1
|
ElKabbany ZA, Ismail EAR, Hamed ET, Elbarbary NS. The impact of vildagliptin as an add-on therapy on matrix metalloproteinase-14 levels, liver stiffness and subclinical atherosclerosis in adolescents with type 1 diabetes and non-alcoholic steatohepatitis: A randomized controlled trial. Diabetes Obes Metab 2024; 26:5857-5869. [PMID: 39318059 DOI: 10.1111/dom.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
AIM Many patients with type 1 diabetes mellitus (T1DM) met the histological criteria for non-alcoholic steatohepatitis (NASH), which leads to cardiovascular disease morbidity and mortality. Matrix metalloproteinase-14 (MMP-14) is involved in cardiovascular disease and atherosclerosis. OBJECTIVES To assess the impact of oral dipeptidyl peptidase-4 inhibitor, vildagliptin, as adjunctive therapy on NASH in adolescents with T1DM and its effect on glycaemic control, MMP-14 levels and carotid intima media thickness (CIMT). METHODS Sixty adolescents with T1DM and NASH were randomly assigned to receive oral vildagliptin (50 mg once daily) for 6 months or not. Glycated haemoglobin, lipid profile, hepatic steatosis index, triglyceride glucose (TyG) index and MMP-14 levels were assessed. Transient elastography with controlled attenuation parameter (CAP) was performed together with measuring CIMT. RESULTS By transient elastography, 12 (20%) patients with T1DM with NASH had elevated liver stiffness ≥7 kPa (F2 stage or higher). Baseline MMP-14 was positively correlated to insulin dose (p = 0.016), triglycerides and TyG index, CIMT, liver stiffness and CAP levels among the studied patients (p < 0.001 for all). After 6 months, patients with T1DM on vildagliptin therapy had significantly lower glycated haemoglobin, lipid profile, hepatic steatosis index and TyG index, as well as MMP-14 (p < 0.001). CIMT, liver stiffness and CAP were significantly decreased post-therapy compared with baseline levels and compared with the control group (p < 0.001). Vildagliptin was safe and well-tolerated. CONCLUSIONS Administration of vildagliptin for adolescents with T1DM and NASH improved glycaemic control, dyslipidaemia and MMP-14 levels and decreased liver stiffness and CIMT; hence, reducing subclinical atherosclerosis and disease progression.
Collapse
|
2
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
3
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Fluorescence Imaging Using Enzyme-Activatable Probes for Detecting Diabetic Kidney Disease and Glomerular Diseases. Int J Mol Sci 2022; 23:ijms23158150. [PMID: 35897725 PMCID: PMC9332157 DOI: 10.3390/ijms23158150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
A clear identification of the etiology of glomerular disease is essential in patients with diabetes. Renal biopsy is the gold standard for assessing the underlying nephrotic pathology; however, it has the risk for potential complications. Here, we aimed to investigate the feasibility of urinary fluorescence imaging using an enzyme-activatable probe for differentiating diabetic kidney disease and the other glomerular diseases. Hydroxymethyl rhodamine green (HMRG)-based fluorescent probes targeting gamma-glutamyl transpeptidase (GGT) and dipeptidyl-peptidase (DPP) were used. Urinary fluorescence was compared between groups which were classified by their histopathological diagnoses (diabetic kidney disease, glomerulonephritis, and nephrosclerosis) as obtained by ultrasound-guided renal biopsy. Urinary fluorescence was significantly stronger in patients with diabetic kidney disease compared to those with glomerulonephritis/nephrosclerosis after DPP-HMRG, whereas it was stronger in patients with nephrosclerosis than in patients with glomerulonephritis after GGT-HMRG. Subgroup analyses of the fluorescence performed for patients with diabetes showed consistent results. Urinary fluorescence imaging using enzyme-activatable fluorescence probes thus represents a potential noninvasive assessment technique for kidney diseases in patients with diabetes.
Collapse
|
5
|
Garzón AG, Ferreira MDR, Cian RE, Oliva ME, D'Alessandro ME, Drago SR. Microencapsulated bioactive peptides from brewer's spent grain promotes antihypertensive and antidiabetogenic effects on a hypertensive and insulin-resistant rat model. J Food Biochem 2022; 46:e14283. [PMID: 35746832 DOI: 10.1111/jfbc.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
The effects of microcapsules containing brewer's spent grain (BSG) peptides were evaluated on a hypertensive/insulin-resistant rat model induced by a sucrose-rich diet (SRD) administration. Animals received for 100 days the control diet (CD), SRD, and CD and SRD diets supplemented with microencapsulated peptides (CD-P and SRD-P). During the experimental period, blood pressure was monitored. Glycemia, tissue glycogen content, nitric oxide, and the activity of enzymes related to hypertensive and diabetogenic mechanisms were determined. The consumption of SRD caused hypertensive and hyperglycemic effects compared to CD. However, the SRD-P group presented lower systolic pressure at the middle of ingestion, achieving similar values than the CD. The SRD-P rats decreased all enzymes' activities compared to the SRD reaching the values of CD, except for those of α-amylase in cecal content and DPP-IV in serum. It was possible to corroborate potential antihypertensive and antidiabetogenic in vivo effects of the microencapsulated BSG peptides. PRACTICAL APPLICATIONS: Brewer's spent grain (BSG) is the main waste obtained from brewing industry. Bioactive peptides obtained after an enzymatic hydrolysis of proteins with in vitro antihypertensive and antidiabetogenic activity have been described. However, to corroborate the action of these bioactive peptides, in vivo studies are necessary. In the present work, microcapsules containing bioactive peptides from BSG were administered on the rat model with induced hypertension and insulin-resistance, corroborating an in vivo antihypertensive and antidiabetogenic effects by inhibition of enzymes related with blood pressure regulation and glucose metabolism. This work demonstrated that microcapsules of BSG peptides could be included into functional foods formulations, or used as dietary supplement for improving health and the prevention of non-communicable diseases, adding value to the brewing process by-product.
Collapse
Affiliation(s)
- Antonela G Garzón
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, CONICET, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| | - Raul E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - Maria Eugenia Oliva
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, CONICET, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| | - Maria Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, CONICET, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| |
Collapse
|
6
|
Xiao Y, Tan C, Nie X, Li B, You M, Lan Y, Tang L. Rise in Postprandial GLP-1 Levels After Roux-en-Y Gastric Bypass: Involvement of the Vagus Nerve-Spleen Anti-inflammatory Axis in Type 2 Diabetic Rats. Obes Surg 2022; 32:1077-1085. [PMID: 35044600 DOI: 10.1007/s11695-021-05877-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The mechanism underlying postprandial glucagon-like peptide-1 (GLP-1) changes after metabolic surgery remains mostly unclarified. This investigation aimed to address whether the vagus nerve-spleen anti-inflammatory axis is involved in the rise in postprandial GLP-1 levels in type 2 diabetes mellitus (T2DM) rats following metabolic surgery. MATERIALS AND METHODS T2DM rat model was established with a high-fat diet and a low dose of streptozotocin and subjected to Roux-en-Y gastric bypass (RYGB) and splenic denervation. A mixed-meal tolerance test for postprandial GLP-1 response was performed. TNF-α in the plasma, spleen, and ileum was measured by ELISA, and alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in the spleen was analyzed by Western blot. RESULTS Postprandial GLP-1 improvement by RYGB was accompanied by the reduction of TNF-α levels in spleen and ileum and up-regulation of splenic α7nAChR in T2DM rats. Splenic denervation abrogates a rise in postprandial GLP-1 levels in response to the mixed-meal challenge, along with higher TNF-α levels in spleen and ileum and down-regulation of splenicα7nAChR, compared with denervated sham rats. CONCLUSION Our results reveal that the vagus nerve-spleen anti-inflammatory axis mediates the rise of postprandial GLP-1 response after RYGB through lowering TNF-α contents in the intestinal tissue in T2DM rats.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Chang Tan
- Department of Gynecology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Xiaoya Nie
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China
| | - Baifeng Li
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Miao You
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yunyun Lan
- Department of Intensive Care Unit, Zhuzhou Central Hospital, No.116 Changjiang Road, Zhuzhou, 412000, China.
| | - Liang Tang
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China.
