1
|
Qiu R, Sun W, Su Y, Sun Z, Fan K, Liang Y, Lin X, Zhang Y. Irisin's emerging role in Parkinson's disease research: A review from molecular mechanisms to therapeutic prospects. Life Sci 2024; 357:123088. [PMID: 39357796 DOI: 10.1016/j.lfs.2024.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by impaired motor function, is typically treated with medications and surgery. However, recent studies have validated physical exercise as an effective adjunct therapy, significantly improving both motor and non-motor symptoms in PD patients. Irisin, a myokine, has garnered increasing attention for its beneficial effects on the nervous system. Research has shown that irisin plays a crucial role in regulating metabolic balance, optimizing autophagy, maintaining mitochondrial quality, alleviating oxidative stress and neuroinflammation, and regulating cell death-all processes intricately linked to the pathogenesis of PD. This review examines the mechanisms through which irisin may counteract PD, provides insights into its biological effects, and considers its potential as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weilu Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Liang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyue Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Cheng H, Yang Y, Hu J, Chen L, Yuan M, Du H, Xu Z, Qiu Z. Cyclic adenosine 3', 5'-monophosphate (cAMP) signaling is a crucial therapeutic target for ulcerative colitis. Life Sci 2024; 353:122901. [PMID: 38997063 DOI: 10.1016/j.lfs.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The pathogenesis of ulcerative colitis (UC), a chronic intestine inflammatory disease primarily affecting adolescents, remains uncertain. Contemporary studies suggest that a confluence of elements, including genetic predispositions, environmental catalysts, dysregulated immune responses, and disturbances in the gut microbiome, are instrumental in the initiation and advancement of UC. Among them, inflammatory activation and mucosal barrier damage caused by abnormal immune regulation are essential links in the development of UC. The impairment of the mucosal barrier is intricately linked to the interplay of various cellular mechanisms, including oxidative stress, autophagy, and programmed cell death. An extensive corpus of research has elucidated that level of cyclic adenosine 3',5'-monophosphate (cAMP) undergo modifications in the midst of inflammation and participate in a diverse array of cellular operations that mitigate inflammation and the impairment of the mucosal barrier. Consequently, a plethora of pharmacological agents are currently under development, with some advancing through clinical trials, and are anticipated to garner approval as novel therapeutics. In summary, cAMP exerts a crucial influence on the onset and progression of UC, with fluctuations in its activity being intimately associated with the severity of the disease's manifestation. Significantly, this review unveils the paramount role of cAMP in the advancement of UC, offering a tactical approach for the clinical management of individuals afflicted with UC.
Collapse
Affiliation(s)
- Haixiang Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, People's Republic of China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China.
| | - Ziqiang Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
3
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
4
|
Chen T, Jin N, Zhang Q, Li Z, Wang Q, Fang X. Auraptene Mitigates Colitis Induced by Dextran Sulfate Sodium in Mice by Regulating Specific Intestinal Flora and Repairing the Intestinal Barrier. Inflammation 2024; 47:1127-1141. [PMID: 38236384 DOI: 10.1007/s10753-023-01965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Auraptene (AUT) is widely known to possess both antioxidant and anti-inflammatory properties. This study attempted to evaluate the protective effects of AUT in dextran sodium sulfate (DSS)-induced colitis in mice and to determine the underlying molecular mechanisms. Our results suggest that AUT substantially minimizes the severity and worsening of DSS-induced colitis in mice, indicated by the lengthening of the colon, lower disease activity index, reduced oxidation levels, and attenuated inflammatory factors. Molecular studies revealed that AUT reduces the nuclear translocation of nuclear factor-κB (NF-κB), thereby inhibiting the expression of inflammatory factors. Additionally, AUT promotes the diversity of the intestinal flora in mice with colitis by increasing the number of beneficial bacteria such as Lactobacillaceae and lowering the number of harmful bacteria. In conclusion, AUT mitigates DSS-induced colitis by maintaining the integrity of the intestinal barrier and modulating the levels of the intestinal microbial species.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Naizhong Jin
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qi Zhang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhongming Li
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiutao Wang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
5
|
Li R, Yang P, Liu B, Ye Z, Zhang P, Li M, Gong Y, Huang Y, Yang L, Li M. Lycium barbarum polysaccharide remodels colon inflammatory microenvironment and improves gut health. Heliyon 2024; 10:e30594. [PMID: 38774318 PMCID: PMC11107222 DOI: 10.1016/j.heliyon.2024.e30594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Aim Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bowen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ziru Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Puyue Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Mingjian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yong Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lan Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
6
|
Panaitescu PȘ, Răzniceanu V, Mocrei-Rebrean ȘM, Neculicioiu VS, Dragoș HM, Costache C, Filip GA. The Effect of Gut Microbiota-Targeted Interventions on Neuroinflammation and Motor Function in Parkinson's Disease Animal Models-A Systematic Review. Curr Issues Mol Biol 2024; 46:3946-3974. [PMID: 38785512 PMCID: PMC11120577 DOI: 10.3390/cimb46050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Gut microbiome-targeted interventions such as fecal transplant, prebiotics, probiotics, synbiotics, and antibiotic gut depletion are speculated to be of potential use in delaying the onset and progression of Parkinson's disease by rebalancing the gut microbiome in the context of the gut-brain axis. Our study aims to organize recent findings regarding these interventions in Parkinson's disease animal models to identify how they affect neuroinflammation and motor outcomes. A systematic literature search was applied in PubMed, Web of Science, Embase, and SCOPUS for gut microbiome-targeted non-dietary interventions. Studies that investigated gut-targeted interventions by using in vivo murine PD models to follow dopaminergic cell loss, motor tests, and neuroinflammatory markers as outcomes were considered to be eligible. A total of 1335 studies were identified in the databases, out of which 29 were found to be eligible. A narrative systematization of the resulting data was performed, and the effect direction for the outcomes was represented. Quality assessment using the SYRCLE risk of bias tool was also performed. Out of the 29 eligible studies, we found that a significant majority report that the intervention reduced the dopaminergic cell loss (82.76%, 95% CI [64.23%, 94.15%]) produced by the induction of the disease model. Also, most studies reported a reduction in microglial (87.5%, 95% CI [61.65%, 98.45%]) and astrocytic activation (84,62%, 95% CI [54.55%, 98.08%]) caused by the induction of the disease model. These results were also mirrored in the majority (96.4% 95% CI [81.65%, 99.91%]) of the studies reporting an increase in performance in behavioral motor tests. A significant limitation of the study was that insufficient information was found in the studies to assess specific causes of the risk of bias. These results show that non-dietary gut microbiome-targeted interventions can improve neuroinflammatory and motor outcomes in acute Parkinson's disease animal models. Further studies are needed to clarify if these benefits transfer to the long-term pathogenesis of the disease, which is not yet fully understood. The study had no funding source, and the protocol was registered in the PROSPERO database with the ID number CRD42023461495.
Collapse
Affiliation(s)
- Paul-Ștefan Panaitescu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Vlad Răzniceanu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Ștefania-Maria Mocrei-Rebrean
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Hanna-Maria Dragoș
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
| |
Collapse
|
7
|
Das UN. Can essential fatty acids (EFAs) prevent and ameliorate post-COVID-19 long haul manifestations? Lipids Health Dis 2024; 23:112. [PMID: 38641607 PMCID: PMC11027247 DOI: 10.1186/s12944-024-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024] Open
Abstract
It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifestations including "long haul syndrome" are due to deficiency of essential fatty acids (EFAs) and dysregulation of their metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate macrophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its associated complications.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle ground, WA, 98604, USA.
