1
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Liu K, Zhang S, Xu S, Yang W, Li Y, Chen Y, Shen F, Wang Y, Chen Z, Li H, Ding X. Ultrasensitive Proteomics of Trace Cardiac Tissues with Anchor-Nanoparticles. Anal Chem 2024; 96:9460-9467. [PMID: 38820243 DOI: 10.1021/acs.analchem.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Pathological cardiac hypertrophy is a complex process that often leads to heart failure. Label-free proteomics has emerged as an important platform to reveal protein variations and to elucidate the mechanisms of cardiac hypertrophy. Endomyocardial biopsy is a minimally invasive technique for sampling cardiac tissue, but it yields only limited amounts of an ethically permissible specimen. After regular pathological examination, the remaining trace samples pose significant challenges for effective protein extraction and mass spectrometry analysis. Herein, we developed trace cardiac tissue proteomics based on the anchor-nanoparticles (TCPA) method. We identified an average of 6666 protein groups using ∼50 μg of myocardial interventricular septum samples by TCPA. We then applied TCPA to acquire proteomics from patients' cardiac samples both diagnosed as hypertrophic hearts and myocarditis controls and identified significant alterations in pathways such as regulation of actin cytoskeleton, oxidative phosphorylation, and cGMP-PKG signaling pathway. Moreover, we found multiple lipid metabolic pathways to be dysregulated in transthyretin cardiac amyloidosis compared to other types of cardiac hypertrophy. TCPA offers a new technique for studying pathological cardiac hypertrophy and can serve as a platform toolbox for proteomic research in other cardiac diseases.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sudan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenyi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Youming Chen
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Shen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuchen Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zixuan Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
3
|
Zhang Z, Wallace WE, Wang G, Burke MC, Liu Y, Sheetlin SL, Stein SE. Improved Sample Preparation Method for Protein and Peptide Identification from Human Hair. J Proteome Res 2024; 23:409-417. [PMID: 38009783 PMCID: PMC10829973 DOI: 10.1021/acs.jproteome.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A fast and sensitive direct extraction (DE) method developed in our group can efficiently extract proteins in 30 min from a 5 cm-long hair strand. Previously, we coupled DE to downstream analysis using gel electrophoresis followed by in-gel digestion, which can be time-consuming. In searching for a better alternative, we found that a combination of DE with a bead-based method (SP3) can lead to significant improvements in protein discovery in human hair. Since SP3 is designed for general applications, we optimized it to process hair proteins following DE and compared it to several other in-solution digestion methods. Of particular concern are genetically variant peptides (GVPs), which can be used for human identification in forensic analysis. Here, we demonstrated improved GVP discovery with the DE and SP3 workflow, which was 3 times faster than the previous in-gel digestion method and required significantly less instrument time depending on the number of gel slices processed. Additionally, it led to an increased number of identified proteins and GVPs. Among the tested in-solution digestion methods, DE combined with SP3 showed the highest sequence coverage, with higher abundances of the identified peptides. This provides a significantly enhanced means for identifying proteins and GVPs in human hair.
Collapse
Affiliation(s)
- Zheng Zhang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| | - William E. Wallace
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| | - Guanghui Wang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| | - Meghan C. Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| | - Sergey L. Sheetlin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| | - Stephen E. Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 USA
| |
Collapse
|
4
|
Lassé M, El Saghir J, Berthier CC, Eddy S, Fischer M, Laufer SD, Kylies D, Hutzfeldt A, Bonin LL, Dumoulin B, Menon R, Vega-Warner V, Eichinger F, Alakwaa F, Fermin D, Billing AM, Minakawa A, McCown PJ, Rose MP, Godfrey B, Meister E, Wiech T, Noriega M, Chrysopoulou M, Brandts P, Ju W, Reinhard L, Hoxha E, Grahammer F, Lindenmeyer MT, Huber TB, Schlüter H, Thiel S, Mariani LH, Puelles VG, Braun F, Kretzler M, Demir F, Harder JL, Rinschen MM. An integrated organoid omics map extends modeling potential of kidney disease. Nat Commun 2023; 14:4903. [PMID: 37580326 PMCID: PMC10425428 DOI: 10.1038/s41467-023-39740-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/27/2023] [Indexed: 08/16/2023] Open
Abstract
Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.
Collapse
Affiliation(s)
- Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jamal El Saghir
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Celine C Berthier
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Matthew Fischer
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sandra D Laufer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arvid Hutzfeldt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Bernhard Dumoulin
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Virginia Vega-Warner
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Felix Eichinger
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Anja M Billing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Akihiro Minakawa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Phillip J McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Michael P Rose
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Bradley Godfrey
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mercedes Noriega
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Paul Brandts
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenjun Ju
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jennifer L Harder
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA.
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus, Denmark.
| |
Collapse
|
5
|
Späth MR, Hoyer-Allo KJR, Seufert L, Höhne M, Lucas C, Bock T, Isermann L, Brodesser S, Lackmann JW, Kiefer K, Koehler FC, Bohl K, Ignarski M, Schiller P, Johnsen M, Kubacki T, Grundmann F, Benzing T, Trifunovic A, Krüger M, Schermer B, Burst V, Müller RU. Organ Protection by Caloric Restriction Depends on Activation of the De Novo NAD+ Synthesis Pathway. J Am Soc Nephrol 2023; 34:772-792. [PMID: 36758124 PMCID: PMC10125653 DOI: 10.1681/asn.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Collapse
Affiliation(s)
- Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Theresa Bock
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Lea Isermann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Kiefer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Emergency Department, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
den Braanker DJW, Maas RJH, van Mierlo G, Parr NMJ, Bakker-van Bebber M, Deegens JKJ, Jansen PWTC, Gloerich J, Willemsen B, Dijkman HB, van Gool AJ, Wetzels JFM, Rinschen MM, Vermeulen M, Nijenhuis T, van der Vlag J. Primary Focal Segmental Glomerulosclerosis Plasmas Increase Lipid Droplet Formation and Perilipin-2 Expression in Human Podocytes. Int J Mol Sci 2022; 24:ijms24010194. [PMID: 36613637 PMCID: PMC9820489 DOI: 10.3390/ijms24010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.
