1
|
Balogh A, Bódi-Jakus M, Karl VR, Bellák T, Széky B, Farkas J, Lamberto F, Novak D, Fehér A, Zana M, Dinnyés A. Establishment of human pluripotent stem cell-derived cortical neurosphere model to study pathomechanisms and chemical toxicity in Kleefstra syndrome. Sci Rep 2024; 14:22572. [PMID: 39343771 PMCID: PMC11439915 DOI: 10.1038/s41598-024-72791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
In the present study, we aimed to establish and characterize a mature cortical spheroid model system for Kleefstra syndrome (KS) using patient-derived iPSC. We identified key differences in the growth behavior of KS spheroids determined by reduced proliferation marked by low Ki67 and high E-cadherin expression. Conversely, in the spheroid-based neurite outgrowth assay KS outperformed the control neurite outgrowth due to higher BDNF expression. KS spheroids were highly enriched in VGLUT1/2-expressing glutamatergic and ChAT-expressing cholinergic neurons, while TH-positive catecholamine neurons were significantly underrepresented. Furthermore, high NMDAR1 expression was also detected in the KS spheroid, similarly to other patients-derived neuronal cultures, denoting high NMDAR1 expression as a general, KS-specific marker. Control and KS neuronal progenitors and neurospheres were exposed to different toxicants (paraquat, rotenone, bardoxolone, and doxorubicin), and dose-response curves were assessed after acute exposure. Differentiation stage and compound-specific differences were detected with KS neurospheres being the most sensitive to paraquat. Altogether this study describes a robust 3D model system expressing the disease-specific markers and recapitulating the characteristic pathophysiological traits. This platform is suitable for testing developing brain-adverse environmental effects interactions, drug development, and screening towards individual therapeutic strategies.
Collapse
Grants
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
Collapse
Affiliation(s)
- Andrea Balogh
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Balázs Széky
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - János Farkas
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Federica Lamberto
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, H-2100, Hungary
| | - David Novak
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Melinda Zana
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, H-2100, Hungary.
| |
Collapse
|
2
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
3
|
Crews FT, Fisher RP, Qin L, Vetreno RP. HMGB1 neuroimmune signaling and REST-G9a gene repression contribute to ethanol-induced reversible suppression of the cholinergic neuron phenotype. Mol Psychiatry 2023; 28:5159-5172. [PMID: 37402853 PMCID: PMC10764639 DOI: 10.1038/s41380-023-02160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Adolescent binge drinking increases Toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), the endogenous TLR4/RAGE agonist high-mobility group box 1 (HMGB1), and proinflammatory neuroimmune signaling in the adult basal forebrain in association with persistent reductions of basal forebrain cholinergic neurons (BFCNs). In vivo preclinical adolescent intermittent ethanol (AIE) studies find anti-inflammatory interventions post-AIE reverse HMGB1-TLR4/RAGE neuroimmune signaling and loss of BFCNs in adulthood, suggesting proinflammatory signaling causes epigenetic repression of the cholinergic neuron phenotype. Reversible loss of BFCN phenotype in vivo is linked to increased repressive histone 3 lysine 9 dimethylation (H3K9me2) occupancy at cholinergic gene promoters, and HMGB1-TLR4/RAGE proinflammatory signaling is linked to epigenetic repression of the cholinergic phenotype. Using an ex vivo basal forebrain slice culture (FSC) model, we report EtOH recapitulates the in vivo AIE-induced loss of ChAT+IR BFCNs, somal shrinkage of the remaining ChAT+ neurons, and reduction of BFCN phenotype genes. Targeted inhibition of EtOH-induced proinflammatory HMGB1 blocked ChAT+IR loss while disulfide HMBG1-TLR4 and fully reduced HMGB1-RAGE signaling decreased ChAT+IR BFCNs. EtOH increased expression of the transcriptional repressor RE1-silencing transcription factor (REST) and the H3K9 methyltransferase G9a that was accompanied by increased repressive H3K9me2 and REST occupancy at promoter regions of the BFCN phenotype genes Chat and Trka as well as the lineage transcription factor Lhx8. REST expression was similarly increased in the post-mortem human basal forebrain of individuals with alcohol use disorder, which is negatively correlated with ChAT expression. Administration of REST siRNA and the G9a inhibitor UNC0642 blocked and reversed the EtOH-induced loss of ChAT+IR BFCNs, directly linking REST-G9a transcriptional repression to suppression of the cholinergic neuron phenotype. These data suggest that EtOH induces a novel neuroplastic process involving neuroimmune signaling and transcriptional epigenetic gene repression resulting in the reversible suppression of the cholinergic neuron phenotype.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rachael P Fisher
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to Treat Alcohol Use Disorder in Adulthood. Pharmacol Rev 2023; 75:380-396. [PMID: 36781218 PMCID: PMC9969522 DOI: 10.1124/pharmrev.122.000710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G Coleman
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A Macht