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Sangareddy, Telangana, India.
- Department of Immunology and Rheumatology, Arete Hospitals, Gachibowli, Hyderabad, 4500032, India.
| |
Collapse
|
8
|
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer's and Parkinson's disease. Front Neuroendocrinol 2024; 73:101122. [PMID: 38346453 DOI: 10.1016/j.yfrne.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.
Collapse
Affiliation(s)
- Niklas Reich
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK; Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Christian Hölscher
- Second associated Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China; Henan Academy of Innovations in Medical Science, Neurodegeneration research group, Xinzhen, Henan province, China
| |
Collapse
|
9
|
Matin S, Dadkhah M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res Bull 2024; 207:110882. [PMID: 38244808 DOI: 10.1016/j.brainresbull.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Emerging evidence supports the gut microbiota and the brain communication in general health. This axis may affect behavior through modulating neurotransmission, and thereby involve in the pathogenesis and/or progression of different neuropsychiatric disorders such as depression. Brain-derived neurotrophic factor and cAMP response element-binding protein known as CREB/BDNF pathway plays have critical functions in the pathogenesis of depression as the same of mechanisms related to antidepressants. However, the putative causal significance of the CREB/BDNF signaling cascade in the gut-brain axis in depression remains unknown. Also interventions such as probiotics supplementation and exercise can influence microbiome also improve bidirectional communication of gut and brain. In this review we aim to explain the BDNF/CREB signaling pathway and gut microbiota dysfunction and then evaluate the potential role of probiotics, prebiotics, and exercise as a therapeutic target in the gut microbiota dysfunction induced depression. The current narrative review will specifically focus on the impact of exercise and diet on the intestinal microbiota component, as well as the effect that these therapies may have on the microbiota to alleviate depressive symptoms. Finally, we look at how BDNF/CREB signaling pathway may exert distinct effects on depression and gut microbiota dysfunction.
Collapse
Affiliation(s)
- Somaieh Matin
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
10
|
Li ZY, Lin LH, Liang HJ, Li YQ, Zhao FQ, Sun TY, Liu ZY, Zhu JY, Gu F, Xu JN, Hao QY, Zhou DS, Zhai HH. Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota. Ann Med 2023; 55:2290213. [PMID: 38061697 PMCID: PMC10836275 DOI: 10.1080/07853890.2023.2290213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE This study examined the protective effects and mechanism of Lycium barbarum polysaccharides (LBP) in the context of intestinal barrier function and intestinal microbiota in mice with dextran sulfate sodium (DSS)-induced chronic ulcerative colitis (UC). METHODS C57BL/6J male mice were assigned to a standard normal diet without DSS (control group), a normal diet with DSS (DSS group, 2% DSS given discontinuously for 3 weeks) or a normal diet supplemented with LBP (1% dry feed weight, LBP group, 2% DSS given discontinuously for 3 weeks) for a total of 8 weeks, at which point colonic tissues and caecal contents were collected. RESULTS LBP exerted a significant effect against colitis by increasing body weight, colon length, DAI and histopathological scores. LBP inhibited proinflammatory cytokines (IL-1β, IL-6, iNOS and TNF-α) expression, improved anti-inflammatory cytokine (IL-10) expression, promoted the expression of tight junction proteins (Occludin and ZO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2) activation and decreased Claudin-2 expression to maintain the intestinal mucosal barrier. In addition, the abundances of some probiotics (Ruminococcaceae, Lactobacillus, Butyricicoccus, and Akkermansia) were decreased with DSS treatment but increased obviously with LBP treatment. And LBP reduced the abundance of conditional pathogens associated with UC (Mucispirillum and Sutterella). Furthermore, LBP improved the production of short-chain fatty acids (SCFAs), including acetic acid, propionic acid, butyric acid and isobutyric acid. CONCLUSION LBP can alleviate DSS-induced UC by regulating inflammatory cytokines and tight junction proteins. Moreover, LBP promotes probiotics, suppresses conditional pathogens and increases SCFAs production, showing a strong prebiotic effect.
Collapse
Affiliation(s)
- Zhi-Yu Li
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Lan-Hui Lin
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - He-Jun Liang
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ya-Qi Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fu-Qian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Yi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zi-Yu Liu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jing-Yi Zhu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Feng Gu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jia-Ning Xu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi-Yuan Hao
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - De-Shan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui-Hong Zhai
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Gencpinar P, Bal Yuksel E, Basarir G, Kanik A, Arslan FD, Olgac Dundar N, Karakoyun I. The Role of Breast Milk Neurotrophin Levels in Infantile Colic Pathogenesis: A Cross-Sectional Case-Control Study. Breastfeed Med 2023; 18:908-912. [PMID: 38100441 DOI: 10.1089/bfm.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Objective: Immaturity of the digestive tract and enteric nervous system is a widely accepted theory for infantile colic (IC) etiopathogenesis. The study aimed to show whether neurotrophins that are necessary for normal functioning and development of the gastrointestinal system have a role in the pathogenesis of IC. Materials and Methods: The IC group (n = 75) comprising the mothers of infants with IC and the control group (n = 75) were included to this cross-sectional case-control study. Brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), and nerve growth factor (NGF) levels of breast milk samples were evaluated by immunosorbent analysis method. Results: The mean age of infants with IC was 7.3 ± 2.8 weeks, while the mean age of the control group was 8.1 ± 2.9 weeks (p = 0.110). No significant difference was found between the breast milk BDNF, GDNF, CNTF, and NGF levels of two groups (p = 0.941, p = 0.510, p = 0.533, p = 0.839, respectively). Conclusions: This is the first report comparing the neurotrophin levels of the breast milk samples taken from the mothers of infants with and without IC. The study demonstrated that breast milk neurotrophin levels of the mothers did not differ significantly between the infants with and without IC.
