1
|
Zhou F, Shi Y, Tan S, Wang X, Yuan W, Tao S, Xiang P, Cong B, Ma C, Wen D. Unveiling the toxicity of JWH-018 and JWH-019: Insights from behavioral and molecular studies in vivo and vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117500. [PMID: 39662456 DOI: 10.1016/j.ecoenv.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Due to the structural diversity and rapid prevalence of synthetic cannabinoids (SCs) in the market, the information linking the chemical structure of SCs to their toxicity remains scant, despite emerging in the 1970s. In the present study, we aimed to investigate the toxicity and underlying mechanisms of indole SCs JWH-018 and JWH-019 in mice (C57BL/6, male, 6-8 weeks old), zebrafish (AB strain, male, 4-5 months old) and modified human embryonic kidney (HEK) 293 T cells, using behavioral, pharmacokinetic, pharmacological approaches, and molecular docking. JWH-018 induced time- and dose-dependent cannabinoid-like effects in mice (administration dosages: 0.02, 0.1, and 0.5 mg/kg, i.p.), and yielded dose-dependent anxiogenic effects and lower aggression behavior in zebrafish (administration dosages: 0.01, 0.05, and 0.25 µg/g, i.p.), unlike JWH-019. These effects were blocked by the selective cannabinoid receptor 1 (CB1R) antagonist AM251. JWH-018, but not JWH-019, activated the CB1R-dependent extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway in vivo and in vitro. Molecular docking identified essential residues PHE268, PHE170, and TRP279 within CB1R as pivotal contributors to enhancing receptor-ligand associations. While both drugs had a similar binding pattern with shared linker binding pockets in CB1R, there were still differences in their spatial conformation. These findings shed light on the molecular pharmacology and activation mechanism of SCs for CB1R and should guide further research into the mechanisms underlying their deleterious effects in humans.
Collapse
Affiliation(s)
- Fenghua Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong Province 261042, PR China
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Sujun Tan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Xiaoli Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Weicheng Yuan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Shuqi Tao
- Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong Province 261042, PR China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
2
|
Norman C, Webling K, Kyslychenko O, Reid R, Krotulski AJ, Farrell R, Deventer MH, Liu H, Connolly MJ, Guillou C, Vinckier IMJ, Logan BK, NicDaéid N, McKenzie C, Stove CP, Gréen H. Detection in seized samples, analytical characterization, and in vitro metabolism of the newly emerged 5-bromo-indazole-3-carboxamide synthetic cannabinoid receptor agonists. Drug Test Anal 2024; 16:915-935. [PMID: 38037247 DOI: 10.1002/dta.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS) and new structural scaffolds have emerged on the recreational drug market since the enactment of Chinese SCRA analog controls in 2021. This study reports the first SCRAs to be detected with a bromide at the 5 position (5'Br) on the phenyl ring of the indazole core and without a tail moiety. ADB-5'Br-INACA (ADMB-5'Br-INACA) and MDMB-5'Br-INACA were detected in seized samples from Scottish prisons, Belgian customs, and US forensic casework. The brominated analog with a tail moiety, ADB-5'Br-BUTINACA (ADMB-5'Br-BUTINACA), was also detected in Scottish prisons and US forensic casework. The metabolites of these compounds and the predicted compound MDMB-5'Br-BUTINACA were identified through incubation with primary human hepatocytes to aid in their toxicological identification. The bromide on the indazole remains intact on metabolites, allowing these compounds to be easily distinguished in toxicological samples from their non-brominated analogs. Glucuronidation was more common for tail-less analogs than their butyl tail-containing counterparts. Forensic toxicologists are advised to update their analytical methods with the characteristic ions for these compounds, as well as their anticipated urinary markers: amide hydrolysis and monoOH at tert-butyl metabolites (after β-glucuronidase treatment) for ADB-5'Br-INACA; monoOH at tert-butyl and amide hydrolysis metabolites for ADB-5'Br-BUTINACA; and ester hydrolysis metabolites with additional metabolites for MDMB-5'Br-INACA and MDMB-5'Br-BUTINACA. Toxicologists should remain vigilant to the emergence of new SCRAs with halogenation of the indazole core and tail-less analogs, which have already started to emerge.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kristin Webling
- Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Oleksandra Kyslychenko
- Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, Pennsylvania, USA
| | - Ryan Farrell
- Indianapolis-Marion County Forensic Services Agency, Indianapolis, Indiana, USA
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - Claude Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | | | - Barry K Logan
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, Pennsylvania, USA
- Toxicology Department, NMS Labs, Horsham, Pennsylvania, USA
| | - Niamh NicDaéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Henrik Gréen
- Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| |
Collapse
|
3
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
4
|
Filipiuc LE, Creangă-Murariu I, Tamba BI, Ababei DC, Rusu RN, Stanciu GD, Ștefanescu R, Ciorpac M, Szilagyi A, Gogu R, Filipiuc SI, Tudorancea IM, Solcan C, Alexa-Stratulat T, Cumpăt MC, Cojocaru DC, Bild V. JWH-182: a safe and effective synthetic cannabinoid for chemotherapy-induced neuropathic pain in preclinical models. Sci Rep 2024; 14:16242. [PMID: 39004628 PMCID: PMC11247095 DOI: 10.1038/s41598-024-67154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP), a condition with unmet treatment needs, affects over half of cancer patients treated with chemotherapeutics. Researchers have recently focused on the endocannabinoid system because of its critical role in regulating our bodies' most important functions, including pain. We used in vitro and in vivo methods to determine the toxicity profile of a synthetic cannabinoid, JWH-182, and whether it could be potentially effective for CINP alleviation. In vitro, we evaluated JWH-182 general toxicity, measuring fibroblast viability treated with various concentrations of compound, and its neuroprotection on dorsal root ganglion neurons treated with paclitaxel. In vivo, we performed an evaluation of acute and 28-day repeated dose toxicity in mice, with monitoring of health status and a complete histopathological examination. Finally, we evaluated the efficacy of JWH-182 on a CINP model in mice using specific pain assessment tests. JWH-182 has an acceptable toxicity profile, in both, in vitro and in vivo studies and it was able to significantly reduce pain perception in a CINP model in mice. However, the translation of these results to the clinic needs further investigation.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Gabriela-Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Ștefanescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ivona-Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, "Ion Ionescu de La Brad" University of Life Sciences, 700490, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Marinela-Carmen Cumpăt
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Doina-Clementina Cojocaru
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Iasi, Romania
| |
Collapse
|
5
|
Aderorho R, Lucas SW, Chouinard CD. Separation and Characterization of Synthetic Cannabinoid Metabolite Isomers Using SLIM High-Resolution Ion Mobility-Tandem Mass Spectrometry (HRIM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:582-589. [PMID: 38361441 DOI: 10.1021/jasms.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
6
|
Chaturvedi K, Anthony CS, Pandey P, Doerksen RJ, Godfrey M. Influence of structural characteristics on the binding of synthetic cannabinoids from the JWH family to the CB1 receptor: A computational study. J Mol Graph Model 2024; 126:108620. [PMID: 37722351 PMCID: PMC10841904 DOI: 10.1016/j.jmgm.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
Synthetic cannabinoids, including some from the John W. Huffman (JWH) family, emerged on the drug scene around 2004 as "alternative marijuana," despite being considerably more potent than marijuana. Like Δ9-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana, synthetic cannabinoids have also been found to interact with cannabinoid receptors CB1 and CB2, found in the brain, immune system, and peripheral organs. The JWH compounds and other synthetic cannabinoids have become important subjects of research in the forensic science community due to their drug-abuse potential, undetectability under routine drug screening, and unpredictable toxicity. In this study, an active-state CB1 receptor model was used to assess the receptor-ligand interactions between the CB1 receptor and ligands from the JWH synthetic cannabinoid family, as well as some newly designed JWH-like virtual compounds, labeled as MGCS compounds, using docking, binding free-energy calculations (ΔG), and molecular dynamics simulations (MDs). The calculated ΔG revealed that the carbonyl group between the naphthalene and the indole, characteristic of the JWH family, and the length of the N-linked alkyl chain were two important structural characteristics that influenced the predicted CB1 binding affinity, especially as increasing the length of the alkyl chain led to better predicted binding affinity. MDs and per-residue-breakdown results showed that the designed MGCS compounds with a pentyl chain attached to the naphthalene moiety and selected JWH compounds formed stable and strong hydrophobic interactions with the key residues Phe170, Phe174, Phe177, Phe200, Phe268, and Trp279 of the CB1 receptor. Comprehension of these critical interactions can help forensic chemists predict the structure of undiscovered families of synthetic cannabinoids.
