral nucleic acids is critically important for diagnosis and monitoring of the progression of infectious diseases such as those caused by SARS-CoV2, HIV-1, and other viruses. In HIV-1 infection cases, assessing the efficacy of treatment interventions that are superimposed on combination antiretroviral therapy (cART) has benefited tremendously from the development of sensitive HIV-1 DNA and RNA quantitation assays. Simian immunodeficiency virus (SIV) infection of Rhesus macaques is similar in many key aspects to human HIV-1 infection and consequently this non-human primate (NHP) model has and continues to prove instrumental in evaluating HIV prevention, treatment and eradication approaches. Cell and tissue associated HIV-1 viral nucleic acids have been found to serve as useful predictors of disease outcome and indicators of treatment efficacy, highlighting the value of and the need for sensitive detection of viruses in cells/tissues from infected individuals or animal models. However, viral nucleic acid detection and quantitation in such sample sources can often be complicated by high nucleic acid input (that is required to detect ultralow level viruses in, for example, cure research) or inhibitors, leading to reduced detection sensitivity and under-quantification, and confounded result interpretation. Here, we present a step-by-step procedure to quantitatively recover cell/tissue associated viral DNA and RNA, using SIV-infected Rhesus macaque cells and tissues as model systems, and subsequently quantify the viral DNA and RNA with an ultrasensitive SIV droplet digital PCR (ddPCR) assay and reverse transcription ddPCR (RT-ddPCR) assay, respectively, on the Raindance ddPCR platform. The procedure can be readily adapted for a broad range of applications where highly sensitive nucleic acid detection and quantitation are required.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| |
Collapse
|
10
|
Lu MD, Telwatte S, Kumar N, Ferreira F, Martin HA, Kadiyala GN, Wedrychowski A, Moron-Lopez S, Chen TH, Goecker EA, Coombs RW, Lu CM, Wong JK, Tsibris A, Yukl SA. Novel assays to investigate the mechanisms of latent infection with HIV-2. PLoS One 2022; 17:e0267402. [PMID: 35476802 PMCID: PMC9045618 DOI: 10.1371/journal.pone.0267402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Although there have been great advancements in the field of HIV treatment and prevention, there is no cure. There are two types of HIV: HIV-1 and HIV-2. In addition to genetic differences between the two types of HIV, HIV-2 infection causes a slower disease progression, and the rate of new HIV-2 infections has dramatically decreased since 2003. Like HIV-1, HIV-2 is capable of establishing latent infection in CD4+ T cells, thereby allowing the virus to evade viral cytopathic effects and detection by the immune system. The mechanisms underlying HIV latency are not fully understood, rendering this a significant barrier to development of a cure. Using RT-ddPCR, we previously demonstrated that latent infection with HIV-1 may be due to blocks to HIV transcriptional elongation, distal transcription/polyadenylation, and multiple splicing. In this study, we describe the development of seven highly-specific RT-ddPCR assays for HIV-2 that can be applied to the study of HIV-2 infections and latency. We designed and validated seven assays targeting different HIV-2 RNA regions along the genome that can be used to measure the degree of progression through different blocks to HIV-2 transcription and splicing. Given that HIV-2 is vastly understudied relative to HIV-1 and that it can be considered a model of a less virulent infection, application of these assays to studies of HIV-2 latency may inform new therapies for HIV-2, HIV-1, and other retroviruses.
Collapse
Affiliation(s)
- Michael D. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Sushama Telwatte
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Fernanda Ferreira
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Holly Anne Martin
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Gayatri Nikhila Kadiyala
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Adam Wedrychowski
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Sara Moron-Lopez
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Tsui-Hua Chen
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Erin A. Goecker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Chuanyi M. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Photodynamic Inactivation of Human Coronaviruses. Viruses 2022; 14:v14010110. [PMID: 35062314 PMCID: PMC8779093 DOI: 10.3390/v14010110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.
