1
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2024:10.1038/s41581-024-00906-1. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Zhang Y, Yao T, Xu Y, Wang Y, Han S. Circulating RAC1 contributed to steroid-sensitive nephrotic syndrome: Mendelian randomization, single-cell RNA-sequencing, proteomic, and experimental evidence. Ren Fail 2024; 46:2416087. [PMID: 39422242 PMCID: PMC11492449 DOI: 10.1080/0886022x.2024.2416087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES The small GTPase Rac1 (RAC1) has been linked to podocyte disorders and steroid-sensitive nephrotic syndrome (SSNS). The aim of this study was to explore and validate the potential causal association between circulating RAC1 and SSNS. METHODS The association between circulating RAC1 and SSNS at both gene expression and proteomic levels was investigated using Mendelian randomization analysis, and further validated by single-cell RNA-sequencing, proteomic analysis, and experimental studies. The genetic instruments comprised cis-expression quantitative trait loci (cis-eQTLs) associated with RAC1 gene expression and protein QTLs correlated with plasma RAC1 protein levels. Causal associations were estimated utilizing the inverse variance weighted and MR-PRESSO methods. Validation of RAC1 expression was conducted through single-cell RNA-sequencing of peripheral blood mononuclear cells from patients with SSNS and healthy controls. Proteomic analysis was performed among patients with minimal change nephrotic syndrome. Experimental validation was conducted using a puromycin aminonucleoside (PAN)-induced nephrosis model. RESULTS Increased expression of RAC1 was associated with a higher risk of SSNS (gene expression level: odds ratio [OR], 1.53; 95% confidence interval [CI], 1.02-2.28; protein level: OR, 1.82; 95% CI, 1.05-3.17). The results of MR-PRESSO were consistent (gene expression level: OR, 1.49; 95% CI, 1.17-1.92; protein level: OR, 1.81; 95% CI, 1.16-2.85). Single-cell RNA sequencing and proteomic analysis confirmed elevated RAC1 expression in patients with SSNS compared to healthy controls. Experimental data further supported increased RAC1 expression in PAN-induced nephropathy. CONCLUSIONS Increased expression of RAC1 might be causally associated with SSNS, suggesting that targeting RAC1 might represent a potential therapeutic strategy for SSNS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Mann N, Sun H, Majmundar AJ. Mechanisms of podocyte injury in genetic kidney disease. Pediatr Nephrol 2024:10.1007/s00467-024-06551-x. [PMID: 39485497 DOI: 10.1007/s00467-024-06551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Glomerular diseases are a leading cause of chronic kidney disease worldwide. Both acquired and hereditary glomerulopathies frequently share a common final disease mechanism: disruption of the glomerular filtration barrier, podocyte injury, and ultimately podocyte death and detachment. Over 70 monogenic causes of proteinuric kidney disease have been identified, and most of these genes are highly expressed in podocytes, regulating key processes such as maintenance of the slit diaphragm, regulation of actin cytoskeleton remodeling, and modulation of downstream transcriptional pathways. Collectively, these are increasingly being referred to as hereditary "podocytopathies," in which podocyte injury is the central feature driving proteinuria and kidney dysfunction. In this review, we provide an overview of the monogenic podocytopathies and discuss the molecular mechanisms by which single-gene defects lead to podocyte injury and ultimately glomerulosclerosis. We review how advances in genomic technology and a better understanding of the cell biological basis of disease have led to the development of more targeted and personalized therapeutic strategies, including an overview of small molecule and gene therapy approaches.
Collapse
Affiliation(s)
- Nina Mann
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hua Sun
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amar J Majmundar
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Han S, Jia M, Yao T, Xu Y, Wang Y. Targeting RAC1 might be a potential therapeutic strategy for diabetic kidney disease: a Mendelian randomization study. Int Urol Nephrol 2024:10.1007/s11255-024-04225-z. [PMID: 39368040 DOI: 10.1007/s11255-024-04225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE This study aimed to ascertain the causal association between Ras-related C3 botulinum toxin substrate 1 (RAC1) and the incidence and progression of diabetic kidney disease (DKD) through Mendelian randomization analysis. METHODS RAC1 expression, evaluated using expression quantitative trait loci data from the eQTLGen Consortium, was served as the exposure variable. Outcomes encompassed the risk of DKD, end-stage renal disease (ESRD), albuminuria assessed by the urinary albumin-to-creatinine ratio (ACR), and estimated glomerular filtration rate (eGFR) among individuals with diabetes. Causal associations were computed using the inverse variance weighted (IVW), weighted median, and MR-PRESSO models. Additionally, we conducted analyses for heterogeneity, horizontal pleiotropy, and sensitivity. RESULTS This study revealed a causal association between the genetic activation of RAC1 and an elevated risk of DKD among individuals with diabetes [IVW, odds ratio (OR) = 1.28, 95% confidence intervals (CI) 1.08-1.51, P = 0.004]. Furthermore, increased expression of RAC1 was linked to a higher risk of ESRD (IVW, OR = 1.20, 95% CI 1.02-1.43, P = 0.032). Excessive RAC1 expression was causally associated with elevated ACR (IVW, β = 0.052, 95% CI 0.003-0.100, P = 0.036). However, the analysis regarding RAC1 and eGFR showed significant heterogeneity and pleiotropy, with no discernible causal relationship. CONCLUSIONS These findings suggested a positive correlation between the genetic activation of RAC1 and the incidence of DKD, the risk of ESRD, and exacerbated albuminuria among individuals with diabetes. Targeting RAC1 might potentially serve as a therapeutic strategy for DKD.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Meng Jia
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
5
|
Fu R, Wang W, Huo Y, Li L, Chen R, Lin Z, Tao Y, Peng X, Huang W, Guo C. The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis. Kidney Int 2024; 106:625-639. [PMID: 39084260 DOI: 10.1016/j.kint.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.
