1
|
Zumbardo-Bacelis GA, Peponi L, Vargas-Coronado RF, Rodríguez-Velázquez E, Alatorre-Meda M, Chevallier P, Copes F, Mantovani D, Abraham GA, Cauich-Rodríguez JV. A Comparison of Three-Layer and Single-Layer Small Vascular Grafts Manufactured via the Roto-Evaporation Method. Polymers (Basel) 2024; 16:1314. [PMID: 38794507 PMCID: PMC11125268 DOI: 10.3390/polym16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study used the roto-evaporation technique to engineer a 6 mm three-layer polyurethane vascular graft (TVG) that mimics the architecture of human coronary artery native vessels. Two segmented polyurethanes were synthesized using lysine (SPUUK) and ascorbic acid (SPUAA), and the resulting materials were used to create the intima and adventitia layers, respectively. In contrast, the media layer of the TVG was composed of a commercially available polyurethane, Pearlbond 703 EXP. For comparison purposes, single-layer vascular grafts (SVGs) from individual polyurethanes and a polyurethane blend (MVG) were made and tested similarly and evaluated according to the ISO 7198 standard. The TVG exhibited the highest circumferential tensile strength and longitudinal forces compared to single-layer vascular grafts of lower thicknesses made from the same polyurethanes. The TVG also showed higher suture and burst strength values than native vessels. The TVG withstood up to 2087 ± 139 mmHg and exhibited a compliance of 0.15 ± 0.1%/100 mmHg, while SPUUK SVGs showed a compliance of 5.21 ± 1.29%/100 mmHg, akin to coronary arteries but superior to the saphenous vein. An indirect cytocompatibility test using the MDA-MB-231 cell line showed 90 to 100% viability for all polyurethanes, surpassing the minimum 70% threshold needed for biomaterials deemed cytocompatibility. Despite the non-cytotoxic nature of the polyurethane extracts when grown directly on the surface, they displayed poor fibroblast adhesion, except for SPUUK. All vascular grafts showed hemolysis values under the permissible limit of 5% and longer coagulation times.
Collapse
Affiliation(s)
- Gualberto Antonio Zumbardo-Bacelis
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
- Department of Chemical Engineering, Laval University, Quebec, QC G1V 0A6, Canada
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rossana Faride Vargas-Coronado
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico;
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico
| | - Manuel Alatorre-Meda
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, CONAHCYT-Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Gustavo A. Abraham
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET). Av. Colón 10850, Mar del Plata B7606BWV, Argentina
| | - Juan Valerio Cauich-Rodríguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
| |
Collapse
|
2
|
Wang N, Wang H, Weng D, Wang Y, Yu L, Wang F, Zhang T, Liu J, He Z. Nanomaterials for small diameter vascular grafts: overview and outlook. NANOSCALE ADVANCES 2023; 5:6751-6767. [PMID: 38059025 PMCID: PMC10696638 DOI: 10.1039/d3na00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
Small-diameter vascular grafts (SDVGs) cannot meet current clinical demands owing to their suboptimal long-term patency rate. Various materials have been employed to address this issue, including nanomaterials (NMs), which have demonstrated exceptional capabilities and promising application potentials. In this review, the utilization of NMs in different forms, including nanoparticles, nanofibers, and nanofilms, in the SDVG field is discussed, and future perspectives for the development of NM-loading SDVGs are highlighted. It is expected that this review will provide helpful information to scholars in the innovative interdiscipline of cardiovascular disease treatment and NM.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Yanyang Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Feng Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
| |
Collapse
|
3
|
Malekpour K, Hazrati A, Khosrojerdi A, Roshangar L, Ahmadi M. An overview to nanocellulose clinical application: Biocompatibility and opportunities in disease treatment. Regen Ther 2023; 24:630-641. [PMID: 38034858 PMCID: PMC10682839 DOI: 10.1016/j.reth.2023.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Hülsmann J, Fraune T, Dodawatta B, Reuter F, Beutner M, Beck V, Hackert-Oschätzchen M, Ohl CD, Bettenbrock K, Janiga G, Wippermann J, Wacker M. Integrated biophysical matching of bacterial nanocellulose coronary artery bypass grafts towards bioinspired artery typical functions. Sci Rep 2023; 13:18274. [PMID: 37880281 PMCID: PMC10600183 DOI: 10.1038/s41598-023-45451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Revascularization via coronary artery bypass grafting (CABG) to treat cardiovascular disease is established as one of the most important lifesaving surgical techniques worldwide. But the shortage in functionally self-adaptive autologous arteries leads to circumstances where the clinical reality must deal with fighting pathologies coming from the mismatching biophysical functionality of more available venous grafts. Synthetic biomaterial-based CABG grafts did not make it to the market yet, what is mostly due to technical hurdles in matching biophysical properties to the complex demands of the CABG niche. But bacterial Nanocellulose (BNC) Hydrogels derived by growing biofilms hold a naturally integrative character in function-giving properties by its freedom in designing form and intrinsic fiber architecture. In this study we use this integral to combine impacts on the luminal fiber matrix, biomechanical properties and the reciprocal stimulation of microtopography and induced flow patterns, to investigate biomimetic and artificial designs on their bio-functional effects. Therefore, we produced tubular BNC-hydrogels at distinctive designs, characterized the structural and biomechanical properties and subjected them to in vitro endothelial colonization in bioreactor assisted perfusion cultivation. Results showed clearly improved functional properties and gave an indication of successfully realized stimulation by artery-typical helical flow patterns.