Collapse
Affiliation(s)
- Krishna Chaturvedi
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, 38677, United States
| | - Caroline S Anthony
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, 38677, United States
| | - Pankaj Pandey
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi, 38677, United States; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677-1848, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi, 38677, United States
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, 38677, United States.
| |
Collapse
|
7
|
Dou Q, Liu W, Xiang P, Zhao J. Quantitative Analysis of Three Synthetic Cannabinoids MDMB-4en-PINACA, ADB-BUTINACA, and ADB-4en-PINACA by Thermal-Assisted Carbon Fiber Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2316-2322. [PMID: 37641897 DOI: 10.1021/jasms.3c00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recently, synthetic cannabinoids (SCs) have emerged as new psychoactive substances (NPS) and have been frequently added to e-liquids, leading to their abuse. In order to detect SCs in e-liquids quickly and accurately, a thermal-assisted carbon fiber ionization mass spectrometry technique has been developed. The introduction of a heat source helps to reduce the matrix effects. The results indicate that the ratio of the slope of the matrix curve (e-liquids matrix) and the standard curve (methanol solution) for SCs analysis is close to 1, indicating a minimized matrix effect of this method. Furthermore, this method exhibits good quantitative ability when applied to real samples. It does not require sample pretreatment and is sensitive enough to directly quantify SCs in e-liquids. Our method is characterized by the ability to achieve rapid and direct quantitative analysis with minimized matrix effects. It provides a rapid and simple method for analyzing SCs in e-liquids.
Collapse
Affiliation(s)
- Quanlu Dou
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Wanhui Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
| | - Junbo Zhao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
| |
Collapse
|
8
|
Gavryushov S, Bashilov A, Cherashev-Tumanov KV, Kuzmich NN, Burykina TI, Izotov BN. Interaction of Synthetic Cannabinoid Receptor Agonists with Cannabinoid Receptor I: Insights into Activation Molecular Mechanism. Int J Mol Sci 2023; 24:14874. [PMID: 37834323 PMCID: PMC10574015 DOI: 10.3390/ijms241914874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) have become a wide group of new psychoactive substances since the 2010s. For the last few years, the X-ray structures of the complexes of cannabinoid receptor I (CB1) with SCRAs as well as the complexes of CB1 with its antagonist have been published. Based on those data, SCRA-CB1 interactions are analyzed in detail, using molecular modeling and molecular dynamics simulations. The molecular mechanism of the conformational transformation of the transmembrane domain of CB1 caused by its interaction with SCRA is studied. These conformational changes allosterically modulate the CB1-Gi complex, providing activation of the Gi protein. Based on the X-ray-determined structures of the CB1-ligand complexes, a stable apo conformation of inactive CB1 with a relatively low potential barrier of receptor activation was modeled. For that model, molecular dynamic simulations of SCRA binding to CB1 led to the active state of CB1, which allowed us to explore the key features of this activation and the molecular mechanism of the receptor's structural transformation. The simulated CB1 activation is in accordance with the previously published experimental data for the activation at protein mutations or structural changes of ligands. The key feature of the suggested activation mechanism is the determination of the stiff core of the CB1 transmembrane domain and the statement that the entire conformational transformation of the receptor to the active state is caused by a shift of alpha helix TM7 relative to this core. The shift itself is caused by protein-ligand interactions. It was verified via steered molecular dynamics simulations of the X-ray-determined structures of the inactive receptor, which resulted in the active conformation of CB1 irrespective of the placement of agonist ligand in the receptor's active site.
Collapse
Affiliation(s)
- Sergei Gavryushov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow 119991, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| | - Anton Bashilov
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| | - Konstantin V. Cherashev-Tumanov
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| | - Nikolay N. Kuzmich
- The Maurice and Vivienne Wohl Institute for Drug Discovery, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Tatyana I. Burykina
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| | - Boris N. Izotov
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| |
Collapse
|
9
|
Xu Q, Zhou L, Lv M, Chen Z, Hu C, Xiang P, Chen H. Nontargeted screening based on EI-MS spectra using statistical methods: An investigative study of synthetic indole/indazole cannabinoids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9524. [PMID: 37062936 DOI: 10.1002/rcm.9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Mass spectrometry has evolved into a highly powerful tool for qualitative and quantitative chemical analyses. However, the identification of trace amounts of previously unknown structures in complex chemical matrix environments remains challenging. The rapid emergence of new synthetic cannabinoid substances is a typical example of this. Existing laboratory techniques are mostly based on methods used for lists of known illegal compounds. This situation poses a challenge to traditional data analysis and the risk of missing the compounds. Therefore, we propose to develop and validate a statistical model to classify newly emerging synthetic cannabinoid substances into a structural class or subclass. METHODS We obtained 70 electrospray ionization spectra of indole/indazole synthetic cannabinoids from both the actual standard analysis and the SWGDRUG mass spectral library (version 3.10). Each sample consisted of 330 m/z variables and corresponding relative intensities. We first cleared the variables with a variance below 0.1. Principal component analysis (PCA) was performed on the variance-filtered data, and the two principal components were retained to generate new data for hierarchical clustering. After hierarchical clustering, we used the receiver operating characteristic method in this cluster. RESULTS Seventy synthetic indole/indazole cannabinoids were classified into four clusters. The side chain of cluster 1 is mainly fluorobenzyl, cluster 2 is pentyl, cluster 3 includes compounds from several structures, and cluster 4 is mainly fluoropentyl. The most relevant characteristic ions are m/z 109, m/z 252, and m/z 253 for cluster 1; m/z 144 and m/z 214 for cluster 2; and m/z 232 and m/z 233 for cluster 4. CONCLUSIONS This study provides a more objective and less time-consuming solution for characterizing synthetic cannabinoids. And this work validates the ability of PCA to extract characteristic fragment ions.
