1
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 PMCID: PMC11558564 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H. Oevreeide
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, NTNU
The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
2
|
Anisimov MN, Boichenko MA, Shorokhov VV, Borzunova JN, Janibekova M, Mustyatsa VV, Lifshits IA, Plodukhin AY, Andreev IA, Ratmanova NK, Zhokhov SS, Tarasenko EA, Ipatova DA, Pisarev AR, Vorobjev IA, Trushkov IV, Ivanova OA, Gudimchuk NB. Synthesis and evaluation of tetrahydropyrrolo[1,2- a]quinolin-1(2 H)-ones as new tubulin polymerization inhibitors. RSC Med Chem 2024; 16:d4md00541d. [PMID: 39464648 PMCID: PMC11499956 DOI: 10.1039/d4md00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Here we explored new 1,5-disubstituted pyrrolidin-2-ones 1, 2 and 5-aryl-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinoline-1(2H)-ones 3 as inhibitors of tubulin polymerization. We evaluated their effects on microtubule dynamics in vitro and on the proliferation of A549 cells, using flow cytometry-based cell cycle analysis. The results were verified with phase-contrast microscopy in three cancer cell lines: A549, HeLa and MCF-7. Guided by molecular modeling of the interactions between tubulin and the most active of the identified compounds, we designed, synthesized, and tested the 3-hydroxyphenyl-substituted compound 3c. This compound was further shown to bind to the colchicine site of tubulin and reduce microtubule growth rates in vitro. Moreover, compound 3c arrested division of the A549 cells in the low micromolar range (IC50 = 5.9 μM) and exhibited cytotoxicity against four different cell lines in the MTT assay for cell proliferation. Our findings demonstrate that 5-aryltetrahydropyrrolo[1,2-a]quinoline-1(2H)-one is a promising scaffold for the development of novel tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Mikhail N Anisimov
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| | - Maksim A Boichenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Vitaly V Shorokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Julia N Borzunova
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Vadim V Mustyatsa
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
- National Laboratory Astana Astana 010000 Kazakhstan
| | - Ilya A Lifshits
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Andrey Yu Plodukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Ivan A Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A Tarasenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Daria A Ipatova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Alexander R Pisarev
- Faculty of Biology and Biotechnologies, Higher School of Economics Moscow 117418 Russia
| | - Ivan A Vorobjev
- National Laboratory Astana Astana 010000 Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University Astana 010000 Kazakhstan
- Department of Biology, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia
| | - Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Nikita B Gudimchuk
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| |
Collapse
|
3
|
Iqbal Lone W, Chand J, Kumar P, Garg Y, Ahmed Z, Mukherjee D, Goswami A, Momo H Anãl J. Discovery of colchicine aryne cycloadduct as a potent molecule for the abrogation of epithelial to mesenchymal transition via modulating cell cycle regulatory CDK-2 and CDK-4 kinases in breast cancer cells. Bioorg Chem 2024; 150:107581. [PMID: 38908129 DOI: 10.1016/j.bioorg.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
In this study, we synthesized a new-generation library of colchicine derivatives via cycloaddition of colchicine utilizing position C-8 and C-12 diene system regioselectivity with aryne precursor to generate a small, focused library of derivatives. We assessed their anticancer activity against various cancer cell lines like MCF-7, MDA-MB-231, MDA-MB-453, and PC-3. Normal human embryonic kidney cell line HEK-293 was used to determine the toxicity. Among these derivatives, silicon-tethered compound B-4a demonstrated the highest potency against breast cancer cells. Subsequent mechanistic studies revealed that B-4a effectively modulates cell cycle regulatory kinases (CDK-2 and CDK-4) and their associated cyclins (cyclin-B1, cyclin-D1), inducing apoptosis. Additionally, B-4a displayed a noteworthy impact on tubulin polymerization, compared to positive control flavopiridol hydrochloride in a dose-dependent manner, and significantly disrupted the vimentin cytoskeleton, contributing to G1 arrest in breast cancer cells. Moreover, B-4a exhibited substantial anti-metastatic properties by inhibiting breast cancer cell migration and invasion. These effects are attributed to the down-regulation of major epithelial to mesenchymal transition (EMT) factors, including vimentin and Twist-1, and the upregulation of the epithelial marker E-cadherin in an apoptosis-dependent manner.
Collapse
Affiliation(s)
- Waseem Iqbal Lone
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagdish Chand
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yashi Garg
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Department of Chemical Sciences, Bose Institute, EN-80, Sector V, Kolkata 700091, WB, India
| | - Anindya Goswami
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Jasha Momo H Anãl
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Zhang H, Su X, Gu L, Tan M, Liu Y, Xu K, Ren J, Chen J, Li Z, Cheng S. Colchicine-mediated selective autophagic degradation of HBV core proteins inhibits HBV replication and HBV-related hepatocellular carcinoma progression. Cell Death Discov 2024; 10:352. [PMID: 39107264 PMCID: PMC11303544 DOI: 10.1038/s41420-024-02122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
The HBV core protein (HBc) is an important viral protein of HBV that plays an indispensable role in the lifecycle of HBV, including capsid assembly and transport, reverse transcription and virus release. In recent years, evidence has shown that HBc may be involved in the malignant progression of HCC. Thus, HBc is an attractive target for antiviral agents and provides a new strategy for the treatment of HBV-related HCC. Here, we identified a novel anti-HBc compound-colchicine, an alkaloid compound-that promoted selective autophagic degradation of HBc through the AMPK/mTOR/ULK1 signalling pathway. We further confirmed that colchicine promoted the selective autophagy of HBc by enhancing the binding of HBc to the autophagy receptor p62. Finally, we evaluated the effects of colchicine on HBV replication and HBc-mediated HCC metastasis in vitro and in vivo. Our research indicated that the inhibitory effects of colchicine on HBV and HBV-related HCC depend on the selective autophagic degradation of HBc. Thus, colchicine is not only a promising therapeutic strategy for chronic hepatitis B but also a new treatment for HBV-related HCC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiameng Su
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Leirong Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuting Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhihong Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shengtao Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Pu LY, Li Z, Huang F, Li L, Ma Y, Ma M, Hu S, Wu Z. Efficient synthesis of novel colchicine-magnolol hybrids and evaluation of their inhibitory activity on key proteases of 2019-nCoV replication and acute lung injury. Nat Prod Res 2024; 38:1238-1247. [PMID: 36302171 DOI: 10.1080/14786419.2022.2138870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 10/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV), is a life-threatening infectious condition. Acute lung injury is a common complication in patients with COVID-19. 3-chymotrypsin-like protease (3CLpro) of 2019-nCoV and neutrophil elastase are critical targets of COVID-19 and acute lung injury, respectively. Colchicine and magnolol are reported to exert inhibitory effects on inflammatory response, the severe comorbidity in both COVID-19 and acute lung injury. We thus designed and synthesized a series of novel colchicine-magnolol hybrids based on a two-step synthetic sequence. It was found that these novel hybrids provided unexpected inhibition on 3CLpro and neutrophil elastase, a bioactivity that colchicine and magnolol did not possess. These findings not only provide perquisites for further in vitro and in vivo investigation to confirm the therapeutic potentiality of novel colchicine-magnolol hybrids, but also suggest that the concurrent inhibition of 3CLpro and neutrophil elastase may enable novel colchicine-magnolol hybrids as effective multi-target drug compounds.
