1
|
Zampieri M, Karpach K, Salerno G, Raguzzini A, Barchetta I, Cimini FA, Dule S, De Matteis G, Zardo G, Borro M, Peluso I, Cavallo MG, Reale A. PAR level mediates the link between ROS and inflammatory response in patients with type 2 diabetes mellitus. Redox Biol 2024; 75:103243. [PMID: 38906011 PMCID: PMC11253151 DOI: 10.1016/j.redox.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by disrupted glucose homeostasis and metabolic abnormalities, with oxidative stress and inflammation playing pivotal roles in its pathophysiology. Poly(ADP-ribosyl)ation (PARylation) is a post-translational process involving the addition of ADP-ribose polymers (PAR) to target proteins. While preclinical studies have implicated PARylation in the interplay between oxidative stress and inflammation in T2DM, direct clinical evidence in humans remains limited. This study investigates the relationship between oxidative stress, PARylation, and inflammatory response in T2DM patients. METHODS This cross-sectional investigation involved 61 T2DM patients and 48 controls. PAR levels were determined in peripheral blood cells (PBMC) by ELISA-based methodologies. Oxidative stress was assessed in plasma and PBMC. In plasma, we monitored reactive oxygen metabolites (d-ROMs) and ferric-reducing antioxidant power. In PBMC, we measured the expression of antioxidant enzymes SOD1, GPX1 and CAT by qPCR. Further, we evaluated the expression of inflammatory mediators such as IL6, TNF-α, CD68 and MCP1 by qPCR in PBMC. RESULTS T2DM patients exhibited elevated PAR levels in PBMC and increased d-ROMs in plasma. Positive associations were found between PAR levels and d-ROMs, suggesting a link between oxidative stress and altered PAR metabolism. Mediation analysis revealed that d-ROMs mediate the association between HbA1c levels and PAR, indicating oxidative stress as a potential driver of increased PARylation in T2DM. Furthermore, elevated PAR levels were found to be associated with increased expression of pro-inflammatory cytokines IL6 and TNF-α in the PBMC of T2DM patients. CONCLUSIONS This study highlights that hyperactivation of PARylation is associated with poor glycemic control and the resultant oxidative stress in T2DM. The increase of PAR levels is correlated with the upregulation of key mediators of the inflammatory response. Further research is warranted to validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Katsiaryna Karpach
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sense Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189, Rome, Italy.
| | - Anna Raguzzini
- CREA- Research Centre for Food and Nutrition, 00178, Rome, Italy.
| | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Sara Dule
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Giovanna De Matteis
- CREA-Research Centre for Animal Production and Aquaculture, 00015, Monterotondo, Italy.
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sense Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189, Rome, Italy.
| | - Ilaria Peluso
- CREA- Research Centre for Food and Nutrition, 00178, Rome, Italy.
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
2
|
Applications of Nanosized-Lipid-Based Drug Delivery Systems in Wound Care. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired wound healing is an encumbering public health issue that increases the demand for developing new therapies in order to minimize health costs and enhance treatment efficacy. Available conventional therapies are still unable to maximize their potential in penetrating the skin at the target site and accelerating the healing process. Nanotechnology exhibits an excellent opportunity to enrich currently available medical treatments, enhance standard care and manage wounds. It is a promising approach, able to address issues such as the permeability and bioavailability of drugs with reduced stability or low water solubility. This paper focuses on nanosized-lipid-based drug delivery systems, describing their numerous applications in managing skin wounds. We also highlight the relationship between the physicochemical characteristics of nanosized, lipid-based drug delivery systems and their impact on the wound-healing process. Different types of nanosized-lipid-based drug delivery systems, such as vesicular systems and lipid nanoparticles, demonstrated better applicability and enhanced skin penetration in wound healing therapy compared with conventional treatments. Moreover, an improved chemically and physically stable drug delivery system, with increased drug loading capacity and enhanced bioavailability, has been shown in drugs encapsulated in lipid nanoparticles. Their applications in wound care show potential for overcoming impediments, such as the inadequate bioavailability of active agents with low solubility. Future research in nanosized-lipid-based drug delivery systems will allow the achievement of increased bioavailability and better control of drug release, providing the clinician with more effective therapies for wound care.