| |
Collapse
|
7
|
Pavlisova J, Horakova O, Kalendova V, Buresova J, Bardova K, Holendova B, Plecita-Hlavata L, Vackova S, Windrichova J, Topolcan O, Kopecky J, Rossmeisl M. Chronic n-3 fatty acid intake enhances insulin response to oral glucose and elevates GLP-1 in high-fat diet-fed obese mice. Food Funct 2021; 11:9764-9775. [PMID: 33078809 DOI: 10.1039/d0fo01942a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFA) can exert beneficial effects on glucose homeostasis, especially in obese rodents. Gut incretin hormones regulate glucose and lipid homeostasis, but their involvement in the above effects is not entirely clear. This study aims to assess the effects of chronic n-3 PUFA administration on the insulin and incretin responses in C57BL/6N obese male mice subjected to oral glucose tolerance test (oGTT) after 8 weeks of feeding a corn-oil-based high-fat diet (cHF). The weight gain and adiposity were partially reduced in mice fed cHF in which some of the corn oil was replaced with n-3 PUFA concentrate containing ∼60% DHA and EPA in a 3 : 1 ratio. In addition, these mice had improved glucose tolerance, which was consistent with an increased insulin response to oral glucose and plasma glucagon-like peptide-1 (GLP-1) levels. While the stimulatory effects of n-3 PUFA on GLP-1 levels could not be attributed to changes in intestinal or plasma dipeptidyl peptidase-4 activity, their beneficial effects on glucose tolerance were abolished when mice were pretreated with the GLP-1 receptor antagonist exendin 9-39. Moreover, chronic n-3 PUFA intake prevented the detrimental effects of cHF feeding on glucose-stimulated insulin secretion in the pancreatic islets. Collectively, our data suggest that n-3 PUFA may modulate postprandial glucose metabolism in obese mice through a GLP-1-based mechanism. The significance of these findings in terms of the effective DHA and EPA ratio of the n-3 PUFA concentrate as well as the effect of n-3 PUFA in humans requires further research.
Collapse
Affiliation(s)
- Jana Pavlisova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alicic RZ, Cox EJ, Neumiller JJ, Tuttle KR. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat Rev Nephrol 2021; 17:227-244. [PMID: 33219281 DOI: 10.1038/s41581-020-00367-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 01/30/2023]
Abstract
As the prevalence of diabetes continues to climb, the number of individuals living with diabetic complications will reach an unprecedented magnitude. The emergence of new glucose-lowering agents - sodium-glucose cotransporter 2 inhibitors and incretin therapies - has markedly changed the treatment landscape of type 2 diabetes mellitus. In addition to effectively lowering glucose, incretin drugs, which include glucagon-like peptide 1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 (DPP4) inhibitors, can also reduce blood pressure, body weight, the risk of developing or worsening chronic kidney disease and/or atherosclerotic cardiovascular events, and the risk of death. Although kidney disease events have thus far been secondary outcomes in clinical trials, an ongoing phase III trial in patients with diabetic kidney disease will test the effect of a GLP1R agonist on a primary kidney disease outcome. Experimental data have identified the modulation of innate immunity and inflammation as plausible biological mechanisms underpinning the kidney-protective effects of incretin-based agents. These drugs block the mechanisms involved in the pathogenesis of kidney damage, including the activation of resident mononuclear phagocytes, tissue infiltration by non-resident inflammatory cells, and the production of pro-inflammatory cytokines and adhesion molecules. GLP1R agonists and DPP4 inhibitors might also attenuate oxidative stress, fibrosis and cellular apoptosis in the kidney.
Collapse
Affiliation(s)
- Radica Z Alicic
- Providence Medical Research Center, Providence Health Care, Spokane, WA, USA.,Department of Medicine, University of Washington School of Medicine, Spokane and Seattle, WA, USA
| | - Emily J Cox
- Providence Medical Research Center, Providence Health Care, Spokane, WA, USA
| | - Joshua J Neumiller
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, WA, USA. .,Nephrology Division, Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Spokane and Seattle, WA, USA.
| |
Collapse
|
9
|
Nistala R, Meuth AI, Smith C, An J, Habibi J, Hayden MR, Johnson M, Aroor A, Whaley-Connell A, Sowers JR, McKarns SC, Bender SB. DPP4 inhibition mitigates ANG II-mediated kidney immune activation and injury in male mice. Am J Physiol Renal Physiol 2021; 320:F505-F517. [PMID: 33522410 DOI: 10.1152/ajprenal.00565.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.
Collapse
Affiliation(s)
- Ravi Nistala
- Divisions of Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Alex I Meuth
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Cassandra Smith
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jianzhong An
- Divisions of Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - M R Hayden
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Megan Johnson
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Annayya Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Adam Whaley-Connell
- Divisions of Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Susan C McKarns
- Departments of Microbiology and Immunology and Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Shawn B Bender
- Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Mikov M, Pavlović N, Stanimirov B, Đanić M, Goločorbin-Kon S, Stankov K, Al-Salami H. DPP-4 Inhibitors: Renoprotective Potential and Pharmacokinetics in Type 2 Diabetes Mellitus Patients with Renal Impairment. Eur J Drug Metab Pharmacokinet 2020; 45:1-14. [PMID: 31385198 DOI: 10.1007/s13318-019-00570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continuously increasing incidence of diabetes worldwide has attracted the attention of the scientific community and driven the development of a novel class of antidiabetic drugs that can be safely and effectively used in diabetic patients. Of particular interest in this context are complications associated with diabetes, such as renal impairment, which is the main cause of high cardiovascular morbidity and mortality in diabetic patients. Intensive control of glucose levels and other risk factors associated with diabetes and metabolic syndrome provides the foundations for both preventing and treating diabetic nephropathy. Dipeptidyl peptidase-4 (DPP-4) inhibitors represent a highly promising novel class of oral agents used in the treatment of type 2 diabetes mellitus that may be successfully combined with currently available antidiabetic therapeutics in order to achieve blood glucose goals. Beyond glycemic control, emerging evidence suggests that DPP-4 inhibitors may have desirable off-target effects, including renoprotection. All type 2 diabetes mellitus patients with impaired renal function require dose adjustment of any DPP-4 inhibitor administered except for linagliptin, for which renal excretion is a minor elimination pathway. Thus, linagliptin is the drug most frequently chosen to treat type 2 diabetes mellitus patients with renal failure.
Collapse
Affiliation(s)
- Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia.
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Svetlana Goločorbin-Kon
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
11
|
Tang PMK, Zhang YY, Hung JSC, Chung JYF, Huang XR, To KF, Lan HY. DPP4/CD32b/NF-κB Circuit: A Novel Druggable Target for Inhibiting CRP-Driven Diabetic Nephropathy. Mol Ther 2020; 29:365-375. [PMID: 32956626 DOI: 10.1016/j.ymthe.2020.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, but treatment remains ineffective. C-reactive protein (CRP) is pathogenic in DN, which significantly correlated with dipeptidyl peptidase-4 (DPP4) expression in diabetic patients with unknown reason. Here, using our unique CRPtg-db/db mice, we observed human CRP markedly induced renal DPP4 associated with enhanced kidney injury compared with db/db mice. Interestingly, linagliptin, a US Food and Drug Administration (FDA)-approved specific DPP4 inhibitor, effectively blocked this CRP-driven DN in the CRPtg-db/db mice. Mechanistically, CRP evoked DPP4 in cultured renal tubular epithelial cells, where CD32b/nuclear factor κB (NF-κB) signaling markedly enriched p65 binding on the DPP4 promoter region to increase its transcription. Unexpectedly, we further discovered that CRP triggers dimerization of DPP4 with CD32b at protein level, forming a novel DPP4/CD32b/NF-κB signaling circuit for promoting CRP-mediated DN. More importantly, linagliptin effectively blocked the circuit, thereby inhibiting the CRP/CD32b/NF-κB-driven renal inflammation and fibrosis. Thus, DPP4 may represent a precise druggable target for CRP-driven DN.