Collapse
Affiliation(s)
- Qing Xu
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liying Zhou
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| | - Min Lv
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhuonan Chen
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chi Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| | - Hang Chen
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, China
| |
Collapse
|
10
|
de Oliveira MC, Vides MC, Lassi DLS, Torales J, Ventriglio A, Bombana HS, Leyton V, Périco CDAM, Negrão AB, Malbergier A, Castaldelli-Maia JM. Toxicity of Synthetic Cannabinoids in K2/Spice: A Systematic Review. Brain Sci 2023; 13:990. [PMID: 37508922 PMCID: PMC10377539 DOI: 10.3390/brainsci13070990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Synthetic cannabinoids (SCs) are emerging drugs of abuse sold as 'K2', 'K9' or 'Spice'. Evidence shows that using SCs products leads to greater health risks than cannabis. They have been associated with greater toxicity and higher addiction potential unrelated to the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). Moreover, early cases of intoxication and death related to SCs highlight the inherent danger that may accompany the use of these substances. However, there is limited knowledge of the toxicology of Spice ingredients. This systematic review intends to analyze the toxicity of SCs compounds in Spice/K2 drugs. (2) Methods: Studies analyzing synthetic cannabinoid toxicity and dependence were included in the present review. We searched the PubMed database of the US National Library of Medicine, Google Scholar, CompTox Chemicals, and Web of Science up to May 2022. (3) Results: Sixty-four articles reporting the effects of synthetic cannabinoids in humans were included in our review. Ten original papers and fifty-four case studies were also included. Fourteen studies reported death associated with synthetic cannabinoid use, with AB-CHMINACA and MDMB-CHMICA being the main reported SCs. Tachycardia and seizures were the most common toxicity symptoms. The prevalence of neuropsychiatric symptoms was higher in third-generation SCs. (4) Conclusion: SCs may exhibit higher toxicity than THC and longer-lasting effects. Their use may be harmful, especially in people with epilepsy and schizophrenia, because of the increased risk of the precipitation of psychiatric and neurologic disorders. Compared to other drugs, SCs have a higher potential to trigger a convulsive crisis, a decline in consciousness, and hemodynamic changes. Therefore, it is crucial to clarify their potential harms and increase the availability of toxicology data in both clinical and research settings.
Collapse
Affiliation(s)
- Mariana Campello de Oliveira
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Mariana Capelo Vides
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Dângela Layne Silva Lassi
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Julio Torales
- Department of Psychological Medicine, School of Medical Sciences, National University of Asuncion, San Lorenzo 111421, Paraguay
| | - Antonio Ventriglio
- Department of Experimental Medicine, Medical School, University of Foggia, 71122 Foggia, Italy
| | - Henrique Silva Bombana
- Department of Legal Medicine, Medical School, São Paulo University, São Paulo 05508-090, SP, Brazil
| | - Vilma Leyton
- Department of Legal Medicine, Medical School, São Paulo University, São Paulo 05508-090, SP, Brazil
| | | | - André Brooking Negrão
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - André Malbergier
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - João Maurício Castaldelli-Maia
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
- Department of Neuroscience, Medical School, FMABC University Center, Santo André 09060-870, SP, Brazil
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Dutta S, Shukla D. Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors. Commun Biol 2023; 6:485. [PMID: 37147497 PMCID: PMC10163236 DOI: 10.1038/s42003-023-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Design of cannabinergic subtype selective ligands is challenging because of high sequence and structural similarities of cannabinoid receptors (CB1 and CB2). We hypothesize that the subtype selectivity of designed selective ligands can be explained by the ligand binding to the conformationally distinct states between cannabinoid receptors. Analysis of ~ 700 μs of unbiased simulations using Markov state models and VAMPnets identifies the similarities and distinctions between the activation mechanism of both receptors. Structural and dynamic comparisons of metastable intermediate states allow us to observe the distinction in the binding pocket volume change during CB1 and CB2 activation. Docking analysis reveals that only a few of the intermediate metastable states of CB1 show high affinity towards CB2 selective agonists. In contrast, all the CB2 metastable states show a similar affinity for these agonists. These results mechanistically explain the subtype selectivity of these agonists by deciphering the activation mechanism of cannabinoid receptors.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Szafrański PW, Siwek A, Smaga-Maślanka I, Pomierny-Chamioło L, Ilnicki P, Żuchowski G, Nevalainen T, Filip M, Zajdel P, Cegła MT. Synthesis, relative configuration and CB1 receptor affinity studies for a set of 1,2,3-triazole derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Giorgetti A, Orazietti V, Busardò FP, Giorgetti R. Psychomotor performances relevant for driving under the combined effect of ethanol and synthetic cannabinoids: A systematic review. Front Psychiatry 2023; 14:1131335. [PMID: 36911125 PMCID: PMC9998479 DOI: 10.3389/fpsyt.2023.1131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVE To determine whether the acute co-consumption of ethanol and synthetic cannabinoids (SCs) increases the risk of a motor vehicle collision and affects the psychomotor performances relevant for driving. DESIGN Systematic review of the literature. DATA SOURCES Electronic searches were performed in two databases, unrestricted by year, with previously set method and criteria. Search, inclusion and data extraction were performed by two blind authors. RESULTS Twenty articles were included, amounting to 31 cases of SCs-ethanol co-consumption. The impairment of psychomotor functions varied widely between studies, ranging from no reported disabilities to severe unconsciousness. Overall, a dose-effect relationship could not be observed. CONCLUSION Despite the biases and limitations of the literature studies, it seems likely that the co-consumption poses an increased risk for driving. The drugs might exert a synergistic effect on the central nervous system depression, as well as on aggressiveness and mood alterations. However, more research is needed on the topic.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Vasco Orazietti
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| |
Collapse
|
14
|
Torrens A, Roy P, Lin L, Vu C, Grimes D, Inshishian VC, Montesinos JS, Ahmed F, Mahler SV, Huestis MA, Das A, Piomelli D. Comparative Pharmacokinetics of Δ 9-Tetrahydrocannabinol in Adolescent and Adult Male and Female Rats. Cannabis Cannabinoid Res 2022; 7:814-826. [PMID: 35353551 PMCID: PMC9784615 DOI: 10.1089/can.2021.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introduction: Studies in rodent models have shown that adolescent exposure to Δ9-THC, the psychotropic constituent of cannabis, produces long-lasting alterations in brain function and behavior. However, our understanding of how age and sex might influence the distribution and metabolism of THC in laboratory rodents is still incomplete. In the present report, we provide a comparative analysis of the pharmacokinetic (PK) properties of THC in adolescent and adult rats of both sexes, and outline several dissimilarities across these groups. Materials and Methods: A single (acute) or 2-week daily (subchronic) administration of THC (0.5 or 5 mg/kg, acute; 5 mg/kg, subchronic; intraperitoneal) was given to adolescent (33-day-old, acute; 30-44-day-old, subchronic) and young adult (70-day-old, acute only) male and female rats. THC and its first-pass metabolites-11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma and brain tissue using a selective isotope-dilution liquid chromatography/tandem mass spectrometry assay. Changes in body temperature were measured using abdominally implanted microchips. Biotransformation of THC to its metabolites using freshly prepared liver microsomes was assessed. Results: At the acute 5 mg/kg dose, maximal plasma concentrations of THC were twice as high in adult than in adolescent rats. Conversely, in adults, brain concentrations and brain-to-plasma ratios for THC were substantially lower (25-50%) than those measured in adolescents. Similarly, plasma and brain concentrations of THC metabolites were higher in adolescent male rats compared with adult males. Interestingly, plasma and brain concentrations of the psychoactive THC metabolite 11-OH-THC were twofold to sevenfold higher in female animals of both ages compared with males. Moreover, liver microsomes from adolescent males and adolescent and adult females converted THC to 11-OH-THC twice as fast as adult male microsomes. A dose-dependent hypothermic response to THC was observed in females with 0.5 and 5 mg/kg THC, whereas only the highest dose elicited a response in males. Finally, subchronic administration of THC during adolescence did not significantly affect the drug's PK profile. Conclusions: The results reveal the existence of multiple age and sex differences in the distribution and metabolism of THC in rats, which might influence the pharmacological response to the drug.
