1
|
Abrha FH, Wondimu TH, Kahsay MH, Fufa Bakare F, Andoshe DM, Kim JY. Graphene-based biosensors for detecting coronavirus: a brief review. NANOSCALE 2023; 15:18184-18197. [PMID: 37927083 DOI: 10.1039/d3nr04583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The coronavirus (SARS-CoV-2) disease has affected the globe with 770 437 327 confirmed cases, including about 6 956 900 deaths, according to the World Health Organization (WHO) as of September 2023. Hence, it is imperative to develop diagnostic technologies, such as a rapid cost-effective SARS-CoV-2 detection method. A typical biosensor enables biomolecule detection with an appropriate transducer by generating a measurable signal from the sample. Graphene can be employed as a component for ultrasensitive and selective biosensors based on its physical, optical, and electrochemical properties. Herein, we briefly review graphene-based electrochemical, field-effect transistor (FET), and surface plasmon biosensors for detecting the SARS-CoV-2 target. In addition, details on the surface modification, immobilization, sensitivity and limit of detection (LOD) of all three sensors with regard to SARS-CoV-2 were reported. Finally, the point-of-care (POC) detection of SARS-CoV-2 using a portable smartphone and a wearable watch is a current topic of interest.
Collapse
Affiliation(s)
- Filimon Hadish Abrha
- Department of Chemistry, College of Natural and Computational Sciences, Aksum University, Aksum 1010, Ethiopia
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mebrahtu Hagos Kahsay
- Department of Applied Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Fetene Fufa Bakare
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
2
|
Derqui N, Koycheva A, Zhou J, Pillay TD, Crone MA, Hakki S, Fenn J, Kundu R, Varro R, Conibear E, Madon KJ, Barnett JL, Houston H, Singanayagam A, Narean JS, Tolosa-Wright MR, Mosscrop L, Rosadas C, Watber P, Anderson C, Parker E, Freemont PS, Ferguson NM, Zambon M, McClure MO, Tedder R, Barclay WS, Dunning J, Taylor GP, Lalvani A, Cutajar J, Quinn V, Hammett S, McDermott E, Luca C, Timcang K, Samuel J, Bremang S, Evetts S, Wang L, Nevin S, Davies M, Tejpal C, Essoussi M, Ketkar AV, Miserocchi G, Catchpole H, Badhan A, Dustan S, Day Weber IJ, Marchesin F, Whitfield MG, Poh J, Kondratiuk A. Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study. THE LANCET MICROBE 2023:S2666-5247(23)00069-1. [PMID: 37031689 PMCID: PMC10132910 DOI: 10.1016/s2666-5247(23)00069-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09-2·55]) and contacts' hands (aRR=2·06 [1·57-2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. INTERPRETATION Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. FUNDING National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council.
Collapse
|
3
|
Serwanga J, Ankunda V, Sembera J, Kato L, Oluka GK, Baine C, Odoch G, Kayiwa J, Auma BO, Jjuuko M, Nsereko C, Cotten M, Onyachi N, Muwanga M, Lutalo T, Fox J, Musenero M, Kaleebu P. Rapid, early, and potent Spike-directed IgG, IgM, and IgA distinguish asymptomatic from mildly symptomatic COVID-19 in Uganda, with IgG persisting for 28 months. Front Immunol 2023; 14:1152522. [PMID: 37006272 PMCID: PMC10060567 DOI: 10.3389/fimmu.2023.1152522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 04/04/2023] Open
Abstract
Introduction Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.