Collapse
Affiliation(s)
- Jörn Hülsmann
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| | - Theresa Fraune
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Baratha Dodawatta
- Laboratory of Fluid Dynamics and Technical Flows, Otto von Guericke University, Magdeburg, Germany
| | - Fabian Reuter
- Department Soft Matter, Otto von Guericke University, Magdeburg, Germany
| | - Martin Beutner
- Chair of Manufacturing Technology with Focus Machining, Institute of Manufacturing Technology and Quality Management, Otto von Guericke University, Magdeburg, Germany
| | - Viktoria Beck
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Hackert-Oschätzchen
- Chair of Manufacturing Technology with Focus Machining, Institute of Manufacturing Technology and Quality Management, Otto von Guericke University, Magdeburg, Germany
| | - Claus Dieter Ohl
- Department Soft Matter, Otto von Guericke University, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Plank Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gabor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, Otto von Guericke University, Magdeburg, Germany
| | - Jens Wippermann
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Max Wacker
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Roberts EL, Abdollahi S, Oustadi F, Stephens ED, Badv M. Bacterial-Nanocellulose-Based Biointerfaces and Biomimetic Constructs for Blood-Contacting Medical Applications. ACS MATERIALS AU 2023; 3:418-441. [PMID: 38089096 PMCID: PMC10510515 DOI: 10.1021/acsmaterialsau.3c00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 10/12/2024]
Abstract
Understanding the interaction between biomaterials and blood is critical in the design of novel biomaterials for use in biomedical applications. Depending on the application, biomaterials can be designed to promote hemostasis, slow or stop bleeding in an internal or external wound, or prevent thrombosis for use in permanent or temporary medical implants. Bacterial nanocellulose (BNC) is a natural, biocompatible biopolymer that has recently gained interest for its potential use in blood-contacting biomedical applications (e.g., artificial vascular grafts), due to its high porosity, shapeability, and tissue-like properties. To promote hemostasis, BNC has been modified through oxidation or functionalization with various peptides, proteins, polysaccharides, and minerals that interact with the coagulation cascade. For use as an artificial vascular graft or to promote vascularization, BNC has been extensively researched, with studies investigating different modification techniques to enhance endothelialization such as functionalizing with adhesion peptides or extracellular matrix (ECM) proteins as well as tuning the structural properties of BNC such as surface roughness, pore size, and fiber size. While BNC inherently exhibits comparable mechanical characteristics to endogenous blood vessels, these mechanical properties can be enhanced through chemical functionalization or through altering the fabrication method. In this review, we provide a comprehensive overview of the various modification techniques that have been implemented to enhance the suitability of BNC for blood-contacting biomedical applications and different testing techniques that can be applied to evaluate their performance. Initially, we focused on the modification techniques that have been applied to BNC for hemostatic applications. Subsequently, we outline the different methods used for the production of BNC-based artificial vascular grafts and to generate vasculature in tissue engineered constructs. This sequential organization enables a clear and concise discussion of the various modifications of BNC for different blood-contacting biomedical applications and highlights the diverse and versatile nature of BNC as a natural biomaterial.
Collapse
Affiliation(s)
- Erin L. Roberts
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Sorosh Abdollahi
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Fereshteh Oustadi
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Emma D. Stephens
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Maryam Badv
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
- Libin
Cardiovascular Institute, University of
Calgary, 3330 Hospital
Drive NW, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
6
|
Jin Q, Yu C, Xu L, Zhang G, Ju J, Hou R. Combined light-cured and sacrificial hydrogels for fabrication of small-diameter bionic vessels by 3D bioprinting. Technol Health Care 2023:THC220393. [PMID: 36872804 DOI: 10.3233/thc-220393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Bionic grafts can replace autologous tissue through tissue engineering in cases of cardiovascular disease. However, small-diameter vessel grafts remain challenging to precellularize. OBJECTIVE Bionic small-diameter vessels with endothelial and smooth muscle cells (SMCs) manufactured with a novel approach. METHODS A 1-mm-diameter bionic blood vessel was constructed by combining light-cured hydrogel gelatin-methacryloyl (GelMA) with sacrificial hydrogel Pluronic F127. Mechanical properties of GelMA (Young's modulus and tensile stress) were tested. Cell viability and proliferation were detected using Live/dead staining and CCK-8 assays, respectively. The histology and function of the vessels were observed using hematoxylin and eosin and immunofluorescence staining. RESULTS GelMA and Pluronic were printed together using extrusion. The temporary Pluronic support was removed by cooling during GelMA crosslinking, yielding a hollow tubular construct. A bionic bilayer vascular structure was fabricated by loading SMCs into the GelMA bioink, followed by perfusion with endothelial cells. In the structure, both cell types maintained good cell viability. The vessel showed good histological morphology and function. CONCLUSION Using light-cured and sacrificial hydrogels, we formed a small ca bionic vessel with a small caliber containing SMCs and endothelial cells, demonstrating an innovative approach for construction of bionic vascular tissues.