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Crews FT, Vetreno RP. Cholinergic REST-G9a gene repression through HMGB1-TLR4 neuroimmune signaling regulates basal forebrain cholinergic neuron phenotype. Front Mol Neurosci 2022; 15:992627. [PMID: 36072299 PMCID: PMC9441808 DOI: 10.3389/fnmol.2022.992627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1) are Toll-like receptor (TLR4) agonists that activate proinflammatory neuroimmune signaling linked to loss of basal forebrain cholinergic neurons (BFCNs) and cognitive deficits. Loss of choline acetyltransferase immunoreactive (ChAT + IR) BFCNs is generally interpreted as cell death, but recent in vivo studies find anti-inflammatory interventions restore adolescent ethanol exposure-induced persistent loss of adult ChAT + IR neurons and cognitive deficits, suggesting proinflammatory signaling-induced reversible gene repression of ChAT in BFCNs. Using an ex vivo Wistar rat basal forebrain slice culture (FSC) model to investigate TLR4 involvement in repression of the BFCN phenotype, we report that direct TLR4 activation with LPS decreases expression of multiple BFCN markers in the absence of observable neuronal loss or cell death. Inhibition of HMGB1 blunts while inhibition of TLR4 blocks the LPS-induced loss of ChAT + IR neurons. TLR4 activation induces the transcriptional repressor RE1-silencing transcription factor (REST) and the methyltransferase G9a while increasing repressive histone 3 lysine 9 dimethylation and REST occupancy at cholinergic gene promoters. G9a inhibitors both prevent and reverse the LPS-induced loss of ChAT + IR whereas siRNA inhibition of REST blocks the LPS-induced loss of ChAT + IR BFCNs. These data suggest in vivo HMGB1-TLR4 signaling in BFCNs leads to a reversible loss of the cholinergic neuron phenotype through epigenetic gene repressive mechanisms.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Pajarillo E, Digman A, Nyarko-Danquah I, Son DS, Soliman KFA, Aschner M, Lee E. Astrocytic transcription factor REST upregulates glutamate transporter EAAT2, protecting dopaminergic neurons from manganese-induced excitotoxicity. J Biol Chem 2021; 297:101372. [PMID: 34756885 PMCID: PMC8626589 DOI: 10.1016/j.jbc.2021.101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic exposure to high levels of manganese (Mn) leads to manganism, a neurological disorder with similar symptoms to those inherent to Parkinson's disease. However, the underlying mechanisms of this pathological condition have yet to be established. Since the human excitatory amino acid transporter 2 (EAAT2) (glutamate transporter 1 in rodents) is predominantly expressed in astrocytes and its dysregulation is involved in Mn-induced excitotoxic neuronal injury, characterization of the mechanisms that mediate the Mn-induced impairment in EAAT2 function is crucial for the development of novel therapeutics against Mn neurotoxicity. Repressor element 1-silencing transcription factor (REST) exerts protective effects in many neurodegenerative diseases. But the effects of REST on EAAT2 expression and ensuing neuroprotection are unknown. Given that the EAAT2 promoter contains REST binding sites, the present study investigated the role of REST in EAAT2 expression at the transcriptional level in astrocytes and Mn-induced neurotoxicity in an astrocyte–neuron coculture system. The results reveal that astrocytic REST positively regulates EAAT2 expression with the recruitment of an epigenetic modifier, cAMP response element-binding protein–binding protein/p300, to its consensus binding sites in the EAAT2 promoter. Moreover, astrocytic overexpression of REST attenuates Mn-induced reduction in EAAT2 expression, leading to attenuation of glutamate-induced neurotoxicity in the astrocyte–neuron coculture system. Our findings demonstrate that astrocytic REST plays a critical role in protection against Mn-induced neurotoxicity by attenuating Mn-induced EAAT2 repression and the ensuing excitotoxic dopaminergic neuronal injury. This indicates that astrocytic REST could be a potential molecular target for the treatment of Mn toxicity and other neurological disorders associated with EAAT2 dysregulation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Karam F A Soliman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Laboratory of Molecular Nutrition of the Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
8
|
Aoki H, Abe C, Hara A, Miyazaki T, Morita H, Kunisada T. Induced genetic ablation of Rest leads to the alteration of stimulus-induced response of the vagal nerve. Genes Cells 2021; 26:45-55. [PMID: 33211397 DOI: 10.1111/gtc.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022]
Abstract
Rest (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells by preventing precocious expression of neuronal genes. In order to further investigate the function of Rest in neurons, we generated and examined mice evoking genetic ablation of Rest specifically in neural tissues by generating Rest conditional knockout mice. As the Rest knockout mice are embryonically lethal, we used a Sox1-Cre allele to excise the floxed Rest gene from the early stage of nerve cell differentiation including neural crest-derived nerve cells. Using this conditional Rest knockout Sox1-Cre; Restflox/flox mice, we have revealed the role of Rest in the parasympathetic nervous system in the stomach and heart.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
9
|
Alshawli AS, Wurdak H, Wood IC, Ladbury JE. Histone deacetylase inhibitors induce medulloblastoma cell death independent of HDACs recruited in REST repression complexes. Mol Genet Genomic Med 2020; 8:e1429. [PMID: 32720471 PMCID: PMC7549561 DOI: 10.1002/mgg3.1429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Repressor element 1-silencing transcription factor (REST) acts as a transcriptional repressor by recruiting several chromatin modifiers, including histone deacetylase (HDAC). Elevated REST expression in medulloblastoma has been associated with tumor progression nevertheless, the tumor shows high sensitivity to HDAC inhibitors (HDACi). However, the functional implications of REST and its requirement for HDACi-induced anti-cancer effects are not well understood. METHODS In this study, the expression of REST was evaluated across the medulloblastoma subgroups and subtypes using published gene expression data. Further, the expression of REST was modulated using the CRISPR/Cas9 knockout and shRNA knockdown in the Daoy medulloblastoma cell line. RESULTS The results of this study showed that the expression of REST is elevated in most medulloblastoma subgroups compared to the non-cancerous cerebellum. Blocking of REST expression resulted in increasing the expression of REST-regulated genes, a moderate decrease in the fraction of the cells in the S-phase, and reducing the cells' migration ability. However, REST deficiency did not lead to a marked decrease in the Daoy cell viability and sensitivity to HDACi. CONCLUSION The findings of this study indicate that REST is not essential for sustaining the proliferation/viability of the Daoy cells. It also revealed that the anti-proliferative effect of HDACi is independent of REST expression.