Collapse
|
3
|
El-Salamouni NS, Gowayed MA, Seiffein NL, Abdel-Moneim RA, Kamel MA, Labib GS. Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. Int J Pharm 2021; 592:120091. [PMID: 33197564 DOI: 10.1016/j.ijpharm.2020.120091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
The article presents an experimental study on the possible repurposed use of valsartan (Val), in the local treatment of uncontrolled diabetic foot ulcer. Solid lipid nanoparticles (SLN), loaded with Val were prepared by applying 32 full factorial design using modified high shear homogenization method. The lipid phase composed of Precirol® ATO 5 (P ATO 5) and/or Gelucire 50/13 (G 50/13) in different ratios and a nonionic emulsifier, Pluronic 188 (P188), was used in different percentages. Optimized formulation was further integrated in hydroxyl propyl methyl cellulose (HPMC) gel for the ease of administration. In-vitro and in-vivo characterizations were investigated. The prepared nanoparticles showed small particle size, high entrapment efficiency and sustained drug release. Microbiologically, Val-SLN showed a prominent decrease in the biofilm mass formation for both gram-positive and gram-negative bacteria, as well as a comparable minimum inhibitory concentration level to levofloxacin alone. Diabetes was induced in 32 neonatal Sprague-Dawley rats. At 8 weeks of age, rats with blood sugar level >160 were subjected to surgically induced ulcer. Treatment with Val-SLN for 12 days revealed enhanced healing characteristics through cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nitric oxide (NO), transforming growth factor-beta (TGF-β), matrix metalloproteinase (MMPs) and vascular endothelial growth factor (VEGF) pathways. Histological examination revealed re-epithelization in Val-SLN treated ulcer, as well as decrease in collagen using trichrome histomorphometric analysis.
Collapse
Affiliation(s)
- Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Nevine L Seiffein
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Rehab A Abdel-Moneim
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Egypt.
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Egypt.
| | - Gihan S Labib
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Bakker JP, Baltzis D, Tecilazich F, Chan RH, Manning WJ, Neilan TG, Wallace ML, Hudson M, Malhotra A, Patel SR, Veves A. The Effect of Continuous Positive Airway Pressure on Vascular Function and Cardiac Structure in Diabetes and Sleep Apnea. A Randomized Controlled Trial. Ann Am Thorac Soc 2020; 17:474-483. [PMID: 31922899 PMCID: PMC7175977 DOI: 10.1513/annalsats.201905-378oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Although both type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are independently recognized as risk factors for cardiovascular disease, little is known about their interaction.Objectives: We hypothesized that T2DM and OSA act synergistically to increase vascular risk, and that treatment of OSA would improve vascular reactivity in patients with T2DM plus OSA.Methods: Cross-sectional study of 141 adults with T2DM, OSA, T2DM plus OSA, and control subjects, followed by a 3-month, parallel-arm, randomized, placebo-controlled trial comparing active and sham continuous positive airway pressure (CPAP) in 53 adults with T2DM plus OSA. Endothelium-dependent macro- and microvascular reactivity (flow-mediated dilation [FMD] of the brachial artery and acetylcholine-induced dilation of forearm microvasculature, respectively) and cardiovascular magnetic resonance to assess left- and right-ventricular mass/volume.Results: Mean (±SD) FMD was 6.1 (±4.0)%, 7.3 (±3.6)%, 6.8 (±4.5)%, and 4.8 (±2.9)% in control subjects, T2DM only, OSA only, and T2DM plus OSA, respectively. We observed a significant T2DM × OSA interaction on FMD, such that the mean effect of OSA in those with T2DM was 3.1% (95% confidence interval [CI], 0.6 to 5.6) greater than the effect of OSA in those without T2DM. A total of 3 months of CPAP resulted in a mean absolute increase in FMD of 0.3% (95% CI, -1.9 to 2.5; primary endpoint), with a net improvement of 1.1% (95% CI, -1.4 to 3.6) among those with adherence of 4 h/night or greater. A significant T2DM × OSA interaction was found for both left ventricular (LV) and right ventricular end-diastolic volume, such that OSA was associated with a 22.4 ml (95% CI, 3.2 to 41.6) greater LV end-diastolic volume and 23.2 ml (95% CI, 2.6 to 43.8) greater right ventricular end-diastolic volume in those with T2DM compared with the impact of OSA in those without T2DM. We observed a net improvement in LV end-diastolic volume of 8.7 ml (95% CI, -7.0 to 24.4).Conclusions: The combination of T2DM plus OSA is associated with macrovascular endothelial dysfunction beyond that observed with either disease alone. CPAP for 3 months did not significantly improve macrovascular endothelial function in the intent-to-treat analysis; however, cardiovascular magnetic resonance results suggest that there may be a beneficial effect of CPAP on LV diastolic volume.Clinical trial registered with www.clinicaltrials.gov (NCT01629862).