Collapse
Affiliation(s)
- Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Pritam Roy
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Cindy Vu
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Dakota Grimes
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Victoria C. Inshishian
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Johanna S. Montesinos
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Marylin A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aditi Das
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, and University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
15
|
Oz M, Yang KHS, Mahgoub MO. Effects of cannabinoids on ligand-gated ion channels. Front Physiol 2022; 13:1041833. [PMID: 36338493 PMCID: PMC9627301 DOI: 10.3389/fphys.2022.1041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion channels, and enzymes in a cannabinoid-receptor independent manner. In this report, the direct actions of endo-, phyto-, and synthetic cannabinoids on the functional properties of ligand-gated ion channels and the plausible mechanisms mediating these effects were reviewed and discussed.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Murat Oz,
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, United States
| | - Mohamed Omer Mahgoub
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, UAE
| |
Collapse
|
16
|
Pawar AP, Yadav J, Dolas AJ, Nagare YK, Iype E, Rangan K, Kumar I. Enantioselective Direct Synthesis of C3-Hydroxyalkylated Pyrrole via an Amine-Catalyzed Aldol/Paal-Knorr Reaction Sequence. Org Lett 2022; 24:7549-7554. [PMID: 36219141 DOI: 10.1021/acs.orglett.2c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Creating functionality with chirality at position C3 of pyrrole is challenging. An operationally simple organocatalytic method has been developed to generate functionality with a chiral tertiary/quaternary stereocenter at position C3 of pyrrole. The process proceeds through an amine-catalyzed direct aldol reaction of succinaldehyde with various acceptor carbonyls, followed by a Paal-Knorr reaction with a primary amine in the same pot. A series of chiral C3-hydroxyalkylated N-alkyl/Ar/H-pyrroles have been synthesized for the first time with good to high yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
17
|
Marusich JA, Gamage TF, Zhang Y, Akinfiresoye LR, Wiley JL. In vitro and in vivo pharmacology of nine novel synthetic cannabinoid receptor agonists. Pharmacol Biochem Behav 2022; 220:173467. [PMID: 36154844 PMCID: PMC9837865 DOI: 10.1016/j.pbb.2022.173467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are novel psychoactive substances that bind to and activate CB1 receptors in the brain. The structural manipulations observed in newer SCRAs suggest that manufacturers have incorporated modern drug development techniques into their repertoire, often producing higher CB1 receptor affinity than Δ9-tetrahydrocannabinol (Δ9-THC). This study examined nine SCRAs recently detected by forensic surveillance, some of which caused fatalities: 5F-MDMB-PICA, FUB-144, 5F-MMB-PICA, MMB-4en-PICA, MMB-FUBICA, 5F-EDMB-PINACA, APP-BINACA, MDMB-4en-PINACA, and FUB-AKB48. Compounds were evaluated for CB1 and CB2 receptor binding affinity and functional activation and for their effects on body temperature, time course, and pharmacological equivalence with Δ9-THC in Δ9-THC drug discrimination in mice. All SCRAs bound to and activated CB1 and CB2 receptors with high affinity, with similar or greater affinity for CB2 than CB1 receptors and stimulated [35S]GTPγS binding in CB1 and CB2 expressing cell membranes. All compounds produced hypothermia, with shorter latency to peak effects for SCRAs than Δ9-THC. All SCRAs fully substituted for Δ9-THC in drug discrimination at one or more doses. Rank order potency in producing in vivo effects mostly aligned with rank order CB1 receptor affinities. Potencies for Δ9-THC-like discriminative stimulus effects were similar across sex except Δ9-THC was more potent in females and 5F-MMB-PICA was more potent in males. In summary, 5F-EMDB-PINACA, 5F-MDMB-PICA, MDMB-4en-PINACA, FUB-144, FUB-AKB48, 5F-MMB-PICA, MMB-4en-PICA, and MMB-FUBICA are potent and efficacious SCRAs with pharmacology like that of past SCRAs that have been abused in humans. In contrast, APP-BINACA was efficacious, but had lower potency than most past SCRAs.
Collapse
Affiliation(s)
- Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA.
| | - Thomas F Gamage
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Yanan Zhang
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA 22152, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
18
|
Worob A, Wenthur CJ. Development of Cross-Reactive Antibodies for the Identification and Treatment of Synthetic Cannabinoid Receptor Agonist Toxicity. Vaccines (Basel) 2022; 10:vaccines10081253. [PMID: 36016144 PMCID: PMC9415894 DOI: 10.3390/vaccines10081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are compounds that mimic the pharmacology of the psychoactive components in cannabis. These compounds are structurally diverse, inexpensive, commercially available, and difficult to identify with modern analytical methods, making them highly accessible for recreational use. Suspected SCRA toxicity, which can present with a breadth of cardiovascular, gastrointestinal, and neurological disturbances, is currently addressed through symptom management followed by a toxicological screening that often occurs long after patient discharge. Here, we report the development of four cross-reactive anti-SCRA bioconjugate vaccines as a platform for developing improved diagnostic and therapeutic interventions against SCRA intoxication, using SCRA-resembling small molecule haptens that combine common subregional motifs occurring within and across different generations of SCRA molecules. Using a combination of multiplexed competitive ELISA screening and chemoinformatic analyses, it was found that the antibodies resulting from vaccination with these bioconjugates demonstrated their ability to detect multiple SCRAs with a Tanimoto minimum common structure score of 0.6 or greater, at concentrations below 8 ng/mL. The scope of SCRAs detectable using these haptens was found to include both bioisosteric and non-bioisosteric variants within the core and tail subregions, as well as SCRAs bearing valine-like head subregions, which are not addressed by commercially available ELISA screening approaches. Vaccination with these bioconjugates was also found to prevent the changes in locomotion and body temperature that were induced by a panel of SCRAs at doses of 1 and 3 mg/kg. Further refinement of this genericized hapten design and cross-reactivity-prioritizing approach may enable the rapid detection of otherwise cryptic SCRAs that arise during overdose outbreaks, and could ultimately lead to identification of monoclonal antibody species applicable for overdose reversal.
Collapse
|
19
|
Xinze Liu, Liu W, Xiang P, Hang T, Shi Y, Yue L, Yan H. Metabolism of ADB-4en-PINACA in Zebrafish and Rat Liver Microsomes Determined by Liquid Chromatography–High Resolution Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
Simão AY, Antunes M, Cabral E, Oliveira P, Rosendo LM, Brinca AT, Alves E, Marques H, Rosado T, Passarinha LA, Andraus M, Barroso M, Gallardo E. An Update on the Implications of New Psychoactive Substances in Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4869. [PMID: 35457736 PMCID: PMC9028227 DOI: 10.3390/ijerph19084869] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
The emergence of new psychoactive substances has earned a great deal of attention, and several reports of acute poisoning and deaths have been issued involving, for instance, synthetic opiates. In recent years, there have been profound alterations in the legislation concerning consumption, marketing, and synthesis of these compounds; rapid alert systems have also been subject to changes, and new substances and new markets, mainly through the internet, have appeared. Their effects and how they originate in consumers are still mostly unknown, primarily in what concerns chronic toxicity. This review intends to provide a detailed description of these substances from the point of view of consumption, toxicokinetics, and health consequences, including case reports on intoxications in order to help researchers and public health agents working daily in this area.