Collapse
Affiliation(s)
- Pinar Gencpinar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Esra Bal Yuksel
- Department of Pediatrics, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Gunce Basarir
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ali Kanik
- Department of Pediatrics, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Fatma Demet Arslan
- Department of Medical Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Inanc Karakoyun
- Department of Medical Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
12
|
Cutuli D, Decandia D, Giacovazzo G, Coccurello R. Physical Exercise as Disease-Modifying Alternative against Alzheimer's Disease: A Gut-Muscle-Brain Partnership. Int J Mol Sci 2023; 24:14686. [PMID: 37834132 PMCID: PMC10572207 DOI: 10.3390/ijms241914686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial composition and diversity, thus providing the potential to alleviate neurological symptoms. There is bidirectional communication between the gut and muscle, with GM diversity modulation and short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and SCFA production. This gut-muscle and muscle-gut interplay can then modulate cognition. For instance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical activity against some aspects of AD pathophysiology through the interaction of exercise with the gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis. Understanding gut-muscle-brain interconnections hold promise for developing strategies to promote brain health, fight age-associated cognitive decline, and improve muscle health and longevity.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Davide Decandia
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo (UniTE), 64100 Teramo, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
| |
Collapse
|
13
|
Zhang P, Chen J, Ming Y, Niu Y. Probiotics treatment ameliorated mycophenolic acid-induced colitis by enhancing intestinal barrier function and improving intestinal microbiota dysbiosis in mice. Front Microbiol 2023; 14:1153188. [PMID: 37533828 PMCID: PMC10390739 DOI: 10.3389/fmicb.2023.1153188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Background Mycophenolic acid (MPA)-induced colitis was still a severe side effect and challenge faced by solid transplant recipients. We aimed to explore the function and mechanism of probiotics in the treatment of MPA-induced colitis. Methods In this study, 15 mice (C57BL/6) were randomly assigned into three groups: control (CNTL) group (n = 5), MPA group (n = 5) and the MPA + Probiotic group (n = 5). Bifid Triple Viable capsules, which were drugs for clinical use and consisted of Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis, were used in Probiotic group. Body weight change, stool scores, colon histopathology and morphology were used to evaluate the disease severity. The intestinal mucosal barrier function was assessed by measuring the expression level of secretory immunoglobulin A (sIgA), Zonula occludens-1 (ZO-1) and Occludin. Finally, 16S rDNA sequencing and bioinformatics analysis were performed on mice feces to compare the different intestinal microbial composition and diversity among three groups. Results Compared with the CNTL group, the mice in MPA group showed a significantly decreased body weight, increased stool scores, shortened colon length and severe colon inflammation. However, probiotics treated MPA mice reversed the disease severity, indicating that probiotics ameliorated MPA-induced colitis in mice. Mechanistically, probiotics improved the intestinal barrier function by up-regulating the expression of sIgA, ZO-1 and Occludin. Moreover, MPA-induced colitis led to intestinal microbiota dysbiosis, including the change of Firmicutes/Bacteroidetes ratio, α- and β-diversity. But probiotic treated group showed mild change in these microbial features. Additionally, we found that Clostridiales was the most significantly different microbiota flora in MPA group. Conclusion Probiotics treatment ameliorated MPA-induced colitis by enhancing intestinal barrier function and improving intestinal microbiota dysbiosis. Clostridiales might be the dominant functional intestinal microflora and serve as the potential therapy target in MPA-induced colitis.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinwen Chen
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Niu
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Huang L, Ma Z, Ze X, Zhao X, Zhang M, Lv X, Zheng Y, Liu H. Gut microbiota decreased inflammation induced by chronic unpredictable mild stress through affecting NLRP3 inflammasome. Front Cell Infect Microbiol 2023; 13:1189008. [PMID: 37293210 PMCID: PMC10244772 DOI: 10.3389/fcimb.2023.1189008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Dysbiosis of the gut microbiota is associated with the development of depression, but the underlying mechanism remains unclear. The aim of this study was to determine the relationship between microbiota and NLRP3 inflammasome induced by chronic unpredictable mild stress (CUMS). Fecal transplantation (FMT) experiment was conducted to elucidate the potential mechanism. Levels of NLRP3 inflammasome, microbiota, inflammatory factors and tight junction proteins were measured. CUMS stimulation significantly increased the levels of NLRP3, Caspase-1 and ASC in brain and colon(p<0.05), decreased the levels of tight junction proteins Occludin and ZO-1 (p<0.05). Interestingly, increased NLRP3 inflammasome and inflammatory cytokines and decreased tight junction proteins were found in antibiotic-treated (Abx) rats received CUMS rat fecal microbiota transplantation. Furthermore, fecal microbiota transplantation altered the microbiota in Abx rats, which partially overlapped with that of the donor rats. Importantly, probiotic administration amended the alteration of microbiota induced by CUMS treatment, then reduced the levels of NLRP3 inflammasome and inflammatory factors. In conclusion, these findings suggested that depression-like behaviors induced by CUMS stimulation were related to altered gut microbiota, broke the intestinal barrier, promoted the expression of NLRP3 inflammasome and elevated inflammation. Therefore, improving the composition of microbiota via probiotic can attenuate inflammation by amending the microbiota and suppressing the activation of NLRP3 inflammasome, which is considered as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Science City, Guangzhou, China
| | - Xinrui Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xia Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yunqin Zheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
15
|
Shao XX, Xu Y, Xiao HY, Hu Y, Jiang Y. Higenamine improves DSS-induced ulcerative colitis in mice through the Galectin-3/TLR4/NF-κB pathway. Tissue Cell 2023; 82:102111. [PMID: 37210763 DOI: 10.1016/j.tice.2023.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the colon and tends to relapse. Higenamine (HG) has anti-inflammatory, antioxidant and anti-apoptotic activities. This study aimed to investigate the role of HG in the treatment of UC as well as the underlying mechanism. In vivo and in vitro models of UC were respectively established in dextran sodium sulfate (DSS)-induced mice and DSS-induced NCM460 cells. The weight and disease performance and disease activity index (DAI) of mice were recorded every day. The colon length was measured and pathological changes of colon tissues were observed by HE staining. The apoptosis of colon cells in mice was detected by Tunel assay and FITC-dextran was used to detect intestinal permeability in mice. The MPO activity and expression of tight junction proteins and Galectin-3/TLR4/NF-κB pathway related proteins in colon tissues and cells were detected by MPO assay kit and western blot. The levels of TNF-α, IL-1β, IL-6 and IL-10 in serum and cells, and levels of DAO and D-LA in serum were all detected by assay kits. The viability and apoptosis of NCM460 cells were analyzed by CCK-8 assay and flow cytometry analysis, and permeability of NCM460 monolayers was detected by TEER measurement. As a result, HG improved the weight, DAI, colon length and pathological changes of DSS-induced UC mice. HG alleviated DSS-induced colon inflammation, inhibited DSS-induced apoptosis of mouse colonic epithelial cells and restored the integrity of the mucosa barrier in mice. In addition, HG suppressed the Galectin-3/TLR4/NF-κB signaling pathway in DSS-induced UC mice. Similarly, HG improved viability and epithelial barrier function, and suppressed the apoptosis and inflammation of DSS-induced NCM460 cells by inhibiting the Galectin-3/TLR4/NF-κB signaling pathway. Galectin-3 overexpression could reverse the effect of HG on DSS-induced NCM460 cells. In conclusion, HG improved DSS-induced UC through the inactivation of Galectin-3/TLR4/NF-κB pathway in vivo and in vitro. AVAILABILITY OF DATA AND MATERIAL: The data are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Xiao-Xiao Shao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hui-Ying Xiao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yue Hu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
16
|
Tian L, Zhong C, He Y, Lu Q, Wang Y, Zhao X, Wei H, Tao X. Preventive of Lacticaseibacillus casei WLCA02 against Salmonella Typhimurium infection via strengthening the intestinal barrier and activating the macrophages. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
17
|
Birmann PT, Casaril AM, Pesarico AP, Rodrigues RR, Conceição FR, Sousa FSS, Collares T, Seixas FK, Savegnago L. Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice. Mol Neurobiol 2023; 60:4017-4029. [PMID: 37016046 DOI: 10.1007/s12035-023-03326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 μg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1β in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.