Collapse
Affiliation(s)
- Jessie P. Bakker
- Division of Sleep & Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dimitrios Baltzis
- The Rongxiang Xu MD Center for Regenerative Therapeutics
- Microcirculation Laboratory
- Diabetes–Diabetic Foot Center, Mouwasat Hospital, Khobar, Kingdom of Saudi Arabia
| | - Francesco Tecilazich
- The Rongxiang Xu MD Center for Regenerative Therapeutics
- Microcirculation Laboratory
- Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| | - Raymond H. Chan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Cardiovascular Division, and
| | - Warren J. Manning
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Cardiovascular Division, and
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Tomas G. Neilan
- Division of Cardiology, Department of Medicine and the Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Margo Hudson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts and
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, San Diego, California
| | - Sanjay R. Patel
- Center for Sleep and Cardiovascular Outcomes Research, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aristidis Veves
- The Rongxiang Xu MD Center for Regenerative Therapeutics
- Microcirculation Laboratory
| |
Collapse
|
5
|
Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update 2017; 24:86-105. [DOI: 10.1093/humupd/dmx033] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Constanze C Maresch
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Dina C Stute
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - David M de Kretser
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
6
|
Fuchs D, Dupon PP, Schaap LA, Draijer R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovasc Diabetol 2017; 16:11. [PMID: 28103890 PMCID: PMC5244618 DOI: 10.1186/s12933-016-0487-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/25/2016] [Indexed: 01/17/2023] Open
Abstract
Background/Introduction Diabetes and cardiovascular disease develop in concert with metabolic abnormalities mirroring and causing changes in the vasculature, particularly the microcirculation. The microcirculation can be affected in different parts of the body of which the skin is the most easily accessible tissue. Purpose The association between diabetes and dermal microvascular dysfunction has been investigated in observational studies. However, the strength of the association is unknown. Therefore we conducted a systematic review with meta-analysis on the association between diabetes and dermal microvascular dysfunction as assessed by laser Doppler/laser speckle contrast imaging with local thermal hyperaemia as non-invasive indicator of microvascular functionality. Methods PubMed and Ovid were systematically searched for eligible studies through March 2015. During the first selection, studies were included if they were performed in humans and were related to diabetes or glucose metabolism disorders and to dermal microcirculation. During the second step we selected studies based on the measurement technique, measurement location (arm or leg) and the inclusion of a healthy control group. A random effects model was used with the standardised mean difference as outcome measure. Calculations and imputation of data were done according to the Cochrane Handbook. Results Of the 1445 studies found in the first search, thirteen cross-sectional studies were included in the meta-analysis, comprising a total of 857 subjects. Resting blood flow was similar between healthy control subjects and diabetes patients. In contrast, the microvascular response to local skin heating was reduced in diabetic patients compared to healthy control subjects [pooled effect of −0.78 standardised mean difference (95% CI −1.06, −0.51)]. This effect is considered large according to Cohen’s effect size definition. The variability in effect size was high (heterogeneity 69%, p < 0.0001). However, subgroup analysis revealed no difference between the type and duration of diabetes and other health related factors, indicating that diabetes per se causes the microvascular dysfunction. Conclusion Our meta-analysis shows that diabetes is associated with a large reduction of dermal microvascular function in diabetic patients. The local thermal hyperaemia methodology may become a valuable non-invasive tool for diagnosis and assessing progress of diabetes-related microvascular complications, but standardisation of the technique and quality of study conduct is urgently required. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0487-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Unilever Research and Development, Vlaardingen, Olivier van Noortlaan 120, PO Box 114, 3130 AC, Vlaardingen, The Netherlands.