Collapse
Affiliation(s)
- Dirk J. W. den Braanker
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rutger J. H. Maas
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Naomi M. J. Parr
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jeroen K. J. Deegens
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Henry B. Dijkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alain J. van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jack F. M. Wetzels
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Ni J, Tian S, Bai L, Lv Q, Liu J, Liu J, Fang Y, Zhai Y, Shen Q, Rao J, Ding C, Xu H. Comparative proteomic analysis of children FSGS FFPE tissues. BMC Pediatr 2022; 22:707. [PMID: 36503536 PMCID: PMC9743561 DOI: 10.1186/s12887-022-03764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In children, focal segmental glomerulosclerosis (FSGS) is the main cause of steroid resistant nephrotic syndrome (SRNS). To identify specific candidates and the mechanism of steroid resistance, we examined the formalin-fixed paraffin embedded (FFPE) renal tissue protein profiles via liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODS Renal biopsies from seven steroid-sensitive (SS) and eleven steroid-resistant (SR) children FSGS patients were obtained. We examined the formalin-fixed paraffin embedded (FFPE) renal tissue protein profiles via liquid chromatography tandem mass spectrometry (LC-MS/MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) analysis, as well as the construction of protein-protein interaction (PPI) network were performed. Two proteins were further valiadated by immunohistochemistry staining in FSGS patients and mice models. RESULTS In total, we quantified more than 4000 proteins, of which 325 were found to be differentially expressed proteins (DEPs) between the SS and SR group (foldchange ≥2, P<0.05). The results of GO revealed that the most significant up-regulated proteins were primarily related to protein transportation, regulation of the complement activation process and cytolysis. Moreover, clustering analysis showed differences in the pathways (lysosome, terminal pathway of complement) between the two groups. Among these potential candidates, validation analyses for LAMP1 and ACSL4 were conducted. LAMP1 was observed to have a higher expression in glomerulus, while ACSL4 was expressed more in tubular epithelial cells. CONCLUSIONS In this study, the potential mechanism and candidates related to steroid resistance in children FSGS patients were identified. It could be helpful in identifying potential therapeutic targets and predicting outcomes with these proteomic changes for children FSGS patients.
Collapse
Affiliation(s)
- Jiajia Ni
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Sha Tian
- grid.413087.90000 0004 1755 3939State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lin Bai
- grid.413087.90000 0004 1755 3939State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Qianying Lv
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jialu Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jiaojiao Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ye Fang
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yihui Zhai
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jia Rao
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Chen Ding
- grid.413087.90000 0004 1755 3939State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Hong Xu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
8
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
9
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
10
|
Rinschen MM, Palygin O, El-Meanawy A, Domingo-Almenara X, Palermo A, Dissanayake LV, Golosova D, Schafroth MA, Guijas C, Demir F, Jaegers J, Gliozzi ML, Xue J, Hoehne M, Benzing T, Kok BP, Saez E, Bleich M, Himmerkus N, Weisz OA, Cravatt BF, Krüger M, Benton HP, Siuzdak G, Staruschenko A. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun 2022; 13:4099. [PMID: 35835746 PMCID: PMC9283537 DOI: 10.1038/s41467-022-31670-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/27/2022] [Indexed: 01/07/2023] Open
Abstract
Hypertension and kidney disease have been repeatedly associated with genomic variants and alterations of lysine metabolism. Here, we combined stable isotope labeling with untargeted metabolomics to investigate lysine's metabolic fate in vivo. Dietary 13C6 labeled lysine was tracked to lysine metabolites across various organs. Globally, lysine reacts rapidly with molecules of the central carbon metabolism, but incorporates slowly into proteins and acylcarnitines. Lysine metabolism is accelerated in a rat model of hypertension and kidney damage, chiefly through N-alpha-mediated degradation. Lysine administration diminished development of hypertension and kidney injury. Protective mechanisms include diuresis, further acceleration of lysine conjugate formation, and inhibition of tubular albumin uptake. Lysine also conjugates with malonyl-CoA to form a novel metabolite Nε-malonyl-lysine to deplete malonyl-CoA from fatty acid synthesis. Through conjugate formation and excretion as fructoselysine, saccharopine, and Nε-acetyllysine, lysine lead to depletion of central carbon metabolites from the organism and kidney. Consistently, lysine administration to patients at risk for hypertension and kidney disease inhibited tubular albumin uptake, increased lysine conjugate formation, and reduced tricarboxylic acid (TCA) cycle metabolites, compared to kidney-healthy volunteers. In conclusion, lysine isotope tracing mapped an accelerated metabolism in hypertension, and lysine administration could protect kidneys in hypertensive kidney disease.
Collapse
Affiliation(s)
- Markus M Rinschen
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- III. Medical Clinic, University Hospital Hamburg Eppendorf, Hamburg, Germany.
- AIAS, Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ashraf El-Meanawy
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xavier Domingo-Almenara
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
- Omics Sciences Unit, EURECAT, Technology Centre of Catalonia, Reus, Catalonia, Spain
| | - Amelia Palermo
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33602, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Megan L Gliozzi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jingchuan Xue
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
| | - Martin Hoehne
- Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
- Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
- Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Bernard P Kok
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - Enrique Saez
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - Markus Bleich
- Institute of Physiology, University Kiel, Kiel, Germany
| | | | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | | | - Marcus Krüger
- Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - H Paul Benton
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA, 92037, USA.