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| | - Ying-Ying Zhang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jessica Shuk-Chun Hung
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Nicotera R, Casarella A, Longhitano E, Bolignano D, Andreucci M, De Sarro G, Cernaro V, Russo E, Coppolino G. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol Res 2020; 159:105019. [PMID: 32553713 DOI: 10.1016/j.phrs.2020.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Diabetes Mellitus (DM) is a chronic and severe metabolic disease, characterized by chronic hyperglycemia due to insulin resistance and/or reduced insulin secretion. Concerning the non-insulin glucose-lowering therapy for diabetes, Dipeptidyl-peptidase-4 (DPP-4) inhibitors, members of the incretin family, represent new agents, capable of a glycemic control improvement with an advantageous safety profile, given the absence of weight gain, the low incidence of hypoglycemia and the good renal tolerance in patients suffering from chronic renal failure. In addition to demonstrating efficacy in glycemic control through inhibition of GLP-1 degradation, DPP-4 inhibitors (DPP-4is) seem to demonstrate pleiotropic effects, which also make them interesting in both diabetic and non-diabetic nephropathies, especially for their capacity of reducing proteinuria. Several studies about diabetic nephropathy on patients' cohorts and murine models have demonstrated a solid direct relationship between DPP-4 activity and urinary albumin excretion (UAE), thus confirming the capacity of DPP-4is to reduce proteinuria; the mechanism responsible for that effect was studied to assess if it was the result of a direct action on renal impairment or a secondary consequence of the better glycemic control related to these agents. As a result of these more in-depth studies, DPP-4is have demonstrated an improvement of renal inflammation markers and consequent proteinuria reduction, regardless of glucose concentrations. Considering the nephroprotective effects of DPP-4is might be glycemic independent, several studies were conducted to prove the validity of the same effects in non-diabetic nephropathies. Among these studies, DPP-4is demonstrated an improvement of various renal inflammatory markers on several models of non-diabetes dependent renal impairment, confirming their capacity to reduce proteinuria, independently from the action on glucose metabolism. The objective of this review is to present and discuss the so far demonstrated antiproteinuric effect of DPP-4is and their effects on diabetic and non-diabetic nephropathies.
Collapse
Affiliation(s)
- Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Elisa Longhitano
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Valeria Cernaro
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy.
| |
Collapse
|
13
|
Mima A, Yasuzawa T, Nakamura T, Ueshima S. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Sci Rep 2020; 10:5775. [PMID: 32238837 PMCID: PMC7113296 DOI: 10.1038/s41598-020-62579-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Diabetes-induced podocyte apoptosis is considered to play a critical role in the pathogenesis of diabetic kidney disease (DKD). We proposed that hyperglycaemia can induce podocyte apoptosis by inhibiting the action of podocyte survival factors, thus inactivating the cellular effects of insulin signalling. In this study, we aimed to determine the effects of linagliptin on high glucose-induced podocyte apoptosis. Linagliptin reduced the increase in DNA fragmentation as well as the increase in TUNEL-positive cells in podocytes induced by high-glucose condition. Furthermore, linagliptin improved insulin-induced phosphorylation of insulin receptor substrate 1 (IRS1) and Akt, which was inhibited in high-glucose conditions. Adenoviral vector-mediated IRS1 overexpression in podocytes partially normalised DNA fragmentation in high-glucose conditions, while downregulation of IRS1 expression using small interfering RNA increased DNA fragmentation even in low-glucose conditions. Because reactive oxygen species inhibit glomerular insulin signalling in diabetes and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important intrinsic antioxidative systems, we evaluated whether linagliptin increased Nrf2 in podocytes. High-glucose condition and linagliptin addition increased Nrf2 levels compared to low-glucose conditions. In summary, linagliptin offers protection against DKD by enhancing IRS1/Akt insulin signalling in podocytes and partially via the Keap1/Nrf2 pathway. Our findings suggest that linagliptin may induce protective effects in patients with DKD, and increasing IRS1 levels could be a potential therapeutic target in DKD.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical College, Osaka, Japan.
| | - Toshinori Yasuzawa
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan.,Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Tomomi Nakamura
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Shigeru Ueshima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.,Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
14
|
Helmy MM, Mouneir SM. Reno-protective effect of linagliptin against gentamycin nephrotoxicity in rats. Pharmacol Rep 2019; 71:1133-1139. [PMID: 31675669 DOI: 10.1016/j.pharep.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies demonstrated the reno-protective effects of two dipeptidyl peptidase-4 (DPP-4) inhibitors, saxagliptin and sitagliptin, against gentamycin-induced renal injury. However, none of these studies investigated whether renal DPP-4 contributes to the pathogenesis of this nephrotoxicity or not. This prompted us to test this hypothesis and to assess, for the first time, the potential reno-protective effect of linagliptin and whether this action is related or not to DPP-4 inhibition. Lingliptin was chosen since it is mainly excreted through a non-renal pathway and can therefore be used safely in individuals with renal injury. METHODS Male Sprague-Dawley rats were administered gentamycin (100 mg/kg/day, ip for 10 days) alone or combined with linagliptin (3 mg/kg/day, orally for 14 days). Gentamycin was administered once daily during the last ten days of the linagliptin treatment. RESULTS Linagliptin administration ameliorated gentamycin-induced renal injury and restored renal functional, oxidative, inflammatory, apoptotic and histopathological changes. Furthermore, the current study highlighted the role of increased plasma and renal DPP-4 in the pathogenesis of gentamycin renal insults and showed that the potential reno-protective effect of linagliptin is partly, mediated via inhibition of DPP-4, in addition to other antioxidant, anti-inflammatory and anti-apoptotic actions. CONCLUSION Linagliptin may serve as a beneficial adjutant to reduce gentamycin-induced renal injury.
Collapse
Affiliation(s)
- Mai M Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Samar M Mouneir
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
15
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
16
|
Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1321-1330. [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, intestinal inflammatory disorders with complex and yet unrevealed pathogenesis in which genetic, immunological, and environmental factors play a role. Nowadays, a higher proportion of elderly IBD patients with coexisting conditions, such as cardiovascular disease and/or diabetes is recorded, who require more complex treatment and became a great challenge for gastroenterologists. Furthermore, some patients do not respond to anti-IBD therapy. These facts, together with increasing comorbidities in patients with IBD, imply that urgent, more complex, novel therapeutic strategies in the treatment are needed. Glucagon-like peptides (GLPs) possess numerous functions in the human body such as lowering blood glucose level, controlling body weight, inhibiting gastric emptying, reducing food ingestion, increasing crypt cell proliferation, and improving intestinal growth and nutrient absorption. Thus, GLPs and dipeptidyl peptidase IV (DPP-IV) inhibitors have recently gained attention in IBD research. Several animal models showed that treatment with GLPs may lead to improvement of colitis. This review presents data on the multitude effects of GLPs in the inflammatory intestinal diseases and summarizes the current knowledge on GLPs, which have the potential to become a novel therapeutic option in IBD therapy.
Collapse
|
17
|
Takagaki Y, Shi S, Katoh M, Kitada M, Kanasaki K, Koya D. Dipeptidyl peptidase-4 plays a pathogenic role in BSA-induced kidney injury in diabetic mice. Sci Rep 2019; 9:7519. [PMID: 31101909 PMCID: PMC6525172 DOI: 10.1038/s41598-019-43730-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is appeared to be higher risk of declining kidney function compared to non-diabetic kidney disease with same magnitude of albuminuria. Epithelial-mesenchymal transition (EMT) program of tubular epithelial cells (TECs) could be important for the production of the extracellular matrix in the kidney. Caveolin-1 (CAV1), dipeptidyl peptidase-4 (DPP-4) and integrin β1 have shown to be involved in EMT program. Here, we found diabetic kidney is prone for albuminuria-induced TECs damage and DPP-4 plays a vital role in such parenchymal damages in diabetic mice. The bovine serum albumin (BSA) injection induced severe TECs damage and altered expression levels of DPP-4, integrin β1, CAV1, and EMT programs including relevant microRNAs in type 1 diabetic CD-1 mice when compared to non-diabetic mice; teneligliptin (TENE) ameliorated these alterations. TENE suppressed the close proximity among DPP-4, integrin β1 and CAV1 in a culture of HK-2 cells. These findings suggest that DPP-4 inhibition can be relevant for combating proteinuric DKD by targeting the EMT program induced by the crosstalk among DPP-4, integrin β1 and CAV1.