| | - Pepijn P Dupon
- Unilever Research and Development, Vlaardingen, Olivier van Noortlaan 120, PO Box 114, 3130 AC, Vlaardingen, The Netherlands.,Faculty of Earth and Life Sciences, Free University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Laura A Schaap
- Faculty of Earth and Life Sciences, Free University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Richard Draijer
- Unilever Research and Development, Vlaardingen, Olivier van Noortlaan 120, PO Box 114, 3130 AC, Vlaardingen, The Netherlands
| |
Collapse
|
7
|
Poly-ADP-ribose-polymerase inhibition ameliorates hind limb ischemia reperfusion injury in a murine model of type 2 diabetes. Ann Surg 2014; 258:1087-95. [PMID: 23549425 DOI: 10.1097/sla.0b013e31828cced3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Diabetes is known to increase poly-ADP-ribose-polymerase (PARP) activity and posttranslational poly-ADP-ribosylation of several regulatory proteins involved in inflammation and energy metabolism. These experiments test the hypothesis that PARP inhibition will modulate hind limb ischemia reperfusion (IR) in a mouse model of type-II diabetes and ameliorate the ribosylation and the activity/transnuclear localization of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). METHODS db/db mice underwent 1.5 hours of hind limb ischemia followed by 1, 7, or 24 hours of reperfusion. The treatment group received the PARP inhibitor PJ34 (PJ34) over a 24-hour period; the untreated group received Lactated Ringer (LR) at the same time points. IR muscles were analyzed for indices of PARP activity, fiber injury, metabolic activity, inflammation, GAPDH activity/intracellular localization, and poly-ADP-ribosylation of GAPDH. RESULTS PARP activity was significantly lower in the PJ34-treated groups than in the Lactated Ringer group at 7 and 24 hours of reperfusion. There was significantly less muscle fiber injury in the PJ34-treated group than in the Lactated Ringer-treated mice at 24 hours of reperfusion. PJ34 lowered levels of select proinflammatory molecules at 7 hours and 24 hours of IR. There were significant increases in metabolic activity only at 24 hours of IR in the PJ34 group, which temporally correlated with increase in GAPDH activity, decreased GAPDH poly-ADP-ribosylation, and nuclear translocation of GAPDH. CONCLUSIONS PJ34 reduced PARP activity, GAPDH ribosylation, and GAPDH translocation; ameliorated muscle fiber injury; and increased metabolic activity after hind limb IR injury in a murine model of type-II diabetes. PARP inhibition might be a therapeutic strategy after IR in diabetic humans.