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33602, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA.
| |
Collapse
|
11
|
Saudenova M, Promnitz J, Ohrenschall G, Himmerkus N, Böttner M, Kunke M, Bleich M, Theilig F. Behind every smile there's teeth: Cathepsin B's function in health and disease with a kidney view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119190. [PMID: 34968578 DOI: 10.1016/j.bbamcr.2021.119190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Cathepsin B (CatB) is a very abundant lysosomal protease with endo- and carboxydipeptidase activities and even ligase features. In this review, we will provide a general characterization of CatB and describe structure, structure-derived properties and location-dependent proteolytic actions. We depict CatB action within lysosome and its important roles in lysosomal biogenesis, lysosomal homeostasis and autophagy rendering this protease a key player in orchestrating lysosomal functions. Lysosomal leakage and subsequent escape of CatB into the cytosol lead to harmful actions, e.g. the role in activating the NLPR3 inflammasome, affecting immune responses and cell death. The second focus of this review addresses CatB functions in the kidney, i.e. the glomerulus, the proximal tubule and collecting duct with strong emphasis of its role in pathology of the respective segment. Finally, observations regarding CatB functions that need to be considered in cell culture will be discussed. In conclusion, CatB a physiologically important molecule may, upon aberrant expression in different cellular context, become a harmful player effectively showing its teeth behind its smile.
Collapse
Affiliation(s)
- Makhabbat Saudenova
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Jessica Promnitz
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Gerrit Ohrenschall
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Nina Himmerkus
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
12
|
Kruse ARS, Spraggins JM. Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry. Front Physiol 2022; 13:837773. [PMID: 35222094 PMCID: PMC8874197 DOI: 10.3389/fphys.2022.837773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Collapse
Affiliation(s)
- Angela R. S. Kruse
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Jeffrey M. Spraggins,
| |
Collapse
|
13
|
Koehler S, Odenthal J, Ludwig V, Jess DU, Höhne M, Jüngst C, Grawe F, Helmstädter M, Janku JL, Bergmann C, Hoyer PF, Hagmann HHH, Walz G, Bloch W, Niessen C, Schermer B, Wodarz A, Denholm B, Benzing T, Iden S, Brinkkoetter PT. Scaffold polarity proteins Par3A and Par3B share redundant functions while Par3B acts independent of atypical protein kinase C/Par6 in podocytes to maintain the kidney filtration barrier. Kidney Int 2021; 101:733-751. [PMID: 34929254 DOI: 10.1016/j.kint.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Johanna Odenthal
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vivian Ludwig
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö Jess
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdi Grawe
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Molecular Cell Biology, Institute I for Anatomy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna L Janku
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Peter F Hoyer
- Klinik für Kinderheilkunde 2, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Essen, Essen, Germany
| | - H H Henning Hagmann
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Carien Niessen
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Dermatology, University Hospital of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Andreas Wodarz
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Molecular Cell Biology, Institute I for Anatomy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Thomas Benzing
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sandra Iden
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Cell and Developmental Biology, Saarland University, Homburg/Saar, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Kassem S, van der Pan K, de Jager AL, Naber BAE, de Laat IF, Louis A, van Dongen JJM, Teodosio C, Díez P. Proteomics for Low Cell Numbers: How to Optimize the Sample Preparation Workflow for Mass Spectrometry Analysis. J Proteome Res 2021; 20:4217-4230. [PMID: 34328739 PMCID: PMC8419858 DOI: 10.1021/acs.jproteome.1c00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nowadays, massive genomics and transcriptomics data can be generated at the single-cell level. However, proteomics in this setting is still a big challenge. Despite the great improvements in sensitivity and performance of mass spectrometry instruments and the better knowledge on sample preparation processing, it is widely acknowledged that multistep proteomics workflows may lead to substantial sample loss, especially when working with paucicellular samples. Still, in clinical fields, frequently limited sample amounts are available for downstream analysis, thereby hampering comprehensive characterization at protein level. To aim at better protein and peptide recoveries, we compare existing and novel approaches in the multistep sample preparation protocols for mass spectrometry studies, from sample collection, cell lysis, protein quantification, and electrophoresis/staining to protein digestion, peptide recovery, and LC-MS/MS instruments. From this critical evaluation, we conclude that the recent innovations and technologies, together with high quality management of samples, make proteomics on paucicellular samples possible, which will have immediate impact for the proteomics community.
Collapse
Affiliation(s)
- Sara Kassem
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Kyra van der Pan
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Anniek L. de Jager
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Brigitta A. E. Naber
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Inge F. de Laat
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Alesha Louis
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacques J. M. van Dongen
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Cristina Teodosio
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Díez
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
15
|
Hatje FA, Wedekind U, Sachs W, Loreth D, Reichelt J, Demir F, Kosub C, Heintz L, Tomas NM, Huber TB, Skuza S, Sachs M, Zielinski S, Rinschen MM, Meyer-Schwesinger C. Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice. J Am Soc Nephrol 2021; 32:2175-2193. [PMID: 34074698 PMCID: PMC8729851 DOI: 10.1681/asn.2020091346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The glomerulus comprises podocytes, mesangial cells, and endothelial cells, which jointly determine glomerular filtration. Understanding this intricate functional unit beyond the transcriptome requires bulk isolation of these cell types for biochemical investigations. We developed a globally applicable tripartite isolation method for murine mesangial and endothelial cells and podocytes (timMEP). METHODS We separated glomerular cell types from wild-type or mT/mG mice via a novel FACS approach, and validated their purity. Cell type proteomes were compared between strains, ages, and sex. We applied timMEP to the podocyte-targeting, immunologic, THSD7A-associated, model of membranous nephropathy. RESULTS timMEP enabled protein-biochemical analyses of podocytes, mesangial cells, and endothelial cells derived from reporter-free mice, and allowed for the characterization of podocyte, endothelial, and mesangial proteomes of individual mice. We identified marker proteins for mesangial and endothelial proteins, and outlined protein-based, potential communication networks and phosphorylation patterns. The analysis detected cell type-specific proteome differences between mouse strains and alterations depending on sex, age, and transgene. After exposure to anti-THSD7A antibodies, timMEP resolved a fine-tuned initial stress response, chiefly in podocytes, that could not be detected by bulk glomerular analyses. The combination of proteomics with super-resolution imaging revealed a specific loss of slit diaphragm, but not of other foot process proteins, unraveling a protein-based mechanism of podocyte injury in this animal model. CONCLUSION timMEP enables glomerular cell type-resolved investigations at the transcriptional and protein-biochemical level in health and disease, while avoiding reporter-based artifacts, paving the way toward the comprehensive and systematic characterization of glomerular cell biology.