Collapse
Affiliation(s)
- Abdulelah S. Alshawli
- School of Biomedical SciencesFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Heiko Wurdak
- Leeds Institute of Cancer and PathologyUniversity of LeedsSt James's University HospitalLeedsUK
| | - Ian C. Wood
- School of Biomedical SciencesFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - John E. Ladbury
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
10
|
Pajarillo E, Rizor A, Son DS, Aschner M, Lee E. The transcription factor REST up-regulates tyrosine hydroxylase and antiapoptotic genes and protects dopaminergic neurons against manganese toxicity. J Biol Chem 2020; 295:3040-3054. [PMID: 32001620 PMCID: PMC7062174 DOI: 10.1074/jbc.ra119.011446] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic functions are important for various biological activities, and their impairment leads to neurodegeneration, a hallmark of Parkinson's disease (PD). Chronic manganese (Mn) exposure causes the neurological disorder manganism, presenting symptoms similar to those of PD. Emerging evidence has linked the transcription factor RE1-silencing transcription factor (REST) to PD and also Alzheimer's disease. But REST's role in dopaminergic neurons is unclear. Here, we investigated whether REST protects dopaminergic neurons against Mn-induced toxicity and enhances expression of the dopamine-synthesizing enzyme tyrosine hydroxylase (TH). We report that REST binds to RE1 consensus sites in the TH gene promoter, stimulates TH transcription, and increases TH mRNA and protein levels in dopaminergic cells. REST binding to the TH promoter recruited the epigenetic modifier cAMP-response element-binding protein-binding protein/p300 and thereby up-regulated TH expression. REST relieved Mn-induced repression of TH promoter activity, mRNA, and protein levels and also reduced Mn-induced oxidative stress, inflammation, and apoptosis in dopaminergic neurons. REST reduced Mn-induced proinflammatory cytokines, including tumor necrosis factor α, interleukin 1β (IL-1β), IL-6, and interferon γ. Moreover, REST inhibited the Mn-induced proapoptotic proteins Bcl-2-associated X protein (Bax) and death-associated protein 6 (Daxx) and attenuated an Mn-induced decrease in the antiapoptotic proteins Bcl-2 and Bcl-xL. REST also enhanced the expression of antioxidant proteins, including catalase, NF-E2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Our findings indicate that REST activates TH expression and thereby protects neurons against Mn-induced toxicity and neurological disorders associated with dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32301
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32301
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York 10461
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32301.
| |
Collapse
|
11
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
12
|
Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy. Stem Cells Int 2016; 2016:5838934. [PMID: 28105055 PMCID: PMC5220531 DOI: 10.1155/2016/5838934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/24/2023] Open
Abstract
The cellular and molecular bases of neurological diseases have been studied for decades; however, the underlying mechanisms are not yet fully elucidated. Compared with other disorders, diseases of the nervous system have been very difficult to study mainly due to the inaccessibility of the human brain and live neurons in vivo or in vitro and difficulties in examination of human postmortem brain tissue. Despite the availability of various genetically engineered animal models, these systems are still not adequate enough due to species variation and differences in genetic background. Human induced pluripotent stem cells (hiPSCs) reprogrammed from patient somatic cells possess the potential to differentiate into any cell type, including neural progenitor cells and postmitotic neurons; thus, they open a new area to in vitro modeling of neurological diseases and their potential treatment. Currently, many protocols for generation of various neuronal subtypes are being developed; however, most of them still require further optimization. Here, we highlight accomplishments made in the generation of dopaminergic and cholinergic neurons, the two subtypes most affected in Alzheimer's and Parkinson's diseases and indirectly affected in Huntington's disease. Furthermore, we discuss the potential role of hiPSC-derived neurons in the modeling and treatment of neurological diseases related to dopaminergic and cholinergic system dysfunction.
Collapse
|
13
|
Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector. Mol Neurobiol 2016; 54:541-550. [DOI: 10.1007/s12035-015-9658-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
|
14
|
Li N, Liu Z, Wang G, Wang S. Downregulation of the sodium channel Nav1.6 by potential transcriptomic deregulation may explain sensory deficits in critical illness neuropathy. Life Sci 2015; 143:231-6. [PMID: 26562765 DOI: 10.1016/j.lfs.2015.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/08/2015] [Accepted: 11/07/2015] [Indexed: 11/24/2022]
Abstract
AIMS Sepsis patients and other patients in the critical care settings are at very high risk of mortality due to the primary illness. However, a fraction of patients, even after showing initial clinical improvement, deteriorates relentlessly at later stages. Increasingly, it is being identified that this is mostly due to dysfunction of the neurological system. MAIN METHODS We obtained peripheral nerve biopsies from the sural nerve from ICU patients. Nav1.6 expression was significantly diminished. The expression of cellular membrane anchoring protein for Nav1.6, ankyrin, remained unaffected, suggesting that genomic repression may be responsible for the diminished expression of the sodium channels. We examined the expression of two regulatory transcription factors: (a) a positive regulator YY1 that binds to the promoter region of sodium channels and (b) an upstream negative neuronal regulator REST. KEY FINDINGS REST expression was significantly elevated, while YY1 expression was diminished. Finally, we also observed that the cholinergic synthetic enzyme acyltransferase was also significantly diminished in sensory nerve lysates. Finally, circulating antibodies was detected in the peripheral blood against all the major sodium channels Nav1.6, 1.8 and 1.9, which contribute to the development and propagation of action potentials. SIGNIFICANCE This may potentially explain why its dysfunction affects neurological functions across all systems of the body during critical illness. The underlying mechanism of why the expression of the REST transcriptional factor is affected in critical illnesses remains our future goals of investigation.
Collapse
Affiliation(s)
- Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China
| | - Zhongmin Liu
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China
| | - Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China
| | - Shiji Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China.
| |
Collapse
|
15
|
Warburton A, Breen G, Rujescu D, Bubb VJ, Quinn JP. Characterization of a REST-Regulated Internal Promoter in the Schizophrenia Genome-Wide Associated Gene MIR137. Schizophr Bull 2015; 41:698-707. [PMID: 25154622 PMCID: PMC4393679 DOI: 10.1093/schbul/sbu117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MIR137 has been identified as a candidate gene for schizophrenia from genome-wide association studies via association with an intronic single nucleotide polymorphism (SNP), rs1625579. The location of the SNP suggests one mechanism in which transcriptional or posttranscriptional regulation of miR-137 expression could underlie schizophrenia. We identified and validated a novel promoter of the MIR137 gene adjacent to miR-137 itself which can direct the expression of distinct mRNA isoforms encoding miR-137. Analysis of both endogenous gene expression and reporter gene assays determined that this internal promoter is regulated by repressor element-1 silencing transcription factor (REST), which has previously been associated with pathways linked to schizophrenia. Distinct isoforms of REST mediate differential expression at this locus, suggesting the relative levels of these isoforms are important for miR-137 expression profiles. The internal promoter contains a variable number tandem repeat (VNTR) domain adjacent to the pre-miR-137 sequence. The reporter gene activity directed by this promoter was modified by the genotype of the VNTR. Differential expression was also observed in response to cocaine, which is known to regulate the REST pathway in SH-SY5Y cells. Our data support the hypothesis that a "gene × environment" interaction could modify the level of miR-137 expression via this internal promoter and that the genotype of the VNTR could modulate transcriptional responses. We demonstrate that this promoter region is not in disequilibrium with rs1625579 and therefore would supply a distinct pathway to potentially alter miR-137 levels in response to environmental cues.