Collapse
Affiliation(s)
- Rong Fu
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenqian Wang
- Department of Hematology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongbao Huo
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liu Li
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruilin Chen
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zeying Lin
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Tao
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuan Peng
- Department of Nephrology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Wenhui Huang
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Chaohuan Guo
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Xu Y, Ren Y, Zhang J, Niu B, Liu M, Xu T, Zhang X, Shen J, Wang K, Cao Z. Discovery of pyridazinone derivatives bearing tetrahydroimidazo[1,2-a]pyrazine scaffold as potent inhibitors of transient receptor potential canonical 5 to ameliorate hypertension-induced renal injury in rats. Eur J Med Chem 2024; 275:116565. [PMID: 38878518 DOI: 10.1016/j.ejmech.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
Transient receptor potential canonical 5 (TRPC5) is a calcium-permeable non-selective cation channel involved in various pathophysiological processes, including renal injury. Recently, GFB-887, an investigational pyridazinone TRPC5 inhibitor, demonstrated significant therapeutic potential in a Phase II clinical trial for focal segmental glomerulosclerosis (FSGS), a rare and severe form of chronic kidney disease (CKD). In the current study, based on the structure of GFB-887, we conducted extensive structural modification to explore novel TRPC5 inhibitors with desirable drug-like properties and robust nephroprotective efficacy. A series of pyridazinone derivatives featuring a novel tetrahydroimidazo[1,2-a]pyrazine scaffold were synthesized and their activities were evaluated in HEK-293 cells stably expressing TRPC5 using a fluorescence-based Ca2+ mobilization assay. Among these compounds, compound 12 is turned out to be a potent TRPC5 inhibitor with apparent affinity comparable to the parent compound GBF-887. Compound 12 is highly selective on TRPC4/5 over TRPC3/6/7 and hERG channels, along with acceptable pharmacokinetic properties and a favorable safety profile. More importantly, in a rat model of hypertension-induced renal injury, oral administration of compound 12 (10 mg/kg, BID) efficaciously reduced mean blood pressure, inhibited proteinuria, and protected podocyte damage. These findings further confirmed the potential of TRPC5 inhibitors on the CKD treatment and provided compound 12 to be a valuable tool for exploring TRPC4/5 pathophysiology.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jianhua Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
7
|
Semenikhina M, Bohovyk R, Fedoriuk M, Stefanenko M, Klemens CA, Oates JC, Staruschenko A, Palygin O. Renin-angiotensin system-mediated nitric oxide signaling in podocytes. Am J Physiol Renal Physiol 2024; 327:F532-F542. [PMID: 39024356 PMCID: PMC11460333 DOI: 10.1152/ajprenal.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca2+ cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT2R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT2R. Furthermore, NO production impacted intracellular Ca2+ signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT2R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT2R activation enhances NO production in podocytes and subsequently mediates changes in Ca2+ signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.NEW & NOTEWORTHY The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
| | - Jim C Oates
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
8
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Saito K, Yokawa S, Kurihara H, Yaoita E, Mizuta S, Tada K, Oda M, Hatakeyama H, Ohta Y. FilGAP controls cell-extracellular matrix adhesion and process formation of kidney podocytes. FASEB J 2024; 38:e23504. [PMID: 38421271 DOI: 10.1096/fj.202301691rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Seiji Yokawa
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Sciences, Aino University, Osaka, Ibaraki, Japan
| | - Eishin Yaoita
- Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Sari Mizuta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanae Tada
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Moemi Oda
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
10
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
11
|
Cara-Fuentes G, Verma R, Venkatareddy M, Bauer C, Piani F, Aksoy ST, Vazzalwar N, Garcia GE, Banks M, Ordoñez FA, de Lucas-Collantes C, Bjornstad P, González Rodríguez JD, Johnson RJ, Garg P. β1-Integrin blockade prevents podocyte injury in experimental models of minimal change disease. Nefrologia 2024; 44:90-99. [PMID: 37150673 DOI: 10.1016/j.nefroe.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 05/09/2023] Open
Abstract
INTRODUCTION Activation of the focal adhesion kinase (FAK) in podocytes is involved in the pathogenesis of minimal change disease (MCD), but the pathway leading to its activation in this disease is unknown. Here, we tested whether podocyte β1 integrin is the upstream modulator of FAK activation and podocyte injury in experimental models of MCD-like injury. METHODS We used lipopolysaccharide (LPS) and MCD sera to induce MCD-like changes in vivo and in cultured human podocytes, respectively. We performed functional studies using specific β1 integrin inhibitors in vivo and in vitro, and integrated histological analysis, western blotting, and immunofluorescence to assess for morphological and molecular changes in podocytes. By ELISA, we measured serum LPS levels in 35 children with MCD or presumed MCD (idiopathic nephrotic syndrome [INS]) and in 18 healthy controls. RESULTS LPS-injected mice showed morphological (foot process effacement, and normal appearing glomeruli on light microscopy) and molecular features (synaptopodin loss, nephrin mislocalization, FAK phosphorylation) characteristic of human MCD. Administration of a β1 integrin inhibitor to mice abrogated FAK phosphorylation, and ameliorated proteinuria and podocyte injury following LPS. Children with MCD/INS in relapse had higher serum LPS levels than controls. In cultured human podocytes, β1 integrin blockade prevented cytoskeletal rearrangements following exposure to MCD sera in relapse. CONCLUSIONS Podocyte β1 integrin activation is an upstream mediator of FAK phosphorylation and podocyte injury in models of MCD-like injury.
Collapse
|
12
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
13
|
Fujii W, Shibata S. Mineralocorticoid Receptor Antagonists for Preventing Chronic Kidney Disease Progression: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:ijms24097719. [PMID: 37175424 PMCID: PMC10178637 DOI: 10.3390/ijms24097719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation and action of the mineralocorticoid receptor (MR) have been the focus of intensive research over the past 80 years. Genetic and physiological/biochemical analysis revealed how MR and the steroid hormone aldosterone integrate the responses of distinct tubular cells in the face of environmental perturbations and how their dysregulation compromises fluid homeostasis. In addition to these roles, the accumulation of data also provided unequivocal evidence that MR is involved in the pathophysiology of kidney diseases. Experimental studies delineated the diverse pathological consequences of MR overactivity and uncovered the multiple mechanisms that result in enhanced MR signaling. In parallel, clinical studies consistently demonstrated that MR blockade reduces albuminuria in patients with chronic kidney disease. Moreover, recent large-scale clinical studies using finerenone have provided evidence that the non-steroidal MR antagonist can retard the kidney disease progression in diabetic patients. In this article, we review experimental data demonstrating the critical importance of MR in mediating renal injury as well as clinical studies providing evidence on the renoprotective effects of MR blockade. We also discuss areas of future investigation, which include the benefit of non-steroidal MR antagonists in non-diabetic kidney disease patients, the identification of surrogate markers for MR signaling in the kidney, and the search for key downstream mediators whereby MR blockade confers renoprotection. Insights into these questions would help maximize the benefit of MR blockade in subjects with kidney diseases.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
14
|
Boi R, Bergwall L, Ebefors K, Bergö MO, Nyström J, Buvall L. Podocyte Geranylgeranyl Transferase Type-I Is Essential for Maintenance of the Glomerular Filtration Barrier. J Am Soc Nephrol 2023; 34:641-655. [PMID: 36735952 PMCID: PMC10103324 DOI: 10.1681/asn.0000000000000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT A tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice. In cultured podocytes, the absence of geranylgeranylation resulted in altered activity of its downstream substrates Rac1, RhoA, Cdc42, and Rap1, leading to alterations of β1-integrins and actin cytoskeleton structural changes. These findings highlight the importance of geranylgeranylation in the dynamic management of RhoGTPases and Rap1 to control podocyte function, providing new knowledge about podocyte biology and glomerular filtration barrier function. BACKGROUND Impairment of the glomerular filtration barrier is in part attributed to podocyte foot process effacement (FPE), entailing disruption of the actin cytoskeleton and the slit diaphragm. Maintenance of the actin cytoskeleton, which contains a complex signaling network through its connections to slit diaphragm and focal adhesion proteins, is thus considered crucial to preserving podocyte structure and function. A dynamic yet tightly regulated cytoskeleton is attained through balanced activity of RhoGTPases. Most RhoGTPases are post-translationally modified by the enzyme geranylgeranyl transferase type-I (GGTase-I). Although geranylgeranylation has been shown to regulate activities of RhoGTPases and RasGTPase Rap1, its significance in podocytes is unknown. METHODS We used immunofluorescence to localize GGTase-I, which was expressed mainly by podocytes in the glomeruli. To define geranylgeranylation's role in podocytes, we generated podocyte-specific GGTase-I knockout mice. We used transmission electron microscopy to evaluate FPE and measurements of urinary albumin excretion to analyze filtration barrier function. Geranylgeranylation's effects on RhoGTPases and Rap1 function were studied in vitro by knockdown or inhibition of GGTase-I. We used immunocytochemistry to study structural modifications of the actin cytoskeleton and β1 integrins. RESULTS Depletion of GGTase-I in podocytes in vivo resulted in FPE and concomitant early-onset progressive albuminuria. A reduction of GGTase-I activity in cultured podocytes disrupted RhoGTPase balance by markedly increasing activity of RhoA, Rac1, and Cdc42 together with Rap1, resulting in dysregulation of the actin cytoskeleton and altered distribution of β1 integrins. CONCLUSIONS These findings indicate that geranylgeranylation is of crucial importance for the maintenance of the delicate equilibrium of RhoGTPases and Rap1 in podocytes and consequently for the maintenance of glomerular integrity and function.
Collapse
Affiliation(s)
- Roberto Boi
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergö
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Buvall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
15
|
Matsuda J, Takano T. Monitoring of Rho GTPase Activity in Podocytes. Methods Mol Biol 2023; 2664:343-349. [PMID: 37423999 DOI: 10.1007/978-1-0716-3179-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The glomerulus is the filtration unit of the kidney, where the first step of urine formation occurs. Podocytes are characterized by their actin-based projections called foot processes. Podocyte foot processes play a critical role in the permselective filtration barrier, along with fenestrated endothelial cells and the glomerular basement membrane. The Rho family of small GTPases (Rho GTPases) is the master regulators of the actin cytoskeleton and functions as molecular switches. Recent studies have shown that disruption of Rho GTPase activity and subsequent changes in foot process structure cause proteinuria. Here, we describe an effector pull-down assay using GST-fusion proteins to monitor the activity of RhoA, Rac1, and Cdc42, which are prototypical Rho GTPases in podocytes.