Collapse
Affiliation(s)
- Favian A. Hatje
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Wedekind
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christopher Kosub
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Heintz
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sinah Skuza
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.
Collapse
|
17
|
Kuppe C, Perales-Patón J, Saez-Rodriguez J, Kramann R. Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrol Dial Transplant 2020; 37:628-637. [PMID: 33332571 DOI: 10.1093/ndt/gfaa233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
The field of single-cell technologies, in particular single-cell genomics with transcriptomics and epigenomics, and most recently single-cell proteomics, is rapidly growing and holds promise to advance our understanding of organ homoeostasis and disease, and facilitate the identification of novel therapeutic targets and biomarkers. This review offers an introduction to these technologies. In addition, as the size and complexity of the data require sophisticated computational methods for analysis and interpretation, we will also provide an overview of these methods and summarize the single-cell literature specifically pertaining to the kidney.
Collapse
Affiliation(s)
- Christoph Kuppe
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Javier Perales-Patón
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Rinschen MM, Saez-Rodriguez J. The tissue proteome in the multi-omic landscape of kidney disease. Nat Rev Nephrol 2020; 17:205-219. [PMID: 33028957 DOI: 10.1038/s41581-020-00348-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Kidney research is entering an era of 'big data' and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Department of Chemistry, Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research, La Jolla, CA, USA.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Sigdel TK, Piehowski PD, Roy S, Liberto J, Hansen JR, Swensen AC, Zhao R, Zhu Y, Rashmi P, Schroeder A, Damm I, Sur S, Luo J, Yang Y, Qian WJ, Sarwal MM. Near-Single-Cell Proteomics Profiling of the Proximal Tubular and Glomerulus of the Normal Human Kidney. Front Med (Lausanne) 2020; 7:499. [PMID: 33072769 PMCID: PMC7533534 DOI: 10.3389/fmed.2020.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular assessments at the single cell level can accelerate biological research by providing detailed assessments of cellular organization and tissue heterogeneity in both disease and health. The human kidney has complex multi-cellular states with varying functionality, much of which can now be completely harnessed with recent technological advances in tissue proteomics at a near single-cell level. We discuss the foundational steps in the first application of this mass spectrometry (MS) based proteomics method for analysis of sub-sections of the normal human kidney, as part of the Kidney Precision Medicine Project (KPMP). Using ~30-40 laser captured micro-dissected kidney cells, we identified more than 2,500 human proteins, with specificity to the proximal tubular (PT; n = 25 proteins) and glomerular (Glom; n = 67 proteins) regions of the kidney and their unique metabolic functions. This pilot study provides the roadmap for application of our near-single-cell proteomics workflow for analysis of other renal micro-compartments, on a larger scale, to unravel perturbations of renal sub-cellular function in the normal kidney as well as different etiologies of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Paul D. Piehowski
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Sudeshna Roy
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane Liberto
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Joshua R. Hansen
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Adam C. Swensen
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Priyanka Rashmi
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew Schroeder
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Izabella Damm
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Swastika Sur
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Minnie M. Sarwal
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
Palmer LG. Are Some Nephrons More Equal Than Others?: Perspective on "Viewing Cortical Collecting Duct Function Through Phenotype-Guided Single-Tubule Proteomics". FUNCTION 2020; 1:zqaa010. [PMID: 35330744 PMCID: PMC8788712 DOI: 10.1093/function/zqaa010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
21
|
Himmerkus N, Svendsen SL, Quintanova C, Bleich M, Von Schwerdtner O, Benzing T, Welling PA, Leipziger J, Rinschen MM. Viewing Cortical Collecting Duct Function Through Phenotype-guided Single-Tubule Proteomics. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa007. [PMID: 35330743 PMCID: PMC8788781 DOI: 10.1093/function/zqaa007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
The revolution of the omics technologies has enabled profiling of the molecules of any sample. However, the heterogeneity of the kidney with highly specialized nephron segments like the cortical collecting duct (CCD) poses a challenge regarding integration of omics data and functional analysis. We examined function and proteome from the same single CCDs of C57Bl6 mice by investigating them in a double-barreled perfusion system before targeted mass spectrometry. Transepithelial voltage (Vte), transepithelial resistance, as well as amiloride-sensitive voltage (ΔVteamil) were recorded. CCDs were of 400-600 µm of length, showed lumen negative Vte between -8.5 and -32.5 mV and an equivalent short circuit current I'sc between 54 and 192 µA/cm2. On a single-tubule proteome level, intercalated cell (IC) markers strongly correlated with other intercalated cell markers and negatively with principal cell markers. Integration of proteome data with phenotype data revealed that tubular length correlated with actin and Na+-K+-ATPase expression. ΔVte(amil) reflected the expression level of the β-subunit of the epithelial sodium channel. Intriguingly, ΔVte(amil) correlated inversely with the water channel AQP2 and the negative regulator protein NEDD4L (NEDD4-2). In pendrin knockout (KO) mice, the CCD proteome was accompanied by strong downregulation of other IC markers like CLCNKB, BSND (Barttin), and VAA (vH+-ATPase), a configuration that may contribute to the salt-losing phenotype of Pendred syndrome. Proteins normally coexpressed with pendrin were decreased in pendrin KO CCDs. In conclusion, we show that functional proteomics on a single nephron segment scale allows function-proteome correlations, and may potentially help predicting function from omics data.
Collapse
Affiliation(s)
- Nina Himmerkus
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | - Thomas Benzing
- Center for Molecular Medicine, University of Cologne, Cologne, Germany,Department II of Internal Medicine, University of Cologne, Cologne, Germany
| | - Paul A Welling
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Center for Molecular Medicine, University of Cologne, Cologne, Germany,Department II of Internal Medicine, University of Cologne, Cologne, Germany,Scripps Center for Metabolomics, Scripps Research, San Diego, CA, USA,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Corresponding author. E-mail:
| |
Collapse
|
22
|
Merchant ML, Barati MT, Caster DJ, Hata JL, Hobeika L, Coventry S, Brier ME, Wilkey DW, Li M, Rood IM, Deegens JK, Wetzels JF, Larsen CP, Troost JP, Hodgin JB, Mariani LH, Kretzler M, Klein JB, McLeish KR. Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis. J Am Soc Nephrol 2020; 31:1883-1904. [PMID: 32561683 DOI: 10.1681/asn.2019070696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants. METHODS ECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides. RESULTS Of 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C. CONCLUSIONS ECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.