Collapse
|
12
|
Zhang W, Zheng K, Ye Y, Ji J, Cheng X, He S. Pipette-Tip-Enabled Digital Nucleic Acid Analyzer for COVID-19 Testing with Isothermal Amplification. Anal Chem 2021; 93:15288-15294. [PMID: 34735121 DOI: 10.1021/acs.analchem.1c02414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a pipette-tip-enabled digital nucleic acid analyzer for high-performance COVID-19 testing is demonstrated. This is achieved by digital loop-mediated isothermal amplification (digital LAMP or dLAMP) using common laboratory equipment and materials. It is shown that simply fixing a glass capillary inside conventional pipette tips enables the generation of monodisperse, water-in-oil microdroplets with benchtop centrifugation. It is shown that using LAMP, the ORF1a/b gene, a standard test region for COVID-19 screening, can be amplified without a thermal cycler. The amplification allows counting of fluorescent microdroplets so that Poisson analysis can be performed to allow quantification with a limit of detection that is 1 order of magnitude better than those of nondigital techniques and comparable to those of commercial dLAMP platforms. It is envisioned that this work will inspire studies on ultrasensitive digital nucleic acid analyzers demanding both sensitivity and accessibility, which is pivotal to their large-scale applications.
Collapse
Affiliation(s)
- Wenyao Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yang Ye
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Jiali Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| |
Collapse
|
13
|
Van Poelvoorde LAE, Gand M, Fraiture MA, De Keersmaecker SCJ, Verhaegen B, Van Hoorde K, Cay AB, Balmelle N, Herman P, Roosens N. Strategy to Develop and Evaluate a Multiplex RT-ddPCR in Response to SARS-CoV-2 Genomic Evolution. Curr Issues Mol Biol 2021; 43:1937-1949. [PMID: 34889894 PMCID: PMC8928932 DOI: 10.3390/cimb43030134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has highlighted the importance of rapid and reliable diagnostic testing to prevent and control the viral transmission. However, inaccurate results may occur due to false negatives (FN) caused by polymorphisms or point mutations related to the virus evolution and compromise the accuracy of the diagnostic tests. Therefore, PCR-based SARS-CoV-2 diagnostics should be evaluated and evolve together with the rapidly increasing number of new variants appearing around the world. However, even by using a large collection of samples, laboratories are not able to test a representative collection of samples that deals with the same level of diversity that is continuously evolving worldwide. In the present study, we proposed a methodology based on an in silico and in vitro analysis. First, we used all information offered by available whole-genome sequencing data for SARS-CoV-2 for the selection of the two PCR assays targeting two different regions in the genome, and to monitor the possible impact of virus evolution on the specificity of the primers and probes of the PCR assays during and after the development of the assays. Besides this first essential in silico evaluation, a minimal set of testing was proposed to generate experimental evidence on the method performance, such as specificity, sensitivity and applicability. Therefore, a duplex reverse-transcription droplet digital PCR (RT-ddPCR) method was evaluated in silico by using 154 489 whole-genome sequences of SARS-CoV-2 strains that were representative for the circulating strains around the world. The RT-ddPCR platform was selected as it presented several advantages to detect and quantify SARS-CoV-2 RNA in clinical samples and wastewater. Next, the assays were successfully experimentally evaluated for their sensitivity and specificity. A preliminary evaluation of the applicability of the developed method was performed using both clinical and wastewater samples.
Collapse
Affiliation(s)
- Laura A. E. Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Marie-Alice Fraiture
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Bavo Verhaegen
- Food Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (K.V.H.)
| | | | - Ann Brigitte Cay
- Enzootic, Vector-Borne and Bee Diseases, Sciensano, 1180 Brussels, Belgium; (A.B.C.); (N.B.)
| | - Nadège Balmelle
- Enzootic, Vector-Borne and Bee Diseases, Sciensano, 1180 Brussels, Belgium; (A.B.C.); (N.B.)
| | - Philippe Herman
- Expertise and Service Provision, Sciensano, 1050 Brussels, Belgium;
| | - Nancy Roosens
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| |
Collapse
|
14
|
Niu C, Wang X, Zhang Y, Lu L, Wang D, Gao Y, Wang S, Luo J, Jiang Y, Wang N, Guo Y, Zhu L, Dong L. Interlaboratory assessment of quantification of SARS-CoV-2 RNA by reverse transcription digital PCR. Anal Bioanal Chem 2021; 413:7195-7204. [PMID: 34697653 PMCID: PMC8545465 DOI: 10.1007/s00216-021-03680-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023]
Abstract
The pandemic of the novel coronavirus disease 2019 (COVID-19) has caused severe harm to the health of people all around the world. Molecular detection of the pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), played a crucial role in the control of the disease. Reverse transcription digital PCR (RT-dPCR) has been developed and used in the detection of SARS-CoV-2 RNA as an absolute quantification method. Here, an interlaboratory assessment of quantification of SARS-CoV-2 RNA was organized by the National Institute of Metrology, China (NIMC), using in vitro transcribed RNA samples, among ten laboratories on six different dPCR platforms. Copy number concentrations of three genes of SARS-CoV-2 were measured by all participants. Consistent results were obtained with dispersion within 2.2-fold and CV% below 23% among different dPCR platforms and laboratories, and Z′ scores of all the reported results being satisfactory. Possible reasons for the dispersion included PCR assays, partition volume, and reverse transcription conditions. This study demonstrated the comparability and applicability of RT-dPCR method for quantification of SARS-CoV-2 RNA and showed the capability of the participating laboratories at SARS-CoV-2 test by RT-dPCR platform.