Collapse
Affiliation(s)
- Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
16
|
CdGAP maintains podocyte function and modulates focal adhesions in a Src kinase-dependent manner. Sci Rep 2022; 12:18657. [PMID: 36333327 PMCID: PMC9636259 DOI: 10.1038/s41598-022-21634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and β-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with β-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired β-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.
Collapse
|
17
|
Hada I, Shimizu A, Takematsu H, Nishibori Y, Kimura T, Fukutomi T, Kudo A, Ito-Nitta N, Kiuchi Z, Patrakka J, Mikami N, Leclerc S, Akimoto Y, Hirayama Y, Mori S, Takano T, Yan K. A Novel Mouse Model of Idiopathic Nephrotic Syndrome Induced by Immunization with the Podocyte Protein Crb2. J Am Soc Nephrol 2022; 33:2008-2025. [PMID: 35985815 PMCID: PMC9678040 DOI: 10.1681/asn.2022010070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cause of podocyte injury in idiopathic nephrotic syndrome (INS) remains unknown. Although recent evidence points to the role of B cells and autoimmunity, the lack of animal models mediated by autoimmunity limits further research. We aimed to establish a mouse model mimicking human INS by immunizing mice with Crb2, a transmembrane protein expressed at the podocyte foot process. METHODS C3H/HeN mice were immunized with the recombinant extracellular domain of mouse Crb2. Serum anti-Crb2 antibody, urine protein-to-creatinine ratio, and kidney histology were studied. For signaling studies, a Crb2-expressing mouse podocyte line was incubated with anti-Crb2 antibody. RESULTS Serum anti-Crb2 autoantibodies and significant proteinuria were detected 4 weeks after the first immunization. The proteinuria reached nephrotic range at 9-13 weeks and persisted up to 29 weeks. Initial kidney histology resembled minimal change disease in humans, and immunofluorescence staining showed delicate punctate IgG staining in the glomerulus, which colocalized with Crb2 at the podocyte foot process. A subset of mice developed features resembling FSGS after 18 weeks. In glomeruli of immunized mice and in Crb2-expressing podocytes incubated with anti-Crb2 antibody, phosphorylation of ezrin, which connects Crb2 to the cytoskeleton, increased, accompanied by altered Crb2 localization and actin distribution. CONCLUSION The results highlight the causative role of anti-Crb2 autoantibody in podocyte injury in mice. Crb2 immunization could be a useful model to study the immunologic pathogenesis of human INS, and may support the role of autoimmunity against podocyte proteins in INS.
Collapse
Affiliation(s)
- Ichiro Hada
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yukino Nishibori
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiko Kudo
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Noriko Ito-Nitta
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Zentaro Kiuchi
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Jaakko Patrakka
- KI/AZ Integrated Cardio Metabolic Center, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Naoaki Mikami
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Simon Leclerc
- Department of Medicine, Division of Nephrology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshiaki Hirayama
- Vaccine & Reagent, R&D Department, Denka Co., Ltd, Gosen-City, Japan
| | - Satoka Mori
- Denka Innovation Center, Denka Co., Ltd, Machida, Japan
| | - Tomoko Takano
- Department of Medicine, Division of Nephrology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Rachubik P, Szrejder M, Rogacka D, Typiak M, Audzeyenka I, Kasztan M, Pollock DM, Angielski S, Piwkowska A. Insulin controls cytoskeleton reorganization and filtration barrier permeability via the PKGIα-Rac1-RhoA crosstalk in cultured rat podocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119301. [PMID: 35642843 DOI: 10.1016/j.bbamcr.2022.119301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5'-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Chemistry, Department of Molecular Biotechnology, Gdańsk, Poland
| | - Marlena Typiak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Biology, Department of General and Medical Biochemistry, Gdańsk, Poland
| | - Irena Audzeyenka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Chemistry, Department of Molecular Biotechnology, Gdańsk, Poland
| | - Małgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefan Angielski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Chemistry, Department of Molecular Biotechnology, Gdańsk, Poland.
| |
Collapse
|
19
|
Martin CE, Phippen NJ, Keyvani Chahi A, Tilak M, Banerjee SL, Lu P, New LA, Williamson CR, Platt MJ, Simpson JA, Krendel M, Bisson N, Gingras AC, Jones N. Complementary Nck1/2 Signaling in Podocytes Controls α Actinin-4-Mediated Actin Organization, Adhesion, and Basement Membrane Composition. J Am Soc Nephrol 2022; 33:1546-1567. [PMID: 35906089 PMCID: PMC9342632 DOI: 10.1681/asn.2021101343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Noah J Phippen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sara L Banerjee
- Division of Oncology, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Laval University, Quebec City, Quebec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Nicolas Bisson
- Division of Oncology, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Laval University, Quebec City, Quebec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada.,PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Xiao M, Bohnert BN, Grahammer F, Artunc F. Rodent models to study sodium retention in experimental nephrotic syndrome. Acta Physiol (Oxf) 2022; 235:e13844. [PMID: 35569011 DOI: 10.1111/apha.13844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Sodium retention and edema are hallmarks of nephrotic syndrome (NS). Different experimental rodent models have been established for simulating NS, however, not all of them feature sodium retention which requires proteinuria to exceed a certain threshold. In rats, puromycin aminonucleoside nephrosis (PAN) is a classic NS model introduced in 1955 that was adopted as doxorubicin-induced nephropathy (DIN) in 129S1/SvImJ mice. In recent years, mice with inducible podocin deletion (Nphs2Δipod ) or podocyte apoptosis (POD-ATTAC) have been developed. In these models, sodium retention is thought to be caused by activation of the epithelial sodium channel (ENaC) in the distal nephron through aberrantly filtered serine proteases or proteasuria. Strikingly, rodent NS models follow an identical chronological time course after the development of proteinuria featuring sodium retention within days and spontaneous reversal thereafter. In DIN and Nphs2Δipod mice, inhibition of ENaC by amiloride or urinary serine protease activity by aprotinin prevents sodium retention, opening up new and promising therapeutic approaches that could be translated into the treatment of nephrotic patients. However, the essential serine protease(s) responsible for ENaC activation is (are) still unknown. With the use of nephrotic rodent models, there is the possibility that this (these) will be identified in the future. This review summarizes the various rodent models used to study experimental nephrotic syndrome and the insights gained from these models with regard to the pathophysiology of sodium retention.