Collapse
Affiliation(s)
- Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Michelle T Barati
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Jessica L Hata
- Pathology Department, Norton Children's Hospital, Louisville, Kentucky
| | - Liliane Hobeika
- Division of Nephrology, Department of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Susan Coventry
- Pathology Department, Norton Children's Hospital, Louisville, Kentucky
| | - Michael E Brier
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Ming Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Ilse M Rood
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen K Deegens
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey B Hodgin
- Division of Pathology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jon B Klein
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
23
|
Limbutara K, Chou CL, Knepper MA. Quantitative Proteomics of All 14 Renal Tubule Segments in Rat. J Am Soc Nephrol 2020; 31:1255-1266. [PMID: 32358040 DOI: 10.1681/asn.2020010071] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous research has used RNA sequencing in microdissected kidney tubules or single cells isolated from the kidney to profile gene expression in each type of kidney tubule epithelial cell. However, because proteins, not mRNA molecules, mediate most cellular functions, it is desirable to know the identity and amounts of each protein species to understand function. Recent improvements in the sensitivity of mass spectrometers offered us the ability to quantify the proteins expressed in each of 14 different renal tubule segments from rat. METHODS We manually dissected kidney tubules from rat kidneys and subjected samples to protein mass spectrometry. We used the "proteomic ruler" technique to estimate the number of molecules of each protein per cell. RESULTS Over the 44 samples analyzed, the average number of quantified proteins per segment was 4234, accounting for at least 99% of protein molecules in each cell. We have made the data publicly available online at the Kidney Tubule Expression Atlas website (https://esbl.nhlbi.nih.gov/KTEA/). Protein abundance along the renal tubule for many commonly studied water and solute transport proteins and metabolic enzymes matched expectations from prior localization studies, demonstrating the overall reliability of the data. The site features a "correlated protein" function, which we used to identify cell type-specific transcription factors expressed along the renal tubule. CONCLUSIONS We identified and quantified proteins expressed in each of the 14 segments of rat kidney tubules and used the proteomic data that we obtained to create an online information resource, the Kidney Tubule Expression Atlas. This resource will allow users throughout the world to browse segment-specific protein expression data and download them for their own research.
Collapse
Affiliation(s)
- Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Butt L, Unnersjö-Jess D, Höhne M, Edwards A, Binz-Lotter J, Reilly D, Hahnfeldt R, Ziegler V, Fremter K, Rinschen MM, Helmstädter M, Ebert LK, Castrop H, Hackl MJ, Walz G, Brinkkoetter PT, Liebau MC, Tory K, Hoyer PF, Beck BB, Brismar H, Blom H, Schermer B, Benzing T. A molecular mechanism explaining albuminuria in kidney disease. Nat Metab 2020; 2:461-474. [PMID: 32694662 DOI: 10.1038/s42255-020-0204-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/07/2020] [Indexed: 01/18/2023]
Abstract
Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Royal Institute of Technology, Stockholm, Sweden
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julia Binz-Lotter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dervla Reilly
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Robert Hahnfeldt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vera Ziegler
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Katharina Fremter
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg,, Freiburg, Germany
| | - Lena K Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gerd Walz
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg,, Freiburg, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter F Hoyer
- University Children's Hospital, Clinic for Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Bodo B Beck
- Institute of Human Genetics and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | - Hans Blom
- Royal Institute of Technology, Stockholm, Sweden
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Van JAD, Clotet-Freixas S, Zhou J, Batruch I, Sun C, Glogauer M, Rampoldi L, Elia Y, Mahmud FH, Sochett E, Diamandis EP, Scholey JW, Konvalinka A. Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro. Mol Cell Proteomics 2020; 19:501-517. [PMID: 31879271 PMCID: PMC7050109 DOI: 10.1074/mcp.ra119.001858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.
Collapse
Affiliation(s)
- Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Joyce Zhou
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| |
Collapse
|
26
|
Koehler S, Kuczkowski A, Kuehne L, Jüngst C, Hoehne M, Grahammer F, Eddy S, Kretzler M, Beck BB, Höhfeld J, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. J Am Soc Nephrol 2020; 31:544-559. [PMID: 32047005 DOI: 10.1681/asn.2019030312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lucas Kuehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Hamburg, Germany
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Cell Biology, University of Bonn, Bonn, Germany; and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
27
|
Rinschen MM, Palygin O, Guijas C, Palermo A, Palacio-Escat N, Domingo-Almenara X, Montenegro-Burke R, Saez-Rodriguez J, Staruschenko A, Siuzdak G. Metabolic rewiring of the hypertensive kidney. Sci Signal 2019; 12:12/611/eaax9760. [PMID: 31822592 DOI: 10.1126/scisignal.aax9760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension is a persistent epidemic across the developed world that is closely associated with kidney disease. Here, we applied a metabolomic, phosphoproteomic, and proteomic strategy to analyze the effect of hypertensive insults on kidneys. Our data revealed the metabolic aspects of hypertension-induced glomerular sclerosis, including lipid breakdown at early disease stages and activation of anaplerotic pathways to regenerate energy equivalents to counter stress. For example, branched-chain amino acids and proline, required for collagen synthesis, were depleted in glomeruli at early time points. Furthermore, indicators of metabolic stress were reflected by low amounts of ATP and NADH and an increased abundance of oxidized lipids derived from lipid breakdown. These processes were specific to kidney glomeruli where metabolic signaling occurred through mTOR and AMPK signaling. Quantitative phosphoproteomics combined with computational modeling suggested that these processes controlled key molecules in glomeruli and specifically podocytes, including cytoskeletal components and GTP-binding proteins, which would be expected to compete for decreasing amounts of GTP at early time points. As a result, glomeruli showed increased expression of metabolic enzymes of central carbon metabolism, amino acid degradation, and lipid oxidation, findings observed in previously published studies from other disease models and patients with glomerular damage. Overall, multilayered omics provides an overview of hypertensive kidney damage and suggests that metabolic or dietary interventions could prevent and treat glomerular disease and hypertension-induced nephropathy.