Collapse
Affiliation(s)
- Qianheng Jin
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China.,Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chenghao Yu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China.,Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Xu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Jihui Ju
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
8
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
9
|
Liu L, Ji X, Mao L, Wang L, Chen K, Shi Z, Ahmed AAQ, Thomas S, Vasilievich RV, Xiao L, Li X, Yang G. Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydr Polym 2022; 281:119034. [DOI: 10.1016/j.carbpol.2021.119034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/17/2023]
|
10
|
Rohringer S, Schneider KH, Eder G, Hager P, Enayati M, Kapeller B, Kiss H, Windberger U, Podesser BK, Bergmeister H. Chorion-derived extracellular matrix hydrogel and fibronectin surface coatings show similar beneficial effects on endothelialization of expanded polytetrafluorethylene vascular grafts. Mater Today Bio 2022; 14:100262. [PMID: 35509865 PMCID: PMC9059097 DOI: 10.1016/j.mtbio.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The endothelium plays an important regulatory role for cardiovascular homeostasis. Rapid endothelialization of small diameter vascular grafts (SDVGs) is crucial to ensure long-term patency. Here, we assessed a human placental chorionic extracellular matrix hydrogel (hpcECM-gel) as coating material and compared it to human fibronectin in-vitro. hpcECM-gels were produced from placental chorion by decellularization and enzymatic digestion. Human umbilical vein endothelial cells (HUVECs) were seeded to non-, fibronectin- or hpcECM-gel-coated expanded polytetrafluorethylene (ePTFE) SDVGs. Coating efficiency as well as endothelial cell proliferation, migration and adhesion studies on grafts were performed. hpcECM-gel depicted high collagen and glycosaminoglycan content and neglectable DNA amounts. Laminin and fibronectin were both retained in the hpcECM-gel after the decellularization process. HUVEC as well as endothelial progenitor cell attachment were both significantly enhanced on hpcECM-gel coated grafts. HUVECs seeded to hpcECM-gel depicted significantly higher platelet endothelial cell adhesion molecule-1 (PECAM-1) expression in the perinuclear region. Cell retention to flow was enhanced on fibronectin and hpcECM-gel coated grafts. Since hpcECM-gel induced a significantly higher endothelial cell adhesion to ePTFE than fibronectin, it represents a possible alternative for SDVG modification to improve endothelialization.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karl H. Schneider
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gabriela Eder
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Pia Hager
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marjan Enayati
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Kapeller
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Herbert Kiss
- Medical University of Vienna, Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ursula Windberger
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bruno K. Podesser
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
11
|
Grajciarová M, Turek D, Malečková A, Pálek R, Liška V, Tomášek P, Králičková M, Tonar Z. Are ovine and porcine carotid arteries equivalent animal models for experimental cardiac surgery: A quantitative histological comparison. Ann Anat 2022; 242:151910. [PMID: 35189268 DOI: 10.1016/j.aanat.2022.151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Coronary artery bypass grafting (CABG) is a common cardiac surgery. Manufacturing small-diameter (2-5mm) vascular grafts for CABG is important for patients who lack first-choice autologous arterial, or venous conduits. Ovine and porcine common carotid arteries (CCAs) are used as large animal models for in vivo testing of newly developed tissue-engineered arterial grafts. It is unknown to what extent these models are interchangeable and whether the left and right arteries of the same subjects can be used as experimental controls. Therefore, we compared the microscopic structure of paired left and right ovine and porcine CCAs in the proximodistal direction and compared these animal model samples to samples of human coronary arteries (CAs) and human internal thoracic arteries (ITAs). METHODS We compared the histological composition of whole CCAs of sheep (n=22 animals) with whole porcine CCAs (n=21), segments of human CAs (n=21), and human ITAs (n=21). Using unbiased sampling and stereological methods, we quantified the fractions of elastin, total collagen, type I collagen, type III collagen, smooth muscle actin (SMA) and chondroitin sulfate (CS) A, B, and C. We also quantified the densities and distributions of nuclear profiles, nervi vasorum and vasa vasorum as well as the thickness of the intima-media and total wall thickness. RESULTS The differences between the paired samples of left and right CCAs in sheep were substantially greater than the differences in laterality in porcine CCAs. The right ovine CCAs had a smaller fraction of elastin (p<0.001), greater fraction of SMA (p<0.01), and greater intima-media thickness (p<0.001) than the paired left side CCAs. In pigs, the right CCAs had a greater fraction of elastin (p<0.05) and a greater density of vasa vasorum in the media (p<0.001) than the left-side CCAs. The fractions of elastin and CS decreased and the fraction of SMA increased in the proximodistal direction in both the ovine (p<0.001) and porcine (p<0.001) CCAs. Ovine CCAs had a muscular phenotype along their entire length, but porcine CCAs were elastic-type arteries in the proximal segments but muscular type arteries in middle and distal segments. The CCAs of both animals differed from the human CAs and ITAs in most parameters, but the ovine CCAs had a comparable fraction of elastin and CS to human ITAs. CONCLUSIONS From a histological point of view, ovine and porcine CCAs were not equivalent in most quantitative parameters to human CAs and ITAs. Left and right ovine CCAs did not have the same histological composition, which is limiting for their mutual equivalence as sham-operated controls in experiments. These differences should be taken into account when designing and interpreting experiments using these models in cardiac surgery. The complete morphometric data obtained by quantitative evaluation of arterial segments were provided to facilitate the power analysis necessary for justification of the minimum number of samples when planning further experiments. The middle or distal segments of ovine and porcine CCAs remain the most realistic and the best characterized large animal models for testing artificial arterial CABG conduits.
Collapse
Affiliation(s)
- Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Daniel Turek
- First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague 2, Czech Republic; Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Anna Malečková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| | - Petr Tomášek
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 2, 180 81 Prague, Czech Republic
| | - Milena Králičková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| |
Collapse
|
12
|
Jankau J, Błażyńska‐Spychalska A, Kubiak K, Jędrzejczak-Krzepkowska M, Pankiewicz T, Ludwicka K, Dettlaff A, Pęksa R. Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing. Front Bioeng Biotechnol 2022; 9:805053. [PMID: 35223815 PMCID: PMC8873821 DOI: 10.3389/fbioe.2021.805053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Although new therapeutic approaches for surgery and wound healing have recently made a great progress, there is still need for application of better and use novel methods to enhance biocompatibility as well as recovery and healing process. Bacterial Cellulose (BC) is natural cellulose in the form of nanostructure which has the advantages of being used in human body. The medical application of BC in reconstructive, cardiac and vascular surgery as well as wound healing is still under development, but without proved success of repetitive results. A review of studies on Bacterial Cellulose (BC) since 2016 was performed, taking into account the latest reports on the clinical use of BC. In addition, data on the physicochemical properties of BC were used. In all the works, satisfactory results of using Bacterial Cellulose were obtained. In all presented studies various BC implants demonstrated their best performance. Additionally, the works show that BC has the capacity to reach physiological as well as mechanical properties of relevance for various tissue replacement and can be produced in surgeons as well as patient specific expectations such as ear frames, vascular tubes or heart valves as well as wound healing dressings. Results of those experiments conform to those of previous reports utilizing ADM (acellular dermal matrix) and demonstrate that the use of BC has no adverse effects such as ulceration or extrusion and possesses expected properties. Based on preliminary animal as well as the few clinical data BC fittings are promising implants for various reconstructive applications since they are biocompatible with properties allowing blood flow, attach easily to wound bed and remain in place until donor site is healed properly. Additionally, this review shows that BC can be fabricated into patient specific shapes and size, with capability to reach mechanical properties of relevance for heart valve, ear, and muscle replacement. Bacterial cellulose appears, as shown in the above review, to be one of the materials that allow extensive application in the reconstruction after soft tissue defects. Review was created to show the needs of surgeons and the possibilities of using BC through the eyes and knowledge of biotechnologists.