Collapse
Affiliation(s)
- Paloma T Birmann
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Angela M Casaril
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Ana Paula Pesarico
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Rafael R Rodrigues
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
18
|
Li X, Sun R, Liu Q, Gong Y, Ou Y, Qi Q, Xie Y, Wang X, Hu C, Jiang S, Zhao G, Wei L. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens. Front Vet Sci 2023; 9:1073659. [PMID: 36686185 PMCID: PMC9846561 DOI: 10.3389/fvets.2022.1073659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Many benefits have been found in supplementing tannins or soybean isoflavones to poultry, including increased body weight gain, antioxidant activity, and better intestinal morphology. However, few studies tested the influence of dandelion tannins or soybean isoflavones supplementation on Wenchang chickens. This study investigates the effects of dietary supplementation with dandelion tannins or soybean isoflavones on the growth performance, antioxidant function, and intestinal health of female Wenchang chickens. A total of 300 chickens were randomly divided into five groups, with six replicates per group and 10 broilers per replicate. The chickens in the control group (Con) were fed a basal diet; the four experimental groups were fed a basal diet with different supplements: 300 mg/kg of dandelion tannin (DT1), 500 mg/kg of dandelion tannin (DT2), 300 mg/kg of soybean isoflavone (SI1), or 500 mg/kg of soybean isoflavone (SI2). The experiment lasted 40 days. The results showed that the final body weight (BW) and average daily gain (ADG) were higher in the DT2 and SI1 groups than in the Con group (P < 0.05). In addition, dietary supplementation with dandelion tannin or soybean isoflavone increased the level of serum albumin (P <0.05); the concentrations of serum aspartate aminotransferase and glucose were significantly higher in the SI1 group (P < 0.05) than in the Con group and the concentration of triglycerides in the DT1 group (P < 0.05). The serum catalase (CAT) level was higher in the DT1 and SI1 groups than in the Con group (P < 0.05). The ileum pH value was lower in the DT2 or SI1 group than in the Con group (P < 0.05). The jejunum villus height and mucosal muscularis thickness were increased in the DT2 and SI1 groups (P < 0.05), whereas the jejunum crypt depth was decreased in the DT1 or DT2 group compared to the Con group (P < 0.05). In addition, the messenger RNA (mRNA) expression level of zonula occludens 1 (ZO-1) in the duodenum of the SI1 group and those of occludin, ZO-1, and claudin-1 in the ileum of the DT2 and SI1 groups were upregulated (P < 0.05) compared to the Con group. Moreover, the DT2 and SI1 groups exhibited reduced intestinal microbiota diversity relative to the Con group, as evidenced by decreased Simpson and Shannon indexes. Compared to the Con group, the relative abundance of Proteobacteria was lower and that of Barnesiella was higher in the DT2 group (P < 0.05). Overall, dietary supplementation with 500 mg/kg of dandelion tannin or 300 mg/kg of soybean isoflavone improved the growth performance, serum biochemical indexes, antioxidant function, and intestinal morphology and modulated the cecal microbiota composition of Wenchang chickens.
Collapse
Affiliation(s)
- Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuping Wang
- Hainan (Tanniu) Wenchang Chicken Co., Ltd., Haikou, China
| | - Chenjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,Guiping Zhao ✉
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,*Correspondence: Limin Wei ✉
| |
Collapse
|
19
|
Li Z, Wang H, Wang Z, Geng Y. Pine Pollen Polysaccharides' and Sulfated Polysaccharides' Effects on UC Mice through Modulation of Cell Tight Junctions and RIPK3-Dependent Necroptosis Pathways. Molecules 2022; 27:molecules27227682. [PMID: 36431783 PMCID: PMC9696725 DOI: 10.3390/molecules27227682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The purpose of this study is to explore the effects of pine pollen polysaccharides and sulfated polysaccharides on mice with ulcerative colitis and whether they could protect mice from inflammation by regulating the tight junctions of colonic epithelial cells and regulating the RIPK3-dependent necroptosis pathways. Pine pollen polysaccharides were prepared by water boiling and ethanol precipitation. After deproteinedization with trichloroacetic acid, the UV spectrum showed that there were no proteins. One polysaccharide component (PPM60-III) was made by gel filtration chromatography, and then sulfated polysaccharide (SPPM60-III) was derived using the chlorosulfonic acid-pyridine method. After treatment with PPM60-III and SPPM60-III, the body weight of mice with ulcerative colitis induced by dextran sodium sulfate increased, the DAI score decreased, the levels of pro-inflammatory factors and inflammation-related enzymes decreased, and the level of anti-inflammatory factors increased. In addition, after treatment, the expressions levels of tight junction proteins increased, the expressions levels of key proteins of programmed necroptosis decreased, while the level of Caspase-8 increased. The results indicated that pine pollen polysaccharides and sulfated polysaccharides have a certain therapeutic effect on UC mice, and the therapeutic effect may be achieved by regulating the tight junction of colonic epithelial cells and regulating the RIPK3-dependent necroptosis pathways.
Collapse
Affiliation(s)
| | | | | | - Yue Geng
- Correspondence: ; Tel.: +188-5311-9492
| |
Collapse
|
20
|
Kheirvari M, Lacy VA, Goudarzi H, RabieNezhad Ganji N, Kamali Ardekani M, Anbara T. The changes in cognitive function following bariatric surgery considering the function of gut microbiome. OBESITY PILLARS (ONLINE) 2022; 3:100020. [PMID: 37990721 PMCID: PMC10662092 DOI: 10.1016/j.obpill.2022.100020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2023]
Abstract
Background There is a correlation between gut microbiota and cognitive function. The mechanisms and pathways explain why the incidence of Alzheimer's disease in subjects undergoing bariatric surgery is lower than in other people with obesity. Methods In this review article, we aim to discuss the association of obesity, cognitive impairment, and physiological changes after bariatric surgery. Results Bariatric surgery has a series of physiological benefits which may lead to an improvement in cognitive functions in individuals who are prone to later developing Alzheimer's disease. Also, taxonomical change in the gut microbiome profile provides a healthy condition for living with better levels of cognition without neuropathological damages in older ages. Conclusion It can be concluded that there is a possible correlation between cognitive dysfunction and increased risk of cognitive dysfunction in people with a BMI higher than 40 kg/m2. Bariatric surgery may increase neurotransmitters and improve the gut bacteria, leading to a significant reduction in the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Milad Kheirvari
- Microbiology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | - Taha Anbara
- Medical Research Center, Tandis Hospital, Tehran, Iran
| |
Collapse
|
21
|
Koblinsky ND, Power KA, Middleton L, Ferland G, Anderson ND. The Role of the Gut Microbiome in Diet and Exercise Effects on Cognition: A Review of the Intervention Literature. J Gerontol A Biol Sci Med Sci 2022; 78:195-205. [PMID: 35977540 PMCID: PMC9951060 DOI: 10.1093/gerona/glac166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interest in the gut-brain axis and its implications for neurodegenerative diseases, such as Alzheimer's disease and related dementias, is growing. Microbial imbalances in the gastrointestinal tract, which are associated with impaired cognition, may represent a therapeutic target for lowering dementia risk. Multicomponent lifestyle interventions are a promising dementia risk reduction strategy and most often include diet and exercise, behaviors that are also known to modulate the gut microbiome. A better understanding of the role of the gut microbiome in diet and exercise effects on cognition may help to optimize these lifestyle interventions. The purpose of this review is to summarize findings from diet and exercise interventions that have investigated cognitive changes via effects on the microbiome. We aim to discuss the underlying mechanisms, highlight current gaps in the field, and provide new research directions. There is evidence mainly from rodent studies supporting the notion that microbiota changes mediate the effects of diet and exercise on cognition, with potential mechanisms including end-product metabolites and regulation of local and systemic inflammation. The field lacks whole diet and exercise interventions, especially those involving human participants. It is further limited by heterogeneous rodent models, outcome assessments, and the absence of proper mediation analyses. Trials including older adults with dementia risk factors, factorial designs of diet and exercise, and pre and post measures of microbiota, end-product metabolites, and inflammation would help to elucidate and potentially leverage the role of the microbiome in lowering dementia risk through lifestyle modification.