Collapse
Affiliation(s)
- Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Florian Grahammer
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
21
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
22
|
Lin DW, Chang CC, Hsu YC, Lin CL. New Insights into the Treatment of Glomerular Diseases: When Mechanisms Become Vivid. Int J Mol Sci 2022; 23:3525. [PMID: 35408886 PMCID: PMC8998908 DOI: 10.3390/ijms23073525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment for glomerular diseases has been extrapolated from the experience of other autoimmune disorders while the underlying pathogenic mechanisms were still not well understood. As the classification of glomerular diseases was based on patterns of juries instead of mechanisms, treatments were typically the art of try and error. With the advancement of molecular biology, the role of the immune agent in glomerular diseases is becoming more evident. The four-hit theory based on the discovery of gd-IgA1 gives a more transparent outline of the pathogenesis of IgA nephropathy (IgAN), and dysregulation of Treg plays a crucial role in the pathogenesis of minimal change disease (MCD). An epoch-making breakthrough is the discovery of PLA2R antibodies in the primary membranous nephropathy (pMN). This is the first biomarker applied for precision medicine in kidney disease. Understanding the immune system's role in glomerular diseases allows the use of various immunosuppressants or other novel treatments, such as complement inhibitors, to treat glomerular diseases more reasonable. In this era of advocating personalized medicine, it is inevitable to develop precision medicine with mechanism-based novel biomarkers and novel therapies in kidney disease.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 613016, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 613016, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| |
Collapse
|
23
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
24
|
Koehler S, Odenthal J, Ludwig V, Jess DU, Höhne M, Jüngst C, Grawe F, Helmstädter M, Janku JL, Bergmann C, Hoyer PF, Hagmann HHH, Walz G, Bloch W, Niessen C, Schermer B, Wodarz A, Denholm B, Benzing T, Iden S, Brinkkoetter PT. Scaffold polarity proteins Par3A and Par3B share redundant functions while Par3B acts independent of atypical protein kinase C/Par6 in podocytes to maintain the kidney filtration barrier. Kidney Int 2021; 101:733-751. [PMID: 34929254 DOI: 10.1016/j.kint.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Johanna Odenthal
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vivian Ludwig
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö Jess
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdi Grawe
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Molecular Cell Biology, Institute I for Anatomy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna L Janku
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Peter F Hoyer
- Klinik für Kinderheilkunde 2, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Essen, Essen, Germany
| | - H H Henning Hagmann
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Carien Niessen
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Dermatology, University Hospital of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Andreas Wodarz
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Molecular Cell Biology, Institute I for Anatomy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Thomas Benzing
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sandra Iden
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Cell and Developmental Biology, Saarland University, Homburg/Saar, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Eroglu FK, Yazar V, Guler U, Yıldırım M, Yildirim T, Gungor T, Celikkaya E, Karakaya D, Turay N, Ciftci Dede E, Korkusuz P, Salih B, Bulbul M, Gursel I. Circulating extracellular vesicles of patients with steroid-sensitive nephrotic syndrome have higher RAC1 and induce recapitulation of nephrotic syndrome phenotype in podocytes. Am J Physiol Renal Physiol 2021; 321:F659-F673. [PMID: 34569252 DOI: 10.1152/ajprenal.00097.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since previous research suggests a role of a circulating factor in the pathogenesis of steroid-sensitive nephrotic syndrome (NS), we speculated that circulating plasma extracellular vesicles (EVs) are a candidate source of such a soluble mediator. Here, we aimed to characterize and try to delineate the effects of these EVs in vitro. Plasma EVs from 20 children with steroid-sensitive NS in relapse and remission, 10 healthy controls, and 6 disease controls were obtained by serial ultracentrifugation. Characterization of these EVs was performed by electron microscopy, flow cytometry, and Western blot analysis. Major proteins from plasma EVs were identified via mass spectrometry. Gene Ontology classification analysis and Ingenuity Pathway Analysis were performed on selectively expressed EV proteins during relapse. Immortalized human podocyte culture was used to detect the effects of EVs on podocytes. The protein content and particle number of plasma EVs were significantly increased during NS relapse. Relapse NS EVs selectively expressed proteins that involved actin cytoskeleton rearrangement. Among these, the level of RAC-GTP was significantly increased in relapse EVs compared with remission and disease control EVs. Relapse EVs were efficiently internalized by podocytes and induced significantly enhanced motility and albumin permeability. Moreover, relapse EVs induced significantly higher levels of RAC-GTP and phospho-p38 and decreased the levels of synaptopodin in podocytes. Circulating relapse EVs are biologically active molecules that carry active RAC1 as cargo and induce recapitulation of the NS phenotype in podocytes in vitro.NEW & NOTEWORTHY Up to now, the role of extracellular vesicles (EVs) in the pathogenesis of steroid-sensitive nephrotic syndrome (NS) has not been studied. Here, we found that relapse NS EVs contain significantly increased active RAC1, induce enhanced podocyte motility, and increase expression of RAC-GTP and phospho-p38 expression in vitro. These results suggest that plasma EVs are biologically active molecules in the pathogenesis of NS.
Collapse
Affiliation(s)
- Fehime K Eroglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Volkan Yazar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Muzaffer Yıldırım
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tugce Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tulin Gungor
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Evra Celikkaya
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Deniz Karakaya
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Nilsu Turay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Eda Ciftci Dede
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Mehmet Bulbul
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
26
|
Wang L, Tang Y, Buckley AF, Spurney RF. Blockade of the natriuretic peptide clearance receptor attenuates proteinuria in a mouse model of focal segmental glomerulosclerosis. Physiol Rep 2021; 9:e15095. [PMID: 34755480 PMCID: PMC8578888 DOI: 10.14814/phy2.15095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
Glomerular podocytes play a key role in proteinuric diseases. Accumulating evidence suggests that cGMP signaling has podocyte protective effects. The major source of cGMP generation in podocytes is natriuretic peptides. The natriuretic peptide clearance receptor (NPRC) binds and degrades natriuretic peptides. As a result, NPRC inhibits natriuretic peptide-induced cGMP generation. To enhance cGMP generation in podocytes, we blocked natriuretic peptide clearance using the specific NPRC ligand ANP(4-23). We then studied the effects of NPRC blockade in both cultured podocytes and in a mouse transgenic (TG) model of focal segmental glomerulosclerosis (FSGS) created in our laboratory. In this model, a single dose of the podocyte toxin puromycin aminonucleoside (PAN) causes robust albuminuria in TG mice, but only mild disease in non-TG animals. We found that natriuretic peptides protected cultured podocytes from PAN-induced apoptosis, and that ANP(4-23) enhanced natriuretic peptide-induced cGMP generation in vivo. PAN-induced heavy proteinuria in vehicle-treated TG mice, and this increase in albuminuria was reduced by treatment with ANP(4-23). Treatment with ANP(4-23) also reduced the number of mice with glomerular injury and enhanced urinary cGMP excretion, but these differences were not statistically significant. Systolic BP was similar in vehicle and ANP(4-23)-treated mice. These data suggest that: 1. Pharmacologic blockade of NPRC may be useful for treating glomerular diseases such as FSGS, and 2. Treatment outcomes might be improved by optimizing NPRC blockade to inhibit natriuretic peptide clearance more effectively.
Collapse
Affiliation(s)
- Liming Wang
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNorth CarolinaUSA
| | - Yuping Tang
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNorth CarolinaUSA
| | - Anne F. Buckley
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Robert F. Spurney
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNorth CarolinaUSA
| |
Collapse
|
27
|
Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Bastami M, Nariman-Saleh-Fam Z, Abediazar S, Khalilov R, Zununi Vahed S. Migrasomes and exosomes; different types of messaging vesicles in podocytes. Cell Biol Int 2021; 46:52-62. [PMID: 34647672 DOI: 10.1002/cbin.11711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
Podocytes, highly specified kidney epithelial cells, live under several pathological stimuli and stresses during which they adapt themselves to keep homeostasis. Nevertheless, under extreme stress, a complex scenario of podocyte damage and its consequences occur. Podocyte damage causes foot process effacement and their detachment from the glomerular basement membrane, leading to proteinuria. Podocyte-derived extracellular vesicles (pEVs), mainly microparticles and exosomes are considered as signaling mediators of intercellular communication. Recently, it has been shown that throughout the injury-related migration procedure, podocytes are capable of releasing the injury-related migrasomes. Evidence indicates that at the early stages of glomerular disorders, increased levels of pEVs are observed in urine. At the early stage of nephropathy, pEVs especially migrasomes seem to be more sensitive and reliable indicators of podocyte stress and/or damage than proteinuria. This review highlights the current knowledge of pEVs and their values for the diagnosis of different kidney diseases.