Collapse
Affiliation(s)
- Jennifer Serwanga
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Violet Ankunda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jackson Sembera
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Gerald Kevin Oluka
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Geoffrey Odoch
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - John Kayiwa
- Department of Virology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Betty Oliver Auma
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Mark Jjuuko
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Christopher Nsereko
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Matthew Cotten
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nathan Onyachi
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Moses Muwanga
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Tom Lutalo
- Department of Epidemiology and Data Management, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julie Fox
- Guy’s and St Thomas’ National Health Services Foundation Trust, King’s College London, London, United Kingdom
| | - Monica Musenero
- Science, Technology, and Innovation Secretariat, Office of the President, Government of Uganda, Kampala, Uganda
| | - Pontiano Kaleebu
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
4
|
Parker E, Thomas J, Roper KJ, Ijaz S, Edwards T, Marchesin F, Katsanovskaja K, Lett L, Jones C, Hardwick HE, Davis C, Vink E, McDonald SE, Moore SC, Dicks S, Jegatheesan K, Cook NJ, Hope J, Cherepanov P, McClure MO, Baillie JK, Openshaw PJM, Turtle L, Ho A, Semple MG, Paxton WA, Tedder RS, Pollakis G. SARS-CoV-2 antibody responses associate with sex, age and disease severity in previously uninfected people admitted to hospital with COVID-19: An ISARIC4C prospective study. Front Immunol 2023; 14:1146702. [PMID: 37056776 PMCID: PMC10087108 DOI: 10.3389/fimmu.2023.1146702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The SARS-CoV-2 pandemic enables the analysis of immune responses induced against a novel coronavirus infecting immunologically naïve individuals. This provides an opportunity for analysis of immune responses and associations with age, sex and disease severity. Here we measured an array of solid-phase binding antibody and viral neutralising Ab (nAb) responses in participants (n=337) of the ISARIC4C cohort and characterised their correlation with peak disease severity during acute infection and early convalescence. Overall, the responses in a Double Antigen Binding Assay (DABA) for antibody to the receptor binding domain (anti-RBD) correlated well with IgM as well as IgG responses against viral spike, S1 and nucleocapsid protein (NP) antigens. DABA reactivity also correlated with nAb. As we and others reported previously, there is greater risk of severe disease and death in older men, whilst the sex ratio was found to be equal within each severity grouping in younger people. In older males with severe disease (mean age 68 years), peak antibody levels were found to be delayed by one to two weeks compared with women, and nAb responses were delayed further. Additionally, we demonstrated that solid-phase binding antibody responses reached higher levels in males as measured via DABA and IgM binding against Spike, NP and S1 antigens. In contrast, this was not observed for nAb responses. When measuring SARS-CoV-2 RNA transcripts (as a surrogate for viral shedding) in nasal swabs at recruitment, we saw no significant differences by sex or disease severity status. However, we have shown higher antibody levels associated with low nasal viral RNA indicating a role of antibody responses in controlling viral replication and shedding in the upper airway. In this study, we have shown discernible differences in the humoral immune responses between males and females and these differences associate with age as well as with resultant disease severity.
Collapse
Affiliation(s)
- Eleanor Parker
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jordan Thomas
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kelly J. Roper
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Samreen Ijaz
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, London, United Kingdom
| | - Tansy Edwards
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Federica Marchesin
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ksenia Katsanovskaja
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lauren Lett
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Jones
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hayley E. Hardwick
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Chris Davis
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elen Vink
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sarah E. McDonald
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Shona C. Moore
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Steve Dicks
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, London, United Kingdom
- National Health Service (NHS) Blood and Transplant, London, United Kingdom
| | - Keerthana Jegatheesan
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, London, United Kingdom
- National Health Service (NHS) Blood and Transplant, London, United Kingdom
| | - Nicola J. Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Myra O. McClure
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | - Lance Turtle
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antonia Ho
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Malcolm G. Semple
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - William A. Paxton
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard S. Tedder
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Georgios Pollakis
- National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
5
|
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck JD, Lucas C, Klein J, Filler RB, Strine MS, Sy M, Deme AB, Badiane AS, Dieye B, Ndiaye IM, Diedhiou Y, Mbaye AM, Diagne CT, Vigan-Womas I, Mbengue A, Sadio BD, Diagne MM, Moore AJ, Mangou K, Diallo F, Sene SD, Pouye MN, Faye R, Diouf B, Nery N, Costa F, Reis MG, Muenker MC, Hodson DZ, Mbarga Y, Katz BZ, Andrews JR, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall AA, Vélez JCQ, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé FA, Dabiré RK, Moukoko CEE, Ouédraogo JB, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen CB, Ko AI, Ring AM, Bei AK. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Sci Rep 2022; 12:22175. [PMID: 36550362 PMCID: PMC9778468 DOI: 10.1038/s41598-022-26709-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Renata B Filler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Madison S Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mouhamad Sy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Cheikh Tidiane Diagne
- DiaTROPIX Rapid Diagnostic Tests Facility, Institut Pasteur de Dakar, Dakar, Senegal
| | - Inés Vigan-Womas
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Khadidiatou Mangou
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Fatoumata Diallo
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Seynabou D Sene
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama N Pouye
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Rokhaya Faye
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Babacar Diouf
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nivison Nery