Collapse
Affiliation(s)
- Noah D Koblinsky
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Middleton
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Guylaine Ferland
- Montreal Heart Institute Research Centre, Montreal, Quebec, Canada,Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nicole D Anderson
- Address correspondence to: Nicole D. Anderson, PhD, CPsych, Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St., M6A 2E1 Toronto, ON, Canada. E-mail:
| |
Collapse
|
22
|
Kolesnikova IM, Gaponov AM, Roumiantsev SA, Ganenko LA, Volkova NI, Grigoryeva TV, Laikov AV, Makarov VV, Yudin SM, Shestopalov AV. Relationship between Neutrophins and Gut Microbiome in Various Metabolic Types of Obesity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Su Y, Liu N, Zhang Z, Hao L, Ma J, Yuan Y, Shi M, Liu J, Zhao Z, Zhang Z, Holscher C. Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models. Eur J Pharmacol 2022; 926:175029. [DOI: 10.1016/j.ejphar.2022.175029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
|
24
|
Komanduri M, Savage K, Lea A, McPhee G, Nolidin K, Deleuil S, Stough C, Gondalia S. The Relationship between Gut Microbiome and Cognition in Older Australians. Nutrients 2021; 14:nu14010064. [PMID: 35010939 PMCID: PMC8746300 DOI: 10.3390/nu14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with changes in biological processes, including reductions in cognitive functions and gut microbiome diversity. However, not much is known about the relationship between cognition and the microbiome with increasing age. Therefore, we examined the relationship between the gut microbiome and cognition in 69 healthy participants aged 60–75 years. The gut microbiome was analysed with the 16S rRNA sequencing method. The cognitive assessment included the Cognitive Drug Research computerised assessment battery, which produced five cognitive factors corresponding to ‘Quality of Episodic Secondary Memory’, ‘Quality of Working Memory’, ‘Continuity of Attention, ‘Speed of Memory’ and ‘Power of Concentration’. Multiple linear regression showed that the bacterial family Carnobacteriaceae explained 9% of the variance in predicting Quality of Episodic Secondary Memory. Alcaligenaceae and Clostridiaceae explained 15% of the variance in predicting Quality of Working Memory; Bacteroidaceae, Barnesiellaceae, Rikenellaceae and Gemellaceae explained 11% of the variance in Power of Concentration. The present study provides specific evidence of a relationship between specific families of bacteria and different domains of cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Correspondence:
| | - Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Ana Lea
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Grace McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Karen Nolidin
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Saurenne Deleuil
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization, Adelaide, SA 5000, Australia
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
Natale NR, Kent M, Fox N, Vavra D, Lambert K. Neurobiological effects of a probiotic-supplemented diet in chronically stressed male Long-Evans rats: Evidence of enhanced resilience. IBRO Neurosci Rep 2021; 11:207-215. [PMID: 34849506 PMCID: PMC8607205 DOI: 10.1016/j.ibneur.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics that regulate the microbiome-gut-brain axis and provide mental health benefits to the host are referred to as psychobiotics. Preclinical studies have demonstrated psychobiotic effects on early life stress-induced anxiety- and depression-related behavior in rodents; however, the specific mechanisms remain ill-defined. In the current study, we investigated the effects of probiotic supplementation on neurobiological responses to chronic stress in adult male Long-Evans rats. Twenty-four rats were randomly assigned to probiotic (PB) or vehicle control (VEH) groups, then to either chronic unpredictable stress (CUS) or no-stress control (CON) conditions within each group (n = 6/subgroup). We hypothesized that PB supplementation would reduce markers of anxiety and enhance emotional resilience, especially in the CUS animals. In the cognitive uncertainty task, a nonsignificant trend was observed indicating that the PB-supplemented animals spent more time oriented toward the food reward than VEH animals. In the open-field task, CUS-PB animals spent more time in the center of the arena than CUS-VEH animals, an effect not observed between the two CON groups. In the swim task, the PB animals, regardless of stress assignment, exhibited increased floating, suggesting a conserved response in a challenging context. Focusing on the endocrine measures, higher dehydroepiandrosterone (DHEA)-to-corticosterone fecal metabolite ratios, a correlate of emotional resilience, were observed in PB animals. Further, PB animals exhibited reduced microglia immunoreactivity in the basolateral amygdala, possibly indicating a neuroprotective effect of PB supplements in this rodent model. These results provide evidence that PB supplementation interacts with stress exposure to influence adaptive responses associated with endocrine, neural, and behavioral indices of anxiety.
Collapse
Affiliation(s)
- Nick R. Natale
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Molly Kent
- Dept of Biology, Virginia Military Institute, Lexington, VA 24450, USA
| | - Nathan Fox
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Dylan Vavra
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Kelly Lambert
- Dept of Psychology, University of Richmond, VA 23173, USA
| |
Collapse
|
26
|
Electroacupuncture and Moxibustion Modulate the BDNF and TrkB Expression in the Colon and Dorsal Root Ganglia of IBS Rats with Visceral Hypersensitivity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8137244. [PMID: 34621325 DOI: 10.1155/2021/8137244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Objective To evaluate the effects of electroacupuncture and moxibustion on brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) protein and mRNA expressions in the colon and dorsal root ganglia of IBS rats with visceral hypersensitivity and to explore their underlying therapeutic mechanisms. Method Forty Sprague Dawley rats were randomly divided into normal, model, model + mild moxibustion (MM), model + electroacupuncture (EA), and model + pinaverium bromide (PB) groups, with eight rats in each group. Chronic visceral hypersensitive IBS rat models were established by colorectal distension (CRD) with mustard oil clyster. Rats in the MM and EA groups, respectively, received moxibustion and electroacupuncture treatments on the Tianshu (ST25) and Shangjuxu (ST37) acupoints once daily for 7 days, and rats in the PB group received pinaverium bromide by oral gavage once daily for 7 consecutive days. After treatment, rats underwent abdominal withdrawal reflex (AWR) scoring under CRD and colon histopathological examination. Immunohistochemistry and real-time quantitative PCR (RT-qPCR) were used to study the protein and mRNA expressions of BDNF and TrkB in the rat colon and dorsal root ganglia. Results Compared with the normal group, AWR scores and body weight were clearly increased in the model group rats (both P < 0.01). The body weights were significantly elevated (P < 0.01, P < 0.05), but the AWR scores were reduced (P < 0.05, P < 0.01), after electroacupuncture and mild moxibustion treatment. Compared with levels in normal rats, BDNF and TrkB protein and mRNA expressions were significantly elevated in the IBS model rats (P < 0.01) but were downregulated after mild moxibustion, electroacupuncture, and Western medicine treatment (P < 0.01). Conclusion Electroacupuncture and moxibustion improved visceral hypersensitivity of IBS rats possibly by reducing BDNF and TrkB protein and mRNA expressions in the colon and dorsal root ganglia.