Collapse
Affiliation(s)
- Markus M Rinschen
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA.,Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne 50931, Germany
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carlos Guijas
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Amelia Palermo
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Nicolas Palacio-Escat
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen 52074, Germany.,Institute of Computational Biomedicine, Bioquant, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg 69120, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Xavier Domingo-Almenara
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Rafael Montenegro-Burke
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA
| | - Julio Saez-Rodriguez
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen 52074, Germany.,Institute of Computational Biomedicine, Bioquant, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg 69120, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and Heidelberg University, Heidelberg 69120, Germany
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA. .,Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92122, USA.
| |
Collapse
|
28
|
Sung CC, Chen L, Limbutara K, Jung HJ, Gilmer GG, Yang CR, Lin SH, Khositseth S, Chou CL, Knepper MA. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int 2019; 96:363-377. [PMID: 31146973 PMCID: PMC6650374 DOI: 10.1016/j.kint.2019.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Lithium salts, used for treating bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI) thereby limiting therapeutic success. NDI is associated with loss of expression of the gene coding for the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use systems biology methods in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts (CCDs) of rats after 72 hours without or with initiation of lithium chloride administration. Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines and most components of the Major Histocompatibility Complex Class I antigen-presenting complex. Administration of anti-inflammatory doses of dexamethasone to lithium chloride-treated rats countered the loss of aquaporin-2. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hour) increase in multiple immediate early response genes including several transcription factors. Protein mass spectrometry in microdissected CCDs provided corroborative evidence and identified decreased abundance of several anti-oxidant proteins. Thus, in the context of prior observations, our study can be best explained by a model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 transcription.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabrielle G Gilmer
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sookkasem Khositseth
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Pediatrics, Faculty of Medicine, Thammasat University (Rangsit Campus), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
29
|
Larionov A, Dahlke E, Kunke M, Zanon Rodriguez L, Schiessl IM, Magnin JL, Kern U, Alli AA, Mollet G, Schilling O, Castrop H, Theilig F. Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J Cell Mol Med 2019; 23:6543-6553. [PMID: 31368174 PMCID: PMC6787568 DOI: 10.1111/jcmm.14387] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 11/28/2022] Open
Abstract
The NPHS2 gene, encoding the slit diaphragm protein podocin, accounts for genetic and sporadic forms of nephrotic syndrome (NS). Patients with NS often present symptoms of volume retention, such as oedema formation or hypertension. The primary dysregulation in sodium handling involves an inappropriate activation of the epithelial sodium channel, ENaC. Plasma proteases in a proteinuria‐dependent fashion have been made responsible; however, referring to the timeline of symptoms occurring and underlying mechanisms, contradictory results have been published. Characterizing the mouse model of podocyte inactivation of NPHS2 (Nphs2∆pod) with respect to volume handling and proteinuria revealed that sodium retention, hypertension and gross proteinuria appeared sequentially in a chronological order. Detailed analysis of Nphs2∆pod during early sodium retention, revealed increased expression of full‐length ENaC subunits and αENaC cleavage product with concomitant increase in ENaC activity as tested by amiloride application, and augmented collecting duct Na+/K+‐ATPase expression. Urinary proteolytic activity was increased and several proteases were identified by mass spectrometry including cathepsin B, which was found to process αENaC. Renal expression levels of precursor and active cathepsin B were increased and could be localized to glomeruli and intercalated cells. Inhibition of cathepsin B prevented hypertension. With the appearance of gross proteinuria, plasmin occurs in the urine and additional cleavage of γENaC is encountered. In conclusion, characterizing the volume handling of Nphs2∆pod revealed early sodium retention occurring independent to aberrantly filtered plasma proteases. As an underlying mechanism cathepsin B induced αENaC processing leading to augmented channel activity and hypertension was identified.
Collapse
Affiliation(s)
- Alexey Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eileen Dahlke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | | | - Ina M Schiessl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Ursula Kern
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Geraldine Mollet
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
30
|
Person F, Rinschen MM, Brix SR, Wulf S, Noriega MDLM, Fehrle W, Schmitz J, Schwarz A, Ivanyi P, Steinmetz OM, Reinhard L, Hoxha E, Zipfel PF, Bräsen JH, Wiech T. Bevacizumab-associated glomerular microangiopathy. Mod Pathol 2019; 32:684-700. [PMID: 30552416 DOI: 10.1038/s41379-018-0186-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022]
Abstract
Bevacizumab is a humanized monoclonal IgG1 antibody, which neutralizes vascular endothelial growth factor and is used for treating multiple cancer types. As a known and frequent adverse event, this therapy can lead to renal damage including proteinuria and nephrotic syndrome. In a retrospective approach, we analyzed 17 renal biopsies from patients receiving bevacizumab treatment. We observed a distinctive histopathological pseudothrombotic pattern different from the previously reported thrombotic microangiopathy. Since this pattern includes some features similar to acute and chronic thrombotic microangiopathy, focal segmental glomerulosclerosis and cryoglobulinemic membranoproliferative glomerulonephritis, biopsies with these diagnoses were included for comparison. Clinical, laboratory, light microscopic, immunohistochemical (including a proximity ligation assay), proteomic and electron microscopic features were assessed. Nephrotic syndrome was present in 15 of the 17 bevacizumab-treated patients. All 17 displayed a patchy pattern of variably PAS-positive hyaline pseudothrombi occluding markedly dilated glomerular capillaries in their biopsies. Mass spectrometry-based proteome analysis revealed a special protein pattern demonstrating some features of thrombotic microangiopathy and some of cryoglobulinemic glomerulonephritis, including a strong accumulation of IgG in the pseudothrombi. Proximity ligation assay did not show interaction of IgG with C1q, arguing for accumulation without classic pathway complement activation. In contrast to thrombi in thrombotic microangiopathy cases, the hyaline pseudothrombi did not contain clusters of CD61-positive platelets. Electron microscopy of bevacizumab cases did not show fibrin polymers or extensive loss of podocyte foot processes. Even though cases of bevacizumab-associated microangiopathy share some features with thrombotic microangiopathy, its overall histopathological pattern is quite different from acute or chronic thrombotic microangiopathy cases. We conclude that bevacizumab therapy can lead to a unique hyaline occlusive glomerular microangiopathy, likely arising from endothelial leakage followed by subendothelial accumulation of serum proteins. It can be diagnosed by light microscopy and is an important differential diagnosis in cancer patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Fermin Person