Collapse
Affiliation(s)
- Yuta Takagaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Makoto Katoh
- Mitsubishi Tanabe Pharma Corporation Ikuyaku, Integrated Value Development Division, Tokyo, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan. .,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan. .,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| |
Collapse
|
18
|
A Novel Dipeptidyl Peptidase IV Inhibitory Tea Peptide Improves Pancreatic β-Cell Function and Reduces α-Cell Proliferation in Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2019; 20:ijms20020322. [PMID: 30646613 PMCID: PMC6359713 DOI: 10.3390/ijms20020322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors occupy a growing place in the drugs used for the management of type 2 diabetes. Recently, food components, including food-derived bioactive peptides, have been suggested as sources of DPP-IV inhibitors without side effects. Chinese black tea is a traditional health beverage, and it was used for finding DPP-IV inhibitory peptides in this study. The ultra-filtrated fractions isolated from the aqueous extracts of black tea revealed DPP-IV inhibitory activity in vitro. Four peptides under 1 kDa were identified by SDS-PAGE and LC-MS/MS (Liquid Chromatography-Mass Spectrometry-Mass Spectrometry) from the ultra-filtrate. The peptide II (sequence: AGFAGDDAPR), with a molecular mass of 976 Da, showed the greatest DPP-IV inhibitory activity (in vitro) among the four peptides. After administration of peptide II (400 mg/day) for 57 days to streptozotocin (STZ)-induced hyperglycemic mice, the concentration of glucagon-like peptide-1 (GLP-1) in the blood increased from 9.85 ± 1.96 pmol/L to 19.22 ± 6.79 pmol/L, and the insulin level was increased 4.3-fold compared to that in STZ control mice. Immunohistochemistry revealed the improved function of pancreatic beta-cells and suppressed proliferation of pancreatic alpha-cells. This study provides new insight into the use of black tea as a potential resource of food-derived DPP-IV inhibitory peptides for the management of type 2 diabetes.
Collapse
|
19
|
Dawood AA, Ghobashy YE, Elgamal AA. The relationship between serum dipeptidyl peptidase-4 enzyme and nonalcoholic fatty liver disease in diabetic and nondiabetic patients. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_34_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Dipeptidyl peptidase-4 inhibition and renoprotection: the role of antifibrotic effects. Curr Opin Nephrol Hypertens 2018; 26:56-66. [PMID: 27820706 DOI: 10.1097/mnh.0000000000000291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This article analyzes the potential beneficial effects of dipeptidyl peptidase (DPP)-4 inhibitors on renal diseases. RECENT FINDINGS The pathological significance of DPP-4, either dependent or independent on catalytic activities, on renal diseases has been reported in preclinical studies. With regard to this, we have shown that damaged endothelial cells are converted to a mesenchymal cell phenotype, which is associated with the induction of DPP-4 in endothelial cells. The endothelial mesenchymal transition may contribute to kidney fibrosis; indeed, the antifibrotic effects of DPP-4 inhibitors have been reported elsewhere. However, even though such potential benefits of DPP-4 inhibitors on renal diseases were shown in preclinical studies, clinical trials have not yet revealed significant benefits in renal hard outcomes of DPP-4 inhibitors. SUMMARY To completely understand the beneficial effects of DPP-4 inhibitors, both the following studies are required: first, preclinical studies that analyze deeper molecular mechanisms of DPP-4 inhibition, and, second, clinical studies that investigate whether such potential beneficial effects of DPP-4 inhibitors are relevant to the patients in the clinic.
Collapse
|
21
|
Coppolino G, Leporini C, Rivoli L, Ursini F, di Paola ED, Cernaro V, Arturi F, Bolignano D, Russo E, De Sarro G, Andreucci M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol Res 2018; 129:274-294. [DOI: 10.1016/j.phrs.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
22
|
Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond) 2018; 132:489-507. [PMID: 29491123 PMCID: PMC5828949 DOI: 10.1042/cs20180031] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors used to treat type 2 diabetes may have nephroprotective effects beyond the reduced renal risk conferred by glycemic control. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. The kidneys contain the highest levels of DPP-4, which is increased in diabetic nephropathy. DPP-4 inhibitors are a chemically heterogeneous class of drugs with important pharmacological differences. Of the globally marketed DPP-4 inhibitors, linagliptin is of particular interest for diabetic nephropathy as it is the only compound that is not predominantly excreted in the urine. Linagliptin is also the most potent DPP-4 inhibitor, has the highest affinity for this protein, and has the largest volume of distribution; these properties allow linagliptin to penetrate kidney tissue and tightly bind resident DPP-4. In animal models of kidney disease, linagliptin elicited multiple renoprotective effects, including reducing albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis, independent of changes in glucagon-like peptide-1 (GLP-1) and glucose levels. At the molecular level, linagliptin prevented the pro-fibrotic endothelial-to-mesenchymal transition by disrupting the interaction between membrane-bound DPP-4 and integrin β1 that enhances signaling by transforming growth factor-β1 and vascular endothelial growth factor receptor-1. Linagliptin also increased stromal cell derived factor-1 levels, ameliorated endothelial dysfunction, and displayed unique antioxidant effects. Although the nephroprotective effects of linagliptin are yet to be translated to the clinical setting, the ongoing Cardiovascular and Renal Microvascular Outcome Study with Linagliptin in Patients with Type 2 Diabetes Mellitus (CARMELINA®) study will definitively assess the renal effects of this DPP-4 inhibitor. CARMELINA® is the only clinical trial of a DPP-4 inhibitor powered to evaluate kidney outcomes.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
23
|
Velarde-Salcedo AJ, Regalado-Rentería E, Velarde-Salcedo R, Juárez-Flores BI, Barrera-Pacheco A, González de Mejía E, Barba de la Rosa AP. Consumption of Amaranth Induces the Accumulation of the Antioxidant Protein Paraoxonase/Arylesterase 1 and Modulates Dipeptidyl Peptidase IV Activity in Plasma of Streptozotocin-Induced Hyperglycemic Rats. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2018; 10:181-193. [PMID: 29462810 DOI: 10.1159/000486482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/11/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND/AIM Amaranth is a source of several bioactive compounds, among which peptides with inhibitory activity upon dipeptidyl peptidase IV (DPP-IV) have been reported. However, there is no information about the action of amaranth DPP-IV-inhibitory peptides using in vivo models. The aim of this work was to evaluate the effect of amaranth consumption on plasma and kidney DPP-IV activity as well the changes in plasma proteome profile of streptozotocin (STZ)-induced hyperglycemic rats. METHODS Rats were fed for 12 weeks with a diet containing 20% popped amaranth grain. Kidneys and blood samples were collected for lipid profile, DPP-IV activity and expression, and proteomic analysis. RESULTS Total cholesterol and DPP-IV activity in plasma was increased in hyperglycemic rats, but this effect was reverted by amaranth consumption. Triacylglycerols were increased in the hyperglycemic group fed amaranth, and the highest levels of high-density lipoproteins were also observed in this group. These data correlated with the accumulation of apolipoprotein A-II in plasma. Accumulation of the antioxidant protein paraoxonase/arylesterase 1 in STZ-induced hyperglycemic rats was observed when amaranth was supplied in the diet. CONCLUSION This study provides new insights into the molecular mechanisms by which amaranth exerts its beneficial health action in a hyperglycemic state.