Collapse
Affiliation(s)
- Jerzy Jankau
- Department of Plastic Surgery Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Jerzy Jankau,
| | | | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | | | - Teresa Pankiewicz
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | - Karolina Ludwicka
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | | | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
13
|
Ma N, Cheung DY, Butcher JT. Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications. J Biomed Mater Res A 2022; 110:76-91. [PMID: 34254733 PMCID: PMC9437634 DOI: 10.1002/jbm.a.37267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023]
Abstract
Functional tissue engineered heart valves (TEHV) have been an elusive goal for nearly 30 years. Among the persistent challenges are the requirements for engineered valve leaflets that possess nonlinear elastic tissue biomechanical properties, support quiescent fibroblast phenotype, and resist osteogenic differentiation. Nanocellulose is an attractive tunable biological material that has not been employed to this application. In this study, we fabricated a series of photocrosslinkable composite hydrogels mNCC-MeGel (mNG) by conjugating TEMPO-modified nanocrystalline cellulose (mNCC) onto the backbone of methacrylated gelatin (MeGel). Their structures were characterized by FTIR, 1 HNMR and uniaxial compression testing. Human adipose-derived mesenchymal stem cells (HADMSC) were encapsulated within the material and evaluated for valve interstitial cell phenotypes over 14 days culture in both normal and osteogenic media. Compared to the MeGel control group, the HADMSC encapsulated within mNG showed decreased alpha smooth muscle actin (αSMA) expression and increased vimentin and aggrecan expression, suggesting the material supports a quiescent fibroblastic phenotype. Under osteogenic media conditions, HADMSC within mNG hydrogels showed lower expression of osteogenic genes, including Runx2 and osteocalcin, indicating resistance toward calcification. As a proof of principle, the mNG hydrogel, combined with a viscosity enhancing agent, was used to 3D bioprint a tall, self-standing tubular structure that sustained cell viability. Together, these results identify mNG as an attractive biomaterial for TEHV applications.
Collapse
Affiliation(s)
- Nianfang Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Institute of Bioengineering, Guangdong Academy of Sciences; Guangdong Provincial Engineering Technology Research Center of Biomaterials, Guangzhou 510316, China
| | - Daniel Y. Cheung
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
14
|
Moore MJ, Tan RP, Yang N, Rnjak-Kovacina J, Wise SG. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol 2021; 40:693-707. [PMID: 34887104 DOI: 10.1016/j.tibtech.2021.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
Bioengineering an effective, small diameter (<6 mm) artificial vascular graft for use in bypass surgery when autologous grafts are unavailable remains a persistent challenge. Commercially available grafts are typically made from plastics, which have high strength but lack elasticity and present a foreign surface that triggers undesirable biological responses. Tissue engineered grafts, leveraging decellularized animal vessels or derived de novo from long-term cell culture, have dominated recent research, but failed to meet clinical expectations. More effective constructs that are readily translatable are urgently needed. Recent advances in natural materials have made the production of robust acellular conduits feasible and their use increasingly attractive. Here, we identify a subset of natural materials with potential to generate durable, small diameter vascular grafts.
Collapse
Affiliation(s)
- Matthew J Moore
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Richard P Tan
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Nianji Yang
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
15
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
16
|
Fodor M, Fodor L, Bota O. The role of nanomaterials and nanostructured surfaces for improvement of biomaterial peculiarities in vascular surgery: a review. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1871692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Marius Fodor
- Department of Vascular Surgery, First Surgical Clinic, Emergency District Hospital, Cluj-Napoca, Romania, Cluj-Napoca, Romania
| | - Lucian Fodor
- Department of Plastic Surgery, First Surgical Clinic, Emergency District Hospital, Cluj-Napoca, Romania, Cluj-Napoca, Romania
| | - Olimpiu Bota
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Rodriguez-Soto MA, Suarez Vargas N, Riveros A, Camargo CM, Cruz JC, Sandoval N, Briceño JC. Failure Analysis of TEVG's I: Overcoming the Initial Stages of Blood Material Interaction and Stabilization of the Immune Response. Cells 2021; 10:3140. [PMID: 34831361 PMCID: PMC8625197 DOI: 10.3390/cells10113140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular grafts (VG) are medical devices intended to replace the function of a diseased vessel. Current approaches use non-biodegradable materials that struggle to maintain patency under complex hemodynamic conditions. Even with the current advances in tissue engineering and regenerative medicine with the tissue engineered vascular grafts (TEVGs), the cellular response is not yet close to mimicking the biological function of native vessels, and the understanding of the interactions between cells from the blood and the vascular wall with the material in operative conditions is much needed. These interactions change over time after the implantation of the graft. Here we aim to analyze the current knowledge in bio-molecular interactions between blood components, cells and materials that lead either to an early failure or to the stabilization of the vascular graft before the wall regeneration begins.
Collapse
Affiliation(s)
- Maria A. Rodriguez-Soto
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Natalia Suarez Vargas
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Alejandra Riveros
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Carolina Muñoz Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Nestor Sandoval
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación Cardio Infantil Instituto de Cardiología, Bogotá 111711, Colombia;
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
- Department of Research, Fundación Cardio Infantil Instituto de Cardiología, Bogotá 111711, Colombia
| |
Collapse
|
18
|
Wacker M, Riedel J, Walles H, Scherner M, Awad G, Varghese S, Schürlein S, Garke B, Veluswamy P, Wippermann J, Hülsmann J. Comparative Evaluation on Impacts of Fibronectin, Heparin-Chitosan, and Albumin Coating of Bacterial Nanocellulose Small-Diameter Vascular Grafts on Endothelialization In Vitro. NANOMATERIALS 2021; 11:nano11081952. [PMID: 34443783 PMCID: PMC8398117 DOI: 10.3390/nano11081952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022]
Abstract
In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.