- Institute of Pathology and Nephropathology Section, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Silke R Brix
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Wulf
- Institute of Pathology and Nephropathology Section, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | | | - Wilfried Fehrle
- Institute of Pathology and Nephropathology Section, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Anke Schwarz
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Oliver M Steinmetz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Thorsten Wiech
- Institute of Pathology and Nephropathology Section, University Hospital Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
31
|
Saez-Rodriguez J, Rinschen MM, Floege J, Kramann R. Big science and big data in nephrology. Kidney Int 2019; 95:1326-1337. [PMID: 30982672 DOI: 10.1016/j.kint.2018.11.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
There have been tremendous advances during the last decade in methods for large-scale, high-throughput data generation and in novel computational approaches to analyze these datasets. These advances have had a profound impact on biomedical research and clinical medicine. The field of genomics is rapidly developing toward single-cell analysis, and major advances in proteomics and metabolomics have been made in recent years. The developments on wearables and electronic health records are poised to change clinical trial design. This rise of 'big data' holds the promise to transform not only research progress, but also clinical decision making towards precision medicine. To have a true impact, it requires integrative and multi-disciplinary approaches that blend experimental, clinical and computational expertise across multiple institutions. Cancer research has been at the forefront of the progress in such large-scale initiatives, so-called 'big science,' with an emphasis on precision medicine, and various other areas are quickly catching up. Nephrology is arguably lagging behind, and hence these are exciting times to start (or redirect) a research career to leverage these developments in nephrology. In this review, we summarize advances in big data generation, computational analysis, and big science initiatives, with a special focus on applications to nephrology.
Collapse
Affiliation(s)
- Julio Saez-Rodriguez
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany.
| | - Markus M Rinschen
- Department II of Internal Medicine, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, La Jolla, California, USA
| | - Jürgen Floege
- RWTH Aachen, Department of Nephrology and Clinical Immunology, Aachen, Germany
| | - Rafael Kramann
- RWTH Aachen, Department of Nephrology and Clinical Immunology, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Rinschen MM, Limbutara K, Knepper MA, Payne DM, Pisitkun T. From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiol Rev 2019; 98:2571-2606. [PMID: 30182799 DOI: 10.1152/physrev.00057.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Classical physiological studies using electrophysiological, biophysical, biochemical, and molecular techniques have created a detailed picture of molecular transport, bioenergetics, contractility and movement, and growth, as well as the regulation of these processes by external stimuli in cells and organisms. Newer systems biology approaches are beginning to provide deeper and broader understanding of these complex biological processes and their dynamic responses to a variety of environmental cues. In the past decade, advances in mass spectrometry-based proteomic technologies have provided invaluable tools to further elucidate these complex cellular processes, thereby confirming, complementing, and advancing common views of physiology. As one notable example, the application of proteomics to study the regulation of kidney function has yielded novel insights into the chemical and physical processes that tightly control body fluids, electrolytes, and metabolites to provide optimal microenvironments for various cellular and organ functions. Here, we systematically review, summarize, and discuss the most significant key findings from functional proteomic studies in renal epithelial physiology. We also identify further improvements in technological and bioinformatics methods that will be essential to advance precision medicine in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Kavee Limbutara
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Mark A Knepper
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - D Michael Payne
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
33
|
Rinschen MM. Single glomerular proteomics: A novel tool for translational glomerular cell biology. Methods Cell Biol 2019; 154:1-14. [DOI: 10.1016/bs.mcb.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Späth MR, Bartram MP, Palacio-Escat N, Hoyer KJR, Debes C, Demir F, Schroeter CB, Mandel AM, Grundmann F, Ciarimboli G, Beyer A, Kizhakkedathu JN, Brodesser S, Göbel H, Becker JU, Benzing T, Schermer B, Höhne M, Burst V, Saez-Rodriguez J, Huesgen PF, Müller RU, Rinschen MM. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int 2018; 95:333-349. [PMID: 30522767 DOI: 10.1016/j.kint.2018.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023]
Abstract
Acute kidney injury (AKI) leads to significant morbidity and mortality; unfortunately, strategies to prevent or treat AKI are lacking. In recent years, several preconditioning protocols have been shown to be effective in inducing organ protection in rodent models. Here, we characterized two of these interventions-caloric restriction and hypoxic preconditioning-in a mouse model of cisplatin-induced AKI and investigated the underlying mechanisms by acquisition of multi-layered omic data (transcriptome, proteome, N-degradome) and functional parameters in the same animals. Both preconditioning protocols markedly ameliorated cisplatin-induced loss of kidney function, and caloric restriction also induced lipid synthesis. Bioinformatic analysis revealed mRNA-independent proteome alterations affecting the extracellular space, mitochondria, and transporters. Interestingly, our analyses revealed a strong dissociation of protein and RNA expression after cisplatin treatment that showed a strong correlation with the degree of damage. N-degradomic analysis revealed that most posttranscriptional changes were determined by arginine-specific proteolytic processing. This included a characteristic cisplatin-activated complement signature that was prevented by preconditioning. Amyloid and acute-phase proteins within the cortical parenchyma showed a similar response. Extensive analysis of disease-associated molecular patterns suggested that transcription-independent deposition of amyloid P-component serum protein may be a key component in the microenvironmental contribution to kidney damage. This proof-of-principle study provides new insights into the pathogenesis of cisplatin-induced AKI and the molecular mechanisms underlying organ protection by correlating phenotypic and multi-layered omics data.