Collapse
Affiliation(s)
- Ana Y. Simão
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Emanuel Cabral
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Patrik Oliveira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Estefânia Alves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
| | | | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| |
Collapse
|
22
|
Glatfelter GC, Partilla JS, Baumann MH. Structure-activity relationships for 5F-MDMB-PICA and its 5F-pentylindole analogs to induce cannabinoid-like effects in mice. Neuropsychopharmacology 2022; 47:924-932. [PMID: 34802041 PMCID: PMC8882184 DOI: 10.1038/s41386-021-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances found on recreational drug markets worldwide. The indole-containing compound, 5F-MDMB-PICA, is a popular SCRA associated with serious medical consequences, including overdose and hospitalizations. In vitro studies reveal that 5F-MDMB-PICA is a potent agonist at cannabinoid type 1 receptors (CB1), but little information exists regarding in vivo pharmacology of the drug. To this end, we examined the in vitro and in vivo cannabinoid-like effects produced by 5F-MDMB-PICA and related 5F-pentylindole analogs with differing composition of the head group moiety (i.e., 5F-NNEI, 5F-SDB-006, 5F-CUMYL-PICA, 5F-MMB-PICA). In mouse brain membranes, 5F-MDMB-PICA and its analogs inhibited binding to [3H]rimonabant-labeled CB1 and displayed agonist actions in [35S]GTPγS functional assays. 5F-MDMB-PICA exhibited the highest CB1 affinity (Ki = 1.24 nM) and functional potency (EC50 = 1.46 nM), but head group composition markedly influenced activity in both assays. For example, the 3,3-dimethylbutanoate (5F-MDMB-PICA) and cumyl (5F-CUMYL-PICA) head groups engendered high CB1 affinity and potency, whereas a benzyl (5F-SDB-006) head group did not. In C57BL/6J mice, all 5F-pentylindole SCRAs produced dose- and time-dependent hypothermia, catalepsy, and analgesia that were reversed by rimonabant, indicating CB1 involvement. In vitro Ki and EC50 values were positively correlated with in vivo ED50 potency estimates. Our findings demonstrate that 5F-MDMB-PICA is a potent SCRA, and subtle alterations to head group composition can have profound influence on pharmacological effects at CB1. Importantly, measures of CB1 binding and efficacy in mouse brain tissue seem to accurately predict in vivo drug potency in this species.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - John S. Partilla
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - Michael H. Baumann
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| |
Collapse
|
23
|
Gilbert N, Costello A, Ellison JR, Khan U, Knight M, Linnell MJ, Ralphs R, Mewis RE, Sutcliffe OB. Synthesis, characterisation, detection and quantification of a novel hexyl-substituted synthetic cannabinoid receptor agonist: (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Levine A, Liktor-Busa E, Lipinski AA, Couture S, Balasubramanian S, Aicher SA, Langlais PR, Vanderah TW, Largent-Milnes TM. Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol Sex Differ 2021; 12:60. [PMID: 34749819 PMCID: PMC8577021 DOI: 10.1186/s13293-021-00402-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Austin A Lipinski
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sarah Couture
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Shreya Balasubramanian
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Paul R Langlais
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA.
| |
Collapse
|
25
|
Valeri A, Mazzon E. Cannabinoids and Neurogenesis: The Promised Solution for Neurodegeneration? Molecules 2021; 26:molecules26206313. [PMID: 34684894 PMCID: PMC8541184 DOI: 10.3390/molecules26206313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of neurons as irreplaceable cells does not hold true today. Experiments and evidence of neurogenesis, also, in the adult brain give hope that some compounds or drugs can enhance this process, helping to reverse the outcomes of diseases or traumas that once were thought to be everlasting. Cannabinoids, both from natural and artificial origins, already proved to have several beneficial effects (e.g., anti-inflammatory, anti-oxidants and analgesic action), but also capacity to increase neuronal population, by replacing the cells that were lost and/or regenerate a damaged nerve cell. Neurogenesis is a process which is not highly represented in literature as neuroprotection, though it is as important as prevention of nervous system damage, because it can represent a possible solution when neuronal death is already present, such as in neurodegenerative diseases. The aim of this review is to resume the experimental evidence of phyto- and synthetic cannabinoids effects on neurogenesis, both in vitro and in vivo, in order to elucidate if they possess also neurogenetic and neurorepairing properties.
Collapse
|
26
|
Howlett AC, Thomas BF, Huffman JW. The Spicy Story of Cannabimimetic Indoles. Molecules 2021; 26:6190. [PMID: 34684770 PMCID: PMC8538531 DOI: 10.3390/molecules26206190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.
Collapse
Affiliation(s)
- Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian F. Thomas
- Department of Analytical Sciences, The Cronos Group, Toronto, ON M5V 2H1, Canada;
| | - John W. Huffman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
27
|
Monti MC, Scheurer E, Mercer-Chalmers-Bender K. Phase I In Vitro Metabolic Profiling of the Synthetic Cannabinoid Receptor Agonists CUMYL-THPINACA and ADAMANTYL-THPINACA. Metabolites 2021; 11:470. [PMID: 34436411 PMCID: PMC8398790 DOI: 10.3390/metabo11080470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain popular drugs of abuse. As many SCRAs are known to be mostly metabolized, in vitro phase I metabolic profiling was conducted of the two indazole-3-carboxamide SCRAs: CUMYL-THPINACA and ADAMANTYL-THPINACA. Both compounds were incubated using pooled human liver microsomes. The sample clean-up consisted of solid phase extraction, followed by analysis using liquid chromatography coupled to a high resolution mass spectrometer. In silico-assisted metabolite identification and structure elucidation with the data-mining software Compound Discoverer was applied. Overall, 28 metabolites were detected for CUMYL-THPINACA and 13 metabolites for ADAMATYL-THPINACA. Various mono-, di-, and tri-hydroxylated metabolites were detected. For each SCRA, an abundant and characteristic di-hydroxylated metabolite was identified as a possible in vivo biomarker for screening methods. Metabolizing cytochrome P450 isoenzymes were investigated via incubation of relevant recombinant liver enzymes. The involvement of mainly CYP3A4 and CYP3A5 in the metabolism of both substances were noted, and for CUMYL-THPINACA the additional involvement (to a lesser extent) of CYP2C8, CYP2C9, and CYP2C19 was observed. The results suggest that ADAMANTYL-THPINACA might be more prone to metabolic drug-drug interactions than CUMYL-THPINACA, when co-administrated with strong CYP3A4 inhibitors.
Collapse
Affiliation(s)
| | | | - Katja Mercer-Chalmers-Bender
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, 4056 Basel, Switzerland; (M.C.M.); (E.S.)
| |
Collapse
|
28
|
In Vitro and In Vivo Pharmaco-Toxicological Characterization of 1-Cyclohexyl-x-methoxybenzene Derivatives in Mice: Comparison with Tramadol and PCP. Int J Mol Sci 2021; 22:ijms22147659. [PMID: 34299276 PMCID: PMC8306156 DOI: 10.3390/ijms22147659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.
Collapse
|
29
|
AbuAlSamen MM, El-Elimat T, A. Almomani B, A. Al-Sawalha N. Knowledge and perceptions of synthetic cannabinoids among university students in Jordan. PLoS One 2021; 16:e0253632. [PMID: 34166423 PMCID: PMC8224919 DOI: 10.1371/journal.pone.0253632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
The emergence of blends of synthetic cannabinoids (SC) is an alarming public health concern in Jordan and worldwide. This study aimed to assess the knowledge and perceptions of university students of SC. A cross-sectional study employing a self-administered questionnaire was used to collect data from 1,789 university students in Jordan. The questionnaire measured the knowledge and perceptions of students of SC. Bivariate and multivariate logistic regression were used to investigate the potential predictors of good knowledge of SC. Perceptions of students regarding SC use, prevalence and availability were investigated using principal component analysis. Self-reported familiarity with SC was high (92.5%), while good knowledge was only demonstrated by (33.6%) of students. Predictors of good knowledge included being a smoker (aOR = 1.369, 95% Cl = 11.041–1.871, p = .026), an alcohol user (aOR = 2.134, 95% CI = 1.362–3.346, p = .001), being informed by traditional media (aOR = 1.367, 95% CI = 11.113–1.679, p = .003), social media (aOR = 1.241, 95% CI = 1.161–1.403, p = .021) and self-familiarity with SC (aOR = 2.499, 95% CI = 1.518–4.114, p < .0001). Students perceived SC use to be prevalent and ethically unacceptable, for religious, social, and legal reasons. There were significant differences in the ethical perceptions against the use of SC detected by gender (p < .0001), smoking (p < .0001) or alcohol use (p = .001), and being informed by both traditional media (p-.001) and social media (p = .001), but there were no differences by the level of knowledge (p = .057). Those of good knowledge and those of low knowledge did not differ on their ethical perceptions of using SC. This study showed that there was a low level of knowledge regarding SC among university students in Jordan, which may play a role in the use of SC in the country. Herein, many opportunities exist for public health education to raise awareness against SC use.