Collapse
Affiliation(s)
| | - Zhiyue Li
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Limin Li
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Yucui Ma
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Min Ma
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zhengzhi Wu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| |
Collapse
|
6
|
Baspinar SN, Kilic B, Azman FN, Guler Y, Gunay UB, Tanin MK, Can G, Ugurlu S. Cancer incidence in Familial Mediterranean Fever: A retrospective analysis. Semin Arthritis Rheum 2023; 63:152284. [PMID: 37979399 DOI: 10.1016/j.semarthrit.2023.152284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Familial Mediterranean Fever (FMF) is the most common hereditary monogenic fever syndrome that is characterized by recurrent attacks of fever and polyserositis. Anti-inflammatory drugs, with colchicine being the first-line therapy, have been used in the management of FMF. This study aims to evaluate the risk of cancer in Turkish FMF patients. METHODS We retrospectively screened the cancer-related outcomes of our study group which consisted of Turkish FMF patients registered at our division. Cancer estimates of the Turkish population were published by the Turkish Ministry of Health in the Turkey Cancer Statistics Report 2018. Standardized incidence rates (SIR) were calculated to compare the cancer incidence observed in our study group with the expected cancer incidence of the Turkish population. Subgroup analyses were conducted on the subgroups, based on gender and usage of biological agents. RESULTS Our study included 1734 FMF patients, 1054 (60.8 %) of whom were females. The total follow-up was 68,784 person-years. Cancer was observed in 35 (2 %) of these patients. Turkish FMF patients had a significantly lower incidence of cancer, compared with the overall Turkish population [SIR 0.64 (95 % CI 0.46-0.89), p < 0.01]. No significant association was found between cancer and biological agent therapies in FMF patients. CONCLUSIONS Findings from our study indicate that the risk of cancer was decreased by 36 % in Turkish patients with FMF, compared with the outcomes of the overall Turkish population. Life-long exposure to anti-inflammatory drugs, primarily colchicine, may be the underlying reason for this outcome. Further studies are needed for the confirmation and explanation of this association.
Collapse
Affiliation(s)
- Sura Nur Baspinar
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey
| | - Berkay Kilic
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Feyza Nur Azman
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Yelin Guler
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Ulgar Boran Gunay
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | - Gunay Can
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Public Health, Istanbul, Turkey
| | - Serdal Ugurlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey.
| |
Collapse
|
7
|
Lin ZY, Yeh ML, Liang PC, Hsu PY, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Dose Consideration of Lenvatinib's Anti-Cancer Effect on Hepatocellular Carcinoma and the Potential Benefit of Combined Colchicine Therapy. Cancers (Basel) 2023; 15:5097. [PMID: 37894463 PMCID: PMC10605131 DOI: 10.3390/cancers15205097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE The dose-dependent anti-cancer effect of lenvatinib on hepatocellular carcinoma (HCC) cells and the potential benefit of combined colchicine therapy were investigated. METHODS Four primary cultured HCC (S103, S143, S160, S176) cell lines were investigated by differential expressions of genes (11 lenvatinib target genes and NANOG) and anti-proliferative effect using clinically achievable plasma lenvatinib (250, 350 ng/mL) and colchicine (4 ng/mL) concentrations. RESULTS Colchicine showed an anti-proliferative effect on all cell lines. Lenvatinib at 250 ng/mL inhibited proliferation in all cell lines, but 350 ng/mL inhibited only three cell lines. For lenvatinib target genes, colchicine down-regulated more genes and up-regulated less genes than lenvatinib did in three cell lines. Lenvatinib up-regulated NANOG in all cell lines. Colchicine down-regulated NANOG in three cell lines but up-regulated NANOG with less magnitude than lenvatinib did in S103. Overall, combined colchicine and 250 ng/mL lenvatinib had the best anti-cancer effects in S143, with similar effects with combined colchicine and 350 ng/mL lenvatinib in S176 but less effects than combined colchicine and 350 ng/mL lenvatinib in S103 and S160. CONCLUSIONS Lenvatinib does not show a dose-dependent anti-cancer effect on HCC. Combined colchicine and lenvatinib can promote the total anti-cancer effects on HCC.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Cheng Liang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
| | - Po-Yao Hsu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine, Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Lin JJ, Lin CL, Chen CC, Lin YH, Cho DY, Chen X, Chen DC, Chen HY. Unlocking Colchicine's Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers (Basel) 2023; 15:5031. [PMID: 37894398 PMCID: PMC10605746 DOI: 10.3390/cancers15205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Liver cancer and notably hepatocellular carcinoma (HCC), results in significantly high mortality rates worldwide. Chronic hepatitis and fatty liver, recognized precursors, underscore the imperative need for effective preventive strategies. This study explores colchicine, traditionally acknowledged for its anti-inflammatory properties and investigates its potential in liver cancer prevention. Methods: Utilizing the iHi Data Platform of China Medical University Hospital, Taiwan, this study analyzed two decades of medical data, incorporating 10,353 patients each in the Colchicine and Non-Colchicine cohorts, to investigate the association between colchicine use and liver cancer risk. Results: The study identified that colchicine users exhibited a 19% reduction in liver cancer risk, with a multivariable-adjusted odds ratio of 0.81 after accounting for confounding variables. Additionally, the influence of gender and comorbidities like diabetes mellitus on liver cancer risk was identified, corroborating the existing literature. A notable finding was that the prolonged use of colchicine was associated with improved outcomes, indicating a potential dose-response relationship. Conclusions: This study proposes a potential new role for colchicine in liver cancer prevention, extending beyond its established anti-inflammatory applications. While the findings are promising, further research is essential to validate these results. This research may serve as a foundation for future studies, aiming to further explore colchicine's role via clinical trials and in-depth investigations, potentially impacting preventive strategies for liver cancer.