Collapse
Affiliation(s)
- Max Wacker
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
- Correspondence: ; Tel.: +49-391-67-14102
| | - Jan Riedel
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Maximilian Scherner
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - George Awad
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sam Varghese
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sebastian Schürlein
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Bernd Garke
- Institute of Experimental Physics, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Priya Veluswamy
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jens Wippermann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jörn Hülsmann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| |
Collapse
|
19
|
Piasecka-Zelga J, Zelga P, Gronkowska K, Madalski J, Szulc J, Wietecha J, Ciechańska D, Dziuba R. Toxicological and Sensitization Studies of Novel Vascular Prostheses Made of Bacterial Nanocellulose Modified with Chitosan (MBC) for Application as the Tissue-Engineered Blood Vessels. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00209-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Background
Tissue-engineered blood vessels (TEBV) represent an attractive approach for overcoming reconstructive problems associated with vascular diseases in humankind by providing small caliber vascular grafts. The study evaluates biocompatibility and bioaffinity of vascular prostheses made from chitosan-modified bacterial cellulose (MBC) as potential scaffolds for TEBV.
Methods
During the study, acute oral toxicity, up-and-down procedure (UDP), OECD test No. 425 on 10 Imp:WIST rats, intradermal reactivity on three Imp:BN albino rabbits, and sensitization on 15 Imp:DH guinea pigs were performed. The local effects were determined 1 month after intramuscular implantation of prostheses in 30 Imp:WIST rats. Histopathological and pathomorphological studies were conducted following complete removal of implants with peri-implant tissue.
Results
There were no signs of toxicity; the median lethal oral dose (LD50) was greater than 2 g/kg body weight for the rats. No allergic reactions were observed in the case of the guinea pig maximization test. Vascular grafts did not induce significant reactive changes in intradermal reactivity test (Main Irritation Index value 0.03) and do not induce inflammatory changes or hyperplasia of the muscle tissue surrounding the implant. Histopathological examination revealed ingrown vascular-connective bands.
Conclusions
Tubes made of MBC offer strong potential for use in future TEBV programs for vascular surgery.
Lay Summary
Currently, the number of autologous grafts for coronary artery disease and for peripheral artery disease is limited. Particularly materials that will have contact with blood must comply with certain requirements such as mechanical strength, biocompatibility, and no potential to evoke adverse reactions. Bacterial nanocellulose modified with chitosan (MBC) due to its mechanical and biological properties is a promising material for replacing small-diameter vessels grafts. Although previous studies have not shown the toxicity of nanocellulose, we want to check whether medical products based on MBC will be safe when testing in vivo. Thirty Imp:WIST rats and 15 Imp:DH guinea pigs were subject of thorough analysis of potential toxicological and sensitization effect that may develop after applying vascular prostheses made from MBC to living organism. The analysis involved also histopathological and pathomorphological studies following complete removal of implants with peri-implant tissue. The results show that MBC prostheses do not cause any allergic, intradermal reactions and finally, do not display acute toxicity towards the organism in which it is implanted. Moreover, they had not induced inflammatory changes or hyperplasia of the muscle tissue surrounding the implantation sites, thus showing good biocompatibility. Obtained results were discussed with other available studies investigating various aspects of bacterial cellulose or modified bacterial cellulose influence on cells and tissues in both in vitro and in vivo studies. This is the first study analyzing the toxicological and sensitization effect which MBC may evoke and confirm the strong potential for use in future TEBV programs for vascular surgery.
Graphical Abstract
Collapse
|
20
|
Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 2021; 10:713. [PMID: 33807009 PMCID: PMC8005053 DOI: 10.3390/cells10030713] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.
Collapse
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Gry Ellman
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
21
|
Zhang Q, He S, Zhu X, Luo H, Gama M, Peng M, Deng X, Wan Y. Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111861. [PMID: 33641887 DOI: 10.1016/j.msec.2020.111861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Constructing biomimetic structure and immobilizing antithrombus factors are two effective methods to ensure rapid endothelialization and long-term anticoagulation for small-diameter vascular grafts. However, few literatures are available regarding simultaneous implementation of these two strategies. Herein, a nano-micro-fibrous biomimetic graft with a heparin coating was prepared via a step-by-step in situ biosynthesis method to improve potential endothelialization and anticoagulation. The 4-mm-diameter tubular graft consists of electrospun cellulose acetate (CA) microfibers and entangled bacterial nanocellulose (BNC) nanofibers with heparin coating on dual fibers. The hybridized and heparinized graft possesses suitable pore structure that facilitates endothelia cells adhesion and proliferation but prevents infiltration of fibrous tissue and blood leakage. In addition, it shows higher mechanical properties than those of bare CA and hybridized CA/BNC grafts, which match well with native blood vessels. Moreover, this dually modified graft exhibits improved blood compatibility and endothelialization over the counterparts without hybridization or heparinization according to the testing results of platelet adhesion, cell morphology, and protein expression of von Willebrand Factor. This novel graft with dual modifications shows promising as a new small-diameter vascular graft. This study provides a guidance for promoting endothelialization and blood compatibility by dual modifications of biomimetic structure and immobilized bioactive molecules.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Shan He
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, P 4715-057 Braga, Portugal
| | - Mengxia Peng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Gutiérrez-Hernández JM, Castorena-Alejandro C, Pozos-Guillén A, Toriz-González G, Flores H, Escobar-García DM. Gene expression profile involved in signaling and apoptosis of osteoblasts in contact with cellulose/MWCNTs scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111531. [PMID: 33255084 DOI: 10.1016/j.msec.2020.111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The aim of this work was to evaluate the expression profile of genes involved in signaling, intracellular and extracellular Ca+2 concentration and apoptosis pathways of osteoblasts in contact with a scaffold made of a composite of BCN/MWCNTs. Osteoblasts were cultivated on BCN, MWCNTs and their mixtures. Osteoblast RNA was extracted for sintering cDNA to amplify genes of interest by PCR; intra- and extracellular calcium (Ca2+) was also quantified. Regarding the genes that participate in the regulation paths (MAPK and NF-KB), it was found that only the expression of NF-KB was affected in all treatments. The expression of VEGFA increased, except in the treatment of high concentration of MWCNTs, where remained unchanged. The expression of genes Apaf-1 and Bcl-2/Bax and TP53 increased as compared to the control (except for TP53 in BC and C1/MWCNTs) indicating that cells are responding to the presence of BCN-MWCNTs composites scaffolds. The results suggest that osteoblast developed a modification in the expression profile of genes that actively participate in cellular processes such as proliferation, vasculogenesis and apoptosis, which may be modulated by the increase of intra- and extracellular Ca2+ concentration.