Collapse
|
27
|
Muhammad RN, Ahmed LA, Abdul Salam RM, Ahmed KA, Attia AS. Crosstalk Among NLRP3 Inflammasome, ET BR Signaling, and miRNAs in Stress-Induced Depression-Like Behavior: a Modulatory Role for SGLT2 Inhibitors. Neurotherapeutics 2021; 18:2664-2681. [PMID: 34664178 PMCID: PMC8804152 DOI: 10.1007/s13311-021-01140-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is an overwhelming health concern, and many patients fail to optimally respond to available standard therapies. Neuroplasticity and blood-brain barrier (BBB) integrity are the cornerstones of a well-functioning central nervous system, but they are vulnerable to an overly active NLRP3 inflammasome pathway that can also indirectly trigger the release of ET-1 and contribute to the ET system disturbance, which further damages stress resilience mechanisms. Here, the promising yet unexplored antidepressant potential of dapagliflozin (Dapa), a sodium-glucose co-transporter-2 inhibitor, was investigated by assessing its role in the modulation of the NLRP3 inflammasome pathway and ETBR signal transduction, and their impact on neuroplasticity and BBB integrity in an animal model of depression. Dapa (1 mg/kg/day; p.o.) with and without BQ-788 (1 mg/kg/day; i.p.), a specific ETBR blocker, were administered to adolescent male Wistar rats exposed to a 5-week chronic unpredictable stress protocol. The depressive animals demonstrated marked activation of the NLRP3 inflammasome pathway (NF-κB/NLRP3/caspase-1/IL/TNF-α), which was associated with both peripheral and central inflammatory responses. The ET system was disrupted, with noticeable reduction in miR-125a-5p and ETBR gene expression. Cortical ZO-1 expression was downregulated under the influence of NLRP3/TNF-α/miR-501-3p signaling, along with a prominent reduction in hippocampal BDNF and synapsin-1. With ETBR up-regulation being a cornerstone outcome, Dapa administration efficiently created an overall state of resilience, improved histopathological and behavioral variables, and preserved BBB function. These observations were further verified by the results obtained with BQ-788 co-administration. Thus, Dapa may exert its antidepressant action by reinforcing BBB integrity and promoting neuroplasticity through manipulation of the NLRP3/ET-1/ETBR/BDNF/ZO-1 axis, with a significant role for ETBR signaling. Graphical illustration for the proposed mechanisms of the anti-depressant potential of Dapa. Dapa suppressed NLRP3 inflammasome activation and assembly with subsequent inhibition of pro-inflammatory ILs. This results in attenuation of neuro-inflammation, BBB disruption, glial cell activation, TNF-α and ET-1 release, and the enhanced production of neurotrophins. The role of ETBR signaling was emphasized; Dapa possibly augmented ETBR expression, which is thought to boost neurotrophins production. The ETBR blocker, BQ-788, suppressed most of the positive outcomes of Dapa. Finally, miR-125a-5p and miR-501-3p that played major roles in these pathological pathways were modulated by Dapa. It is not yet clear whether Dapa has a direct or rather indirect effect on their expression. BBB, blood-brain barrier; Dapa, dapagliflozin; ET-1, endothelin-1; ETBR, endothelin B receptor; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3; TNF-α, tumor necrosis factor-α. Created with BioRender.com.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rania M Abdul Salam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biology, School of Pharmacy, New Giza University, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amina S Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
28
|
Zhao C, Mo L, Li J, Deng Q. Oxidized Milk Induces Spatial Learning and Memory Impairment by Altering Gut Microbiota in Offspring Mice during Pregnancy and Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9934-9946. [PMID: 34427092 DOI: 10.1021/acs.jafc.1c02716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early adverse diet exposures are known to be associated with increased risk of learning and memory injury in offspring, yet whether oxidized milk is involved in such an effect has been largely unknown. Here, we focused on oxidized milk intake in mice during pregnancy and lactation to measure the changes in the learning and memory ability in offspring and also probed into the relevant association with gut microbiota. Milk was oxidized with H2O2-Cu or HClO, resulting in different degrees of oxidative damage. KM female mice were fed H2O2-Cu, HClO, or normal control diets immediately after caging until their offspring were 3-weeks old. Behavioral tests were then performed to test the learning and memory ability, and 16S rRNA sequencing was completed with harvested fecal contents. As analyzed, fecal microflora in mice with oxidized milk was affected, mainly reflected in decreased mucin-degrading bacteria, Akkermansia and Lactobacillus, and in reversely increased pro-inflammatory bacteria Shigella, pathobiont Mucispirillum, nervous associated bacteria Ruminococcus, Escherichia, and Desulfovibrio. In the meantime, the inflammation developed in mice was aggravated accompanied by increased expression of relevant genes, while the genes and proteins associated with the learning and memory ability were down-regulated. Further behavioral tests proved impairment of the learning and memory ability in offspring. In general, milk of oxidative damage is a risk factor of the impaired transgenerational ability in learning and memory, which is associated with gut microbiota and intestinal mucosa conditions. This finding may help support the potential of early adverse diet as a harmful factor in learning and memory.
Collapse
Affiliation(s)
- Chaochao Zhao
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ling Mo
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jingjing Li
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Qiuling Deng
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
29
|
Cansız D, Ünal İ, Üstündağ ÜV, Alturfan AA, Altinoz MA, Elmacı İ, Emekli-Alturfan E. Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish. Mol Biol Rep 2021; 48:5259-5273. [PMID: 34228274 DOI: 10.1007/s11033-021-06532-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysfunction of the gastrointestinal tract (GIT) is one of the most common non-motor symptom of Parkinson's Disease (PD). Pathological processes causing PD were suggested to initiate in the enteric nervous system (ENS) and proceed to the central nervous system (CNS). There are studies showing that low-carbohydrate ketogenic diets can improve motor symptoms of PD. Caprylic acid (C8) is the principal fatty acid component of the medium-chain triglycerides in the ketogenic diets. In this study, we aimed to evaluate the effects of caprylic acid, in neurotoxin exposed zebrafish focusing on the relationship between intestinal and brain oxidative stress and inflammation. METHODS Adult zebrafish were exposed to rotenone (5 μg/L) (R group) and caprylic acid (20 and 60 mg/mL) (L + HDCA and R + HDCA groups) for 30 days. At the end of 30 days locomotor activities were determined. Levels of lipid peroxidation (LPO), nitric oxide, glutathione and superoxide dismutase and glutathione S-transferase activities were determined by spectrophotometric methods and gene expressions of tnf⍺, il1, il6, il21, ifnɣ and bdnf were evaluated by RT-PCR in the brain and intestinal tissues of zebrafish. RESULTS Caprylic acid ameliorated LPO, NO, SOD and the expressions of tnf⍺, il1, il6, il21, ifnɣ and bdnf in brain and intestines. Locomotor activities were only ameliorated in high dose R + HDCA group. CONCLUSIONS Caprylic acid ameliorated the neurotoxin-induced oxidative stress and inflammation both in the brain and intestines and enhanced locomotor activity in zebrafish.