Collapse
Affiliation(s)
- Alix Warburton
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK;
| | - Gerome Breen
- King’s College London, MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London, UK; ,National Institute for Health Research (NIHR), Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London SE5 8DF, UK;
| | - Dan Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - Vivien J. Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK;
| | - John P. Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; ,*To whom correspondence should be addressed; Department of Molecular and Clinical Pharmacology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK; tel: +44-151-794-5498, fax: +44-151-794-5517, e-mail:
| |
Collapse
|
16
|
Love CE, Prince VE. Rest represses maturation within migrating facial branchiomotor neurons. Dev Biol 2015; 401:220-35. [PMID: 25769695 DOI: 10.1016/j.ydbio.2015.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate brain arises from the complex organization of millions of neurons. Neurogenesis encompasses not only cell fate specification from neural stem cells, but also the terminal molecular and morphological maturation of neurons at correct positions within the brain. RE1-silencing transcription factor (Rest) is expressed in non-neural tissues and neuronal progenitors where it inhibits the terminal maturation of neurons by repressing hundreds of neuron-specific genes. Here we show that Rest repression of maturation is intimately linked with the migratory capability of zebrafish facial branchiomotor neurons (FBMNs), which undergo a characteristic tangential migration from hindbrain rhombomere (r) 4 to r6/r7 during development. We establish that FBMN migration is increasingly disrupted as Rest is depleted in zebrafish rest mutant embryos, such that around two-thirds of FBMNs fail to complete migration in mutants depleted of both maternal and zygotic Rest. Although Rest is broadly expressed, we show that de-repression or activation of Rest target genes only within FBMNs is sufficient to disrupt their migration. We demonstrate that this migration defect is due to precocious maturation of FBMNs, based on both morphological and molecular criteria. We further show that the Rest target gene and alternative splicing factor srrm4 is a key downstream regulator of maturation; Srrm4 knockdown partially restores the ability of FBMNs to migrate in rest mutants while preventing their precocious morphological maturation. Rest must localize to the nucleus to repress its targets, and its subcellular localization is highly regulated: we show that targeting Rest specifically to FBMN nuclei rescues FBMN migration in Rest-deficient embryos. We conclude that Rest functions in FBMN nuclei to inhibit maturation until the neurons complete their migration.
Collapse
Affiliation(s)
- Crystal E Love
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60615, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60615, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
R HR, Kim H, Noh K, Kim YJ. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep 2015; 47:192-6. [PMID: 24755554 PMCID: PMC4163886 DOI: 10.5483/bmbrep.2014.47.4.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes. [BMB Reports 2014; 47(4): 192-196]
Collapse
Affiliation(s)
- Harikrishna Reddy R
- Departments of Applied Biochemistry Research Center, Konkuk University, Chungju 380-701, Korea
| | - Hackyoung Kim
- Departments of Applied Biochemistry Research Center, Konkuk University, Chungju 380-701, Korea
| | - Kwangmo Noh
- Departments of Nanotechnology Research Center, Konkuk University, Chungju 380-701, Korea
| | - Young Jun Kim
- Departments of Applied Biochemistry and Nanotechnology Research Center, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
18
|
Zhou G, Du T, Roizman B. The role of the CoREST/REST repressor complex in herpes simplex virus 1 productive infection and in latency. Viruses 2013; 5:1208-18. [PMID: 23628827 PMCID: PMC3712303 DOI: 10.3390/v5051208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022] Open
Abstract
REST is a key component of the HDAC1 or 2, CoREST, LSD1, REST (HCLR) repressor complex. The primary function of the HCLR complex is to silence neuronal genes in non-neuronal cells. HCLR plays a role in regulating the expression of viral genes in productive infections as a donor of LDS1 for expression of α genes and as a repressor of genes expressed later in infection. In sensory neurons the HCLR complex is involved in the silencing of viral genome in the course of establishment of latency. The thesis of this article is that (a) sensory neurons evolved a mechanism to respond to the presence and suppress the transmission of infectious agents from the periphery to the CNS and (b) HSV evolved subservience to the HCLR with at least two objectives: to maintain a level of replication consistent with maximal person-to-person spread and to enable it to take advantage of neuronal innate immune responses to survive and be available for reactivation shielded from adaptive immune responses of the host.
Collapse
Affiliation(s)
| | | | - Bernard Roizman
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-702-1898; Fax: +1-773-702-1631
| |
Collapse
|
19
|
Mojtahedi S, Kordi MR, Hosseini SE, Omran SF, Soleimani M. Effect of treadmill running on the expression of genes that are involved in neuronal differentiation in the hippocampus of adult male rats. Cell Biol Int 2013; 37:276-83. [DOI: 10.1002/cbin.10022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Shima Mojtahedi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences; University of Tehran; Tehran; Iran
| | - Mohammad Reza Kordi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences; University of Tehran; Tehran; Iran
| | | | - Simin Fallah Omran
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences; University of Tehran; Tehran; Iran
| | | |
Collapse
|
20
|
HSV carrying WT REST establishes latency but reactivates only if the synthesis of REST is suppressed. Proc Natl Acad Sci U S A 2013; 110:E498-506. [PMID: 23341636 DOI: 10.1073/pnas.1222497110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HSVs transit from vigorous replication at the portal of entry into the body to a latent state in sensory neurons in which only noncoding (e.g., latency-associated transcript) and micro-RNAs are expressed. In productive infection, viral genes must be sequentially derepressed at two checkpoints. A leading role in the repression of viral genes is carried out by histone deacetylase (HDAC)/corepressor element-1 silencing transcription factor (CoREST)/lysinespecific demethylase1(LSD1)/RE1-silencing transcription factor (REST) repressor complex (HCLR). Previously, we reported that to define the role of the components of the HCLR complex in the establishment of latency, we constructed recombinant virus (R112) carrying a dominant-negative REST that bound response elements in DNA but could not recruit repressive proteins. This recombinant virus was unable to establish latency. In the current studies, we constructed a virus (R111) carrying WT REST with a WT genome. We report the following findings: (a) R111 readily established latent infection in trigeminal ganglia; however, although the amounts of viral DNAs in latently infected neurons were similar to those of WT virus, the levels of latency-associated transcript and micro-RNAs were 50- to 100-fold lower; (b) R111 did not spontaneously reactivate in ganglionic organ cultures; however, viral genes were expressed if the synthesis of REST was blocked by cycloheximide; and (c) histone deacetylase inhibitors reactivated the WT parent but not the R111 recombinant virus. The results suggest that REST plays a transient role in the establishment of latency but not in reactivation and suggest the existence of at least two phases at both establishment and reactivation.