Collapse
|
8
|
Zhou TB, Jiang ZP. Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 2013; 34:143-8. [PMID: 24303937 DOI: 10.3109/10799893.2013.865748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a ubiquitous, chromatin-bound enzyme, plays a crucial role in many processes, including DNA repair, cell death, metabolism, and inflammatory responses, by activating DNA repair pathways responsible for cellular survival. Renin-angiotensin-aldosterone system (RAAS) genes encode renin, angiotensinogen, angiotensin-converting enzyme, angiotensin type-1 receptor and aldosterone synthase gene. RAAS is a hormone system which acts on multiple physiologic pathways primarily by regulating blood pressure, electrolyte and fluid homeostasis in mammals, but also by local autocrine and paracrine actions. The current status quo of scientific evidence shows that there might be a signaling pathway between PARP and RAAS. Herein, we review the role of PARP and its signaling pathways with RAAS in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|
9
|
Dushay JR, Tecilazich F, Kafanas A, Magargee ML, Auster ME, Gnardellis C, Dinh T, Veves A. Aliskiren improves vascular smooth muscle function in the skin microcirculation of type 2 diabetic patients with normal renal function. J Renin Angiotensin Aldosterone Syst 2013; 16:344-52. [PMID: 23670354 DOI: 10.1177/1470320313489060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The objective of this paper is to study the effect of aliskiren on metabolic parameters and micro- and macrovascular reactivity in individuals diagnosed with or at high risk for developing type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS We studied 47 T2DM and 41 at-risk individuals in a randomized, double-blinded, placebo-controlled trial. All subjects were treated with 150 mg aliskiren or placebo daily for 12 weeks. Twenty-six (55%) of T2DM and four (8%) at-risk subjects were also treated with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers. RESULTS Aliskiren treatment was associated with improvement in systolic and diastolic blood pressure and endothelium-independent vasodilation at the skin microcirculation in those with T2DM but not in those at risk. There were no incidences of hypotension and no significant changes in serum potassium or creatinine levels with aliskiren treatment in either study group. CONCLUSIONS Aliskiren improves blood pressure and vascular smooth muscle function in the skin microcirculation of T2DM patients.
Collapse
Affiliation(s)
- Jody R Dushay
- Division of Endocrinology, Beth Israel Deaconess Medical Center, USA
| | | | - Antonios Kafanas
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | - Mary L Magargee
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | - Michael E Auster
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | | | - Thanh Dinh
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Laboratory, USA
| |
Collapse
|
10
|
Meyers KEC, Lieberman K, Solar-Yohay S, Han G, Shi V. The Efficacy and Safety of Valsartan in Obese and Non-Obese Pediatric Hypertensive Patients. J Clin Hypertens (Greenwich) 2011; 13:758-66. [PMID: 21974764 DOI: 10.1111/j.1751-7176.2011.00502.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin E C Meyers
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
11
|
Doupis J, Rahangdale S, Gnardellis C, Pena SE, Malhotra A, Veves A. Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity (Silver Spring) 2011; 19:729-35. [PMID: 20829804 PMCID: PMC3676733 DOI: 10.1038/oby.2010.193] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the influences of obesity and diabetes on endothelium-dependent and -independent vasodilation, inflammatory cytokines, and growth factors. We included 258 subjects, age 21-80 years in four groups matched for age and gender: 40 healthy nonobese (BMI <30 kg·m(-2)) nondiabetic subjects, 76 nonobese diabetic patients, 37 obese (BMI >30) nondiabetic subjects, and 105 obese (BMI >30) diabetic patients. The flow-mediated dilation (FMD, endothelium-dependent) and nitroglycerin-induced dilation (NID, endothelium-independent) in the brachial artery, the vascular reactivity at the forearm skin and serum growth factors and inflammatory cytokines were measured. FMD was reduced in the nonobese diabetic patients, obese nondiabetic controls, and obese diabetic patients (P < 0.0001). NID was different among all four groups, being highest in the obese nondiabetic subjects and lowest in the obese diabetic patients (P < 0.0001). The resting skin forearm blood flow was reduced in the obese nondiabetic subjects (P < 0.01). Vascular endothelial growth factor (VEGF) was higher in the obese nondiabetic subjects (P < 0.05), tumor necrosis factor-α was higher in the obese diabetic patients (P < 0.0001) and C-reactive protein was higher in both the obese nondiabetic and diabetic subjects (P < 0.0001). Soluble intercellular adhesion molecule-1 was elevated in the two diabetic groups and the obese nondiabetic subjects (P < 0.05). We conclude that diabetes and obesity affect equally the endothelial cell function but the smooth muscle cell function is affected only by diabetes. In addition, the above findings may be related to differences that were observed in the growth factors and inflammatory cytokines.