Collapse
Affiliation(s)
| | | | | | - Milad Bastami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine
| | | |
Collapse
|
28
|
Zhou Y, Kim C, Pablo JLB, Zhang F, Jung JY, Xiao L, Bazua-Valenti S, Emani M, Hopkins CR, Weins A, Greka A. TRPC5 Channel Inhibition Protects Podocytes in Puromycin-Aminonucleoside Induced Nephrosis Models. Front Med (Lausanne) 2021; 8:721865. [PMID: 34621762 PMCID: PMC8490698 DOI: 10.3389/fmed.2021.721865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Podocyte injury and the appearance of proteinuria are key features of several progressive kidney diseases. Genetic deletion or selective inhibition of TRPC5 channels with small-molecule inhibitors protects podocytes in rodent models of kidney disease, but less is known about the human relevance and translatability of TRPC5 inhibition. Here, we investigate the effect of TRPC5 inhibition in puromycin aminonucleoside (PAN)-treated rats, human iPSC-derived podocytes, and kidney organoids. We first established that systemic administration of the TRPC5 inhibitor AC1903 was sufficient to protect podocyte cytoskeletal proteins and suppress proteinuria in PAN-induced nephrosis rats, an established model of podocyte injury. TRPC5 current was recorded in the human iPSC-derived podocytes and was blocked by AC1903. PAN treatment caused podocyte injury in human iPSC-derived podocytes and kidney organoids. Inhibition of TRPC5 channels reversed the effects of PAN-induced injury in human podocytes in both 2D and 3D culture systems. Taken together, these results revealed the relevance of TRPC5 channel inhibition in puromycin-aminonucleoside induced nephrosis models, highlighting the potential of this therapeutic strategy for patients.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Choah Kim
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Juan Lorenzo B Pablo
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Fan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ji Yong Jung
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Incheon, South Korea
| | - Li Xiao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Silvana Bazua-Valenti
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Maheswarareddy Emani
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
29
|
Walsh L, Reilly JF, Cornwall C, Gaich GA, Gipson DS, Heerspink HJL, Johnson L, Trachtman H, Tuttle KR, Farag YMK, Padmanabhan K, Pan-Zhou XR, Woodworth JR, Czerwiec FS. Safety and Efficacy of GFB-887, a TRPC5 Channel Inhibitor, in Patients With Focal Segmental Glomerulosclerosis, Treatment-Resistant Minimal Change Disease, or Diabetic Nephropathy: TRACTION-2 Trial Design. Kidney Int Rep 2021; 6:2575-2584. [PMID: 34622097 PMCID: PMC8484122 DOI: 10.1016/j.ekir.2021.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 10/27/2022] Open
Abstract
Introduction A critical unmet need exists for precision therapies for chronic kidney disease. GFB-887 is a podocyte-targeting, small molecule inhibitor of transient receptor potential canonical-5 (TRPC5) designed specifically to treat patients with glomerular kidney diseases characterized by an overactivation of the TRPC5-Rac1 pathway. In a first-in-human study, GFB-887 was found to be safe and well tolerated, had a pharmacokinetic (PK) profile allowing once-daily dosing, and dose dependently decreased urinary Rac1 in healthy adults. Methods TRACTION-2 is a phase 2a, double-blind, placebo-controlled, multiple-ascending dose study of GFB-887 in patients with focal segmental glomerulosclerosis (FSGS), treatment-resistant minimal change disease (TR-MCD), or diabetic nephropathy (DN) (NCT04387448). Adult patients on stable renin-angiotensin system blockade and/or immunosuppression with persistent proteinuria will be randomized and dosed in 3 ascending dose levels to GFB-887 or placebo for 12 weeks. Cohorts may be expanded or biomarker-enriched depending upon results of an adaptive interim analysis. Results The primary objective is to evaluate the effect of increasing doses of GFB-887 on proteinuria. Safety and tolerability, quality of life, pharmacokinetic/pharmacodynamic profiles, and the potential association of urinary Rac1 with efficacy will also be evaluated. The projected sample size has 80% power to detect a treatment difference in proteinuria of 54% (FSGS/TR-MCD) or 44% (DN) compared to placebo. Conclusion TRACTION-2 will explore whether targeted blockade of the TRPC5-Rac1 pathway with GFB-887 is an efficacious and safe treatment strategy for patients with FSGS, TR-MCD, and DN and the potential value of urinary Rac1 as a predictive biomarker of treatment response.
Collapse
Affiliation(s)
- Liron Walsh
- Goldfinch Bio, Inc., Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | - Katherine R Tuttle
- Providence Health Care, Spokane, WA.,University of Washington, Seattle, Washington, USA
| | | | | | | | | | | |
Collapse
|
30
|
Epstein M, Freundlich M. The intersection of Mineralocorticoid Receptor (MR) activation and the FGF23 - Klotho cascade. A Duopoly that promotes renal and cardiovascular injury. Nephrol Dial Transplant 2021; 37:211-221. [PMID: 34459924 DOI: 10.1093/ndt/gfab254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nexus of CKD and cardiovascular disease (CVD) amplifies the morbidity and mortality of CKD, emphasizing the need for defining and establishing therapeutic initiatives to modify and abrogate the progression of CKD and concomitant CV risks. In addition to the traditional CV risk factors, disturbances of mineral metabolism are specific risk factors that contribute to the excessive CV mortality in patients with CKD. These risk factors include dysregulations of circulating factors that modulate phosphate metabolism including fibroblast growth factor 23 (FGF23) and soluble Klotho. Reduced circulating levels and suppressed renal klotho expression may be associated with adverse outcomes in CKD patients. While elevated circulating concentrations or locally produced FGF23 in the strained heart exert pro-hypertrophic mechanisms on the myocardium, Klotho attenuates tissue fibrosis, progression of CKD, cardiomyopathy, endothelial dysfunction, vascular stiffness, and vascular calcification. Mineralocorticoid receptor (MR) activation in non-classical targets, mediated by aldosterone and other ligands, amplifies CVD in CKD. In concert, we detail how the interplay of elevated FGF23, activation of the MR, and concomitant reductions of circulating Klotho in CKD, may potentiate each other's deleterious effects on kidney and the heart, thereby contributing to the initiation and progression of kidney and cardiac functional deterioration, acting through multipronged albeit complementary mechanistic pathways.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
31
|
Xie Y, Ruan Y, Zou H, Wang Y, Wu X, Li X, Lai J, Shi M, Xiao Y, Wang Y, Zhou Y, Guo B, Zhang F. YAP1 Overexpression Is Associated with Kidney Dysfunction in Lupus Nephritis. Pathobiology 2021; 88:412-423. [PMID: 34344015 DOI: 10.1159/000517575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. METHODS C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson's trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman's analysis. RESULTS Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. CONCLUSION YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China.,School of Nursing, Guizhou Medical University, Guiyang, China
| | - Yixin Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Xin Wu
- Department of Nephrology, Guiyang First People's Hospital, Guiyang, China
| | - Xiaoying Li
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Nephrology, Guiyang First People's Hospital, Guiyang, China
| | - Jiao Lai
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Key Laboratory of Pathogenesis and Drug Research of Common Chronic Diseases in Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Role of Rho GTPase Interacting Proteins in Subcellular Compartments of Podocytes. Int J Mol Sci 2021; 22:ijms22073656. [PMID: 33915776 PMCID: PMC8037304 DOI: 10.3390/ijms22073656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The first step of urine formation is the selective filtration of the plasma into the urinary space at the kidney structure called the glomerulus. The filtration barrier of the glomerulus allows blood cells and large proteins such as albumin to be retained while eliminating the waste products of the body. The filtration barrier consists of three layers: fenestrated endothelial cells, glomerular basement membrane, and podocytes. Podocytes are specialized epithelial cells featured by numerous, actin-based projections called foot processes. Proteins on the foot process membrane are connected to the well-organized intracellular actin network. The Rho family of small GTPases (Rho GTPases) act as intracellular molecular switches. They tightly regulate actin dynamics and subsequent diverse cellular functions such as adhesion, migration, and spreading. Previous studies using podocyte-specific transgenic or knockout animal models have established that Rho GTPases are crucial for the podocyte health and barrier function. However, little attention has been paid regarding subcellular locations where distinct Rho GTPases contribute to specific functions. In the current review, we discuss cellular events involving the prototypical Rho GTPases (RhoA, Rac1, and Cdc42) in podocytes, with particular focus on the subcellular compartments where the signaling events occur. We also provide our synthesized views of the current understanding and propose future research directions.