Collapse
Affiliation(s)
- Aída J Velarde-Salcedo
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - Evelyn Regalado-Rentería
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Rodrigo Velarde-Salcedo
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - Bertha I Juárez-Flores
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - Elvira González de Mejía
- Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ana P Barba de la Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| |
Collapse
|
24
|
McKillop AM, Stevenson CL, Moran BM, Abdel-Wahab YHA, Flatt PR. Tissue expression of DPP-IV in obesity-diabetes and modulatory effects on peptide regulation of insulin secretion. Peptides 2018; 100:165-172. [PMID: 29412816 DOI: 10.1016/j.peptides.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
Abstract
Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent an important class of glucose-lowering drug for type 2 diabetes. DPP-4 enzyme activity has been observed to be significantly altered in type 2 diabetes. Here, the role of DPP-4 was examined in a high fat fed (HFF) mouse model of insulin resistance. HFF mice had an increased bodyweight (p < .01), were hyperglycaemic (p < .01) and hyperinsulinaemic (p < .05). Compared to normal diet, HFF mice exhibited increased plasma DPP-4 activity (p < .01). Tissue distribution patterns in lean and HFF mice demonstrated highest levels of DPP-4 activity in lung (20-26 μmol/min/mg protein) and small intestine (13-14 μmol/min/mg protein), and lowest activity in the spleen (3.8 μmol/min/mg protein). Modulation of DPP-4 activity by high fat feeding was observed in several tissues with increases in the lung (p < .05), liver (p < .05), kidney (p < .05) and pancreas (p < .05). With a high fat diet, DPP-4 gene expression was upregulated in the liver (p < .001) and downregulated in the pancreas (p < 0.001) and small intestine (p < .001). Immunohistochemical analysis revealed increased DPP-4 immunostaining localised primarily in the pancreatic islets of HFF mice (p < .01) with no change in islet GLP-1 expression. Treatment of HFF mice with metformin for 21-days resulted in inhibition of circulating DPP-4 activity (p < .05), decreased blood glucose (p < .05) and increased GLP-1 gene expression (p < .001). These data indicate that DPP-4 is modulated in a tissue specific manner and is dependent on physiological conditions such as hyperglycaemia and insulin resistance, suggesting a significant role in disorders such as diabetes.
Collapse
Affiliation(s)
- Aine M McKillop
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, United Kingdom.
| | - Claire L Stevenson
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| | - Brian M Moran
- Department of Biopharmaceutical and Medical Science, School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Yasser H A Abdel-Wahab
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| | - Peter R Flatt
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
25
|
Trevisan R. The Role of Vildagliptin in the Therapy of Type 2 Diabetic Patients with Renal Dysfunction. Diabetes Ther 2017; 8:1215-1226. [PMID: 28983844 PMCID: PMC5688978 DOI: 10.1007/s13300-017-0302-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetes is the leading cause of chronic kidney disease, and even in the absence of albuminuria, decreased renal function in type 2 diabetes mellitus (T2DM) patients increases the risk for major adverse cardiovascular events and death. The evidence derived from recent studies suggests that intensive glucose control not only reduces the risk for microalbuminuria and macroalbuminuria but may also decrease the rate of decline of glomerular filtration rate (GFR). Although insulin therapy is widely used in patients with T2DM and renal disease, metabolic control is particularly difficult to achieve and manage because of the limited therapeutic options and the frequent comorbidities seen in this population. Recent evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors may offer a better choice for improving glycemic control in T2DM patients with low GFR. This review will focus on vildagliptin, a DPP-4 inhibitor with a large body of evidence in patients with moderate to severe renal failure and a good clinical profile in terms of efficacy and safety. In particular, vildagliptin, with appropriate dose adjustment, provides clinically important reductions in glycated hemoglobin, without increasing weight and the risk of hypoglycemia even in patients with severe chronic kidney disease.
Collapse
Affiliation(s)
- Roberto Trevisan
- Unit for Endocrine Diseases and Diabetology, ASST-Hospital Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
26
|
Uchii M, Sakai M, Hotta Y, Saeki S, Kimoto N, Hamaguchi A, Kitayama T, Kunori S. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo. J Pharmacol Sci 2017; 135:126-130. [PMID: 29113790 DOI: 10.1016/j.jphs.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4.
Collapse
Affiliation(s)
- Masako Uchii
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Mariko Sakai
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yuhei Hotta
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Satoshi Saeki
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Naoya Kimoto
- Translational Research Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akinori Hamaguchi
- Research Function Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Tetsuya Kitayama
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shunji Kunori
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan.
| |
Collapse
|
27
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Kim MK. Treatment of diabetic kidney disease: current and future targets. Korean J Intern Med 2017; 32:622-630. [PMID: 28704915 PMCID: PMC5511942 DOI: 10.3904/kjim.2016.219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 06/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease in Korea and worldwide, and is a risk factor for the development of cardiovascular complications. The conventional treatments for DKD are control of blood glucose and blood pressure levels by inhibiting the renin-angiotensin system. However, the prevalence of DKD continues to increase and additional therapies are required to prevent or ameliorate the condition. Many drugs have been, or are being, developed to target the molecular mechanisms in play in DKD. This review focuses on DVD treatment, considering current and emerging therapeutic targets and the clinical trial-based evidence.
Collapse
Affiliation(s)
- Mi-Kyung Kim
- Correspondence to Mi-Kyung Kim, M.D. Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, 56 Dalseong-ro, Jung-gu, Daegu 41931, Korea Tel: +82-53-250-7486 Fax: +82-53-250-7982 E-mail:
| |
Collapse
|
29
|
Uchida T, Oda T, Matsubara H, Watanabe A, Takechi H, Oshima N, Sakurai Y, Kumagai H. Renoprotective effects of a dipeptidyl peptidase 4 inhibitor in a mouse model of progressive renal fibrosis. Ren Fail 2017; 39:340-349. [PMID: 28118775 PMCID: PMC6014509 DOI: 10.1080/0886022x.2017.1279553] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the effects of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond their hypoglycemic action have been reported, whether these inhibitors have renoprotective effects in nondiabetic chronic kidney disease (CKD) is unclear. We examined the therapeutic effects of DPP-4 inhibition in mice with unilateral ureteral obstruction (UUO), a nondiabetic model of progressive renal fibrosis. After UUO surgery, mice were administered either the DPP-4 inhibitor alogliptin or a vehicle by oral gavage once a day for 10 days. Physiological parameters, degrees of renal fibrosis and inflammation, and molecules related to renal fibrosis and inflammation were then evaluated using sham-operated mice as controls. Positive area of α-smooth muscle actin was significantly smaller and expression of transforming growth factor β messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group. Renal total collagen content was also significantly lower in the alogliptin-treated group than in the vehicle-treated group. These results suggest that alogliptin exerted renoprotective antifibrotic effects. The positive area of F4/80 was significantly smaller and expression of CD68 messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group, suggesting an anti-inflammatory action by the DPP-4 inhibitor. Compared to the results for the vehicle-treated group, expression of markers for M1 macrophages tended to be lower in the alogliptin-treated group, and the relative expression of M2 macrophages tended to be higher. These data indicate the various protective effects of DPP-4 inhibition in nondiabetic mice with UUO. DPP-4 inhibitors may therefore be promising therapeutic choices even for nondiabetic CKD patients.
Collapse
Affiliation(s)
- Takahiro Uchida
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Takashi Oda
- b Department of Nephrology , Tokyo Medical University Hachioji Medical Center , Hachioji , Tokyo , Japan
| | - Hidehito Matsubara
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Atsushi Watanabe
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Hanako Takechi
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Naoki Oshima
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Yutaka Sakurai
- c Department of Preventive Medicine and Public Health , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Hiroo Kumagai
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| |
Collapse
|
30
|
Miglio G, Vitarelli G, Klein T, Benetti E. Effects of linagliptin on human immortalized podocytes: a cellular system to study dipeptidyl-peptidase 4 inhibition. Br J Pharmacol 2017; 174:809-821. [PMID: 28177527 DOI: 10.1111/bph.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Dipeptidyl-peptidase 4 (DPP4) is expressed by resident renal cells, including glomerular cells. DPP4 inhibitors (gliptins) exert albuminuria lowering effects, but the role of renal DPP4 as a pharmacological target has not been elucidated. To better understand the actions of gliptins, the effects of linagliptin on the behaviour of immortalized human podocytes and mesangial cells were evaluated. EXPERIMENTAL APPROACH The expression of DPP4 was measured at both the mRNA and protein levels. The effects of linagliptin on DPP4 activity, cell growth and cell cycle progression were determined. The contribution of the stromal cell-derived factor-1- CXCR4/CXCR7 signalling pathways was evaluated by studying the effects of AMD3100 (a CXCR4 antagonist and CXCR7 agonist) alone and in combination with linagliptin. The contribution of ERK1/2 activation was analysed by studying the effects of the MAPK kinase 1/2 inhibitor AZD6244. KEY RESULTS DPP4 was highly expressed in podocytes. The activity of DPP4 and podocyte growth were reduced by linagliptin. The effects of sitagliptin on podocyte growth were similar to those of linagliptin, were associated with inhibition of cell proliferation and mimicked by AMD3100. Moreover, linagliptin and AMD3100 were found to have a synergistic interaction, whereas no interaction was seen between linagliptin and AZD6244. CONCLUSIONS AND IMPLICATIONS Our cultures of human glomerular cells represent a reliable system for investigating the actions of gliptins. Moreover, DPP4 contributes to the regulation of podocyte behaviour. Inhibition of DPP4 in podocytes could underlie the effects of linagliptin on glomerular cells.