Collapse
Affiliation(s)
| | - Tamam El-Elimat
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- * E-mail:
| | - Basima A. Almomani
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour A. Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
30
|
Khalid S, Almalki FA, Hadda TB, Bader A, Abu-Izneid T, Berredjem M, Elsharkawy ER, Alqahtani AM. Medicinal Applications of Cannabinoids Extracted from Cannabis sativa (L.): A New Route in the Fight Against COVID-19? Curr Pharm Des 2021; 27:1564-1578. [PMID: 33267756 DOI: 10.2174/1381612826666201202125807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
Cannabis sativa is a well-known plant that has been recognized for its benefits since ancient times by several medicinal systems, including those of China, India, Greece, and Egypt. Although C. sativa is one of the most investigated medicinal plants in the world, it faces some of the greatest controversies surrounding its legalization and use as a medication. C. sativa contains several hundred phytoconstituents, including the infamous "cannabinoids". It is necessary to properly understand the medicinal importance of these phytochemicals and spread awareness among the countries where cannabis is still facing legal obstacles. The current review focuses on the most recent literature pertaining to various applications of cannabinoids, with a special focus on the medicinal aspect of these phytochemicals. Peer-reviewed articles focusing on the importance of cannabis and cannabinoids are the target of this review. Articles were selected based on the relevance to the general scope of the work, i.e., application of cannabinoids. Cannabinoids can truly be regarded as wonder drugs, considering their immense diversity of usage. Unfortunately, however, many of the mares have never been researched biologically or pharmacologically due to their low yield in the plant. However, the approval of some cannabinoids by the FDA (along with other recognized national medical health systems) has opened the horizon for the use of these natural drugs in medicines such as Epidiolex® (cannabidiol, used for the treatment of severe forms of epilepsy) and Sativex®(Δ9-tetrahydrocannabinol and cannabidiol, used for the treatment of spasticity caused by multiple sclerosis). Many pharmacological properties of C. sativa are attributed to cannabidiol (CBD), a non-psychoactive component, along with Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive component. This review addresses the most important applications or current utilization of cannabinoids in a variety of treatments such as chronic pain, cancer, emesis, anorexia, irritable bowel syndrome, communicable diseases, glaucoma, and central nervous system disorders. The biosynthetic pathway of cannabinoids is also discussed. In short, cannabis has a myriad of bioactive compounds that have the potential to increase the list of approved cannabinoids suitable for therapy.
Collapse
Affiliation(s)
- Shah Khalid
- Department of Botany, Islamia College, Peshawar, Pakistan
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, Collage of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000 Annaba, Algeria
| | - Eman R Elsharkawy
- Chemistry Department, Faculty of Science, Northern Borders University, Arar, Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
31
|
Fulo HF, Shoeib A, Cabanlong CV, Williams AH, Zhan CG, Prather PL, Dudley GB. Synthesis, Molecular Pharmacology, and Structure-Activity Relationships of 3-(Indanoyl)indoles as Selective Cannabinoid Type 2 Receptor Antagonists. J Med Chem 2021; 64:6381-6396. [PMID: 33887913 PMCID: PMC8683641 DOI: 10.1021/acs.jmedchem.1c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synthetic indole cannabinoids characterized by a 2',2'-dimethylindan-5'-oyl group at the indole C3 position constitute a new class of ligands possessing high affinity for human CB2 receptors at a nanomolar concentration and a good selectivity index. Starting from the neutral antagonist 4, the effects of indole core modification on the pharmacodynamic profile of the ligands were investigated. Several N1 side chains afforded potent and CB2-selective neutral antagonists, notably derivatives 26 (R1 = n-propyl, R2 = H) and 35 (R1 = 4-pentynyl, R2 = H). Addition of a methyl group at C2 improved the selectivity for the CB2 receptor. Moreover, C2 indole substitution may control the CB2 activity as shown by the functionality switch in 35 (antagonist) and 49 (R1 = 4-pentynyl, R2 = CH3, partial agonist).
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
32
|
Andersen JE. Assessment of measurement uncertainty using longitudinal calibration data in the forensic context. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Comprehensive analytical and structural characteristics of methyl 3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido)butanoate (MDMB-4en-PINACA). Forensic Toxicol 2021. [DOI: 10.1007/s11419-021-00573-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose
The purpose of the study was to evaluate a complete analytical and structural characterization of methyl 3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido)butanoate (MDMB-4en-PINACA), a novel synthetic cannabinoid being the analogue of 5F-ADB.
Methods
The compound was analyzed by gas chromatography–mass spectrometry (GC–MS), high-resolution liquid chromatography–mass spectrometry (LC–MS), X-ray diffraction and spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopies. To derive MDMB-4en-PINACA molecular geometry and to assign infrared absorption bands, quantum calculations with the employment of density functional theory were also used.
Results
We present a wide range of chromatographic and spectroscopic data supported with theoretical calculations allowing to identify MDMB-4en-PINACA.
Conclusions
To our knowledge, this is the first report presenting a comprehensive analytical and structural characterization of MDMB-4en-PINACA obtained by 1D and 2D NMR, GC–MS, LC–MS(/MS), attenuated total reflection-FTIR spectroscopy, powder X-ray diffraction and quantum chemical calculations. The presented results not only broaden the knowledge about this psychoactive substance but also are useful for forensic and clinical purposes.
Collapse
|
34
|
Li J, Zhang Y, Zhou Y, Feng XS. Cannabinoids: Recent Updates on Public Perception, Adverse Reactions, Pharmacokinetics, Pretreatment Methods and Their Analysis Methods. Crit Rev Anal Chem 2021; 52:1197-1222. [PMID: 33557608 DOI: 10.1080/10408347.2020.1864718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cannabinoids (CBDs) have been traditionally used as a folk medicine. Recently, they have been found to exhibit a high pharmacological potential. However, they are addicted and are often abused by drug users, thereby, becoming a threat to public safety. CBDs and their metabolites are usually found in trace levels in plants or in biological matrices and, are therefore not easy to be detected. Advances have been made toward accurately analyzing CBDs in plants or in biological matrices. This review aims at elucidating on the consumption of CBDs as well as its adverse effects and to provide a comprehensive overview of CBD pretreatment and detection methods. Moreover, novel pretreatment methods such as microextraction, Quick Easy Cheap Effective Rugged Safe and online technology as well as novel analytic methods such as ion-mobility mass spectrometry, application of high resolution mass spectrometry in nontarget screening are summarized. In addition, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospect.