Collapse
Affiliation(s)
| | - Claudia Castorena-Alejandro
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Guillermo Toriz-González
- Department of Wood, Cellulose and Paper Research, University of Guadalajara, 45110 Guadalajara, Mexico; Transdisciplinar Institute for Research and Services, University of Guadalajara, 45150 Guadalajara, Mexico
| | - Héctor Flores
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico.
| |
Collapse
|
23
|
Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications. Carbohydr Polym 2020; 254:117313. [PMID: 33357876 DOI: 10.1016/j.carbpol.2020.117313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
Biotech nanocellulose (bacterial nanocellulose, BNC) is a high potential natural polymer. Moreover, it is the only cellulose type that can be produced biotechnologically using microorganisms resulting in hydrogels with high purity, high mechanical strength and an interconnecting micropore system. Recently, the subject of intensive research is to influence this biosynthesis to create function-determining properties. This review reports on the progress in product design and today's state of technical and medical applications. A novel, dynamic, template-based technology, called Mobile Matrix Reservoir Technology (MMR Tech), is highlighted. Thereby, shape, dimensions, surface properties, and nanonetwork structures can be designed in a process-controlled manner. The formed multilayer materials open up new applications in medicine and technology. Especially medical materials for cardiovascular and visceral surgery, and drug delivery systems are developed. The effective production of layer-structured composites and coatings are important for potential applications in the electronics, paper, food and packaging technologies.
Collapse
|
24
|
Wacker M, Kießwetter V, Slottosch I, Awad G, Paunel-Görgülü A, Varghese S, Klopfleisch M, Kupitz D, Klemm D, Nietzsche S, Petzold-Welcke K, Kramer F, Wippermann J, Veluswamy P, Scherner M. In vitro hemo- and cytocompatibility of bacterial nanocelluose small diameter vascular grafts: Impact of fabrication and surface characteristics. PLoS One 2020; 15:e0235168. [PMID: 32579611 PMCID: PMC7313737 DOI: 10.1371/journal.pone.0235168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/09/2020] [Indexed: 01/24/2023] Open
Abstract
Objective There is an increasing need for small diameter vascular grafts with superior host hemo- and cytocompatibilities, such as low activation of platelets and leukocytes. Therefore, we aimed to investigate whether the preparation of bacterial nanocellulose grafts with different inner surfaces has an impact on in vitro host cytocompatibility. Methods We have synthesized five different grafts in a bioreactor, namely open interface surface (OIS), inverted (INV), partially air dried (PAD), surface formed in air contact (SAC) and standard (STD) that were characterized by a different surface roughness. The grafts (length 55 mm, inner diameter 5 mm) were attached to heparinized polyvinyl chloride tubes, loaded with human blood and rotated at 37°C for 4 hours. Then, blood was analyzed for frequencies of cellular fractions, oxidative products, soluble complement and thrombin factors. The results were compared to clinically approved grafts made of polyethylene terephthalate and expanded polytetrafluoroethylene. Additionally, blood platelets were labelled with 111Indium-oxine to visualize the distribution of adherent platelets in the loop by scintigraphy. Results SAC nanocellulose grafts with the lowest surface roughness exhibited superior performance with <10% leukocyte and <50% thrombocyte loss in contrast to other grafts that exhibited >65% leukocyte and >90% thrombocyte loss. Of note, SAC nanocellulose grafts showed lowest radioactivity with scintigraphy analyses, indicating reduced platelet adhesion. Although the levels of reactive oxygen species and cell free DNA did not differ significantly, the levels of thrombin-antithrombin complexes were lowest in SAC grafts. However, all nanocellulose grafts exhibited enhanced complement activation. Conclusion The systematic variation of the inner surfaces of BNC vascular grafts significantly improves biocompatibility. Especially, SAC grafts exhibited the lowest loss of platelets as well as leukocytes and additionally significantly diminished activation of the coagulation system. Further animal studies are needed to study in vivo biocompatibilities.