Collapse
|
21
|
Neuron-restrictive silencer factor functions to suppress Sp1-mediated transactivation of human secretin receptor gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:231-8. [PMID: 23168245 DOI: 10.1016/j.bbagrm.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/23/2022]
Abstract
In the present study, a functional neuron restrictive silencer element (NRSE) was initially identified in the 5' flanking region (-83 to -67, relative to ATG) of human secretin receptor (hSCTR) gene by promoter assays coupled with scanning mutation analyses. The interaction of neuron restrictive silencer factor (NRSF) with this motif was later indicated via gel mobility shift and ChIP assays. The silencing activity of NRSF was confirmed by over-expression and also by shRNA knock-down of endogenous NRSF. These studies showed an inverse relationship between the expression levels of NRSF and hSCTR in the cells. As hSCTR gene was previously shown to be controlled by two GC-boxes which are regulated by the ratio of Sp1 to Sp3, in the present study, the functional interactions of NRSF and Sp proteins to regulate hSCTR gene was investigated. By co-immunoprecipitation assays, we found that NRSF could be co-precipitated with Sp1 as well as Sp3 in PANC-1 cells. Interestingly, co-expressions of these factors showed that NRSF could suppress Sp1-mediated, but not Sp3-mediated, transactivation of hSCTR. Taken together, we propose here that the down-regulatory effects of NRSF on hSCTR gene expression are mediated via its suppression on Sp1-mediated transactivation.
Collapse
|
22
|
Kida E, Walus M, Jarząbek K, Palminiello S, Albertini G, Rabe A, Hwang YW, Golabek AA. Form of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A nonphosphorylated at tyrosine 145 and 147 is enriched in the nuclei of astroglial cells, adult hippocampal progenitors, and some cholinergic axon terminals. Neuroscience 2011; 195:112-27. [PMID: 21878370 DOI: 10.1016/j.neuroscience.2011.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 01/01/2023]
Abstract
Compelling lines of evidence indicate that overexpression of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) in subjects with trisomy 21 (Down syndrome[DS]) contributes to the abnormal structure and function of the DS brain. In the present study, we used a novel, phospho-dependent antibody recognizing DYRK1A only with nonphosphorylated tyrosine 145 and 147 (DYRK1A Tyr-145/147P(-)), to investigate the expression pattern of this DYRK1A species in trisomic and disomic human and mouse brains. Immunoblotting and dephosphorylation experiments demonstrated higher levels of DYRK1A Tyr-145/147P(-) in postnatal trisomic brains in comparison with controls (by ∼40%) than those of the DYRK1A visualized by three other N- and C-terminally directed antibodies to DYRK1A. By immunofluorescence, the immunoreactivity to DYRK1A Tyr-145/147P(-) was the strongest in the nuclei of astroglial cells, which contrasted with the predominantly neuronal localization of DYRK1A visualized by the three other antibodies to DYRK1A we used. In addition, DYRK1A Tyr-145/147P(-) was enriched in the nuclei of neuronal progenitors and newly born neurons in the adult hippocampal proliferative zone and also occurred in some cholinergic axonal terminals. Our data show a distinctive expression pattern of DYRK1A forms nonphosphorylated at Tyr-145 and Tyr-147 in the brain tissue and suggest that DS subjects may exhibit not only upregulation of total DYRK1A, but also more subtle differences in phosphorylation levels of this kinase in comparison with control individuals.
Collapse
Affiliation(s)
- E Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sone K, Tsuda M, Mori N. Position-dependent effect of a neural-restrictive silencer-like element present in the promoter downstream of the SCG10-like protein gene. J Biochem 2011; 150:451-60. [DOI: 10.1093/jb/mvr077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Lv H, Pan G, Zheng G, Wu X, Ren H, Liu Y, Wen J. Expression and functions of the repressor element 1 (RE-1)-silencing transcription factor (REST) in breast cancer. J Cell Biochem 2010; 110:968-74. [DOI: 10.1002/jcb.22610] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Regulated expression of the Ras effector Rin1 in forebrain neurons. Mol Cell Neurosci 2009; 43:108-16. [PMID: 19837165 DOI: 10.1016/j.mcn.2009.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/09/2009] [Accepted: 09/25/2009] [Indexed: 01/31/2023] Open
Abstract
The Ras effector Rin1 is induced concomitant with synaptogenesis in forebrain neurons, where it inhibits fear conditioning and amygdala LTP. In epithelial cells, lower levels of Rin1 orchestrate receptor endocytosis. A 945 bp Rin1 promoter fragment was active in hippocampal neurons and directed accurate tissue-specific and temporal expression in transgenic mice. Regulated expression in neurons and epithelial cells was mediated in part by Snail transcriptional repressors: mutation of a conserved Snail site increased expression and endogenous Snai1 was detected at the Rin1 promoter. We also describe an element closely related to, but distinct from, the consensus site for REST, a master repressor of neuronal genes. Conversion to a consensus REST sequence reduced expression in both cell types. These results provide insight into regulated expression of a neuronal Ras effector, define a promoter useful in telencephalic neuron studies, and describe a novel REST site variant directing expression to mature neurons.