Collapse
Affiliation(s)
- Jung-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Hung-Yao Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
9
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Majrashi TA, Alshehri SA, Alsayari A, Muhsinah AB, Alrouji M, Alshahrani AM, Shamsi A, Atiya A. Insight into the Biological Roles and Mechanisms of Phytochemicals in Different Types of Cancer: Targeting Cancer Therapeutics. Nutrients 2023; 15:nu15071704. [PMID: 37049544 PMCID: PMC10097354 DOI: 10.3390/nu15071704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is a hard-to-treat disease with a high reoccurrence rate that affects health and lives globally. The condition has a high occurrence rate and is the second leading cause of mortality after cardiovascular disorders. Increased research and more profound knowledge of the mechanisms contributing to the disease’s onset and progression have led to drug discovery and development. Various drugs are on the market against cancer; however, the drugs face challenges of chemoresistance. The other major problem is the side effects of these drugs. Therefore, using complementary and additional medicines from natural sources is the best strategy to overcome these issues. The naturally occurring phytochemicals are a vast source of novel drugs against various ailments. The modes of action by which phytochemicals show their anti-cancer effects can be the induction of apoptosis, the onset of cell cycle arrest, kinase inhibition, and the blocking of carcinogens. This review aims to describe different phytochemicals, their classification, the role of phytochemicals as anti-cancer agents, the mode of action of phytochemicals, and their role in various types of cancer.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Mohammad Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Asma M. Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| |
Collapse
|
11
|
Wang Z, Zu X, Xiong S, Mao R, Qiu Y, Chen B, Zeng Z, Chen M, He Y. The Role of Colchicine in Different Clinical Phenotypes of Behcet Disease. Clin Ther 2023; 45:162-176. [PMID: 36732153 DOI: 10.1016/j.clinthera.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Behcet disease (BD) is a multisystemic disorder characterized by variable clinical manifestations that affect nearly all systems and organs. Colchicine, an alkaloid plant extract, is considered as the first-line therapy for gout, pericarditis, and familial Mediterranean fever. However, the role of colchicine in the treatment of different clinical phenotypes of BD has not been clearly described. This narrative review summarizes the clinical use of colchicine in BD. METHODS All relevant literature from 1980 to March 2021 was searched in PubMed, MEDLINE, and Cochrane Library. The Medical Subject Heading terms and related words that were searched are as follows: Behcet's disease, Behcet's syndrome, BD, colchicine, management, treatment, and therapy. FINDINGS BD is an autoimmune systemic vasculitis with various clinical phenotypes, with involvement of skin mucosa, joints, eyes, and gastrointestinal, vascular, and neurologic systems. Colchicine has been used for centuries, acts by binding to tubulin to prevent the mitotic process, and has anti-inflammatory, antitumor, and antifibrotic properties. Colchicine has been reported to be an effective option for the treatment of skin, mucosal, and joint involvement in patients with certain BD clinical phenotypes. IMPLICATIONS Colchicine reduces the severity of certain clinical phenotypes and may improve the overall disease activity index in patients with BD. More randomized clinical trials are needed to confirm the value of colchicine in the treatment of BD, and further elucidation of the mechanisms is also needed, which may reveal new application of colchicine that has been used for centuries.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoman Zu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
13
|
Lin ZY, Yeh ML, Huang CI, Liang PC, Hsu PY, Chen SC, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Advantage of clinical colchicine concentration to promote sorafenib or regorafenib anti-cancer effects on hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113540. [PMID: 36076618 DOI: 10.1016/j.biopha.2022.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
The advantage of colchicine to promote sorafenib or regorafenib anti-cancer effects on hepatocellular carcinoma (HCC) was investigated. Four primary cultured HCC cell lines (S103, S143, S160, S176) were studied by clinically achievable plasma sorafenib (5, 10 μg/mL), regorafenib (2, 4 μg/mL) and colchicine (4 ng/mL) concentrations. Sorafenib and regorafenib target genes and cancer stem cell markers (NANOG, POU5F1) were selected for experiments. Colchicine inhibited proliferation in all cell lines. Sorafenib inhibited proliferation only in S143 (5 μg/mL). Combined colchicine with sorafenib reversed the sorafenib effect on cellular proliferation from promotive to inhibitory in S103, and demonstrated anti-proliferative effects on other cell lines. Regorafenib inhibited proliferation in S103 (2 μg/mL), S176 (2 μg/mL) and S160 (4 μg/mL). Combined colchicine with regorafenib demonstrated equal or stronger anti-proliferative effects than regorafenib alone in all cell lines except S160. Combined colchicine obliterated or reduced the number of up-regulated target genes induced by sorafenib, and demonstrated equal or increased number of down-regulated target genes as compared with regorafenib alone. However, combined colchicine with regorafenib increased one up-regulated target gene in three cell lines. Colchicine obliterated or decreased the magnitude of up-regulated NANOG induced by sorafenib (S103, S143, S176) or regorafenib (S143), and combined with regorafenib could down-regulate NANOG (S160, S176). Adding colchicine to sorafenib or regorafenib showed inconsistent influence on POU5F1 expression as compared with sorafenib or regorafenib alone. The above results suggest that the anti-cancer effects of combined sorafenib with colchicine may be better than sorafenib alone. Colchicine may be added to regorafenib non-responders.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-I Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Po-Cheng Liang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Po-Yao Hsu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Shinn-Cherng Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jee-Fu Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
15
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
16
|
Nettersheim FS, Picard FSR, Hoyer FF, Winkels H. Immunotherapeutic Strategies in Cancer and Atherosclerosis-Two Sides of the Same Coin. Front Cardiovasc Med 2022; 8:812702. [PMID: 35097027 PMCID: PMC8792753 DOI: 10.3389/fcvm.2021.812702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The development and clinical approval of immunotherapies has revolutionized cancer therapy. Although the role of adaptive immunity in atherogenesis is now well-established and several immunomodulatory strategies have proven beneficial in preclinical studies, anti-atherosclerotic immunotherapies available for clinical application are not available. Considering that adaptive immune responses are critically involved in both carcinogenesis and atherogenesis, immunotherapeutic approaches for the treatment of cancer and atherosclerosis may exert undesirable but also desirable side effects on the other condition, respectively. For example, the high antineoplastic efficacy of immune checkpoint inhibitors, which enhance effector immune responses against tumor cells by blocking co-inhibitory molecules, was recently shown to be constrained by substantial proatherogenic properties. In this review, we outline the specific role of immune responses in the development of cancer and atherosclerosis. Furthermore, we delineate how current cancer immunotherapies affect atherogenesis and discuss whether anti-atherosclerotic immunotherapies may similarly have an impact on carcinogenesis.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
18
|
Ergul M, Bakar-Ates F. Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells. Toxicol In Vitro 2021; 73:105138. [PMID: 33684465 DOI: 10.1016/j.tiv.2021.105138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
This work examined the cytotoxic effects of colchicine on PC3 cells and elucidated the possible underlying mechanisms of its cytotoxicity. The cells were exposed to colchicine at different concentrations ranging from 1 to 100 ng/mL for 24 h, and it showed considerable cytotoxicity with an IC50 value of 22.99 ng/mL. Mechanistic studies also exhibited that colchicine treatment results in cell cycle arrest at the G2/M phase as well as decreased mitochondrial membrane potential and increased early and late apoptotic cells. The apoptotic and DNA-damaging effects of colchicine have also been verified by fluorescence imaging and ELISA experiments, and they revealed that while colchicine treatment significantly modulated expression as increases in Bax, cleaved caspase 3, cleaved PARP, and 8-hydroxy-desoxyguanosine levels and as a decrease of BCL-2 protein expression. Besides, colchicine treatment significantly increased the total oxidant (TOS) level, which is a signal of oxidative stress and potential cause of DNA damage. Finally, the results of quantitative real-time PCR experiments demonstrated that colchicine treatment concentration-dependently suppressed MMP-9 mRNA expression. Overall, colchicine provides meaningful cytotoxicity on PC3 cells due to induced oxidative stress, reduced mitochondrial membrane potential, increased DNA damage, and finally increased apoptosis in PC3 cells. Nevertheless, further research needs to be conducted to assess the potential of colchicine as an anticancer drug for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Lin ZY, Yeh ML, Huang CI, Chen SC, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Potential of novel colchicine dosage schedule for the palliative treatment of advanced hepatocellular carcinoma. Kaohsiung J Med Sci 2021; 37:616-623. [PMID: 33655688 DOI: 10.1002/kjm2.12374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/09/2021] [Accepted: 01/31/2021] [Indexed: 01/13/2023] Open
Abstract
Previous in vitro and in vivo experiments had demonstrated dose-dependent anti-cancer effects of clinical plasma colchicine concentrations on hepatocellular carcinoma (HCC) cells. This phase IIa trial was to evaluate the potential efficiency and safety of our novel colchicine dosage schedule for the palliative treatment of advanced HCC. The dosage schedule started from oral intake of 1 mg colchicine three times per day for 4 days and discontinuation in the following 3 days (one cycle). The treatment cycle was repeated and the dosage was adjusted ranging from 3 to 1.5 mg/day according to the condition of the participant. The control group was originated from chart review of 86 HCC patients treated by sorafenib for more than 2 months. Fifteen participants signed the inform consent. Two participants were excluded due to screening failure in one and less than four treatment cycles in another. For severe adverse events, the colchicine group demonstrated higher incidence of biliary tract obstruction (p = 0.0184) than the sorafenib group. Comparison grade 1 or 2 adverse events between two groups, the colchicine group had higher incidence of diarrhea (p = 0) and the sorafenib group had higher incidence of palmar-plantar erythrodysesthesia syndrome (p = 0.0045). There was no significant difference in mortality, median survival, and overall survival between two groups (all p > 0.2). In conclusion, our novel colchicine dosage schedule is clinically feasible and has the potential to be applied in the palliative treatment of advanced HCC especially based on the cost-effectiveness consideration.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Bass AKA, El-Zoghbi MS, Nageeb ESM, Mohamed MFA, Badr M, Abuo-Rahma GEDA. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem 2020; 209:112904. [PMID: 33077264 DOI: 10.1016/j.ejmech.2020.112904] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
Despite the encouraging clinical progress of chemotherapeutic agents in cancer treatment, innovation and development of new effective anticancer candidates still represents a challenging endeavor. With 15 million death every year in 2030 according to the estimates, cancer has increased rising of an alarm as a real crisis for public health and health systems worldwide. Therefore, scientist began to introduce innovative solutions to control the cancer global health problem. One of the promising strategies in this issue is the multitarget or smart hybrids having two or more pharmacophores targeting cancer. These rationalized hybrid molecules have gained great interests in cancer treatment as they are capable to simultaneously inhibit more than cancer pathway or target without drug-drug interactions and with less side effects. A prime important example of these hybrids, the HDAC hybrid inhibitors or referred as multitargeting HDAC inhibitors. The ability of HDAC inhibitors to synergistically improve the efficacy of other anti-cancer drugs and moreover, the ease of HDAC inhibitors cap group modification prompt many medicinal chemists to innovate and develop new generation of HDAC hybrid inhibitors. Notably, and during this short period, there are four HDAC inhibitor hybrids have entered different phases of clinical trials for treatment of different types of blood and solid tumors, namely; CUDC-101, CUDC-907, Tinostamustine, and Domatinostat. This review shed light on the most recent hybrids of HDACIs with one or more other cancer target pharmacophore. The designed multitarget hybrids include topoisomerase inhibitors, kinase inhibitors, nitric oxide releasers, antiandrogens, FLT3 and JAC-2 inhibitors, PDE5-inhibitors, NAMPT-inhibitors, Protease inhibitors, BRD4-inhibitors and other targets. This review may help researchers in development and discovery of new horizons in cancer treatment.