Collapse
Affiliation(s)
- Jie Li
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Taffe MA, Creehan KM, Vandewater SA, Kerr TM, Cole M. Effects of Δ⁹-tetrahydrocannabinol (THC) vapor inhalation in Sprague-Dawley and Wistar rats. Exp Clin Psychopharmacol 2021; 29:1-13. [PMID: 32297788 PMCID: PMC8376092 DOI: 10.1037/pha0000373] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An inhalation system based on e-cigarette technology produces hypothermic and antinociceptive effects of Δ⁹-tetrahydrocannabinol (THC) in rats. Indirect comparison of some prior investigations suggested differential impact of inhaled THC between Wistar (WI) and Sprague-Dawley (SD) rats; thus, this study was conducted to directly compare the strains across inhaled and injected routes of administration. Groups (N = 8 per strain) of age-matched male SD and WI rats were prepared with radiotelemetry devices to measure temperature and then exposed to vapor from the propylene glycol (PG) vehicle or THC (25-200 mg/mL of PG) for 30 or 40 min. Additional studies evaluated effects of THC inhalation on plasma THC (50-200 mg/mL) and nociception (100-200 mg/mL) as well as the thermoregulatory effect of intraperitoneal injection of THC (5-30 mg/kg). Hypothermic effects of THC were more pronounced in SD rats, where plasma levels of THC were identical across strains, under either fixed inhalation conditions or injection of a mg/kg equivalent dose. Strain differences in hypothermia were largest after i.p. injection of THC, with SD rats exhibiting dose-dependent temperature reduction after 5 or 10 mg/kg, i.p. and the WI rats only exhibiting significant hypothermia after 20 mg/kg, i.p. The antinociceptive effects of inhaled THC (100, 200 mg/mL) did not differ significantly across the strains. These studies confirm an insensitivity of WI rats, compared with SD rats, to hypothermia induced by THC following inhalation conditions that produced identical plasma THC and antinociception. Thus, quantitative, albeit not qualitative, strain differences may be obtained when studying thermoregulatory effects of THC. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Michael A. Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Psychiatry, University of California San Diego, La Jolla, CA USA,Correspondence and requests for materials should be addressed to Dr. Michael A. Taffe, Department of Psychiatry; 9500 Gilman Dr. MC 0714; University of California San Diego, La Jolla, CA 92093; USA; Phone: +1.858.246.5638;
| | - Kevin M. Creehan
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | | | - Tony M. Kerr
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Maury Cole
- La Jolla Alcohol Research, Inc, La Jolla, CA USA
| |
Collapse
|
36
|
Saldaña-Shumaker SL, Grenning AJ, Cunningham CW. Modern approaches to the development of synthetic cannabinoid receptor probes. Pharmacol Biochem Behav 2021; 203:173119. [PMID: 33508249 DOI: 10.1016/j.pbb.2021.173119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The endocannabinoid system, which spans the central and peripheral nervous systems and regulates many biologic processes, is an important target for probe discovery and medications development. Whereas the earliest endocannabinoid receptor probes were derivatives of the non-selective phytocannabinoids isolated from Cannabis species, modern drug discovery techniques have expanded the definitions of what constitutes a CB1R or CB2R cannabinoid receptor ligand. This review highlights recent advances in synthetic cannabinoid receptor chemistry and pharmacology. We provide examples of new CB1R- and CB2R-selective probes, and discuss rational approaches to the design of peripherally-restricted agents. We also describe structural classes of positive- and negative allosteric modulators (PAMs and NAMs) of CB1R and CB2R. Finally, we introduce new opportunities for cannabinoid receptor probe development that have emerged in recent years, including biased agonists that may lead to medications lacking adverse effects.
Collapse
Affiliation(s)
- Savanah L Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| |
Collapse
|
37
|
Theunissen EL, Reckweg JT, Hutten NRPW, Kuypers KPC, Toennes SW, Neukamm MA, Halter S, Ramaekers JG. Intoxication by a synthetic cannabinoid (JWH-018) causes cognitive and psychomotor impairment in recreational cannabis users. Pharmacol Biochem Behav 2021; 202:173118. [PMID: 33497715 DOI: 10.1016/j.pbb.2021.173118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Smoking mixtures containing synthetic cannabinoids (SCs) have become very popular over the last years but pose a serious risk for public health. Limited knowledge is, however, available regarding the acute effects of SCs on cognition and psychomotor performance. Earlier we demonstrated signs of impairment in healthy volunteers after administering one of the first SCs, JWH-018, even though subjective intoxication was low. In the current study, we aimed to investigate the acute effects of JWH-018 on several cognitive and psychomotor tasks in participants who are demonstrating representative levels of acute intoxication. METHODS 24 healthy cannabis-experienced participants took part in this placebo-controlled, cross-over study. Participants inhaled the vapor of 75 μg JWH-018/kg body weight and were given a booster dose if needed to induce a minimum level of subjective high. They were subsequently monitored for 4 h, during which psychomotor and cognitive performance, vital signs, and subjective experience were measured, and serum concentrations were determined. RESULTS Maximum subjective high (average 64%) was reached 30 min after administration of JWH-018, while the maximum blood concentration was shown after 5 min (8 ng/mL). JWH-018 impaired motor coordination (CTT), attention (DAT and SST), memory (SMT), it lowered speed-accuracy efficiency (MFFT) and slowed down response speed (DAT). CONCLUSION In accordance with our previous studies, we demonstrated acute psychomotor and cognitive effects of a relatively low dose of JWH-018.
Collapse
Affiliation(s)
- Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104 Freiburg, Germany
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
38
|
Abstract
Synthetic drugs of abuse contain various psychoactive substances. These substances have recently emerged as novel drugs of abuse in public; thus, they are known as novel psychoactive substances (NPS). As these compounds are artificially synthesized in a laboratory, they are also called designer drugs. Synthetic cannabinoids and synthetic cathinones are the two primary classes of NPS or designer drugs. Synthetic cannabinoids, also known as "K2" or "Spice," are potent agonists of the cannabinoid receptors. Synthetic cathinones, known as "Bath salts," are beta-keto amphetamine derivatives. These compounds can cause severe intoxication, including overdose deaths. NPS are accessible locally and online. NPS are scheduled in the US and other countries, but the underground chemists keep modifying the chemical structure of these compounds to avoid legal regulation; thus, these compounds have been evolving rapidly. These drugs are not detectable by traditional drug screening, and thus, these substances are mainly abused by young individuals and others who wish to avoid drug detection. These compounds are analyzed primarily by mass spectrometry.