Collapse
Affiliation(s)
- Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Giovanna Vitarelli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Thomas Klein
- Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
31
|
Glorie L, D'Haese PC, Verhulst A. Boning up on DPP4, DPP4 substrates, and DPP4-adipokine interactions: Logical reasoning and known facts about bone related effects of DPP4 inhibitors. Bone 2016; 92:37-49. [PMID: 27535784 DOI: 10.1016/j.bone.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a conserved exopeptidase with an important function in protein regulation. The activity of DPP4, an enzyme which can either be anchored to the plasma membrane or circulate free in the extracellular compartment, affects the glucose metabolism, cellular signaling, migration and differentiation, oxidative stress and the immune system. DPP4 is also expressed on the surface of osteoblasts, osteoclasts and osteocytes, and was found to play a role in collagen metabolism. Many substrates of DPP4 have an established role in bone metabolism, among which are incretins, gastrointestinal peptides and neuropeptides. In general, their effects favor bone formation, but some effects are complex and have not been completely elucidated. DPP4 and some of its substrates are known to interact with adipokines, playing an essential role in the energy metabolism. The prolongation of the half-life of incretins through DPP4 inhibition led to the development of these inhibitors to improve glucose tolerance in diabetes. Current literature indicates that the inhibition of DPP4 activity might also result in a beneficial effect on the bone metabolism, but the long-term effect of DPP4 inhibition on fracture outcome has not been entirely established. Diabetic as well as postmenopausal osteoporosis is associated with an increased activity of DPP4, as well as a shift in the expression levels of DPP4 substrates, their receptors, and adipokines. The interactions between these factors and their relationship in bone metabolism are therefore an interesting field of study.
Collapse
Affiliation(s)
- Lorenzo Glorie
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
32
|
Kanasaki K. The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetol Int 2016; 7:212-220. [PMID: 30603266 DOI: 10.1007/s13340-016-0281-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction and tubulointerstitial fibrosis are characteristics of diabetic kidneys. Recent evidence has suggested that the diabetic kidney is associated with dipeptidyl peptidase (DPP)-4 overexpression in endothelial cells. Several insults can induce endothelial cells to alter their phenotype into a mesenchymal-like phenotype via endothelial-mesenchymal transition (EndMT), which plays pivotal roles in tissue fibrosis. We have recently revealed the fibrogenic role of DPP-4 through the induction of EndMT in diabetic kidneys. This review mainly focuses on the biological and pathological significance of DPP-4 overexpression in endothelial cells through the mechanisms of endothelial homeostasis defects, EndMT, and kidney fibrosis.
Collapse
Affiliation(s)
- Keizo Kanasaki
- 1Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan.,2Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
33
|
Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence. Int J Mol Sci 2016; 17:ijms17081223. [PMID: 27483245 PMCID: PMC5000621 DOI: 10.3390/ijms17081223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
An increase in the rates of morbidity and mortality associated with diabetic complications is a global concern. Glycemic control is important to prevent the development and progression of diabetic complications. Various classes of anti-diabetic agents are currently available, and their pleiotropic effects on diabetic complications have been investigated. Incretin-based therapies such as dipeptidyl peptidase (DPP)-4 inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RA) are now widely used in the treatment of patients with type 2 diabetes. A series of experimental studies showed that incretin-based therapies have beneficial effects on diabetic complications, independent of their glucose-lowering abilities, which are mediated by anti-inflammatory and anti-oxidative stress properties. Based on these findings, clinical studies to assess the effects of DPP-4 inhibitors and GLP-1RA on diabetic microvascular and macrovascular complications have been performed. Several but not all studies have provided evidence to support the beneficial effects of incretin-based therapies on diabetic complications in patients with type 2 diabetes. We herein discuss the experimental and clinical evidence of incretin-based therapy for diabetic complications.
Collapse
|
34
|
Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules. Int J Mol Sci 2016; 17:ijms17050780. [PMID: 27213360 PMCID: PMC4881597 DOI: 10.3390/ijms17050780] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/14/2023] Open
Abstract
Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10−8 M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression.
Collapse
|
35
|
DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury. J Transl Med 2016; 96:547-60. [PMID: 26878135 DOI: 10.1038/labinvest.2016.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/17/2015] [Accepted: 01/17/2016] [Indexed: 11/09/2022] Open
Abstract
Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.
Collapse
|
36
|
Zietek T, Rath E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front Immunol 2016; 7:154. [PMID: 27148273 PMCID: PMC4840214 DOI: 10.3389/fimmu.2016.00154] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München , Freising , Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München , Freising , Germany
| |
Collapse
|
37
|
Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens 2016; 32:2211-23; discussion 2223. [PMID: 25215436 DOI: 10.1097/hjh.0000000000000328] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the beneficial effects of type 4 dipeptidyl peptidase (DPP-4) inhibitors on glucose levels, its effects on diabetic nephropathy remain unclear. METHOD This study examined the long-term renoprotective effects of DPP-4 inhibitor linagliptin in db/db mice, a model of type 2 diabetes. Results were compared with the known beneficial effects of renin-angiotensin system blockade by enalapril. Ten-week-old male diabetic db/db mice were treated for 3 months with either vehicle (n = 10), 3 mg linagliptin/kg per day (n = 8), or 20 mg enalapril/kg per day (n = 10). Heterozygous db/m mice treated with vehicle served as healthy controls (n = 8). RESULTS Neither linagliptin nor enalapril had significant effects on the parameters of glucose metabolism or blood pressure in diabetic db/db mice. However, linagliptin treatment reduced albuminuria and attenuated kidney injury. In addition, expression of podocyte marker podocalyxin was normalized. We also analysed DPP-4 expression by immunofluorescence in human kidney biopsies and detected upregulation of DPP-4 in the glomeruli of patients with diabetic nephropathy, suggesting that our findings might be of relevance for human kidney disease as well. CONCLUSION Treatment with DPP-4 inhibitor linagliptin delays the progression of diabetic nephropathy damage in a glucose-independent and blood-pressure-independent manner. The observed effects may be because of the attenuation of podocyte injury and inhibition of myofibroblast transformation.
Collapse
|
38
|
Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. FIBROGENESIS & TISSUE REPAIR 2016; 9:1. [PMID: 26877767 PMCID: PMC4752740 DOI: 10.1186/s13069-016-0038-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4 inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the renoprotective effects and possible mechanism of the DPP-4 inhibitors.
Collapse
Affiliation(s)
- Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; The Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, 646000 People's Republic of China
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
39
|
Renoprotective effect of DPP-4 inhibitors against free fatty acid-bound albumin-induced renal proximal tubular cell injury. Biochem Biophys Res Commun 2016; 470:539-545. [PMID: 26802469 DOI: 10.1016/j.bbrc.2016.01.109] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/18/2016] [Indexed: 01/14/2023]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors, a new class of antidiabetic agent, have recently been suggested to exert pleiotropic effects beyond glucose lowering. Renal prognosis in patients with diabetic nephropathy depends on the severity of tubulointerstitial injury induced by massive proteinuria. We thus examined the renoprotective effect of DPP-4 inhibitors on inflammation in cultured mouse proximal tubular cells stimulated with free fatty acid (FFA)-bound albumin. Linagliptin and higher concentrations of sitagliptin, vildagliptin, and alogliptin all inhibited FFA-bound albumin-induced increases in mRNA expression of MCP-1 in cultured mouse proximal tubular cells. Furthermore, linagliptin significantly inhibited tubulointerstitial injury induced by peritoneal injection of FFA-bound albumin, such as inflammation, fibrosis, and apoptosis, in mice without altering systemic characteristics including body weight, fasting blood glucose, and food intake. These results indicate that DPP-4 inhibitors pleiotropically exert a direct renoprotective effect, and may serve as an additional therapeutic strategy to protect proximal tubular cells against proteinuria in patients with diabetic nephropathy.