Collapse
Affiliation(s)
- Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mona S El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - El-Shimaa M Nageeb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt.
| |
Collapse
|
21
|
Forkosh E, Kenig A, Ilan Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol Res Perspect 2020; 8:e00616. [PMID: 32608157 PMCID: PMC7327382 DOI: 10.1002/prp2.616] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are highly dynamic polymers that constitute the cellular cytoskeleton and play a role in multiple cellular functions. Variability characterizes biological systems and is considered a part of the normal function of cells and organs. Variability contributes to cell plasticity and is a mechanism for overcoming errors in cellular level assembly and function, and potentially the whole organ level. Dynamic instability is a feature of biological variability that characterizes the function of MTs. The dynamic behavior of MTs constitutes the basis for multiple biological processes that contribute to cellular plasticity and the timing of cell signaling. Colchicine is a MT-modifying drug that exerts anti-inflammatory and anti-cancer effects. This review discusses some of the functions of colchicine and presents a platform for introducing variability while targeting MTs in intestinal cells, the microbiome, the gut, and the systemic immune system. This platform can be used for implementing novel therapies, improving response to chronic MT-based therapies, overcoming drug resistance, exerting gut-based systemic immune responses, and generating patient-tailored dynamic therapeutic regimens.
Collapse
Affiliation(s)
- Esther Forkosh
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Ariel Kenig
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Yaron Ilan
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| |
Collapse
|
22
|
Guven DC, Bolek EC, Altintop SE, Celikten B, Aktas BY, Kiraz S, Gullu İ, Karadag O, Dizdar O. Cancer incidence in Behçet's disease. Ir J Med Sci 2020; 189:1209-1214. [PMID: 32383138 DOI: 10.1007/s11845-020-02244-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies demonstrated an increased cancer risk in autoimmune diseases. Behçet's disease (BD) was also reported to be associated with an increased risk of cancer, although the data is limited. AIMS In this study, we aimed to assess cancer incidence in a large cohort of BD patients and to compare with the data of the same age and gender groups. METHODS The study cohort consisted of BD patients of > 18 years of age who were prospectively recorded in the Hacettepe University Vasculitis Center. Data on any cancer was collected from the patient files. Cancer incidence was compared with age- and gender-specific cancer incidence rates of the normal population retrieved from the 2014 Turkish National Cancer Registry (TNCR) data using standardized incidence rates (SIR). RESULTS Totally, 451 adult cases with BD were included. The median age of the cohort was 43 (20-75), and 52.5% of the patients were males. Eleven cancer cases were observed during a median of 124 months follow-up. Behçet's disease was associated with an increase in cancer risk compared with expected counts in the corresponding age and sex group (SIR 2.84, 95% CI 1.50-4.94, p < 0.001). Patients with papulopustular lesions had a trend toward a decreased risk of cancer (p = 0.060), and patients using azathioprine had a significantly decreased cancer risk (p = 0.031). CONCLUSION This study revealed BD patients had approximately three times increased cancer risk compared with corresponding age and sex groups. Besides the routine care, increased attention for cancer surveillance is required in the follow-up of BD patients.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100 Sıhhıye, Ankara, Turkey.