Collapse
|
33
|
Rogg M, Maier JI, Dotzauer R, Artelt N, Kretz O, Helmstädter M, Abed A, Sammarco A, Sigle A, Sellung D, Dinse P, Reiche K, Yasuda-Yamahara M, Biniossek ML, Walz G, Werner M, Endlich N, Schilling O, Huber TB, Schell C. SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. J Am Soc Nephrol 2021; 32:563-579. [PMID: 33514561 PMCID: PMC7920176 DOI: 10.1681/asn.2020081126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Robert Dotzauer
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Urology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Dominik Sellung
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Dinse
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Karoline Reiche
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Berta-Ottenstein Program, Medical Faculty, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Wang W, Long H, Huang W, Zhang T, Xie L, Chen C, Liu J, Xiong D, Hu W. Bu-Shen-Huo-Xue Decoction Ameliorates Diabetic Nephropathy by Inhibiting Rac1/PAK1/p38MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Front Pharmacol 2020; 11:587663. [PMID: 33343355 PMCID: PMC7744471 DOI: 10.3389/fphar.2020.587663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease, is associated with high morbidity and mortality rates worldwide and the development of new drugs to treat DN is urgently required. Bu-Shen-Huo-Xue (BSHX) decoction is a traditional Chinese herbal formula, made according to traditional Chinese medicine (TCM) theory, and has been used clinically to treat DN. In the present study, we established a high-fat diet/streptozotocin-induced diabetic mouse model and treated the mice with BSHX decoction to verify its therapeutic effects in vivo. Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was applied to analyze the chemical composition and active compounds of BSHX decoction. Markers of podocyte epithelial-mesenchymal transition and the Rac1/PAK1/p38MAPK signaling pathway were evaluated to investigate the mechanism underlying function of BSHX decoction. BSHX decoction effectively alleviated diabetic symptoms, according to analysis of the renal function indicators, serum creatinine, blood urea nitrogen, serum uric acid, and urinary albumin excretion rate, as well as renal histopathology and ultrastructural pathology of DN mice. We identified 67 compounds, including 20 likely active compounds, in BSHX decoction. The podocyte markers, nephrin and podocin, were down-regulated, while the mesenchymal markers, α-SMA and FSP-1, were up-regulated in DN mouse kidney; however, the changes in these markers were reversed on treatment with BSHX decoction. GTP-Rac1 was markedly overexpressed in DN mice and its levels were significantly decreased in response to BSHX decoction. Similarly, levels of p-PAK1 and p-p38MAPK which indicate Rac1 activation, were reduced on treatment with BSHX decoction. Together, our data demonstrated that BSHX decoction ameliorated renal function and podocyte epithelial-mesenchymal transition via inhibiting Rac1/PAK1/p38MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Further, we generated a quality control standard and numerous potential active compounds from BSHX decoction for DN.
Collapse
Affiliation(s)
- Weisong Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Hongping Long
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Lihua Xie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Cheng Chen
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Dan Xiong
- Department of Nephrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Hu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
35
|
Matsuda J, Asano-Matsuda K, Kitzler TM, Takano T. Rho GTPase regulatory proteins in podocytes. Kidney Int 2020; 99:336-345. [PMID: 33122025 DOI: 10.1016/j.kint.2020.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The Rho family of small GTPases (Rho GTPases) are the master regulators of the actin cytoskeleton and consist of 22 members. Previous studies implicated dysregulation of Rho GTPases in podocytes in the pathogenesis of proteinuric glomerular diseases. Rho GTPases are primarily regulated by the three families of proteins; guanine nucleotide exchange factors (GEFs; 82 members), GTPase-activating proteins (GAPs; 69 members), and GDP dissociation inhibitors (GDIs; 3 members). Since the regulatory proteins far outnumber their substrate Rho GTPases and act in concert in a cell/context-dependent manner, the upstream regulatory mechanism directing Rho GTPases in podocytes is largely unknown. In this review, we summarize recent advances in the understanding of the role of Rho GTPase regulatory proteins in podocytes, including the known mutations of these proteins that cause proteinuria in humans. We also provide critical appraisal of the in vivo and in vitro studies and identify the knowledge gap in the field that will require further studies.
Collapse
Affiliation(s)
- Jun Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kana Asano-Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Thomas M Kitzler
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Liu Y, Li S, Rong W, Zeng C, Zhu X, Chen Q, Li L, Liu ZH, Zen K. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. KIDNEY DISEASES 2020; 6:422-433. [PMID: 33313063 DOI: 10.1159/000511504] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Background Levels of urinary microvesicles, which are increased during various kidney injuries, have diagnostic potential for renal diseases. However, the significance of urinary microvesicles as a renal disease indicator is dampened by the difficulty to ascertain their cell source. Objectives The aim of this study was to demonstrate that podocytes can release migrasomes, a unique class of microvesicle with size ranging between 400 and 2,000 nm, and the urine level of migrasomes may serve as novel non-invasive biomarker for early podocyte injury. Method In this study, immunofluorescence labeling, electronic microscopy, nanosite, and sequential centrifugation were used to purify and analyze migrasomes. Results Migrasomes released by podocytes differ from exosomes as they have different content and mechanism of release. Compared to podocytes, renal tubular cells secrete markedly less migrasomes. Moreover, secretion of migrasomes by human or murine podocytes was strongly augmented during podocyte injuries induced by LPS, puromycin amino nucleoside (PAN), or a high concentration of glucose (HG). LPS, PAN, or HG-induced podocyte migrasome release, however, was blocked by Rac-1 inhibitor. Strikingly, a higher level of podocyte migrasomes in urine was detected in mice with PAN-nephropathy than in control mice. In fact, increased urinary migrasome number was detected earlier than elevated proteinuria during PAN-nephropathy, suggesting that urinary migrasomes are a more sensitive podocyte injury indicator than proteinuria. Increased urinary migrasome number was also detected in diabetic nephropathy patients with proteinuria level <5.5 g/day. Conclusions Our findings reveal that podocytes release the "injury-related" migrasomes during migration and provide urinary podocyte migrasome as a potential diagnostic marker for early podocyte injury.
Collapse
Affiliation(s)
- Ying Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Shan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Weiwei Rong
- Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qilin Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Limin Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| |
Collapse
|
37
|
Abstract
BACKGROUND Glomerulosclerosis represents the final stage of glomerular injury during the course of kidney disease and can result from a primary disturbance in disorders like focal segmental glomerulosclerosis or a secondary response to tubulointerstitial disease. Overall, primary focal glomerulosclerosis (FSGS), the focus of this review, accounts for 10-20% of patients of all ages who progress to end stage kidney disease. There are no FDA approved therapeutic options that effectively prevent or delay the onset of kidney failure. AREAS COVERED Current immunosuppressive therapy and conservative management including inhibitors of the renin-angiotensin-aldosterone axis and sodium-glucose cotransporter are reviewed. FSGS is now recognized to represent a heterogeneous entity with multiple underlying disease mechanisms. Therefore, novel approaches targeting the podocyte cytoskeleton, immunological, inflammatory, hemodynamic and metabolic pathways are highlighted. EXPERT OPINION A number of factors are driving the development of drugs to treat focal segmental glomerulosclerosis in particular and glomerulosclerosis in general including growing awareness of the burden of chronic kidney disease, improved scientific understanding of the mechanism of injury, and the development of noninvasive profiles to identify subgroups of patients with discrete mechanisms of glomerular injury.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Division of Nephrology, NYU Langone Health , New York, NY, USA
| |
Collapse
|
38
|
Jiang L, Cui H, Ding J, Yang A, Zhang Y. Puromycin aminonucleoside-induced podocyte injury is ameliorated by the Smad3 inhibitor SIS3. FEBS Open Bio 2020; 10:1601-1611. [PMID: 32583562 PMCID: PMC7396432 DOI: 10.1002/2211-5463.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 11/05/2022] Open
Abstract
Smad3 signaling and transgelin expression are often activated during puromycin aminonucleoside (PAN)‐induced podocyte injury. Here, we investigated whether the Smad3 inhibitor SIS3 can ameliorate damage to injured podocytes. A model of PAN‐induced podocyte injury was constructed using the MPC5 cell line. The effects of SIS3 on the expression of the podocyte cytoskeletal proteins transgelin, p15INK4B, phosphor‐smad3, phosphor‐JAK/stat3, the apoptotic marker cleaved caspase 3, and c‐myc were investigated using western blot. The distribution of F‐actin in PAN‐induced podocyte injury was observed under an immunofluorescence microscope. PAN‐induced podocyte injury altered the distribution of F‐actin and transgelin, and colocalization of these two proteins was observed. Transgelin expression and Smad3 phosphorylation were increased in the MPC5 cell line with prolonged PAN treatment. In addition, c‐myc expression, p15INK4B, and JAK phosphorylation were all increased after treatment with PAN. Treatment with the Smad3 inhibitor SIS3 reversed these phenomena and protected against PAN‐induced podocyte injury. Moreover, stimulating podocytes directly with TGFβ‐1 also led to enhanced expression of transgelin or phosphor‐JAK/stat3, and this could be inhibited by SIS3. In conclusion, transgelin expression was induced through the Smad3 signaling pathway during PAN‐induced podocyte injury, and the resulting abnormal distribution of F‐actin and the enhanced expression of transgelin could be reversed by blockade of this pathway.