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Department of Internal Medicine, Yale Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, CT, USA
| | - Federico Costa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
| | - Mitermayer G Reis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Daniel Z Hodson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Ben Z Katz
- Division of Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Melissa Campbell
- Yale Center for Clinical Investigation, Yale School of Medicine, New Haven, CT, USA
| | - Ariktha Srivathsan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | | | - Ousmane Faye
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Juan Carlos Quintero Vélez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Grupo de Investigación Ciencias Veterinarias Centauro, University of Antioquia, Medellín, Colombia
- Grupo de Investigación Microbiología Básica y Aplicada, University of Antioquia, Medellín, Colombia
| | - Michael Cappello
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Michael Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Choukri Ben-Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Richard Tedder
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- South London Specialist Virology Centre, Kings College Hospital NHS Foundation Trust, London, UK
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Peter Cherepanov
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Crick COVID19 Consortium, Francis Crick Institute, London, NW1 1AT, UK
| | - Fabrice A Somé
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, 2701, BP, Cameroon
- Malaria Research Unit, Center Pasteur Cameroon, Yaoundé, Cameroon
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Yap Boum
- Médecins Sans Frontières, University of Yaoundé and Epicentre, Yaoundé, Cameroon
| | | | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Adam Wisnewski
- Department of Internal Medicine, Yale Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, CT, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Akiko Iwasaki
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
6
|
Mullins E, McCabe R, Bird SM, Randell P, Pond MJ, Regan L, Parker E, McClure M, Donnelly CA. Tracking the incidence and risk factors for SARS-CoV-2 infection using historical maternal booking serum samples. PLoS One 2022; 17:e0273966. [PMID: 36054212 PMCID: PMC9439206 DOI: 10.1371/journal.pone.0273966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
The early transmission dynamics of SARS-CoV-2 in the UK are unknown but their investigation is critical to aid future pandemic planning. We tested over 11,000 anonymised, stored historic antenatal serum samples, given at two north-west London NHS trusts in 2019 and 2020, for total antibody to SARS-CoV-2 receptor binding domain (anti-RBD). Estimated prevalence of seroreactivity increased from 1% prior to mid-February 2020 to 17% in September 2020. Our results show higher prevalence of seroreactivity to SARS-CoV-2 in younger, non-white ethnicity, and more deprived groups. We found no significant interaction between the effects of ethnicity and deprivation. Derived from prevalence, the estimated incidence of seroreactivity reflects the trends observed in daily hospitalisations and deaths in London that followed 10 and 13 days later, respectively. We quantified community transmission of SARS-CoV-2 in London, which peaked in late March / early April 2020 with no evidence of community transmission until after January 2020. Our study was not able to determine the date of introduction of the SARS-CoV-2 virus but demonstrates the value of stored antenatal serum samples as a resource for serosurveillance during future outbreaks.
Collapse
Affiliation(s)
- Edward Mullins
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The George Institute for Global Health, Queen Charlotte’s and Chelsea Hospital, London, United Kingdom
| | - Ruth McCabe
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- NIHR Health Research Protection Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Sheila M. Bird
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Randell
- Department of Infection and Immunity, North West London Pathology, London, United Kingdom
| | - Marcus J. Pond
- Department of Infection and Immunity, North West London Pathology, London, United Kingdom
| | - Lesley Regan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, St Mary’s Hospital, London, United Kingdom
| | - Eleanor Parker
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Myra McClure
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christl A. Donnelly
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- NIHR Health Research Protection Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Liu L, Wang X, Li X, Li N. COVID-19 Vaccines and Public Anxiety: Antibody Tests May Be Widely Accepted. Front Public Health 2022; 10:819062. [PMID: 35602124 PMCID: PMC9120666 DOI: 10.3389/fpubh.2022.819062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background More than 200 countries are experiencing the coronavirus disease (COVID-19) pandemic. COVID-19 vaccination strategies have been implemented worldwide, and repeat COVID-19 outbreaks have been seen. The purpose of this study was to investigate the impact of COVID-19 vaccination on the reduction of perceived anxiety and the association between public anxiety and antibody testing intention during the COVID-19 pandemic. Methods Chinese adults aged 18 and over were surveyed using an anonymous online questionnaire in April and May 2021. The questionnaire collected sociodemographic characteristics, vaccination characteristics, perceived anxiety due to COVID-19, and attitudes toward future antibody testing after COVID-19 vaccination. Perceived anxiety was assessed on a visual analog scale (VAS). Multivariate logistic regression analysis was used to determine the factors influencing future antibody detection. Results A total of 3,233 people were investigated, 3,209 valid questionnaires were collected, and the response rate was 99.3%. Of the 3,209 respondents, 2,047 were vaccinated, and 1,162 were unvaccinated. There was a significant difference in anxiety levels between vaccinated and unvaccinated respondents (24.9±25.4 vs. 50.0±33.1, respectively). With the local spread of COVID-19 in mainland China, the public anxiety VAS scores increased by 15.4±25.6 (SMD=120%) and 33.8±31.7 (SMD=49%) among vaccinated and unvaccinated respondents, respectively. Of the 2,047 respondents who were vaccinated, 1,626 (79.4%) thought they would accept antibody testing. Those who displayed more anxiety about acquiring COVID-19 disease were more likely to accept COVID-19 antibody testing. If the antibody test results showed protective antibodies, 1,190 (58.1%) were more likely to arrange travel plans in China, while 526 (25.7%) thought they would feel safer traveling abroad. Conclusion COVID-19 vaccination strategies help reduce public anxiety. However, public anxiety may be elevated as the local transmission of COVID-19 occurs in mainland China, which is usually caused now by imported cases. Those who display more anxiety choose to have antibody testing. Improving the accessibility of COVID-19 antibody tests can help ease public anxiety and enhance the confidence of some people to participate in social activities.
Collapse
Affiliation(s)
- Leyuan Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|