| | - Ertugrul Cagri Bolek
- Department of Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sabri Engin Altintop
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burcu Celikten
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burak Yasin Aktas
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100 Sıhhıye, Ankara, Turkey
| | - Sedat Kiraz
- Department of Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İbrahim Gullu
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100 Sıhhıye, Ankara, Turkey
| | - Omer Karadag
- Department of Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100 Sıhhıye, Ankara, Turkey
| |
Collapse
|
23
|
Urbaniak A, Jousheghany F, Piña-Oviedo S, Yuan Y, Majcher-Uchańska U, Klejborowska G, Moorjani A, Monzavi-Karbassi B, Huczyński A, Chambers TC. Carbamate derivatives of colchicine show potent activity towards primary acute lymphoblastic leukemia and primary breast cancer cells-in vitro and ex vivo study. J Biochem Mol Toxicol 2020; 34:e22487. [PMID: 32141170 DOI: 10.1002/jbt.22487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Colchicine (COL) shows strong anticancer activity but due to its toxicity towards normal cells its wider application is limited. To address this issue, a library of 17 novel COL derivatives, namely N-carbamates of N-deacetyl-4-(bromo/chloro/iodo)thiocolchicine, has been tested against two types of primary cancer cells. These included acute lymphoblastic leukemia (ALL) and human breast cancer (BC) derived from two different tumor subtypes, ER+ invasive ductal carcinoma grade III (IDCG3) and metastatic carcinoma (MC). Four novel COL derivatives showed higher anti-proliferative activity than COL (IC50 = 8.6 nM) towards primary ALL cells in cell viability assays (IC50 range of 1.1-6.4 nM), and several were more potent towards primary IDCG3 (IC50 range of 0.1 to 10.3 nM) or MC (IC50 range of 2.3-9.1 nM) compared to COL (IC50 of 11.1 and 11.7 nM, respectively). In addition, several derivatives were selectively active toward primary breast cancer cells compared to normal breast epithelial cells. The most promising derivatives were subsequently tested against the NCI panel of 60 human cancer cell lines and seven derivatives were more potent than COL against leukemia, non-small-cell lung, colon, CNS and prostate cancers. Finally, COL and two of the most active derivatives were shown to be effective in killing BC cells when tested ex vivo using fresh human breast tumor explants. The present findings indicate that the select COL derivatives constitute promising lead compounds targeting specific types of cancer.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sergio Piña-Oviedo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Youzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Urszula Majcher-Uchańska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Greta Klejborowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Anika Moorjani
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
Ghawanmeh AA, Al-Bajalan HM, Mackeen MM, Alali FQ, Chong KF. Recent developments on (−)-colchicine derivatives: Synthesis and structure-activity relationship. Eur J Med Chem 2020; 185:111788. [DOI: 10.1016/j.ejmech.2019.111788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022]
|
25
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
26
|
Chuang JP, Lee JC, Leu TH, Hidajah AC, Chang YH, Li CY. Association of gout and colorectal cancer in Taiwan: a nationwide population-based cohort study. BMJ Open 2019; 9:e028892. [PMID: 31601586 PMCID: PMC6797386 DOI: 10.1136/bmjopen-2019-028892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES This study aimed to determine colorectal cancer (CRC) risks among patients with gout through a follow-up study on a nationwide population-based cohort that included patients with gout and the general population in Taiwan. PARTICIPANT From the Taiwan National Health Insurance Research Database, we identified 28 061 patients who were newly diagnosed with gout between 2000 and 2010 as the study cohort. We randomly selected 84 248 subjects matching in gender, age and baseline year as comparison cohort. The cohorts were followed up until CRC occurrence, withdrawal from the system of National Health Insurance, or Dec. 31, 2013. PRIMARY AND SECONDARY OUTCOME MEASURES Cumulative incidences and incidence rate ratios (IRRs) of CRC between two cohorts were examined. The Cox proportional hazards model was used to evaluate risk factors associated with CRC development. RESULTS During the 13-year follow-up, the incidence rate of CRC development in the gout cohort reached 2.44 per 1000 person-years, which was higher than the 2.13 per 1000 person-years in the control cohort (IRR=1.15; 95% CI 1.04 to 1.26). After adjusting for age, gender, urbanisation status and comorbidities, including hypertension, diabetes and hyperlipidaemia, gout showed no significant association with increased risk of CRC occurrence (adjusted HR=1.03; 95% CI 0.93 to 1.14). CONCLUSIONS Similar risks of CRC incidence were observed in patients with and without gout in Taiwan. Allopurinol and colchicine are commonly used as urate-lowering drug and anti-inflammation medication in Taiwan and had been shown to reduce the risk of CRC incidence. Thus, further pharmaco-epidemiological studies should be carried out to specifically assess the role of allopurinol in the relationship between gout and CRC.
Collapse
Affiliation(s)
- Jen-Pin Chuang
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Puzi Hospital, Ministry of Health and Welfare, Chia-Yi, Taiwan
| | - Jenq-Chang Lee
- Department of Surgery, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Pharmacology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Atik Choirul Hidajah
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Ya-Hui Chang
- Department of Public Health, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Balkrishna A, Das SK, Pokhrel S, Joshi A, Verma S, Sharma VK, Sharma V, Sharma N, Joshi CS. Colchicine: Isolation, LC-MS QTof Screening, and Anticancer Activity Study of Gloriosa superba Seeds. Molecules 2019; 24:E2772. [PMID: 31366123 PMCID: PMC6696218 DOI: 10.3390/molecules24152772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Colchicine was extracted from Gloriosa superba seeds using the Super Critical Fluid (CO2) Extraction (SCFE) technology. The seeds were purified upto 99.82% using column chromatography. Colchicine affinity was further investigated for anticancer activity in six human cancer cell lines, i.e., A549, MCF-7, MDA-MB231, PANC-1, HCT116, and SiHa. Purified colchicine showed the least cell cytotoxicity and antiproliferation and caused no G2/M arrest at clinically acceptable concentrations. Mitotic arrest was observed in only A549 and MDA-MB231 cell lines at 60nM concentration. Our finding indicated the possible use of colchicine at a clinically acceptable dose and provided insight into the science behind microtubule destabilization. However, more studies need to be conducted beforethese findings could be established.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Subrata K Das
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Subarna Pokhrel
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Alpana Joshi
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Sudeep Verma
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Vinai K Sharma
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Vinamra Sharma
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - Niti Sharma
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India
| | - C S Joshi
- Drug Discovery & Development Division, Patanjali Research Foundation (Trust), Near Patanjali Yogapeeth-I, Haridwar Pin- 249405, Uttarakhand, India.
| |
Collapse
|
28
|
Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking. Med Chem 2019; 15:328-340. [PMID: 30251609 DOI: 10.2174/1573406414666180924163756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. OBJECTIVE This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. METHODS A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. RESULTS The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO-CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. CONCLUSION These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.
Collapse
Affiliation(s)
- Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Suphakit Siriwong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
29
|
Cancer incidence in familial Mediterranean fever patients: a retrospective analysis from central Anatolia. Rheumatol Int 2019; 39:1045-1051. [PMID: 31025139 DOI: 10.1007/s00296-019-04311-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/17/2019] [Indexed: 02/05/2023]
Abstract
Although chronic inflammation has been associated with increased cancer risk in various disease including hepatitis or inflammatory bowel disease, a lower incidence of cancer has been reported recently in familial Mediterranean fever (FMF) which is an auto-inflammatory disease with persistent inflammation. We have assessed cancer incidence among FMF patients with or without amyloidosis to investigate this hypothesis. We performed a retrospective review of FMF patients, diagnosed and treated in Hacettepe University hospitals between 2001 and 2018. We identified patients from the hospital medical records using the ICD-10 code for FMF. We collected data on demographic and clinical features, drug history, the presence of amyloidosis and subsequent diagnosis of cancer. The expected cancer incidence was estimated using age- and gender-specific standardized incidence rates (SIRs) in comparison with the general Turkish population according to Turkish National Cancer Registry data at 2014. Total of 3899 FMF patients (120 patients had also amyloidosis) were included. Median age was 22 and 56% were females. Thirty-eight patients were diagnosed with cancer during 100,283 person-years of follow-up. The most common cancer was breast cancer in females (7/28 patients) and leukemia (2/10 patients) in males. The overall cancer incidence among patients with FMF was significantly lower in both males {SIR 0.42 [95% confidence interval; (CI) 0.21-0.75], p = 0.019} and females [SIR 065 (95% CI 0.44-0.93), p = 0.002]. The overall cancer incidence among patients with FMF and amyloidosis was [SIR 1.21 (95% CI 0.49-2.52), p = 0.73] without gender difference. Cancer incidence was significantly lower in FMF patients compared with the general Turkish population. We found no increased cancer incidence in FMF patients having amyloidosis. Possible underlying mechanisms need to be explained.