Collapse
Affiliation(s)
- Lina Jiang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Hong Cui
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Aijun Yang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yingchao Zhang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Matsuda J, Maier M, Aoudjit L, Baldwin C, Takano T. ARHGEF7 ( β-PIX) Is Required for the Maintenance of Podocyte Architecture and Glomerular Function. J Am Soc Nephrol 2020; 31:996-1008. [PMID: 32188698 DOI: 10.1681/asn.2019090982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/09/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Previous studies showed that Cdc42, a member of the prototypical Rho family of small GTPases and a regulator of the actin cytoskeleton, is critical for the normal development and health of podocytes. However, upstream regulatory mechanisms for Cdc42 activity in podocytes are largely unknown. METHODS We used a proximity-based ligation assay, BioID, to identify guanine nucleotide exchange factors that activate Cdc42 in immortalized human podocytes. We generated podocyte-specific ARHGEF7 (commonly known as β-PIX) knockout mice by crossing β-PIX floxed mice with Podocin-Cre mice. Using shRNA, we established cultured mouse podocytes with β-PIX knockdown and their controls. RESULTS We identified β-PIX as a predominant guanine nucleotide exchange factor that interacts with Cdc42 in human podocytes. Podocyte-specific β-PIX knockout mice developed progressive proteinuria and kidney failure with global or segmental glomerulosclerosis in adulthood. Glomerular podocyte density gradually decreased in podocyte-specific β-PIX knockout mice, indicating podocyte loss. Compared with controls, glomeruli from podocyte-specific β-PIX knockout mice and cultured mouse podocytes with β-PIX knockdown exhibited significant reduction in Cdc42 activity. Loss of β-PIX promoted podocyte apoptosis, which was mediated by the reduced activity of the prosurvival transcriptional regulator Yes-associated protein. CONCLUSIONS These findings indicate that β-PIX is required for the maintenance of podocyte architecture and glomerular function via Cdc42 and its downstream Yes-associated protein activities. This appears to be the first evidence that a Rho-guanine nucleotide exchange factor plays a critical role in podocytes.
Collapse
Affiliation(s)
- Jun Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mirela Maier
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lamine Aoudjit
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Cindy Baldwin
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Fuseya S, Suzuki R, Okada R, Hagiwara K, Sato T, Narimatsu H, Yokoi H, Kasahara M, Usui T, Morito N, Yamagata K, Kudo T, Takahashi S. Mice lacking core 1-derived O-glycan in podocytes develop transient proteinuria, resulting in focal segmental glomerulosclerosis. Biochem Biophys Res Commun 2020; 523:1007-1013. [PMID: 31973821 DOI: 10.1016/j.bbrc.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 12/25/2022]
Abstract
The glomerular filtration barrier is composed of podocytes, glomerular basement membrane, and endothelial cells. Disruption of these structures causes several glomerular injuries, such as focal segmental glomerulosclerosis (FSGS). The surface of podocyte apical membranes is coated by negatively charged sialic acids on core 1-derived mucin-type O-glycans. Here, we aimed to investigate the physiological role of core 1-derived O-glycans in the podocytes using adult mice lacking podocyte-specific core 1-derived O-glycans (iPod-Cos). iPod-Cos mice exhibited early and transient proteinuria with foot process effacements and developed typical FSGS-like disease symptoms. To identify the key molecules responsible for the FSGS-like phenotype, we focused on podocalyxin and podoplanin, which possess mucin-type O-glycans. Expression and localization of podocalyxin did not change in iPod-Cos glomeruli. Besides, western blot analysis revealed significantly lower levels of intact podocalyxin in isolated glomeruli of iPod-Cos mice, and high levels of processed forms in iPod-Cos glomeruli, as compared to that in control glomeruli. Conversely, podoplanin mRNA, and protein levels were lower in iPod-Cos mice than in control mice. These results demonstrated that core 1-derived O-glycan on podocytes is required for normal glomerular filtration and may contribute to the stable expression of podocalyxin and podoplanin.
Collapse
Affiliation(s)
- Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - Risa Okada
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kozue Hagiwara
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Japan
| | - Masato Kasahara
- Department of Clinical Research, Nara Medical University Hospital, Japan
| | - Toshiaki Usui
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan.
| |
Collapse
|
41
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
42
|
Inoue K, Tian X, Velazquez H, Soda K, Wang Z, Pedigo CE, Wang Y, Cross E, Groener M, Shin JW, Li W, Hassan H, Yamamoto K, Mundel P, Ishibe S. Inhibition of Endocytosis of Clathrin-Mediated Angiotensin II Receptor Type 1 in Podocytes Augments Glomerular Injury. J Am Soc Nephrol 2019; 30:2307-2320. [PMID: 31511362 PMCID: PMC6900791 DOI: 10.1681/asn.2019010053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibition of the renin-angiotensin system remains a cornerstone in reducing proteinuria and progression of kidney failure, effects believed to be the result of reduction in BP and glomerular hyperfiltration. However, studies have yielded conflicting results on whether podocyte-specific angiotensin II (AngII) signaling directly induces podocyte injury. Previous research has found that after AngII stimulation, β-arrestin-bound angiotensin II receptor type 1 (AT1R) is internalized in a clathrin- and dynamin-dependent manner, and that Dynamin1 and Dynamin2 double-knockout mice exhibit impaired clathrin-mediated endocytosis. METHODS We used podocyte-specific Dyn double-knockout mice to examine AngII-stimulated AT1R internalization and signaling in primary podocytes and controls. We also examined the in vivo effect of AngII in these double-knockout mice through renin-angiotensin system blockers and through deletion of Agtr1a (which encodes the predominant AT1R isoform expressed in kidney, AT1aR). We tested calcium influx, Rac1 activation, and lamellipodial extension in control and primary podocytes of Dnm double-knockout mice treated with AngII. RESULTS We confirmed augmented AngII-stimulated AT1R signaling in primary Dnm double-knockout podocytes resulting from arrest of clathrin-coated pit turnover. Genetic ablation of podocyte Agtr1a in Dnm double-knockout mice demonstrated improved albuminuria and kidney function compared with the double-knockout mice. Isolation of podocytes from Dnm double-knockout mice revealed abnormal membrane dynamics, with increased Rac1 activation and lamellipodial extension, which was attenuated in Dnm double-knockout podocytes lacking AT1aR. CONCLUSIONS Our results indicate that inhibiting aberrant podocyte-associated AT1aR signaling pathways has a protective effect in maintaining the integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kazunori Inoue
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Keita Soda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Christopher E Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ying Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jee-Won Shin
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hossam Hassan
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Peter Mundel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut;
| |
Collapse
|
43
|
Abstract
Podocytes, or glomerular epithelial cells, form the final layer in the glomerular capillary wall of the kidney. Along with the glomerular basement membrane and glomerular endothelial cells, they make up the glomerular filtration barrier which allows the passage of water and small molecules and, in healthy individuals, prevents the passage of albumin and other key proteins. The podocyte is a specialised and terminally differentiated cell with a specific cell morphology that is largely dependent on a highly dynamic underlying cytoskeletal network and that is essential for maintaining glomerular function and integrity in healthy kidneys. The RhoGTPases (RhoA, Rac1 and Cdc42), which act as molecular switches that regulate actin dynamics, are known to play a crucial role in maintaining the cytoskeletal and molecular integrity of the podocyte foot processes in a dynamic manner. Recently, novel protein interaction networks that regulate the RhoGTPases in the podocyte and that are altered by disease have been discovered. This review will discuss these networks and their potential as novel therapeutic targets in nephrotic syndrome. It will also discuss the evidence that they are direct targets for (a) steroids, the first-line agents for the treatment of nephrotic syndrome, and (b) certain kinase inhibitors used in cancer treatment, leading to nephrotoxicity.