Collapse
|
26
|
Pinnoji RC, Bedadala GR, George B, Holland TC, Hill JM, Hsia SCV. Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF) can regulate HSV-1 immediate-early transcription via histone modification. Virol J 2007; 4:56. [PMID: 17555596 PMCID: PMC1906746 DOI: 10.1186/1743-422x-4-56] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/07/2007] [Indexed: 01/11/2023] Open
Abstract
Background During primary infection of its human host, Herpes Simplex Virus Type-1 (HSV-1) establishes latency in neurons where the viral genome is maintained in a circular form associated with nucleosomes in a chromatin configration. During latency, most viral genes are silenced, although the molecular mechanisms responsible for this are unclear. We hypothesized that neuronal factors repress HSV-1 gene expression during latency. A search of the HSV-1 DNA sequence for potential regulatory elements identified a Repressor Element-1/Neuronal Restrictive Silencer Element (RE-1/NRSE) located between HSV-1 genes ICP22 and ICP4. We predicted that the Repressor Element Silencing Transcription Factor/Neuronal Restrictive Silencer Factor (REST/NRSF) regulates expression of ICP22 and ICP4. Results Transient cotransfection indicated that REST/NRSF inhibited the activity of both promoters. In contrast, cotransfection of a mutant form of REST/NRSF encoding only the DNA-binding domain of the protein resulted in less inhibition. Stably transformed cell lines containing episomal reporter plasmids with a chromatin structure showed that REST/NRSF specifically inhibited the ICP4 promoter, but not the ICP22 promoter. REST/NRSF inhibition of the ICP4 promoter was reversed by histone deacetylase (HDAC) inhibitor Trichostatin A (TSA). Additionally, chromatin immuno-precipitation (ChIP) assays indicated that the corepressor CoREST was recruited to the proximity of ICP4 promoter and that acetylation of histone H4 was reduced in the presence of REST/NRSF. Conclusion Since the ICP4 protein is a key transactivator of HSV-1 lytic cycle genes, these results suggest that REST/NRSF may have an important role in the establishment and/or maintenance of HSV-1 gene silencing during latency by targeting ICP4 expression.
Collapse
Affiliation(s)
- Rajeswara C Pinnoji
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209 USA
| | - Gautam R Bedadala
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209 USA
| | - Beena George
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209 USA
| | - Thomas C Holland
- Department of Immunology and Microbiology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201 USA
| | - James M Hill
- Department of Ophthalmology, Neuroscience, Pharmacology, and Microbiology LSU Eye Center and LSU Health Sciences Center, New Orleans, LA 70118 USA
| | - Shao-chung V Hsia
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209 USA
| |
Collapse
|
27
|
Smith R, Chung H, Rundquist S, Maat-Schieman MLC, Colgan L, Englund E, Liu YJ, Roos RAC, Faull RLM, Brundin P, Li JY. Cholinergic neuronal defect without cell loss in Huntington's disease. Hum Mol Genet 2006; 15:3119-31. [PMID: 16987871 DOI: 10.1093/hmg/ddl252] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG-repeat expansion in the huntingtin (IT15) gene. The striatum is one of the regions most affected by neurodegeneration, resulting in the loss of the medium-sized spiny neurons. Traditionally, the large cholinergic striatal interneurons are believed to be spared. Recent studies demonstrate that neuronal dysfunction without cell death also plays an important role in early and mid-stages of the disease. Here, we report that cholinergic transmission is affected in a HD transgenic mouse model (R6/1) and in tissues from HD patients. Stereological analysis shows no loss of cholinergic neurons in the striatum or septum in R6/1 mice. In contrast, the levels of mRNA and protein for vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) are decreased in the striatum and cortex, and acetylcholine esterase activity is lowered in the striatum of R6/1 mice already at young ages. Accordingly, VAChT is also reduced in striatal tissue from patients with HD. The decrease of VAChT in the patient samples studied is restricted to the striatum and does not occur in the hippocampus or the spinal cord. The expression and localization of REST/NRSF, a transcriptional regulator for the VAChT and ChAT genes, are not altered in cholinergic neurons. We show that the R6/1 mice exhibit severe deficits in learning and reference memory. Taken together, our data show that the cholinergic system is dysfunctional in R6/1 and HD patients. Consequently, they provide a rationale for testing of pro-cholinergic drugs in this disease.
Collapse
Affiliation(s)
- Ruben Smith
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flores-Soto ME, Bañuelos-Pineda J, Orozco-Suárez S, Schliebs R, Beas-Zárate C. Neuronal damage and changes in the expression of muscarinic acetylcholine receptor subtypes in the neonatal rat cerebral cortical upon exposure to sparteine, a quinolizidine alkaloid. Int J Dev Neurosci 2006; 24:401-10. [PMID: 16843632 DOI: 10.1016/j.ijdevneu.2006.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 12/01/2022] Open
Abstract
Sparteine is a quinolizidine alkaloid (QA) produced by Lupine species that has generated much interest due to its anti-hypertensive, anti-pyretic, and anti-inflammatory properties. In the nervous system, sparteine has been shown to display anti-cholinergic and depressive activity, although how sparteine exerts its toxic effects in the brain remains unclear. We have addressed this issue by administering subcutaneous injections of sparteine (25 mg/kg of body weight) to rats on postnatal days 1 and 3, and then examining the expression of the muscarinic acetylcholine receptor (mAChR) subunits m1-m4 in the brains of the neonatal rats 14-60 days later. Administration of sparteine to neonatal rats caused neuronal damage in the cerebral motor cortex accompanied by transient changes in the expression of m1-m4 mAChR subunits as revealed by both RT-PCR and Western blotting. This effect could be prevented by pre-treatment with atropine (10 mg/kg) 1 h prior to the injection of sparteine, suggesting that the cytotoxic activity of sparteine is mediated through mAChRs.