Collapse
|
40
|
Groop PH, Cooper ME, Perkovic V, Sharma K, Schernthaner G, Haneda M, Hocher B, Gordat M, Cescutti J, Woerle HJ, von Eynatten M. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA-T2D™ trial. Diab Vasc Dis Res 2015. [PMID: 26224765 DOI: 10.1177/1479164115579002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Efficacy, Safety & Modification of Albuminuria in Type 2 Diabetes Subjects with Renal Disease with LINAgliptin (MARLINA-T2D™), a multicentre, multinational, randomized, double-blind, placebo-controlled, parallel-group, phase 3b clinical trial, aims to further define the potential renal effects of dipeptidyl peptidase-4 inhibition beyond glycaemic control. A total of 350 eligible individuals with inadequately controlled type 2 diabetes and evidence of renal disease are planned to be randomized in a 1:1 ratio to receive either linagliptin 5 mg or placebo in addition to their stable glucose-lowering background therapy for 24 weeks. Two predefined main endpoints will be tested in a hierarchical manner: (1) change from baseline in glycated haemoglobin and (2) time-weighted average of percentage change from baseline in urinary albumin-to-creatinine ratio. Both endpoints are sufficiently powered to test for superiority versus placebo after 24 weeks with α = 0.05. MARLINA-T2D™ is the first of its class to prospectively explore both the glucose- and albuminuria-lowering potential of a dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes and evidence of renal disease.
Collapse
Affiliation(s)
- Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Mark E Cooper
- Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Vlado Perkovic
- The George Institute for Global Health, University of Sydney, Sydney, NSW, Australia
| | - Kumar Sharma
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA, USA Center for Renal Translational Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | | | | | | | | |
Collapse
|
41
|
Sanchez RA, Sanabria H, Santos CDL, Ramirez AJ. Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease. World J Diabetes 2015; 6:1186-1197. [PMID: 26380062 PMCID: PMC4564814 DOI: 10.4239/wjd.v6.i11.1186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/29/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Hyperglycemia is associated with an increased risk of cardiovascular disease, and the consequences of intensive therapy may depend on the mechanism of the anti-diabetic agent(s) used to achieve a tight control. In animal models, stable analogues of glucagon-like peptide-1 (GLP-1) were able to reduce body weight and blood pressure and also had favorable effects on ischemia following coronary reperfusion. In a similar way, dipeptidyl peptidase IV (DPP-IV) showed to have favorable effects in animal models of ischemia/reperfusion. This could be due to the fact that DPP-IV inhibitors were able to prevent the breakdown of GLP-1 and glucose-dependent insulinotropic polypeptide, but they also decreased the degradation of several vasoactive peptides. Preclinical data for GLP-1, its derivatives and inhibitors of the DPP-IV enzyme degradation suggests that these agents may be able to, besides controlling glycaemia, induce cardio-protective and vasodilator effects. Notwithstanding the many favorable cardiovascular effects of GLP-1/incretins reported in different studies, many questions remain unanswered due the limited number of studies in human beings that aim to examine the effects of GLP-1 on cardiovascular endpoints. For this reason, long-term trials searching for positive cardiovascular effects are now in process, such as the CAROLINA and CARMELINA trials, which are supported by small pilot studies performed in humans (and many more animal studies) with incretin-based therapies. On the other hand, selective renal sodium-glucose co-transporter 2 inhibitors were also evaluated in the prevention of cardiovascular outcomes in type 2 diabetes. However, it is quite early to draw conclusions, since data on cardiovascular outcomes and cardiovascular death are limited and long-term studies are still ongoing. In this review, we will analyze the mechanisms underlying the cardiovascular effects of incretins and, at the same time, we will present a critical position about the real value of these compounds in the cardiovascular system and its protection.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs approved for the treatment of type 2 diabetes. The main action of DPP-4 inhibitors is to increase the level of incretin hormones such as glucagon-like peptide-1 (GLP-1), thereby stimulating insulin secretion from pancreatic β cells. Recently emerging evidence suggests the pleiotropic extrapancreatic function of GLP-1 or DPP-4 inhibitors, including kidney and cardiovascular protection. Here, we review the effects of DPP-4 inhibitors on progressive kidney disease such as diabetic nephropathy from a therapeutic point of view. RECENT FINDINGS A growing number of studies in animal models and human diseases have shown that DPP-4 inhibition ameliorates kidney disease by a process independent of glucose lowering. Possible mechanisms underlying such protective properties include the facilitation of natriuresis and reduction of blood pressure, and also local effects of the reduction of oxidative stress, inflammation and improvement of endothelial function in the kidney. DPP-4 inhibitors may also restore other DPP-4 substrates which have proven renal effects. SUMMARY Treatment of diabetes with DPP-4 inhibitors is likely to involve a variety of extrapancreatic effects including renal protection. Such pleiotropic action of DPP-4 inhibitors might occur by both incretin-dependent and incretin-independent mechanisms. Conclusive evidence is needed to translate the favorable results from animal models to humans.
Collapse
|
43
|
Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 307:H477-92. [PMID: 24929856 DOI: 10.1152/ajpheart.00209.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.
Collapse
|
44
|
Chang E, Kim L, Choi JM, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park DI, Park CY. Ezetimibe stimulates intestinal glucagon-like peptide 1 secretion via the MEK/ERK pathway rather than dipeptidyl peptidase 4 inhibition. Metabolism 2015; 64:633-41. [PMID: 25704082 DOI: 10.1016/j.metabol.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Ezetimibe is known as a Niemann-Pick C1-Like 1 (NPC1L1) inhibitor and has been used as an agent for hypercholesterolemia. In our previous study, ezetimibe administration improved glycemic control and increased glucagon like peptide-1 (GLP-1), an incretin hormone with anti-diabetic properties. However, the mechanisms by which ezetimibe stimulates GLP-1 secretion are not fully understood. Thus, the specific aim of this study was to investigate the mechanism(s) by which ezetimibe stimulates GLP-1 secretion. MATERIALS/METHODS Male KK/H1J mice were divided into following groups: AIN-93G (NC), NC with ezetimibe (10 mg/kg/day), 45% high fat (HF) diet, and HF diet with ezetimibe. To investigate the role of ezetimibe in glucose homeostasis and GLP-1 secretion, an insulin tolerance test was performed and serum and intestinal GLP-1 levels and intestinal mRNA expression involved in GLP-1 synthesis were measured after 6 weeks of ezetimibe treatment. In vivo and in vitro dipeptidyl peptidase-4 (DPP-4) inhibition assays were employed to demonstrate the association between ezetimibe-induced GLP-1 change and DPP-4. The molecular mechanism by which ezetimibe affects GLP-1 secretion was evaluated by using human enteroendocrine NCI-H716 cells. RESULTS Ezetimibe supplementation significantly ameliorated HF-increased glucose and insulin resistance in the type 2 diabetic KK/H1J mouse model. Serum and intestinal active GLP-1 levels were significantly increased by ezetimibe in HF-fed animals. However, mRNA expression of genes involved in intestinal GLP-1 synthesis was not altered. Furthermore, ezetimibe did not inhibit the activity of either in vivo or in vitro dipeptidyl peptidase-4 (DPP-4). The direct effects of ezetimibe on GLP-1 secretion and L cell secretory mechanisms were examined in human NCI-H716 intestinal cells. Ezetimibe significantly stimulated active GLP-1 secretion, which was accompanied by the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK). Ezetimibe-increased GLP-1 secretion was abrogated by inhibiting the MEK/ERK pathway with PD98059. CONCLUSION These findings suggest a possible novel biological role of ezetimibe in glycemic control to stimulate intestinal GLP-1 secretion via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Lisa Kim
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Mook Choi
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki-Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Il Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A. DPP4 inhibition attenuates filtration barrier injury and oxidant stress in the zucker obese rat. Obesity (Silver Spring) 2014; 22:2172-9. [PMID: 24995775 PMCID: PMC4180797 DOI: 10.1002/oby.20833] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity-related glomerulopathy is characterized initially by glomerular hyperfiltration with hypertrophy and then development of proteinuria. Putative mechanisms include endothelial dysfunction and filtration barrier injury due to oxidant stress and immune activation. There has been recent interest in targeting dipeptidyl peptidase 4 (DPP4) enzyme due to increasing role in non-enzymatic cellular processes. METHODS The Zucker obese (ZO) rat (aged 8 weeks) fed a normal chow or diet containing the DPP4 inhibitor linagliptin for 8 weeks (83 mg/kg rat chow) was utilized. RESULTS Compared to lean controls, there were increases in plasma DPP4 activity along with proteinuria in ZO rats. ZO rats further displayed increases in glomerular size and podocyte foot process effacement. These findings occurred in parallel with decreased endothelial stromal-derived factor-1α (SDF-1α), increased oxidant markers, and tyrosine phosphorylation of nephrin and serine phosphorylation of the mammalian target of rapamycin (mTOR). DPP4 inhibition improved proteinuria along with filtration barrier remodeling, circulating and kidney tissue DPP4 activity, increased active glucagon like peptide-1 (GLP-1) as well as SDF-1α, and improved oxidant markers and the podocyte-specific protein nephrin. CONCLUSIONS These data support a role for DPP4 in glomerular filtration function and targeting DPP4 with inhibition improves oxidant stress-related glomerulopathy and associated proteinuria.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Javad Habibi
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Annayya Aroor
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - James R Sowers
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Melvin R Hayden
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
| | - Alex Meuth
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - William Knight
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Tamara Hancock
- College of Veterinary Medicine, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | | | - Vincent G DeMarco
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Adam Whaley-Connell
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Incretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system. RECENT FINDINGS Activation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed. SUMMARY The GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases.