Collapse
Affiliation(s)
- Moin A. Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Gavin I. Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| |
Collapse
|
44
|
Rachubik P, Piwkowska A. The role of vasodilator‐stimulated phosphoprotein in podocyte functioning. Cell Biol Int 2019; 43:1092-1101. [DOI: 10.1002/cbin.11149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research CentrePolish Academy of Sciences Wita Stwosza 63, 80‐308 Gdańsk Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research CentrePolish Academy of Sciences Wita Stwosza 63, 80‐308 Gdańsk Poland
| |
Collapse
|
45
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
46
|
Lang Y, Zhao Y, Zheng C, Lu Y, Wu J, Zhu X, Zhang M, Yang F, Xu X, Shi S, Liu Z. MiR-30 family prevents uPAR-ITGB3 signaling activation through calcineurin-NFATC pathway to protect podocytes. Cell Death Dis 2019; 10:401. [PMID: 31127093 PMCID: PMC6534572 DOI: 10.1038/s41419-019-1625-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/09/2022]
Abstract
Urokinase plasminogen activator receptor (uPAR) is upregulated in podocytes of glomerular diseases and crucially mediates podocyte injury through integrin β3 (ITGB3). We previously showed that the miR-30 family maintains podocyte structure and function by inhibiting injurious calcineurin signaling through nuclear factor of activated T cells C (NFATC). Here, we tested whether the miR-30-calcineurin-NFATC and uPAR-ITGB3 pathways, two of the major pathways leading to podocyte injury, could interact. We found that podocyte-specific miR-30 knockdown in mice induced uPAR upregulation and ITGB3 activation, accompanied by proteinuria and podocyte injury. These effects of miR-30 knockdown were reduced using inhibitors of ITGB3, calcineurin, and NFATC, respectively, which are known to be antiproteinuric. These results indicate that miR-30 deficiency leads to calcineurin-NFATC signaling activation, which in turn activates the uPAR-ITGB3 pathway. In cultured podocytes, miR-30 knockdown also activated uPAR-ITGB3 signaling, leading to Rho GTPase activation, synaptopodin downregulation and podocyte injury. To explore uPAR-ITGB3 signaling regulation by miR-30 in podocytopathy development, we treated mice with lipopolysaccharide (LPS) and found that miR-30 was downregulated in podocytes, accompanied by uPAR upregulation and ITGB3 activation. We obtained the same results in cultured podocytes treated with LPS. Podocyte-specific transgenic miR-30 abolished uPAR-ITGB3 signaling and ameliorated podocyte injury and proteinuria in mice. Taken together, these experiments show that uPAR-ITGB3 signaling is negatively regulated by miR-30 through calcineurin-NFATC pathway, a novel mechanism underlying podocyte injury in glomerular diseases. Our study has elucidated the relationship among the crucial players governing podocyte pathophysiology and the antiproteinuric actions of drugs commonly used for podocytopathies.
Collapse
Affiliation(s)
- Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Junnan Wu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shaolin Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
47
|
FHL2 mediates podocyte Rac1 activation and foot process effacement in hypertensive nephropathy. Sci Rep 2019; 9:6693. [PMID: 31040292 PMCID: PMC6491468 DOI: 10.1038/s41598-019-42328-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/06/2019] [Indexed: 01/04/2023] Open
Abstract
RAAS inhibition has been the standard treatment for CKD for years because it can reduce proteinuria and hence retard renal function decline, but the proteinuria reduction effect is still insufficient in many patients. Podocyte foot process and slit diaphragm are the final barrier to prevent serum proteins leak into urine, and podocyte foot process effacement is the common pathway of all proteinruic diseases. Cell structure are regulated by three evolutionarily conserved Rho GTPases, notably, Rac1 activation is sufficient and necessary for podocyte foot process effacement, however, Rac1 inhibition is not an option for kidney disease treatment because of its systemic side effects. Four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in podocytes and has been implicated in regulating diverse biological functions. Here, we used micro-dissected human kidney samples, in vitro podocyte culture experiments, and a hypertension animal model to determine the possible role of FHL2 in hypertensive nephropathy. FHL2 was abundantly upregulated in hypertensive human glomeruli and animal kidney samples. Genetic deletion of the FHL2 did not alter normal renal structure or function but mitigated hypertension-induced podocyte foot process effacement and albuminuria. Mechanistically, angiotensin II-induced podocyte cytoskeleton reorganization via FAK-Rac1 axis, FHL2 binds with FAK and is an important mediator of Ang II induced Rac1 activation, thus, FHL2 inhibition can selectively block FAK-Rac1 axis in podocyte and prevent proteinuria. These results provide important insights into the mechanisms of podocyte foot process effacement and points out a promising strategy to treat kidney disease.
Collapse
|
48
|
Yoshioka T, Kosugi T, Masuda T, Watanabe T, Ryuge A, Nagaya H, Maeda K, Sato Y, Katsuno T, Kato N, Ishimoto T, Yuzawa Y, Maruyama S, Kadomatsu K. CD147/Basigin Deficiency Prevents the Development of Podocyte Injury through FAK Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1338-1350. [PMID: 31014956 DOI: 10.1016/j.ajpath.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 02/09/2023]
Abstract
Podocytes, which are susceptible to injury by various stimuli and stress, are critical regulators of proteinuric kidney diseases, regardless of the primary disease and pathogenesis. We further confirmed a significant correlation between urinary CD147/basigin (Bsg) levels and proteinuria in patients with focal segmental glomerulosclerosis. However, the molecular mechanism of podocyte injury involving Bsg is not fully understood. Here, the involvement of Bsg in the pathogenesis of podocyte injury was elucidated. Healthy podocytes rarely express Bsg protein. In two independent mouse models, including adriamycin-induced nephropathy and Nω-nitro-l-arginine methyl ester (l-name)-induced endothelial dysfunction, Bsg induction in injured podocytes caused podocyte effacement, which led to development of proteinuria. Bsg silencing in cultured podocytes exposed to transforming growth factor-β suppressed focal adhesion rearrangement and cellular motility via the activation of β1 integrin-focal adhesion kinase-matrix metallopeptidase signaling. In addition, induction of vascular endothelial growth factor and endothelin-1, which are implicated in podocyte-to-endothelial cross-communication, was lower in the supernatants of cultured Bsg-silenced podocytes stimulated with transforming growth factor-β. In this setting, Bsg may be involved in a physiological positive feedback loop that accelerates podocyte cell motility and depolarization. The current study thus suggests that Bsg silencing via suppression of β1 integrin-focal adhesion kinase-matrix metallopeptidase signaling may be an attractive therapeutic strategy for the maintenance of podocytes in patients with proteinuric kidney diseases.
Collapse
Affiliation(s)
- Tomoki Yoshioka
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomohiro Masuda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoharu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Ryuge
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Nagaya
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kayaho Maeda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Sato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Katsuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Hall G, Spurney RF. Losing their footing: Rac1 signaling causes podocyte detachment and FSGS. Kidney Int 2019; 92:283-285. [PMID: 28709595 DOI: 10.1016/j.kint.2017.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/26/2022]
Abstract
Selective modulation of Rho GTPase activity in podocytes recapitulates characteristic features of human nephrosis. Using a mouse model, Robins et al. found that high levels of Rac1 activation in podocytes caused podocyte detachment and glomerulosclerosis. Podocyte Rac1 activity was enhanced in biopsy specimens from patients with nephrosis, and serum from this patient population activated Rac1 in cultured podocytes. These data provide a causal link between podocyte Rac1 activation and human nephrotic diseases.
Collapse
Affiliation(s)
- Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA.
| |
Collapse
|
50
|
Lane BM, Cason R, Esezobor CI, Gbadegesin RA. Genetics of Childhood Steroid Sensitive Nephrotic Syndrome: An Update. Front Pediatr 2019; 7:8. [PMID: 30761277 PMCID: PMC6361778 DOI: 10.3389/fped.2019.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Advances in genome science in the last 20 years have led to the discovery of over 50 single gene causes and genetic risk loci for steroid resistant nephrotic syndrome (SRNS). Despite these advances, the genetic architecture of childhood steroid sensitive nephrotic syndrome (SSNS) remains poorly understood due in large part to the varying clinical course of SSNS over time. Recent exome and genome wide association studies from well-defined cohorts of children with SSNS identified variants in multiple MHC class II molecules such as HLA-DQA1 and HLA-DQB1 as risk factors for SSNS, thus stressing the central role of adaptive immunity in the pathogenesis of SSNS. However, evidence suggests that unknown second hit risk loci outside of the MHC locus and environmental factors also make significant contributions to disease. In this review, we examine what is currently known about the genetics of SSNS, the implications of recent findings on our understanding of pathogenesis of SSNS, and how we can utilize these results and findings from future studies to improve the management of children with nephrotic syndrome.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Departments of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Rachel Cason
- Division of Nephrology, Departments of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | | | - Rasheed A. Gbadegesin
- Division of Nephrology, Departments of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|