Collapse
Affiliation(s)
- Max Wacker
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
- * E-mail:
| | - Viktoria Kießwetter
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - Ingo Slottosch
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - George Awad
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Sam Varghese
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - Maurice Klopfleisch
- Department of Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Dennis Kupitz
- Department of Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Dieter Klemm
- KKF Gesellschaft UG (haftungsbeschränkt), Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, University Hospital Jena, Jena, Germany
| | | | | | - Jens Wippermann
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - Priya Veluswamy
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| | - Maximilian Scherner
- Department of Cardiothoracic Surgery, University Hospital of Magdeburg, Magdeburg, Germany
| |
Collapse
|
25
|
Abstract
Tissue engineering promotes tissue regeneration through biomaterials that have excellent properties and have the potential to replace tissues. Many studies show that bacterial cellulose (BC) might ensure tissue regeneration and substitution, being used for the bioengineering of hard, cartilaginous and soft tissues. Bacterial cellulose is extensively used as wound dressing material and results show that BC is a promising tissue scaffold (bone, cardiovascular, urinary tissue). It can be combined with polymeric and non-polymeric compounds to acquire antimicrobial, cell-adhesion and proliferation properties. To ensure proper tissue regeneration, the material has to be: biocompatible, with minimum tissue reaction and biodegradability; bio-absorbable, to promote tissue development, cellular interaction and grow; resistant to support the weight of the newly formed tissue. Its versatile structure, physical and biochemical properties can be adjusted by adapting the bacteria culturing conditions. The main biomedical applications seem to be as hard (bone, dental), fibrocartilaginous (meniscal) and soft tissue (skin, cardiovascular, urinary) substituents. This paper reviews the current state of knowledge, challenges and future applications of BC and its biomedical potential in veterinary medicine. It was focused on the main uses in regeneration and scaffold tissue replacement and, although BC showed promising results, there is a lack of successful results of BC use in clinical practice. Most studies were performed only at experimental level and further research is needed for BC to enter clinical veterinary practice.
Collapse
|
26
|
Blanco Parte FG, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 2020; 40:397-414. [PMID: 31937141 DOI: 10.1080/07388551.2020.1713721] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adoption of biomass for the development of biobased products has become a routine agenda in evolutionary metabolic engineering. Cellulose produced by bacteria is a "rising star" for this sustainable development. Unlike plant cellulose, bacterial cellulose (BC) shows several unique properties like a high degree of crystallinity, high purity, high water retention, high mechanical strength, and enhanced biocompatibility. Favored with those extraordinary properties, BC could serve as ideal biomass for the development of various industrial products. However, a low yield and the requirement for large growth media have been a persistent challenge in mass production of BC. A significant number of techniques has been developed in achieving efficient BC production. This includes the modification of bioreactors, fermentation parameters, and growth media. In this article, we summarize progress in metabolic engineering in order to solve BC growth limitation. This article emphasizes current engineered BC production by using various bioreactors, as well as highlighting the structure of BC fermented by different types of engineered-bioreactors. The comprehensive overview of the future applications of BC, aims to provide readers with insight into new economic opportunities of BC and their modifiable properties for various industrial applications. Modifications in chemical composition, structure, and genetic regulation, which preceded the advancement of BC applications, were also emphasized.
Collapse
Affiliation(s)
- Francisco German Blanco Parte
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Chan Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Carvalho T, Guedes G, Sousa FL, Freire CSR, Santos HA. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnol J 2019; 14:e1900059. [PMID: 31468684 DOI: 10.1002/biot.201900059] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/18/2019] [Indexed: 01/10/2023]
Abstract
Bacterial cellulose (BC) is a nanocellulose form produced by some nonpathogenic bacteria. BC presents unique physical, chemical, and biological properties that make it a very versatile material and has found application in several fields, namely in food industry, cosmetics, and biomedicine. This review overviews the latest state-of-the-art usage of BC on three important areas of the biomedical field, namely delivery systems, wound dressing and healing materials, and tissue engineering for regenerative medicine. BC will be reviewed as a promising biopolymer for the design and development of innovative materials for the mentioned applications. Overall, BC is shown to be an effective and versatile carrier for delivery systems, a safe and multicustomizable patch or graft for wound dressing and healing applications, and a material that can be further tuned to better adjust for each tissue engineering application, by using different methods.
Collapse
Affiliation(s)
- Tiago Carvalho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.,Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriela Guedes
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.,Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carmen S R Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
28
|
Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. Int J Biol Macromol 2019; 137:1161-1168. [DOI: 10.1016/j.ijbiomac.2019.07.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
|
29
|
Eghbalzadeh K, Guschlbauer M, Weber C, Wacker MT, Reinhardt S, Djordjevic I, Sabashnikov A, Maul A, Sterner-Kock A, Wahlers TCW, Scherner M, Wippermann J. Experimental Studies for Small Diameter Grafts in an In Vivo Sheep Model-Techniques and Pitfalls. Thorac Cardiovasc Surg 2019; 69:649-659. [PMID: 31030422 DOI: 10.1055/s-0039-1687887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Scientific attempts to create the "ideal" small diameter vascular graft have been compared with the "search of the holy grail." Prosthetic material as expanded polytetrafluoroethylene or Dacron shows acceptable patency rates to large caliber vessels, while small diameter (< 6 mm) prosthetic conduits present unacceptably poor patency rates. Vascular tissue engineering represents a promising option to address this problem. MATERIAL AND METHODS Thirty-two female Texel-sheep aged 6 months to 2 years underwent surgical common carotid artery (CCA) interposition using different tissue-engineered vascular substitutes. Explantation of the grafts was performed 12 (n = 12) and 36 (n = 20) weeks after surgery. Ultrasound was performed on postoperative day 1 and thereafter every 4 weeks to evaluate the graft patency. RESULTS The average length of implanted substitutes was 10.3 ± 2.2 cm. Anesthesia and surgical procedure could be performed without major surgical complications in all cases.The grafts showed a systolic blood flow velocity (BFV) of 28.24 ± 13.5 cm/s, a diastolic BFV of 9.25 ± 4.53 cm/s, and a mean BFV of 17.85 ± 9.25 cm/s. Native vessels did not differ relevantly in hemodynamic measurements (systolic: 29.77 cm/s; diastolic: 7.99 cm/s ± 5.35; mean 15.87 ± 10.75). There was no incidence of neurologic complications or subsequent postoperative occlusion. Perioperative morbidity was low and implantation of conduits was generally well tolerated. CONCLUSION This article aims to give a precise overview of in vivo experiments in sheep for the evaluation of small diameter vascular grafts performing CCA interposition, especially with regard to pitfalls and possible perioperative complications and to discuss advantages and disadvantages of this approach.