Collapse
|
30
|
The Potential of Combining Tubulin-Targeting Anticancer Therapeutics and Immune Therapy. Int J Mol Sci 2019; 20:ijms20030586. [PMID: 30704031 PMCID: PMC6387102 DOI: 10.3390/ijms20030586] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immune therapy has recently shown tremendous promise to combat many different cancers. The microtubule is a well-defined and very effective cancer therapeutic target. Interestingly, several lines of evidence now suggest that microtubules are intimately connected to the body’s immune responses. This raises the possibility that the combination of microtubule inhibitors and immune therapy can be a highly effective option for cancer treatments. However, our understanding on this potentially important aspect is still very limited, due in part to the multifaceted nature of microtubule functions. Microtubules are not only involved in maintaining cell morphology, but also a variety of cellular processes, including the movement of secretory vesicles and organelles, intracellular macromolecular assembly, signaling pathways, and cell division. Microtubule inhibitors may be subdivided into two classes: Anti-depolymerization agents such as the taxane family, and anti-polymerization agents such as colchicine and vinka alkaloids. These two different classes may have different effects on immune cell subtypes. Anti-depolymerization agents can not only induce NK cells, but also appear to inhibit T regulatory (Treg) cells. However, different inhibitors may have different functions even among the same class. For example, the doxetaxel anti-depolymerization agent up-regulates cytotoxic T cells, while paclitaxel down-regulates them. Certain anti-polymerization agents such as colchicine appear to down-regulate most immune cell types, while inducing dendritic cell maturation and increasing M1 macrophage population. In contrast, the vinblastine anti-polymerization agent activates many of these cell types, albeit down-regulating Treg cells. In this review, we focus on the various effects of tubulin inhibitors on the activities of the body’s immune system, in the hope of paving the way to develop an effective cancer therapy by combining tubulin-targeting anticancer agents and immune therapy.
Collapse
|
31
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
32
|
Hesham HM, Lasheen DS, Abouzid KA. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev 2018; 38:2058-2109. [DOI: 10.1002/med.21505] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Heba M. Hesham
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| | - Deena S. Lasheen
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| | - Khaled A.M. Abouzid
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| |
Collapse
|
33
|
Ghawanmeh AA, Chong KF, Sarkar SM, Bakar MA, Othaman R, Khalid RM. Colchicine prodrugs and codrugs: Chemistry and bioactivities. Eur J Med Chem 2017; 144:229-242. [PMID: 29274490 DOI: 10.1016/j.ejmech.2017.12.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Antimitotic colchicine possesses low therapeutic index due to high toxicity effects in non-target cell. However, diverse colchicine analogs have been derivatized as intentions for toxicity reduction and structure-activity relationship (SAR) studying. Hybrid system of colchicine structure with nontoxic biofunctional compounds modified further affords a new entity in chemical structure with enhanced activity and selectivity. Moreover, nanocarrier formulation strategies have been used for colchicine delivery. This review paper focuses on colchicine nanoformulation, chemical synthesis of colchicine prodrugs and codrugs with different linkers, highlights linker chemical nature and biological activity of synthesized compounds. Additionally, classification of colchicine prodrugs based on type of conjugates is discussed, as biopolymers prodrugs, fluorescent prodrug, metal complexes prodrug, metal-labile prodrug and bioconjugate prodrug. Finally, we briefly summarized the biological importance of colchicine nanoformulation, colchicine prodrugs and codrugs.
Collapse
Affiliation(s)
- Abdullah A Ghawanmeh
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia.
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Shaheen M Sarkar
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Muntaz Abu Bakar
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rizafizah Othaman
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rozida M Khalid
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
34
|
Brenner R, Ben‐Zvi I, Shinar Y, Liphshitz I, Silverman B, Peled N, Levy C, Ben‐Chetrit E, Livneh A, Kivity S. Familial Mediterranean Fever and Incidence of Cancer. Arthritis Rheumatol 2017; 70:127-133. [DOI: 10.1002/art.40344] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 10/03/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Ronen Brenner
- Wolfson Medical Center Holon Israel
- Tel Aviv University Tel Aviv Israel
| | - Ilan Ben‐Zvi
- Tel Aviv University Tel Aviv Israel
- Sheba Medical Center Tel Hashomer Israel
| | | | - Irena Liphshitz
- Israel Ministry of Health Jerusalem Israel
- Soroka Medical Center Beer Sheva Israel
| | - Barbara Silverman
- Israel Ministry of Health Jerusalem Israel
- Soroka Medical Center Beer Sheva Israel
| | - Nir Peled
- Tel Aviv University Tel Aviv Israel
- Rabin Medical Center Petah Tikva Israel
| | | | | | - Avi Livneh
- Tel Aviv University Tel Aviv Israel
- Sheba Medical Center Tel Hashomer Israel
| | - Shaye Kivity
- Tel Aviv University Tel Aviv Israel
- Sheba Medical Center Tel Hashomer Israel
| |
Collapse
|
35
|
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 2017; 12:20. [PMID: 28702078 PMCID: PMC5506596 DOI: 10.1186/s13020-017-0140-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
In traditional Chinese medicine (TCM) theory, pathogenic heat and toxins, which are akin to the inflammatory factors, are the causes of cancer and could promote its virulent development. Therefore, heat-clearing and detoxicating (HCD) herbs are essential components of TCM formulas for cancer treatment. An increasing interest has been focused on the study of HCD herbs and accumulated evidences have shown that HCD herbs or HCD herbs-based formulas exhibited remarkable anticancer effects when used alone or combined with other therapeutic approaches. Some of the HCD herb-derived products have been tested in clinical trials. Studies revealed that extracts or pure compounds of the HCD herbs showed a broad anticancer spectrum against both solid and hematologic malignancies without significant toxic effects. Notably, some HCD herbs or formulas could strongly enhance the anticancer activities of chemo- or radio-therapy and alleviate their side effects. The anticancer activities of HCD herb exacts or the pure compounds were reported to be through multiple cellular or molecular mechanisms, such as induction of cancer cell apoptosis, differentiation and cell cycle arrest, inhibition of cancer cell growth, invasion and metastasis, and inhibition of tumor angiogenesis. In this review, we provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate the further study and application of HCD herbs.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Yeer Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| |
Collapse
|
36
|
Lin ZY, Chuang WL. Contrary influence of clinically applied sorafenib concentrations among hepatocellular carcinoma patients. Biomed Pharmacother 2016; 86:27-31. [PMID: 27936391 DOI: 10.1016/j.biopha.2016.11.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
The treatment responses of sorafenib in hepatocellular carcinoma are modest which may be due to different characteristics of cancer cells or insufficient therapeutic concentrations. This study was to clarify this issue. The anti-proliferative effects and differential expressions of 8 genes related to sorafenib anti-cancer mechanisms (tyrosine kinase receptor genes: KDR, PDGFRB; RAF cascade: RAF1, BRAF, MAP2K1, MAP2K2, MAPK1, MAPK3) were investigated in primary cultured hepatocellular carcinoma cells collected from 8 patients using clinically applied sorafenib concentrations (5, 10μg/mL). The anti-proliferative effects of sorafenib at either 5 or 10μg/mL, which were related to down-regulations of KDR, PDGFRB and/or genes in the RAF cascade, were achieved only in one patient (HCC38/KMUH). However, either 5 or 10μg/mL sorafenib promoted proliferation in 4 patients (HCC29/KMUH, HCC62/KMUH, HCC87/KMUH, HCC98/KMUH). Among them, the RAF cascade, PDGFRB and/or KDR were up-regulated in 3 patients but no gene was differentially expressed in the remaining one patient (HCC87/KMUH). Increase the sorafenib concentration to 10μg/mL paradoxically up-regulated and/or obliterated the previously down-regulated genes in the RAF cascade and/or KDR in 4 patients (HCC29/KMUH, HCC76/KMUH, HCC87/KMUH, HCC98/KMUH). Significant down-regulations of the RAF cascade and PDGFRB by sorafenib but without anti-proliferative effects were detected in one patient (HCC54/KMUH). In conclusion, influence of sorafenib on proliferation is not simply through the RAF cascade. The responses of KDR, PDGFRB and the RAF cascade to sorafenib among patients are diverse or even contrary. Increase the sorafenib concentration has potential to up-regulate genes favored angiogenesis and proliferation.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Lim H, Poleksic A, Yao Y, Tong H, He D, Zhuang L, Meng P, Xie L. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing. PLoS Comput Biol 2016; 12:e1005135. [PMID: 27716836 PMCID: PMC5055357 DOI: 10.1371/journal.pcbi.1005135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022] Open
Abstract
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP. High-throughput techniques have generated vast amounts of diverse omics and phenotypic data. However, these sets of data have not yet been fully explored to improve the effectiveness and efficiency of drug discovery, a process which has traditionally adopted a one-drug-one-gene paradigm. Consequently, the cost of bringing a drug to market is astounding and the failure rate is daunting. The failure of the target-based drug discovery is in large part due to the fact that a drug rarely interacts only with its intended receptor, but also generally binds to other receptors. To rationally design potent and safe therapeutics, we need to identify all the possible cellular proteins interacting with a drug in an organism. Existing experimental techniques are not sufficient to address this problem, and will benefit from computational modeling. However, it is a daunting task to reliably screen millions of chemicals against hundreds of thousands of proteins. Here, we introduce a fast and accurate method REMAP for large-scale predictions of drug-target interactions. REMAP outperforms state-of-the-art algorithms in terms of both speed and accuracy, and has been successfully applied to drug repurposing. Thus, REMAP may have broad applications in drug discovery.