Collapse
Affiliation(s)
- Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - İsmail Ünal
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - Ahmet Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Meriç A Altinoz
- Department of Medical Biochemistry, Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İlhan Elmacı
- Department of Neurosurgery, Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey.
| |
Collapse
|
30
|
Ojeda J, Ávila A, Vidal PM. Gut Microbiota Interaction with the Central Nervous System throughout Life. J Clin Med 2021; 10:1299. [PMID: 33801153 PMCID: PMC8004117 DOI: 10.3390/jcm10061299] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
During the last years, accumulating evidence has suggested that the gut microbiota plays a key role in the pathogenesis of neurodevelopmental and neurodegenerative diseases via the gut-brain axis. Moreover, current research has helped to elucidate different communication pathways between the gut microbiota and neural tissues (e.g., the vagus nerve, tryptophan production, extrinsic enteric-associated neurons, and short chain fatty acids). On the other hand, altering the composition of gut microbiota promotes a state known as dysbiosis, where the balance between helpful and pathogenic bacteria is disrupted, usually stimulating the last ones. Herein, we summarize selected findings of the recent literature concerning the gut microbiome on the onset and progression of neurodevelopmental and degenerative disorders, and the strategies to modulate its composition in the search for therapeutical approaches, focusing mainly on animal models studies. Readers are advised that this is a young field, based on early studies, that is rapidly growing and being updated as the field advances.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - Pía M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| |
Collapse
|
31
|
Lim SM, Lee NK, Paik HD. Potential neuroprotective effects of heat-killed Lactococcus lactis KC24 using SH-SY5Y cells against oxidative stress induced by hydrogen peroxide. Food Sci Biotechnol 2020; 29:1735-1740. [PMID: 33282440 DOI: 10.1007/s10068-020-00830-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
The present study was an investigation of the neuroprotective effects of probiotic bacteria in SH-SY5Y neuroblastoma cells experiencing oxidative stress. The bacterial strains were: commercial Lactobacillus rhamnosus GG; two isolated bacterial strains (Lactobacillus delbrueckii KU200170 and Lactobacillus plantarum KU200661); and probiotic Lactococcus lactis KC24. To evaluate the neuroprotective effects of the bacteria, a conditioned medium (CM) was prepared using HT-29 cells cultured with the heat-killed probiotic strains. Of the bacterial strains tested, the oxidatively stressed SH-SY5Y cells were most viable when cultured with L. lactis KC24-CM. L. lactis KC24-CM promoted the expression of brain-derived neurotropic factor (BDNF) in the HT-29 cells. It also significantly increased BDNF expression and reduced the apoptosis-related Bax/Bcl-2 ratio in the oxidatively stressed SH-SY5Y cells. Therefore, L. lactis KC24 is a potential psychobiotic for use in the functional food industry.
Collapse
Affiliation(s)
- Sung-Min Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
32
|
Polito R, Di Meo I, Barbieri M, Daniele A, Paolisso G, Rizzo MR. Adiponectin Role in Neurodegenerative Diseases: Focus on Nutrition Review. Int J Mol Sci 2020; 21:ijms21239255. [PMID: 33291597 PMCID: PMC7729837 DOI: 10.3390/ijms21239255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is an adipokine produced by adipose tissue. It has numerous beneficial effects. In particular, it improves metabolic effects and glucose homeostasis, lipid profile, and is involved in the regulation of cytokine profile and immune cell production, having anti-inflammatory and immune-regulatory effects. Adiponectin’s role is already known in immune diseases and also in neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are a set of diseases of the central nervous system, characterized by a chronic and selective process of neuron cell death, which occurs mainly in relation to oxidative stress and neuroinflammation. Lifestyle is able to influence the development of these diseases. In particular, unhealthy nutrition on gut microbiota, influences its composition and predisposition to develop many diseases such as neurodegenerative diseases, given the importance of the “gut-brain” axis. There is a strong interplay between Adiponectin, gut microbiota, and brain-gut axis. For these reasons, a healthy diet composed of healthy nutrients such as probiotics, prebiotics, polyphenols, can prevent many metabolic and inflammatory diseases such as neurodegenerative diseases and obesity. The special Adiponectin role should be taken into account also, in order to be able to use this component as a therapeutic molecule.
Collapse
Affiliation(s)
- Rita Polito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
- CEINGE-Advanced Biotechnologies Scarl, Via G. Salvatore 486, 80145 Naples, Italy
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Aurora Daniele
- Department of Environmental Biological Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via G. Vivaldi 42, 81100 Caserta, Italy;
- CEINGE-Advanced Biotechnologies Scarl, Via G. Salvatore 486, 80145 Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
- Correspondence: ; Tel.: +39-081-566-5135; Fax: +39-081-566-5303
| |
Collapse
|
33
|
Zhang M, Zhao D, Zhou G, Li C. Dietary Pattern, Gut Microbiota, and Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12800-12809. [PMID: 32090565 DOI: 10.1021/acs.jafc.9b08309] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disease. Until now, there has been no specific medicine that can cure Alzheimer's disease or effectively reverse the disease process. A good dietary pattern is an efficient way to prevent or delay the progression of the disease. Evidence suggests that diet may affect β-amyloid production and tau processing or may regulate inflammation, metabolism, and oxidative stress associated with Alzheimer's disease, which can be exerted by gut microbiota. The gut microbiota is a complex microbial community that affects not only various digestive diseases but also neurodegenerative diseases. Studies have shown that gut microbial metabolites, such as pro-inflammatory factors, short-chain fatty acids, and neurotransmitters, can affect the pathogenesis of Alzheimer's disease. Clinical studies suggested that the gut microbial composition of patients with Alzheimer's disease is different, in particular to lower abundances of Eubacterium rectale and Bacteroides fragilis, which have an anti-inflammatory activity. The purpose of this review is to summarize the neuropathological pathogenesis of Alzheimer's disease, and the modulation of dietary patterns rather than single dietary components on Alzheimer's disease through the gut-brain axis was discussed.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
34
|
Ding F, Wu J, Liu C, Bian Q, Qiu W, Ma Q, Li X, Long M, Zou X, Chen J. Effect of Xiaoyaosan on Colon Morphology and Intestinal Permeability in Rats With Chronic Unpredictable Mild Stress. Front Pharmacol 2020; 11:1069. [PMID: 32765272 PMCID: PMC7378849 DOI: 10.3389/fphar.2020.01069] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose In our present study, a rat depression model induced by 6 weeks of chronic unpredictable mild stress (CUMS) was established, and we investigated how Xiaoyaosan affects the intestinal permeability of depressed rats and alterations in tight-junction proteins (TJs) involved in this process. Methods The rat depression model was established using CUMS for 6 consecutive weeks. A total of 40 healthy male Sprague-Dawley rats were randomly sorted into four groups: the control group, CUMS group, Xiaoyaosan group, and fluoxetine group. All groups, excluding the control group, were subjected to the 6-week CUMS program to generate the depression model. Body weight, food intake, and behaviors were observed during the modeling period. Histopathological alterations of colon tissue were evaluated by hematoxylin-eosin staining (H&E), and mucus-containing goblet cells were detected by periodic acid-Schiff (PAS) staining. The ultrastructural morphology of colonic mucosa was observed by transmission electron microscopy. Furthermore, immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to determine the expression of TJs. The concentrations of 5-hydroxytryptamine (5-HT) in the hypothalamus and colon were also assessed using enzyme-linked immunosorbent assay (ELISA). Results Treatment of depressed rats with Xiaoyaosan alleviated depression-like behaviors as demonstrated by increases in the total distance traveled, the number of entries into the central area in the open field test, the duration spent in the central area, and sucrose preference. Xiaoyaosan treatment also increased body weight gain and food intake in depressed rats. Moreover, Xiaoyaosan treatment effectively improved the colonic pathological and ultrastructural changes, upregulated the expression of ZO-1, occludin, and claudin-1 in the colon, and increased 5-HT levels in the hypothalamus and colonic mucosa. Conclusions Xiaoyaosan treatment attenuates depression-like behaviors caused by CUMS and ameliorates CUMS-induced abnormal intestinal permeability, which may be associated with the expression of TJs. These results suggest that Xiaoyaosan exerts an antidepressant effect that may be related to an improvement of intestinal barrier function via the brain-gut axis.