Collapse
Affiliation(s)
- Martin R Späth
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicolàs Palacio-Escat
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany
| | - K Johanna R Hoyer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Debes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Christina B Schroeter
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Giuliano Ciarimboli
- Department of Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology, Centre for Blood Research, The University of British Columbia, British Columbia, Vancouver, Canada; Laboratory Medicine, Department of Chemistry, The University of British Columbia, British Columbia, Vancouver, Canada
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany; Faculty of Medicine Bioquant, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Sharma K, Paša-Tolić L. Toward individual glomerular phenotyping: advent of precision medicine in kidney biopsies. Kidney Int 2018; 93:1265-1267. [PMID: 29792268 DOI: 10.1016/j.kint.2018.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 10/16/2022]
Abstract
The road to precision medicine for nephrology is approaching quickly. In the present volume, the glomerular proteome has now been characterized at a single glomerulus level in mouse and human kidneys. Using the Single-Pot Solid-Phase-enhanced Sample Preparation (SP3) approach the authors demonstrated that LAMP1 is a key lysosomal protein that is increased in glomerular diseases and may play a pathogenic role.
Collapse
Affiliation(s)
- Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
36
|
Xie L, Koukos G, Barck K, Foreman O, Lee WP, Brendza R, Eastham-Anderson J, McKenzie BS, Peterson A, Carano RAD. Micro-CT imaging and structural analysis of glomeruli in a model of Adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2018; 316:F76-F89. [PMID: 30256127 DOI: 10.1152/ajprenal.00331.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomeruli number and size are important for determining the pathogenesis of glomerular disease, chronic kidney disease, and hypertension. Moreover, renal injury can occur in specific cortical layers and alter glomerular spatial distribution. In this study, we present a comprehensive structural analysis of glomeruli in a model of Adriamycin (doxorubicin) nephropathy. Glomeruli are imaged (micro-CT at 10 × 10 × 10 μm3) in kidney specimens from C57Bl/6 mouse cohorts: control treated with saline ( n = 9) and Adriamycin treated with 20 mg/kg Adriamycin ( n = 7). Several indices were examined, including glomerular number, glomerular volume, glomerular volume heterogeneity, and spatial density at each glomerulus and in each cortical layer (superficial, midcortical, and juxtamedullary). In the Adriamycin-treated animals, glomerular number decreased significantly in the left kidney [control: 8,298 ± 221, Adriamycin: 6,781 ± 630 (mean ± SE)] and right kidney (control: 7,317 ± 367, Adriamycin: 5,522 ± 508), and glomerular volume heterogeneity increased significantly in the left kidney (control: 0.642 ± 0.015, Adriamycin: 0.786 ± 0.018) and right kidney (control: 0.739 ± 0.016, Adriamycin: 0.937 ± 0.023). Glomerular spatial density was not affected. Glomerular volume heterogeneity increased significantly in the superficial and midcortical layers of the Adriamycin cohort. Adriamycin did not affect glomerular volume or density metrics in the juxtamedullary region, suggesting a compensatory mechanism of juxtamedullary glomeruli to injury in the outer cortical layers. Left/right asymmetry was observed in kidney size and various glomeruli metrics. The methods presented here can be used to evaluate renal disease models with subtle changes in glomerular endowment locally or across the entire kidney, and they provide an imaging tool to investigate diverse interventions and therapeutic drugs.
Collapse
Affiliation(s)
- Luke Xie
- Biomedical Imaging, Genentech, South San Francisco, California
| | - Georgios Koukos
- Molecular Biology, Genentech, South San Francisco, California
| | - Kai Barck
- Biomedical Imaging, Genentech, South San Francisco, California
| | - Oded Foreman
- Pathology, Genentech, South San Francisco, California
| | - Wyne P Lee
- Translation Immunology, Genentech, South San Francisco, California
| | - Robert Brendza
- Neuroscience, Genentech, South San Francisco, California
| | | | - Brent S McKenzie
- Translation Immunology, Genentech, South San Francisco, California
| | - Andrew Peterson
- Molecular Biology, Genentech, South San Francisco, California
| | | |
Collapse
|
37
|
Rinschen MM, Huesgen PF, Koch RE. The podocyte protease web: uncovering the gatekeepers of glomerular disease. Am J Physiol Renal Physiol 2018; 315:F1812-F1816. [PMID: 30230368 DOI: 10.1152/ajprenal.00380.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteases regulate glomerular physiology. The last decade has revealed a multitude of podocyte proteases that govern the glomerular response to numerous chemical, mechanical, and metabolic cues. These proteases form a protein signaling web that integrates stress stimuli and serves as a key controller of the glomerular microenvironment. Both the extracellular and intracellular proteolytic networks are perturbed in focal segmental glomerulosclerosis, as well as hypertensive and diabetic nephropathy. Accordingly, the highly intertwined podocyte protease web is an integrative part of the podocyte's damage response. Novel mass spectrometry-based technologies will help to untangle this proteolytic network: functional readouts acquired from deep podocyte proteomics, single glomerular proteomics, and degradomics have exposed unanticipated protease activity in podocytes. Future efforts should characterize the interdependency and upstream regulation of key proteases, along with their role in promoting tissue heterogeneity in glomerular diseases. These efforts will not only illuminate the machinery of podocyte proteostasis but also reveal avenues for therapeutic intervention in the podocyte protease web.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany.,Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute , La Jolla, California
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics ZEA-3, Forschungszentrum Jülich, Jülich , Germany
| | - Rachelle E Koch
- Division of Graduate Medical Sciences, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
38
|
Klein JB, A Knepper M. Protein Mass Spectrometry Made Simple. J Am Soc Nephrol 2018; 29:1585-1587. [PMID: 29724882 DOI: 10.1681/asn.2018030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jon B Klein
- University of Louisville School of Medicine and Robley Rex Veterans Administration Medical Center, Louisville, Kentucky; and
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|