Collapse
Affiliation(s)
- Hansaim Lim
- The Graduate Center, The City University of New York, New York, New York, United States
| | - Aleksandar Poleksic
- Department of Computer Science, University of Northern Iowa, Cedar Falls, Iowa, United States
| | - Yuan Yao
- Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, China
| | - Hanghang Tong
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States
| | - Di He
- The Graduate Center, The City University of New York, New York, New York, United States
| | - Luke Zhuang
- Academy for Information Technology, Union County Vocational-Technical Schools, Scotch Plains, New Jersey, United States
| | - Patrick Meng
- High Technology High School, Lincroft, New Jersey, United States
| | - Lei Xie
- The Graduate Center, The City University of New York, New York, New York, United States
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States
- * E-mail:
| |
Collapse
|
38
|
Cheng WL, Kao YH, Chen SA, Chen YJ. Pathophysiology of cancer therapy-provoked atrial fibrillation. Int J Cardiol 2016; 219:186-94. [PMID: 27327505 DOI: 10.1016/j.ijcard.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) occurs with increased frequency in cancer patients, especially in patients who undergo surgery or chemotherapy. AF disturbs the prognosis of cancer patients and challenges therapeutic outcomes of cancer treatment. Elucidating the mechanisms of cancer-induced AF would help identify specific strategies for preventing AF occurrence. In addition to concurrent risk factors of cancer and AF, cancer surgery, side effects of anticancer agents, and cancer-associated immune responses play critical roles in the genesis of AF. In this review, we provide succinct potential mechanisms of AF genesis in cancer patients.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
39
|
Hou Y, Guan X, Yang Z, Li C. Emerging role of cystic fibrosis transmembrane conductance regulator - an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol 2016; 8:282-288. [PMID: 26989463 PMCID: PMC4789613 DOI: 10.4251/wjgo.v8.i3.282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.
Collapse
|
40
|
Bhattacharya S, Das A, Datta S, Ganguli A, Chakrabarti G. Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: potential use of colchicine in combination with autophagy inhibitor in cancer therapy. Tumour Biol 2016; 37:10653-64. [PMID: 26867767 DOI: 10.1007/s13277-016-4972-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/03/2016] [Indexed: 01/19/2023] Open
Abstract
Colchicine is a well-known and potent microtubule targeting agent, but the therapeutic value of colchicine against cancer is limited by its toxicity against normal cells. But, there is no report of its cytotoxic potential against lung cancer cell, at clinically permissible or lower concentrations, minimally toxic to non-cancerous cells. Hence, in the present study, we investigated the possible mechanism by which the efficacy of colchicine against lung cancer cells at less toxic dose could be enhanced. Colchicine at clinically admissible concentration of 2.5 nM had no cytotoxic effect and caused no G2/M arrest in A549 cells. However, at this concentration, colchicine strongly hindered the reformation of cold depolymerised interphase and spindle microtubule. Colchicine induced senescence and reactive oxygen species mediated autophagy in A549 cells at this concentration. Autophagy inhibitor 3-methyladenine (3-MA) sensitised the cytotoxicity of colchicine in A549 cells by switching senescence to apoptotic death, and this combination had reduced cytotoxicity to normal lung fibroblast cells (WI38). Together, these findings indicated the possible use of colchicine at clinically relevant dose along with autophagy inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Surela Bhattacharya
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Amlan Das
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Satabdi Datta
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Arnab Ganguli
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India.
| |
Collapse
|
41
|
Lin ZY, Kuo CH, Wu DC, Chuang WL. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci 2016; 32:68-73. [PMID: 26944324 DOI: 10.1016/j.kjms.2015.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/28/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Colchicine is a very cheap microtubule destabilizer. Because microtubules are an ideal target for anticancer drugs, the purpose of this study was to investigate whether clinically acceptable colchicine concentrations have anticancer effects on gastric cancer cells, and its possible anticancer mechanisms. Two human gastric cancer cell lines (i.e., AGS and NCI-N87) were investigated by proliferative assay, microarray, quantitative reverse transcriptase-polymerase chain reaction, and a nude mice study using clinically acceptable colchicine concentrations (2 ng/mL and 6 ng/mL for in vitro tests and 0.07 mg colchicine/kg/d for in vivo tests). Our results showed that colchicine had the same inhibitory effects on the proliferation of both cell lines. The antiproliferative effects of colchicine on both cell lines were achieved only at the concentration of 6 ng/mL (p < 0.0001). In both cell lines, 18 genes were consistently upregulated and 10 genes were consistently downregulated by 6 ng/mL colchicine, compared with 2 ng/mL colchicine. Among these genes, only the upregulated DUSP1 gene may contribute to the antiproliferative effects of colchicine on gastric cancer cells. The nude mice (BALB/c-nu) experiment showed that colchicine-treated mice after 14 days of treatment had lower increased tumor volume ratios (p = 0.0199) and tumor growth rates (p = 0.024) than the control mice. In conclusion, colchicine has potential for the palliative treatment of gastric cancer. However, the anticancer effects are achieved only at high clinically acceptable colchicine concentrations. Monitoring the colchicine plasma concentration is mandatory if this drug is applied for the palliative treatment of gastric cancer.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Kuo MC, Chang SJ, Hsieh MC. Colchicine Significantly Reduces Incident Cancer in Gout Male Patients: A 12-Year Cohort Study. Medicine (Baltimore) 2015; 94:e1570. [PMID: 26683907 PMCID: PMC5058879 DOI: 10.1097/md.0000000000001570] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with gout are more likely to develop most cancers than subjects without gout. Colchicine has been used for the treatment and prevention of gouty arthritis and has been reported to have an anticancer effect in vitro. However, to date no study has evaluated the relationship between colchicine use and incident cancers in patients with gout. This study enrolled male patients with gout identified in Taiwan's National Health Insurance Database for the years 1998 to 2011. Each gout patient was matched with 4 male controls by age and by month and year of first diagnosis, and was followed up until 2011. The study excluded those who were diagnosed with diabetes or any type of cancer within the year following enrollment. We calculated hazard ratio (HR), aged-adjusted standardized incidence ratio, and incidence of 1000 person-years analyses to evaluate cancer risk. A total of 24,050 male patients with gout and 76,129 male nongout controls were included. Patients with gout had a higher rate of incident all-cause cancers than controls (6.68% vs 6.43%, P = 0.006). A total of 13,679 patients with gout were defined as having been ever-users of colchicine and 10,371 patients with gout were defined as being never-users of colchicine. Ever-users of colchicine had a significantly lower HR of incident all-cause cancers than never-users of colchicine after adjustment for age (HR = 0.85, 95% CI = 0.77-0.94; P = 0.001). In conclusion, colchicine use was associated with a decreased risk of incident all-cause cancers in male Taiwanese patients with gout.