Collapse
Affiliation(s)
- Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Lin Lu
- Center for Reference Materials Research and Management (Office of National Research Center for Certified Reference Materials), National Institute of Metrology, Beijing, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Shangjun Wang
- Biological Metrology Center, Nanjing Institute of Measurement and Testing Technology, Nanjing, China
| | - Jingyan Luo
- R & D Department, Guangdong Forevergen Medical Technology Co., Ltd, Foshan, China
| | - Ying Jiang
- R & D Department, Mission Medical Technologies (Ningbo) Co., Ltd, Ningbo, China
| | - Nuo Wang
- Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| | | | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
| |
Collapse
|
15
|
Tracking the Transcription Kinetic of SARS-CoV-2 in Human Cells by Reverse Transcription-Droplet Digital PCR. Pathogens 2021; 10:pathogens10101274. [PMID: 34684223 PMCID: PMC8538813 DOI: 10.3390/pathogens10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Viral transcription is an essential step of SARS-CoV-2 infection after invasion into the target cells. Antiviral drugs such as remdesivir, which is used to treat COVID-19 patients, targets the viral RNA synthesis. Understanding the mechanism of viral transcription may help to develop new therapeutic treatment by perturbing virus replication. In this study, we established 28 ddPCR assays and designed specific primers/probe sets to detect the RNA levels of 15 NSP, 9 ORF, and 4 structural genes of SARS-CoV-2. The transcriptional kinetics of these viral genes were determined longitudinally from the beginning of infection to 12 h postinfection in Caco-2 cells. We found that SARS-CoV-2 takes around 6 h to hijack the cells before the initiation of viral transcription process in human cells. Our results may contribute to a deeper understanding of the mechanisms of SARS-CoV-2 infection.
Collapse
|
16
|
Long S. SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses 2021; 13:1923. [PMID: 34696353 PMCID: PMC8539008 DOI: 10.3390/v13101923] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, the etiologic agent at the root of the ongoing COVID-19 pandemic, harbors a large RNA genome from which a tiered ensemble of subgenomic RNAs (sgRNAs) is generated. Comprehensive definition and investigation of these RNA products are important for understanding SARS-CoV-2 pathogenesis. This review summarizes the recent progress on SARS-CoV-2 sgRNA identification, characterization, and application as a viral replication marker. The significance of these findings and potential future research areas of interest are discussed.
Collapse
Affiliation(s)
- Samuel Long
- Independent Researcher, Clarksburg, MD 20871, USA
| |
Collapse
|
17
|
Plebani M. Laboratory medicine in the COVID-19 era: six lessons for the future. Clin Chem Lab Med 2021; 59:1035-1045. [PMID: 33826810 DOI: 10.1515/cclm-2021-0367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
The lockdown due to the coronavirus disease 2019 (COVID-19), a major healthcare challenge, is a worldwide threat to public health, social stability, and economic development. The pandemic has affected all aspects of society, dramatically changing our day-to-day lives and habits. It has also changed clinical practice, including practices of clinical laboratories. After one year, it is time to rethink what has happened, and is still happening, in order to learn lessons for the future of laboratory medicine and its professionals. While examining this issue, I was inspired by Italo Calvino's famous work, "Six memos for the next millennium".But I rearranged the Author's six memos into "Visibility, quickness, exactitude, multiplicity, lightness, consistency".
Collapse
Affiliation(s)
- Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy
- Department of Integrated Diagnostics, University-Hospital of Padova, Padova, Italy
| |
Collapse
|