Collapse
Affiliation(s)
| | - Maria Guschlbauer
- Dezentrales Tierhaltungsnetzwerk, Universitätsklinikum Köln, Cologne, Germany
| | - Carolyn Weber
- Department of Cardiothoracic Surgery, Uniklinik Köln, Köln, Germany
| | - Max Theodor Wacker
- Department of Cardiac Surgery, Universitatsklinikum Magdeburg, Magdeburg, Germany
| | | | - Ilija Djordjevic
- Department of Cardiothoracic Surgery, Uniklinik Köln, Köln, Germany
| | | | - Alexandra Maul
- Department of Experimentelle Medizin, Universitätsklinikum Köln, Cologne, Germany
| | - Anja Sterner-Kock
- Department of Experimentelle Medizin, Universitätsklinikum Köln, Cologne, Germany
| | | | - Maximilian Scherner
- Department of Cardiac Surgery, Universitatsklinikum Magdeburg, Magdeburg, Germany
| | - Jens Wippermann
- Department of Cardiac Surgery, Universitatsklinikum Magdeburg, Magdeburg, Germany
| |
Collapse
|
30
|
Skovrind I, Harvald EB, Juul Belling H, Jørgensen CD, Lindholt JS, Andersen DC. Concise Review: Patency of Small-Diameter Tissue-Engineered Vascular Grafts: A Meta-Analysis of Preclinical Trials. Stem Cells Transl Med 2019; 8:671-680. [PMID: 30920771 PMCID: PMC6591545 DOI: 10.1002/sctm.18-0287] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Several patient groups undergoing small‐diameter (<6 mm) vessel bypass surgery have limited autologous vessels for use as grafts. Tissue‐engineered vascular grafts (TEVG) have been suggested as an alternative, but the ideal TEVG remains to be generated, and a systematic overview and meta‐analysis of clinically relevant studies is lacking. We systematically searched PubMed and Embase databases for (pre)clinical trials and identified three clinical and 68 preclinical trials ([>rabbit]; 873 TEVGs) meeting the inclusion criteria. Preclinical trials represented low to medium risk of bias, and binary logistic regression revealed that patency was significantly affected by recellularization, TEVG length, TEVG diameter, surface modification, and preconditioning. In contrast, scaffold types were less important. The patency was 63.5%, 89%, and 100% for TEVGs with a median diameter of 3 mm, 4 mm, and 5 mm, respectively. In the group of recellularized TEVGs, patency was not improved by using smooth muscle cells in addition to endothelial cells nor affected by the endothelial origin, but seems to benefit from a long‐term (46–240 hours) recellularization time. Finally, data showed that median TEVG length (5 cm) and median follow‐up (56 days) used in preclinical settings are relatively inadequate for direct clinical translation. In conclusion, our data imply that future studies should consider a TEVG design that at least includes endothelial recellularization and bioreactor preconditioning, and we suggest that more standard guidelines for testing and reporting TEVGs in large animals should be considered to enable interstudy comparisons and favor a robust and reproducible outcome as well as clinical translation.
Collapse
Affiliation(s)
- Ida Skovrind
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | - Eva Bang Harvald
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Center for Vascular Regeneration, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | - Helene Juul Belling
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | | | - Jes Sanddal Lindholt
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Center for Vascular Regeneration, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark.,Clinical Institute, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
31
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
32
|
Dardik A, Gloviczki P, Lawrence PF. Vascular science: A glimpse into the future. J Vasc Surg 2018; 68:1S-2S. [PMID: 30470354 DOI: 10.1016/j.jvs.2018.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Atlan M, Simon-Yarza T, Ino JM, Hunsinger V, Corté L, Ou P, Aid-Launais R, Chaouat M, Letourneur D. Design, characterization and in vivo performance of synthetic 2 mm-diameter vessel grafts made of PVA-gelatin blends. Sci Rep 2018; 8:7417. [PMID: 29743525 PMCID: PMC5943294 DOI: 10.1038/s41598-018-25703-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 01/06/2023] Open
Abstract
Since the development of the first vascular grafts, fabrication of vessel replacements with diameters smaller than 6 mm remains a challenge. The present work aimed to develop PVA (poly (vinyl alcohol))-gelatin hybrids as tubes suitable for replacement of very small vessels and to evaluate their performance using a rat abdominal aorta interposition model. PVA-gelatin hybrid tubes with internal and external diameters of 1.4 mm and 1.8 mm, respectively, composed of 4 different gelatin ratios were prepared using a one-step strategy with both chemical and physical crosslinking. By 3D Time of Flight MRI, Doppler-Ultrasound, Computed Tomography angiography and histology, we demonstrated good patency rates with the 1% gelatin composition until the end of the study at 3 months (50% compared to 0% of PVA control grafts). A reduction of the patency rate during the time of implantation suggested some loss of properties of the hybrid material in vivo, further confirmed by mechanical evaluation until one year. In particular, stiffening and reduction of compliance of the PVA-gelatin grafts was demonstrated, which might explain the observed long-term changes in patency rate. These encouraging results confirm the potential of PVA-gelatin hybrids as ready-to-use vascular grafts for very small vessel replacement.
Collapse
Affiliation(s)
- M Atlan
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France. .,Faculty of Medicine, University Pierre et Marie Curie, Plastic Surgery Department, Hôpital Tenon, Paris, France.
| | - T Simon-Yarza
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.
| | - J M Ino
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| | - V Hunsinger
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,Faculty of Medicine, University Pierre et Marie Curie, Plastic Surgery Department, Hôpital Tenon, Paris, France
| | - L Corté
- MINES ParisTech, PSL Research University, MAT - Centre des Matériaux, CNRS UMR 7633, BP 87 91003, Evry, France.,ESPCI-Paris, PSL Research University, Matière Molle et Chimie, CNRS UMR 7167, Paris, 75005, France
| | - P Ou
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| | - R Aid-Launais
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,FRIM, INSERM UMS 034 Paris Diderot University, X. Bichat Hospital, 75018, Paris, France
| | - M Chaouat
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,Plastic Surgery Department, Burn Unit, Paris Diderot University, Hôpital Saint Louis, Paris, France
| | - D Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| |
Collapse
|