Collapse
Affiliation(s)
- Fengmin Ding
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiajia Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qinglai Bian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenqi Qiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Man Long
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaxu Chen
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Chitosan Ameliorates DSS-Induced Ulcerative Colitis Mice by Enhancing Intestinal Barrier Function and Improving Microflora. Int J Mol Sci 2019; 20:ijms20225751. [PMID: 31731793 PMCID: PMC6888260 DOI: 10.3390/ijms20225751] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) has been identified as one of the inflammatory diseases. Intestinal mucosal barrier function and microflora play major roles in UC. Modified-chitosan products have been consumed as effective and safe drugs to treat UC. The present work aimed to investigate the effect of chitosan (CS) on intestinal microflora and intestinal barrier function in dextran sulfate sodium (DSS)-induced UC mice and to explore the underlying mechanisms. KM (Kunming) mice received water/CS (250, 150 mg/kg) for 5 days, and then received 3% DSS for 5 days to induce UC. Subsequently, CS (250, 150 mg/kg) was administered daily for 5 days. Clinical signs, body weight, colon length, and histological changes were recorded. Alterations of intestinal microflora were analyzed by PCR-DGGE, expressions of TNF-α and tight junction proteins were detected by Western blotting. CS showed a significant effect against UC by the increased body weight and colon length, decreased DAI (disease activity index) and histological injury scores, and alleviated histopathological changes. CS reduced the expression of TNF-α, promoted the expressions of tight junction proteins such as claudin-1, occludin, and ZO-1 to maintain the intestinal mucosal barrier function for attenuating UC in mice. Furthermore, Parabacteroides, Blautia, Lactobacillus, and Prevotella were dominant organisms in the intestinal tract. Blautia and Lactobacillus decreased with DSS treatment, but increased obviously with CS treatment. This is the first time that the effect of original CS against UC in mice has been reported and it is through promoting dominant intestinal microflora such as Blautia, mitigating intestinal microflora dysbiosis, and regulating the expressions of TNF-α, claudin-1, occludin, and ZO-1. CS can be developed as an effective food and health care product for the prevention and treatment of UC.
Collapse
|
36
|
Kucera J, Ruda-Kucerova J, Zlamal F, Kuruczova D, Babinska Z, Tomandl J, Tomandlova M, Bienertova-Vasku J. Oral administration of BDNF and/or GDNF normalizes serum BDNF level in the olfactory bulbectomized rats: A proof of concept study. Pharmacol Rep 2019; 71:669-675. [DOI: 10.1016/j.pharep.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/08/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
|
37
|
Zhang L, Gui S, Liang Z, Liu A, Chen Z, Tang Y, Xiao M, Chu F, Liu W, Jin X, Zhu J, Lu X. Musca domestica Cecropin (Mdc) Alleviates Salmonella typhimurium-Induced Colonic Mucosal Barrier Impairment: Associating With Inflammatory and Oxidative Stress Response, Tight Junction as Well as Intestinal Flora. Front Microbiol 2019; 10:522. [PMID: 30930887 PMCID: PMC6428779 DOI: 10.3389/fmicb.2019.00522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella typhimurium, a Gram-negative food-borne pathogen, induces impairment in intestinal mucosal barrier function frequently. The injury is related to many factors such as inflammation, oxidative stress, tight junctions and flora changes in the host intestine. Musca domestica cecropin (Mdc), a novel antimicrobial peptide containing 40 amino acids, has potential antibacterial, anti-inflammatory, and immunological functions. It remains unclear exactly whether and how Mdc reduces colonic mucosal barrier damage caused by S. typhimurium. Twenty four 6-week-old male mice were divided into four groups: normal group, control group (S. typhimurium-challenged), Mdc group, and ceftriaxone sodium group (Cs group). HE staining and transmission electron microscopy (TEM) were performed to observe the morphology of the colon tissues. Bacterial load of S. typhimurium in colon, liver and spleen were determined by bacterial plate counting. Inflammatory factors were detected by enzyme linked immunosorbent assay (ELISA). Oxidative stress levels in the colon tissues were also analyzed. Immunofluorescence analysis, RT-PCR, and Western blot were carried out to examine the levels of tight junction and inflammatory proteins. The intestinal microbiota composition was assessed via 16s rDNA sequencing. We successfully built and evaluated an S. typhimurium-infection model in mice. Morphology and microcosmic change of the colon tissues confirmed the protective qualities of Mdc. Mdc could inhibit colonic inflammation and oxidative stress. Tight junctions were improved significantly after Mdc administration. Interestingly, Mdc ameliorated intestinal flora imbalance, which may be related to the improvement of tight junction. Our results shed a new light on protective effects and mechanism of the antimicrobial peptide Mdc on colonic mucosal barrier damage caused by S. typhimurium infection. Mdc is expected to be an important candidate for S. typhimurium infection treatment.
Collapse
Affiliation(s)
- Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhaobo Liang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Along Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaoxia Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Tang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fujiang Chu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayong Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
38
|
Abstract
The microbiome in the gut is a diverse environment, housing the majority of our bacterial microbes. This microecosystem has a symbiotic relationship with the surrounding multicellular organism, and a balance and diversity of specific phyla of bacteria support general health. When gut bacteria diversity diminishes, there are systemic consequences, such as gastrointestinal and psychological distress. This pathway of communication is known as the microbiome-gut-brain axis. Interventions such as probiotic supplementation that influence microbiome also improve both gut and brain disorders. Recent evidence suggests that aerobic exercise improves the diversity and abundance of genera from the Firmcutes phylum, which may be the link between the positive effects of exercise on the gut and brain. The purpose of this review is to explain the complex communication pathway of the microbiome-gut-brain axis and further examine the role of exercise on influencing this communication highway.
Collapse
Affiliation(s)
- Alyssa Dalton
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Micah Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA,CONTACT Micah Zuhl Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
39
|
Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018; 8:360-381. [PMID: 30483303 PMCID: PMC6244112 DOI: 10.1159/000492491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating data suggest a crucial role of the intestinal microbiota in the development and progression of neurodegenerative diseases. More recently, emerging reports have revealed an association between intestinal microbiota dysfunctions and dementia, a debilitating multifactorial disorder, characterized by progressive deterioration of cognition and behavior that interferes with the social and professional life of the sufferer. However, the mechanisms of this association are not fully understood. SUMMARY In this review, I discuss recent data that suggest mechanisms of cross-talk between intestinal microbiota dysfunction and the brain that underlie the development of dementia. Potential therapeutic options for dementia are also discussed. The pleiotropic signaling of the metabolic products of the intestinal microbiota together with their specific roles in the maintenance of both the intestinal and blood-brain barriers as well as regulation of local, distant, and circulating immunocytes, and enteric, visceral, and central neural functions are integral to a healthy gut and brain. KEY MESSAGES Research investigating the effect of intestinal microbiota dysfunctions on brain health should focus on multiple interrelated systems involving local and central neuroendocrine, immunocyte, and neural signaling of microbial products and transmitters and neurohumoral cells that not only maintain intestinal, but also blood brain-barrier integrity. The change in intestinal microbiome/dysbiome repertoire is crucial to the development of dementia.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|