Collapse
Affiliation(s)
- John Doupis
- Microcirculation Laboratory, Joslin–Beth Israel Deaconess Foot Center, the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shilpa Rahangdale
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Salvador E. Pena
- Microcirculation Laboratory, Joslin–Beth Israel Deaconess Foot Center, the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Atul Malhotra
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aristidis Veves
- Microcirculation Laboratory, Joslin–Beth Israel Deaconess Foot Center, the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Shishido T, Konta T, Nishiyama S, Miyashita T, Miyamoto T, Takasaki S, Nitobe J, Watanabe T, Takeishi Y, Kubota I. Suppressive effects of valsartan on microalbuminuria and CRP in patients with metabolic syndrome (Val-Mets). Clin Exp Hypertens 2011; 33:117-23. [PMID: 21269062 DOI: 10.3109/10641963.2010.531837] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The presence of metabolic syndrome (Mets) increases the risk for cardiovascular disease. There is a significant correlation between the levels of urinary albumin to creatinine ratio (UACR) and high-sensitive C-reactive peptide (hs-CRP), and accumulation of each Mets component. Increasing evidence has shown the importance of blockade of renin-angiotensin-systems (RAS) for reducing urinary albumin excretion and hs-CRP levels in Mets patients. However, the impact of RAS blockade on these effects in hypertensive (HT) Mets patients without diabetes mellitus (DM) has not been evaluated. We prospectively measured the levels of UACR and hs-CRP in 153 HT patients with and without Mets. Body weight; waist circumference; presence of dyslipidemia and DM, and levels of HOMA-R, UACR, and hs-CRP were significantly higher in HT patients with Mets than in those without Mets. After we treated these Mets patients with valsartan for 6 months, blood pressure (BP), UACR, and hs-CRP were decreased, whereas body weight, HOMR-R, and the lipid profile were not changed. In HT Mets patients without DM, 6 months after valsartan administration, levels of UACR and hs-CRP were also significantly decreased by 37.8% (-9.0-56.5%, p < 0.05) and 23.6% (-28.7-73.4%, p < 0.05), respectively. However, the percentage change of UACR and hs-CRP was not correlated with the reduction in BP. Valsartan administration lowered increased levels of chronic inflammation in both HT Mets patients with DM and in those without DM. These results indicate that the anti-inflammatory properties of valsartan might also have beneficial effects in Mets patients without DM.
Collapse
Affiliation(s)
- Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 2010; 80:1869-77. [PMID: 20417190 DOI: 10.1016/j.bcp.2010.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Collapse
Affiliation(s)
- Vincenzo Giansanti
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
14
|
Khaodhiar L, Brennan AM, Lima C, Chan JL, Mantzoros CS, Manning WJ, Danias PG, Veves A. Effect of valsartan on left ventricular anatomy and systolic function and aortic elasticity. Metabolism 2009; 58:682-8. [PMID: 19375592 DOI: 10.1016/j.metabol.2009.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 01/21/2009] [Indexed: 11/18/2022]
Abstract
The objective of the study was to examine the effect of a 6-month daily treatment with 160 mg valsartan, an angiotensin II receptor blocker, on the left ventricular systolic function and aortic elasticity of patients with type 2 diabetes mellitus (T2DM) and healthy subjects. This was a prospective, randomized, double-blind, placebo-controlled crossover study. Thirteen healthy control subjects and 11 patients with T2DM were enrolled in the study. Eight control subjects and 4 T2DM patients completed the study. Cardiovascular magnetic resonance was used to evaluate the effect of valsartan on the left ventricular function and aortic elasticity. At baseline, T2DM patients had increased left ventricular mass (P = .006) when compared with the healthy controls. In the T2DM patients, treatment with valsartan, in comparison with receiving placebo, resulted in a reduction of aortic radius (P = .026) and wall thickness (P = .032) of the ascending aorta. In the abdominal aorta, valsartan treatment, when compared with placebo treatment, reduced the arterial compliance (P = .014) in the T2DM patients. Valsartan treatment for 6 months decreased the diameter and wall thickness of the ascending aorta in patients with T2DM, but may decrease AC of the abdominal aorta.