Collapse
|
47
|
Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int 2014; 86:701-11. [PMID: 25007170 DOI: 10.1038/ki.2014.236] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/26/2014] [Accepted: 05/15/2014] [Indexed: 01/18/2023]
Abstract
Incretin-based drugs, i.e., glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are widely used for the treatment of type 2 diabetes. In addition to the primary role of incretins in stimulating insulin secretion from pancreatic β-cells, they have extra pancreatic functions beyond glycemic control. Indeed, recent studies highlight the potential beneficial effects of incretin-based therapy in diabetic kidney disease (DKD). Experimental studies using various diabetic models suggest that incretins protect the vascular endothelium from injury by binding to GLP-1 receptors, thereby ameliorating oxidative stress and the local inflammatory response, which reduces albuminuria and inhibits glomerular sclerosis. In addition, there is some evidence that GLP-1 receptor agonists and DPP-4 inhibitors mediate sodium excretion and diuresis to lower blood pressure. The pleiotropic actions of DPP-4 inhibitors are ascribed primarily to their effects on GLP-1 signaling, but other substrates of DPP-4, such as brain natriuretic peptide and stromal-derived factor-1α, may have roles. In this review, we summarize recent studies of the roles of incretin-based therapy in ameliorating DKD and its complications.
Collapse
Affiliation(s)
- Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Higashijima
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes 2014; 5:342-356. [PMID: 24936255 PMCID: PMC4058738 DOI: 10.4239/wjd.v5.i3.342] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/08/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease, leading to end-stage renal disease and cardiovascular disease. The overall number of patients with DKD will continue to increase in parallel with the increasing global pandemic of type 2 diabetes. Based on landmark clinical trials, DKD has become preventable by controlling conventional factors, including hyperglycemia and hypertension, with multifactorial therapy; however, the remaining risk of DKD progression is still high. In this review, we show the importance of targeting remission/regression of microalbuminuria in type 2 diabetic patients, which may protect against the progression of DKD and cardiovascular events. To achieve remission/regression of microalbuminuria, several steps are important, including the early detection of microalbuminuria with continuous screening, targeting HbA1c < 7.0% for glucose control, the use of renin angiotensin system inhibitors to control blood pressure, the use of statins or fibrates to control dyslipidemia, and multifactorial treatment. Reducing microalbuminuria is therefore an important therapeutic goal, and the absence of microalbuminuria could be a pivotal biomarker of therapeutic success in diabetic patients. Other therapies, including vitamin D receptor activation, uric acid-lowering drugs, and incretin-related drugs, may also be promising for the prevention of DKD progression.
Collapse
|
49
|
Kanasaki K, Shi S, Kanasaki M, He J, Nagai T, Nakamura Y, Ishigaki Y, Kitada M, Srivastava SP, Koya D. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 2014; 63:2120-31. [PMID: 24574044 DOI: 10.2337/db13-1029] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Kidney fibrosis is the final common pathway of all progressive chronic kidney diseases, of which diabetic nephropathy is the leading cause. Endothelial-to-mesenchymal transition (EndMT) has emerged as one of the most important origins of matrix-producing fibroblasts. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been introduced into the market as antidiabetes drugs. Here, we found that the DPP-4 inhibitor linagliptin ameliorated kidney fibrosis in diabetic mice without altering the blood glucose levels associated with the inhibition of EndMT and the restoration of microRNA 29s. Streptozotocin-induced diabetic CD-1 mice exhibited kidney fibrosis and strong immunoreactivity for DPP-4 by 24 weeks after the onset of diabetes. At 20 weeks after the onset of diabetes, mice were treated with linagliptin for 4 weeks. Linagliptin-treated diabetic mice exhibited a suppression of DPP-4 activity/protein expression and an amelioration of kidney fibrosis associated with the inhibition of EndMT. The therapeutic effects of linagliptin on diabetic kidneys were associated with the suppression of profibrotic programs, as assessed by mRNA microarray analysis. We found that the induction of DPP-4 observed in diabetic kidneys may be associated with suppressed levels of microRNA 29s in diabetic mice; linagliptin restored microRNA 29s and suppressed DPP-4 protein levels. Using cultured endothelial cells, we found that linagliptin inhibited TGF-β2-induced EndMT, and such anti-EndMT effects of linagliptin were mediated through microRNA 29 induction. These results indicate the possible novel pleiotropic action of linagliptin to restore normal kidney function in diabetic patients with renal impairment.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Megumi Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Jianhua He
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
50
|
Nistala R, Habibi J, Lastra G, Manrique C, Aroor AR, Hayden MR, Garro M, Meuth A, Johnson M, Whaley-Connell A, Sowers JR. Prevention of obesity-induced renal injury in male mice by DPP4 inhibition. Endocrinology 2014; 155:2266-76. [PMID: 24712875 PMCID: PMC4020930 DOI: 10.1210/en.2013-1920] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Therapies to prevent renal injury in obese hypertensive individuals are being actively sought due to the obesity epidemic arising from the Western diet (WD), which is high in fructose and fat. Recently, activation of the immune system and hyperuricemia, observed with high fructose intake, have been linked to the pathophysiology of hypertension and renal injury. Because dipeptidyl peptidase 4 (DPP4) is a driver of maladaptive T-cell/macrophage responses, renal-protective benefits of DPP4 inhibition in the WD-fed mice were examined. Mice fed a WD for 16 weeks were given the DPP4 inhibitor MK0626 in their diet beginning at 4 weeks of age. WD-fed mice were obese, hypertensive, and insulin-resistant and manifested proteinuria and increased plasma DPP4 activity and uric acid levels. WD-fed mice also had elevated kidney DPP4 activity and monocyte chemoattractant protein-1 and IL-12 levels and suppressed IL-10 levels in the kidney, suggesting macrophage-driven inflammation, glomerular and tubulointerstitial injury. WD-induced increases in DPP4 activation in the plasma and kidney and proteinuria in WD mice were abrogated by MK0626, although blood pressure and systemic insulin sensitivity were not improved. Contemporaneously, MK0626 reduced serum uric acid levels, renal oxidative stress, and IL-12 levels and increased IL-10 levels, suggesting that suppression of DPP4 activity leads to suppression of renal immune/inflammatory injury responses to a WD. Taken together, these results demonstrate that DPP4 inhibition prevents high-fructose/high-fat diet-induced glomerular and tubular injury independent of blood pressure/insulin sensitivity and offers a potentially novel therapy for diabetic and obesity-related kidney disease.
Collapse
|