Collapse
Affiliation(s)
- Ming-Chun Kuo
- From the Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung (M-CK); Chang Gung University College of Medicine (M-CK); National University of Kaohsiung, Kaohsiung (S-JC); Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua (M-CH); and Graduate Institute of Integrated Medicine, China Medical University, Taiwan (M-CH)
| | | | | |
Collapse
|
43
|
Ho CT, Chang YJ, Yang LX, Wei PL, Liu TZ, Liu JJ. A Novel Microtubule-Disrupting Agent Induces Endoplasmic Reticular Stress-Mediated Cell Death in Human Hepatocellular Carcinoma Cells. PLoS One 2015; 10:e0136340. [PMID: 26355599 PMCID: PMC4565632 DOI: 10.1371/journal.pone.0136340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
Here, we present evidence of a novel microtubule-disrupting agent, N-deacetyl-N-(chromone-2-carbonyl)-thiocolchicine (TCD), exhibiting potent antitumor activity (with IC50 values in the nanomolar range) against hepatocellular carcinoma cell lines. Cell cycle analysis revealed that TCD induced G2/M cell-cycle arrest in a dose- and time-dependent manner in both Hep-J5 and Mahlavu HCC cell lines. TCD also induced a decrease in mitochondrial membrane potential (ΔΨm) and caused DNA damage. Mechanistically, TCD activated protein kinase RNA-like endoplasmic reticular kinase and several transcription factors, including activating transcription factor (ATF) 6, ATF4, ATF3, and the CCAAT-enhancer binding protein homologous protein. These data clearly demonstrate that the antitumor activity of TCD is mechanistically linked to its capacity to trigger both intrinsic and extrinsic apoptotic cell death via endoplasmic reticular stress pathway. The potent antitumor activity of TCD was similarly demonstrated in a hepatocellular carcinoma xenograft model, where 5 and 10 mg/kg doses of TCD significantly arrested Hep-J5 and Mahlavu tumor growth. Our finding suggests that TCD is a promising therapeutic agent against hepatocellular carcinoma; further translational assessment of its clinical usage is warranted.
Collapse
Affiliation(s)
- Chun-Te Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan; Department of Surgery, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Li-Xi Yang
- Radiobiology Laboratory, California Pacific Medical Center Research Institute, San Francisco, CA, United States of America; St. Mary's Medical Center, San Francisco, CA, United States of America
| | - Po-Li Wei
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan; Department of Surgery, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Tsan-Zon Liu
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Jun-Jen Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
44
|
Chen L, Yang J, Zheng M, Kong X, Huang T, Cai YD. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer. PLoS One 2015; 10:e0128696. [PMID: 26047514 PMCID: PMC4457841 DOI: 10.1371/journal.pone.0128696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, 200444, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People’s Republic of China
| | - Jing Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Mingyue Zheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, 201203, People’s Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
- * E-mail: (TH); (YDC)
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, People’s Republic of China
- * E-mail: (TH); (YDC)
| |
Collapse
|
45
|
Clinically acceptable colchicine concentrations have potential for the palliative treatment of human cholangiocarcinoma. Kaohsiung J Med Sci 2015; 31:229-34. [PMID: 25910557 DOI: 10.1016/j.kjms.2015.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/16/2023] Open
|
46
|
N-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: Synthesis, cytotoxicity, inhibition of cell migration and in vivo activity against acute lymphoblastic leukemia. Eur J Med Chem 2015; 96:504-18. [PMID: 25951294 DOI: 10.1016/j.ejmech.2015.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022]
Abstract
Tubulin-interacting agents, like vinca alkaloid and taxanes, play a fundamental role in cancer chemotherapy, making cellular microtubules (MT), one of the few validated anticancer targets. Cancer resistance to classical MT inhibitors has motivated the development of novel molecules with increased efficacy and lower toxicity. Aiming at designing structurally-simple inhibitors of MT assembly, we synthesized a series of thirty-one 3,4,5-trimethoxy-hydrazones and twenty-five derivatives or analogs. Docking simulations suggested that a representative N-acylhydrazone could adopt an appropriate stereochemistry inside the colchicine-binding domain of tubulin. Several of these compounds showed anti-leukemia effects in the nanomolar concentration range. Interference with MT polymerization was validated by the compounds' ability to inhibit MT assembly at the biochemical and cellular level. Selective toxicity investigations done with the most potent compound, a 3,4,5-trimethoxy-hydrazone with a 1-naphthyl group, showed remarkably selective toxicity against leukemia cells in comparison with stimulated normal lymphocytes, and no acute toxicity in vivo. Finally, this molecule was as active as vincristine in a murine model of human acute lymphoblastic leukemia at a weekly dose of 1 mg/kg.
Collapse
|
47
|
Lin ZY, Wu CC, Chuang YH, Chuang WL. Clinical utility of a simple primary culture method in hepatocellular carcinoma patients. J Gastroenterol Hepatol 2015; 30:352-7. [PMID: 25087586 DOI: 10.1111/jgh.12693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The clinical utility of our designed primary culture method in patients with hepatocellular carcinoma was investigated. METHODS Specimens obtained from ultrasound-guided fine-needle aspiration of 108 hepatocellular carcinoma patients were cultured. The associations of the cellular proliferative speeds with cancer invasiveness and 1-year survivals were analyzed. RESULTS Successful cultures were achieved in 105 patients (97.2%). Ten hepatocellular carcinoma and nine cancer-associated fibroblast cell lines were established. The cells obtained from patients with American Joint Committee on Cancer TNM staging ≥ IIIB upon entering the study had higher proportion of rapidly proliferative cancer cells than those from patients with staging ≤ IIIA (P < 0.005). For Barcelona Clinic Liver Cancer classification A or B patients receiving palliative transcatheter chemoembolization, patients with rapidly proliferative cancer-associated fibroblasts showed higher incidence of cancer-related death than patients with other proliferative patterns (P = 0.0385). The influence of the presence of rapidly proliferative cancer cells on survivals in this group could not be calculated due to a very small number of this kind of patients (9.5%). For Barcelona Clinic Liver Cancer classification C patients receiving non-curative treatment, the incidence of rapidly proliferative cancer cells was 45.2%. Patients with rapidly proliferative cancer cells showed higher incidence of cancer-related death than patients with other proliferative patterns in patients receiving chemoembolization (P = 0.0452) and in patients receiving conservative treatment (P = 0.0206). CONCLUSION Our method can provide cells from individual patient for researches and predict outcomes in patients receiving non-curative treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Cancer Center and Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
48
|
Sztiller-Sikorska M, Koprowska K, Majchrzak K, Hartman M, Czyz M. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells. PLoS One 2014; 9:e90783. [PMID: 24595456 PMCID: PMC3940936 DOI: 10.1371/journal.pone.0090783] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. Methods We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Findings Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Conclusion Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti-melanoma therapy, whereas selected cytotoxic but not anti-clonogenic compounds, which increased the frequency of ABCB5-positive cells and remained slow-cycling cells unaffected, might be considered as a tool to enrich cultures with cells exhibiting melanoma stem cell characteristics.
Collapse
Affiliation(s)
| | - Kamila Koprowska
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Kinga Majchrzak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Mariusz Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|