Collapse
Affiliation(s)
- Lalita Khaodhiar
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009; 156:713-27. [PMID: 19210748 DOI: 10.1111/j.1476-5381.2008.00086.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Here we overview the role of reactive nitrogen species (nitrosative stress) and associated pathways in the pathogenesis of diabetic vascular complications. Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a loss of the vascular endothelium to produce biologically active nitric oxide (NO), which impairs vascular relaxations. Mitochondria play a crucial role in this process: endothelial cells placed in increase extracellular glucose respond with a marked increase in mitochondrial superoxide formation. Superoxide, when combining with NO generated by the endothelial cells (produced by the endothelial isoform of NO synthase), leads to the formation of peroxynitrite, a cytotoxic oxidant. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction through a multitude of mechanisms including substrate depletion and uncoupling of endothelial isoform of NO synthase. Another pathomechanism involves DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). PARP-mediated poly(ADP-ribosyl)ation and inhibition of glyceraldehyde-3-phosphate dehydrogenase importantly contributes to the development of diabetic vascular complications: it induces activation of multiple pathways of injury including activation of nuclear factor kappa B, activation of protein kinase C and generation of intracellular advanced glycation end products. Reactive species generation and PARP play key roles in the pathogenesis of 'glucose memory' and in the development of injury in endothelial cells exposed to alternating high/low glucose concentrations.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0833, USA.
| |
Collapse
|
16
|
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009. [PMID: 19210748 DOI: 10.111/j.1476-5381.2008.00086.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here we overview the role of reactive nitrogen species (nitrosative stress) and associated pathways in the pathogenesis of diabetic vascular complications. Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a loss of the vascular endothelium to produce biologically active nitric oxide (NO), which impairs vascular relaxations. Mitochondria play a crucial role in this process: endothelial cells placed in increase extracellular glucose respond with a marked increase in mitochondrial superoxide formation. Superoxide, when combining with NO generated by the endothelial cells (produced by the endothelial isoform of NO synthase), leads to the formation of peroxynitrite, a cytotoxic oxidant. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction through a multitude of mechanisms including substrate depletion and uncoupling of endothelial isoform of NO synthase. Another pathomechanism involves DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). PARP-mediated poly(ADP-ribosyl)ation and inhibition of glyceraldehyde-3-phosphate dehydrogenase importantly contributes to the development of diabetic vascular complications: it induces activation of multiple pathways of injury including activation of nuclear factor kappa B, activation of protein kinase C and generation of intracellular advanced glycation end products. Reactive species generation and PARP play key roles in the pathogenesis of 'glucose memory' and in the development of injury in endothelial cells exposed to alternating high/low glucose concentrations.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0833, USA.
| |
Collapse
|
17
|
Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:2-13. [PMID: 18535182 PMCID: PMC2438280 DOI: 10.2353/ajpath.2008.080019] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2008] [Indexed: 01/02/2023]
Abstract
Throughout the last 2 decades, experimental evidence from in vitro studies and preclinical models of disease has demonstrated that reactive oxygen and nitrogen species, including the reactive oxidant peroxynitrite, are generated in parenchymal, endothelial, and infiltrating inflammatory cells during stroke, myocardial and other forms of reperfusion injury, myocardial hypertrophy and heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, atherosclerosis and vascular remodeling after injury, diabetic complications, and neurodegenerative disorders. Peroxynitrite and other reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation depletes its substrate NAD(+), slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to functional impairment or death of cells, as well as up-regulation of various proinflammatory pathways. In related animal models of disease, peroxynitrite neutralization or pharmacological inhibition of PARP provides significant therapeutic benefits. Therefore, novel antioxidants and PARP inhibitors have entered clinical development for the experimental therapy of various cardiovascular and other diseases. This review focuses on the human data available on the pathophysiological relevance of the peroxynitrite-PARP pathway in a wide range of disparate diseases, ranging from myocardial ischemia/reperfusion injury, myocarditis, heart failure, circulatory shock, and diabetic complications to atherosclerosis, arthritis, colitis, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pal Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|