Collapse
Affiliation(s)
- M E Flores-Soto
- Laboratory of Molecular and Cellular Neurobiology, Neurociences Division, Western Biomedical Research Center, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | | | | | | |
Collapse
|
29
|
Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, Lee MA. Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Biochem Biophys Res Commun 2006; 346:426-35. [PMID: 16764822 DOI: 10.1016/j.bbrc.2006.05.142] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 05/17/2006] [Indexed: 01/08/2023]
Abstract
Tyrosine hydroxylase (TH), the biosynthetic enzyme of catecholamine, is synthesized specifically in catecholaminergic neurons. Thus, it is possible that neuronal cell type-specific expression of this gene is coordinately regulated. One of the neuron-specific transcription regulators, neuron-restrictive silencer factor (NRSF)/repressor element 1 (RE1) silencing transcription factor (REST), represses the expression of neuronal genes in non-neuronal cells. To elucidate the molecular mechanisms that control catecholaminergic neuronal expression of human TH, we initially characterized the 5' regulatory region. Previous studies have shown that a 3174 bp fragment of the human TH promoter confers specific expression to the reporter gene in dopaminergic neuron-like cell lines. Within this 5' regulatory region, three putative neuron-restrictive silencer elements (NRSE)/RE1 were identified, which bound NRSF/REST in a sequence-specific manner, as confirmed using EMSA and ChIP assays. In transient transfection assays, deletion or mutation of NRSE/RE1 elements led to a 7-fold increase in activity of the 3.2 kb TH promoter in human neural stem cells (NSCs), but had no major effects on differentiated neuron-like cells. Suppression of NRSF/REST functions with either the histone deacetylase inhibitor, trichostatin, or DN-NRSF induced TH promoter activity. Our data strongly suggest that NRSF/REST functions as a repressor of TH transcription in NSCs via a mechanism dependent on the TH NRSE/RE1 sites.
Collapse
Affiliation(s)
- Soo Min Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Jameson RR, Seidler FJ, Qiao D, Slotkin TA. Chlorpyrifos affects phenotypic outcomes in a model of mammalian neurodevelopment: critical stages targeting differentiation in PC12 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:667-72. [PMID: 16675418 PMCID: PMC1459917 DOI: 10.1289/ehp.8750] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The organophosphate insecticide chlorpyrifos (CPF) adversely affects mammalian brain development through multiple mechanisms. To determine if CPF directly affects neuronal cell replication and phenotypic fate, and to identify the vulnerable stages of differentiation, we exposed PC12 cells, a model for mammalian neurodevelopment, to CPF concentrations spanning the threshold for cholinesterase inhibition (5-50 microM) and conducted evaluations during mitosis and in early and mid-differentiation. In undifferentiated cells, exposure to 5 microM CPF for 1-3 days reduced DNA synthesis significantly without eliciting cytotoxicity. At the same time, CPF increased the expression of tyrosine hydroxylase (TH), the enzymatic marker for the catecholamine phenotype, without affecting choline acetyltransferase (ChAT), the corresponding marker for the cholinergic phenotype. Upon exposure to nerve growth factor (NGF), PC12 cells developed neuritic projections in association with vastly increased TH and ChAT expression accompanying differentiation into the two phenotypes. CPF exposure begun at the start of differentiation significantly reduced ChAT but not TH activity. In contrast, when CPF was added in mid-differentiation (4 days of NGF pretreatment), ChAT was unaffected and TH was increased slightly. Thus, CPF exerts stage-specific effects, reducing DNA synthesis in the undifferentiated state, impairing development of the cholinergic phenotype at the start of differentiation, and promoting expression of the catecholaminergic phenotype both in undifferentiated and differentiated cells. CPF administration in vivo produces deficits in the number of neurons and cholinergic function, and because we were able to reproduce these effects in vitro, our results suggest that CPF directly influences the phenotypic fate of neuronal precursors.
Collapse
Affiliation(s)
- Ruth R Jameson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
31
|
Su X, Gopalakrishnan V, Stearns D, Aldape K, Lang FF, Fuller G, Snyder E, Eberhart CG, Majumder S. Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol 2006; 26:1666-78. [PMID: 16478988 PMCID: PMC1430235 DOI: 10.1128/mcb.26.5.1666-1678.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Medulloblastoma, one of the most malignant brain tumors in children, is thought to arise from undifferentiated neural stem/progenitor cells (NSCs) present in the external granule layer of the cerebellum. However, the mechanism of tumorigenesis remains unknown for the majority of medulloblastomas. In this study, we found that many human medulloblastomas express significantly elevated levels of both myc oncogenes, regulators of neural progenitor proliferation, and REST/NRSF, a transcriptional repressor of neuronal differentiation genes. Previous studies have shown that neither c-Myc nor REST/NRSF alone could cause tumor formation. To determine whether c-Myc and REST/NRSF act together to cause medulloblastomas, we used a previously established cell line derived from external granule layer stem cells transduced with activated c-myc (NSC-M). These immortalized NSCs were able to differentiate into neurons in vitro. In contrast, when the cells were engineered to express a doxycycline-regulated REST/NRSF transgene (NSC-M-R), they no longer underwent terminal neuronal differentiation in vitro. When injected into intracranial locations in mice, the NSC-M cells did not form tumors either in the cerebellum or in the cerebral cortex. In contrast, the NSC-M-R cells did produce tumors in the cerebellum, the site of human medulloblastoma formation, but not when injected into the cerebral cortex. Furthermore, the NSC-M-R tumors were blocked from terminal neuronal differentiation. In addition, countering REST/NRSF function blocked the tumorigenic potential of NSC-M-R cells. To our knowledge, this is the first study in which abnormal expression of a sequence-specific DNA-binding transcriptional repressor has been shown to contribute directly to brain tumor formation. Our findings indicate that abnormal expression of REST/NRSF and Myc in NSCs causes cerebellum-specific tumors by blocking neuronal differentiation and thus maintaining the "stemness" of these cells. Furthermore, these results suggest that such a mechanism plays a role in the formation of human medulloblastoma.
Collapse
Affiliation(s)
- Xiaohua Su
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Mail 1006, Room S13.8136C, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Uvarov P, Pruunsild P, Timmusk T, Airaksinen MS. Neuronal K+/Cl- co-transporter (KCC2) transgenes lacking neurone restrictive silencer element recapitulate CNS neurone-specific expression and developmental up-regulation of endogenous KCC2 gene. J Neurochem 2005; 95:1144-55. [PMID: 16271048 DOI: 10.1111/j.1471-4159.2005.03434.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The K+/Cl- co-transporter KCC2 maintains the low intracellular chloride concentration required for fast synaptic inhibition and is exclusively expressed in neurones of the CNS. Here, we show that the KCC2 gene (alias SLC12a5) has multiple transcription start sites and characterize the activity of 6.8 kb of mouse KCC2 gene regulatory sequence (spanning 1.4 kb upstream from exon 1 to exon 2) using luciferase reporters. Overexpression of neurone-restrictive silencer factor repressed the reporter activity in vitro, apparently via a neurone restrictive silencer element (NRSE(KCC2)) within intron 1 of the mouse KCC2 gene. In transgenic mice, however, KCC2 reporters with or without deletion of the NRSE(KCC2) were expressed exclusively in neurones and predominantly in the CNS with a similar pattern and developmental up-regulation as endogenous KCC2. Moreover, a third transgene with just a 1.4-kb KCC2 promoter region lacking the NRSE(KCC2)-bearing intron 1 was still expressed predominantly in neural tissues. Thus, developmental up-regulation of the KCC2 gene does not require NRSE(KCC2) and the 1.4-kb KCC2 promoter is largely sufficient for neurone-specific expression of KCC2.
Collapse
Affiliation(s)
- Pavel Uvarov
- Neuroscience Centre, 00014 University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Fuller GN, Su X, Price RE, Cohen ZR, Lang FF, Sawaya R, Majumder S. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther 2005; 4:343-9. [PMID: 15767543 DOI: 10.1158/1535-7163.mct-04-0228] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastoma, one of the most malignant pediatric brain tumors, is believed to arise from the undifferentiated external granule-layer cells in the cerebellum. It is a heterogeneous cancer, and the mechanism of tumorigenesis for the majority of types is unknown. Repressor element-1 silencing transcription/neuron-restrictive silencer factor (REST/NRSF) is a transcriptional repressor that can block transcription of a battery of neuronal differentiation genes by binding to a specific consensus DNA sequence present in their regulatory region. Previously, we found that some medulloblastoma cell lines express REST/NRSF at high levels compared with either neuronal progenitor cells or fully differentiated neurons. However, it is not known if REST/NRSF is indeed overexpressed in human medulloblastoma tumor specimens and in what frequency. Here, we did an immunohistochemical analysis of such tumor specimens using an anti-REST antibody. We show that among 21 human medulloblastoma tumors, 17 expressed REST/NRSF (6 strongly and 11 weakly). In contrast, adjacent normal cerebellum tissue sections and four of the tumor specimens did not express REST/NRSF, indicating that abnormal expression of REST/NRSF is observed in the majority of human medulloblastoma tumors. To determine whether countering REST/NRSF activity blocks tumorigenicity of medulloblastoma cells, especially in the intracranial (i.c.) environment, we found that adenovirus-mediated expression of REST-VP16, a recombinant transcription factor that can compete with REST/NRSF and activate REST/NRSF target genes instead of repressing them, blocked the i.c. tumorigenic potential of medulloblastoma cells and inhibited growth of established tumors in nude mice, suggesting that REST/NRSF may serve as a therapeutic target for medulloblastoma and that forced expression of neuronal differentiation genes in medulloblastoma cells through agents, such as REST-VP16, can interfere with their tumorigenicity.
Collapse
Affiliation(s)
- Gregory N Fuller
- Brain Tumor Center, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 11, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Madziar B, Lopez-Coviella I, Zemelko V, Berse B. Regulation of cholinergic gene expression by nerve growth factor depends on the phosphatidylinositol-3'-kinase pathway. J Neurochem 2005; 92:767-79. [PMID: 15686478 DOI: 10.1111/j.1471-4159.2004.02908.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nerve growth factor (NGF) exerts anti-apoptotic, trophic and differentiating actions on sympathetic neurons and cholinergic cells of the basal forebrain and activates the expression of genes regulating the synthesis and storage of the neurotransmitter acetylcholine (ACh). We have been studying the intracellular signaling pathways involved in this process. Although, in the rat pheochromocytoma cell line PC12, NGF strongly activates the mitogen-activated protein kinase (MAPK) pathway, prolonged inhibition of MAPK kinase (MEK) activity by PD98059 or U0126 did not affect the ability of NGF to up-regulate choline acetyltransferase (ChAT) or to increase intracellular ACh levels. In contrast, the treatment with the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002, but not with its inactive analogue LY303511, completely abolished the NGF-induced production of ACh. Inhibition of PI3K also eliminated the NGF effect on the intracellular ACh level in primary cultures of septal neurons from E18 mouse embryos. Blocking the PI3K pathway prevented the activation of cholinergic gene expression, as demonstrated in RT/PCR assays and in transient transfections of PC12 cells with cholinergic locus promoter-luciferase reporter constructs. These results indicate that the PI3K pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation.
Collapse
Affiliation(s)
- Beata Madziar
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
35
|
Howard MJ. Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 2005; 277:271-86. [PMID: 15617674 DOI: 10.1016/j.ydbio.2004.09.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/22/2004] [Accepted: 09/27/2004] [Indexed: 01/17/2023]
Abstract
Neurons share many features in common but are distinguished by expression of phenotypic characteristics that define their specific function, location, or connectivity. One aspect of neuronal fate determination that has been extensively studied is that of neurotransmitter choice. The generation of diversity of neuronal subtypes within the developing nervous system involves integration of extrinsic and intrinsic instructive cues resulting in the expression of a core set of regulatory molecules. This review focuses on mechanisms of growth and transcription factor regulation in the generation of peripheral neural crest-derived neurons. Although the specification and differentiation of noradrenergic neurons are the focus, I have tried to integrate these into a larger picture providing a general roadmap for development of autonomic neurons. There is a core of DNA binding proteins required for the development of sympathetic, parasympathetic, and enteric neurons, including Phox2 and MASH1, whose specificity is regulated by the recruitment of additional transcriptional regulators in a subtype-specific manner. For noradrenergic neurons, the basic helix-loop-helix DNA binding protein HAND2 (dHAND) appears to serve this function. The studies reviewed here support the notion that neurotransmitter identity is closely linked to other aspects of neurogenesis and reveal a molecular mechanism to coordinate expression of pan-neuronal genes with cell type-specific genes.
Collapse
Affiliation(s)
- Marthe J Howard
- Department of Neurosciences, Medical College of Ohio, Toledo, OH 43614, USA.
| |
Collapse
|