Collapse
|
39
|
Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res (Camb) 2020; 9:734-740. [PMID: 33447358 DOI: 10.1093/toxres/tfaa078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND JWH-018 was the first synthetic cannabinoid introduced as a legal high and the first of the new generation of novel psychoactive substances that flooded worldwide drug markets. JWH-018 was marketed as "spice," "herbal incense," or "herbal blend," as a popular and legal (at the time) alternative to cannabis (marijuana). JWH-018 is a potent synthetic cannabinoid with considerable toxicity associated with its use. JWH-018 has qualitatively similar but quantitatively greater pharmacological effects than cannabis, leading to intoxications and even deaths. The mechanisms of action of the drug's toxicity require research, and thus, the aim of the present study was to investigate the toxicological profile of JWH-018 in human SH-SY5Y neuronal cells. METHODS SH-SY5Y neuronal cells were exposed to increasing concentrations from 5 to 150 μM JWH-018 over 24 h. Cytotoxicity, DNA damage, the apoptotic/necrotic rate, and oxidative stress were assessed following SH-SY5Y exposure. RESULTS JWH-018 did not produce a significant decrease in SH-SY5Y cell viability, did not alter apoptotic/necrotic rate, and did not cause genotoxicity in SH-SY5Y cells with 24-h exposure. Glutathione reductase and catalase activities were significantly reduced; however, there was no significant change in glutathione peroxidase activity. Also, JWH-018 treatment significantly decreased glutathione concentrations, significantly increased protein carbonylation, and significantly increased malondialdehyde (MDA) concentrations. For significance, all P < 0.05. DISCUSSION/CONCLUSION JWH-018 produced oxidative stress in SH-SY5Y cells that could be an underlying mechanism of JWH-018 neurotoxicity. Additional in vivo animal and human-based studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yigit Sezer
- Council of Forensic Medicine, Ministry of Justice, Istanbul 34197, Turkey
| | - Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul 34126, Turkey
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Buket Alpertunga
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul 34126, Turkey
| |
Collapse
|
40
|
Brandt SD, Kavanagh PV, Westphal F, Dreiseitel W, Dowling G, Bowden MJ, Williamson JPB. Synthetic cannabinoid receptor agonists: Analytical profiles and development of QMPSB, QMMSB, QMPCB, 2F-QMPSB, QMiPSB, and SGT-233. Drug Test Anal 2020; 13:175-196. [PMID: 32880103 DOI: 10.1002/dta.2913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/07/2022]
Abstract
A diverse assortment of molecules designed to explore the cannabinoid receptor system and considered new psychoactive substances (NPS) have become known as synthetic cannabinoid receptor agonists (SCRAs). One group of SCRAs that has received little attention involves those exhibiting sulfamoyl benzoate, sulfamoyl benzamide, and N-benzoylpiperidine based structures. In this study, quinolin-8-yl 4-methyl-3-(piperidine-1-sulfonyl)benzoate (QMPSB), quinolin-8-yl 4-methyl-3-(morpholine-4-sulfonyl)benzoate (QMMSB), quinolin-8-yl 4-methyl-3-(piperidine-1-carbonyl)benzoate (QMPCB, SGT-11), quinolin-8-yl 3-(4,4-difluoropiperidine-1-sulfonyl)-4-methylbenzoate (2F-QMPSB, QMDFPSB, SGT-13), quinolin-8-yl 4-methyl-3-[(propan-2-yl)sulfamoyl]benzoate (QMiPSB, SGT-46), and 3-(4,4-difluoropiperidine-1-sulfonyl)-4-methyl-N-(2-phenylpropan-2-yl)benzamide (SGT-233) were extensively characterized (including data on impurities). The analytical profiles may be useful to researchers and scientists who deal with the emergence of NPS during forensic and clinical investigations. The detection of QMPSB was first published in 2016 but it is worth noting that Stargate International, a company originally formed to develop harm reduction solutions, were involved in the investigation and development of these six compounds for potential release between 2011 and early 2014. Whilst information on the prevalence of use of these particular compounds at the present time is limited, one of the key outcomes of the research performed by Stargate International reviewed here was to set the stage for the quinolin-8-yl ester head group that ultimately led to hybridization with an N-alkyl-1H-indole core to give SGT-21 and SGT-32, which became later known as PB-22 (QMPSB/JWH-018 hybrid) and BB-22, respectively, thus, opening the door to a range of SCRAs carrying the quinolin-8-yl head group from about 2012 onwards.
Collapse
Affiliation(s)
- Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Pierce V Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, Ireland
| | - Folker Westphal
- Section Narcotics/Toxicology, State Bureau of Criminal Investigation Schleswig-Holstein, Kiel, Germany
| | | | - Geraldine Dowling
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, Ireland.,Department of Life Sciences, School of Science, Sligo Institute of Technology, Ash Lane, Sligo, Ireland
| | | | | |
Collapse
|
41
|
Nguyen JD, Creehan KM, Grant Y, Vandewater SA, Kerr TM, Taffe MA. Explication of CB 1 receptor contributions to the hypothermic effects of Δ 9-tetrahydrocannabinol (THC) when delivered by vapor inhalation or parenteral injection in rats. Drug Alcohol Depend 2020; 214:108166. [PMID: 32717503 PMCID: PMC7423642 DOI: 10.1016/j.drugalcdep.2020.108166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023]
Abstract
The use of Δ9-tetrahydrocannabinol (THC) by inhalation using e-cigarette technology grows increasingly popular for medical and recreational purposes. This has led to development of e-cigarette based techniques to study the delivery of THC by inhalation in laboratory rodents. Inhaled THC reliably produces hypothermic and antinociceptive effects in rats, similar to effects of parenteral injection of THC. This study was conducted to determine the extent to which the hypothermic response depends on interactions with the CB1 receptor, using pharmacological antagonist (SR141716, AM-251) approaches. Groups of rats were implanted with radiotelemetry devices capable of reporting activity and body temperature, which were assessed after THC inhalation or injection. SR141716 (4 mg/kg, i.p.) blocked or attenuated antinociceptive effects of acute THC inhalation in male and female rats. SR141716 was unable to block the initial hypothermia caused by THC inhalation, but temperature was restored to normal more quickly. Alterations in antagonist pre-treatment time, dose and the use of a rat strain with less sensitivity to THC-induced hypothermia did not change this pattern. Pre-treatment with SR141716 (4 mg/kg, i.p.) blocked hypothermia induced by i.v. THC and reversed hypothermia when administered 45 or 90 min after THC (i.p.). SR141716 and AM-251 (4 mg/kg, i.p.) sped recovery from, but did not block, hypothermia caused by vapor THC in female rats made tolerant by prior repeated THC vapor inhalation. The CB2 antagonist AM-630, had no effect. These results suggest that hypothermia consequent to THC inhalation is induced by other mechanisms in addition to CB1 receptor activation.
Collapse
Affiliation(s)
- Jacques D. Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - K. M. Creehan
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | | | - Tony M. Kerr
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Michael A. Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
42
|
Dybowski MP, Holowinski P, Typek R, Dawidowicz AL. Comprehensive analytical characteristics of N-(adamantan-1-yl)-1- (cyclohexylmethyl)-1H-indazole-3-carboxamide (ACHMINACA). Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00547-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Purpose
The aim of this study was to clarify the most essential analytical features of N-(adamantan-1-yl)-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide (one of the newest cannabimimetics called ACHMINACA), to make them useful for analytical identification of this compound.
Methods
The compound was analyzed by gas chromatography–mass spectrometry, high-resolution liquid chromatography–mass spectrometry, crystal X-ray diffraction and spectroscopic methods such as nuclear magnetic resonance, Raman, and infrared spectroscopies.
Results
Detailed and comprehensive analytical data have been acquired for ACHMINACA.
Conclusions
Although brief descriptions of the partial data of ACHMINACA have appeared recently, this article provides the most detailed and comprehensive analytical data of ACHMINACA to our knowledge. Our data will significantly broaden the knowledge about the compound structure extending the possibility of its orthogonal analysis. The gathered data are useful for forensic, toxicological, and clinical purposes.
Collapse
|
43
|
Walsh KB, Andersen HK. Molecular Pharmacology of Synthetic Cannabinoids: Delineating CB1 Receptor-Mediated Cell Signaling. Int J Mol Sci 2020; 21:E6115. [PMID: 32854313 PMCID: PMC7503917 DOI: 10.3390/ijms21176115] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoids (SCs) are a class of new psychoactive substances (NPSs) that exhibit high affinity binding to the cannabinoid CB1 and CB2 receptors and display a pharmacological profile similar to the phytocannabinoid (-)-trans-Δ9-tetrahydrocannabinol (THC). SCs are marketed under brand names such as K2 and Spice and are popular drugs of abuse among male teenagers and young adults. Since their introduction in the early 2000s, SCs have grown in number and evolved in structural diversity to evade forensic detection and drug scheduling. In addition to their desirable euphoric and antinociceptive effects, SCs can cause severe toxicity including seizures, respiratory depression, cardiac arrhythmias, stroke and psychosis. Binding of SCs to the CB1 receptor, expressed in the central and peripheral nervous systems, stimulates pertussis toxin-sensitive G proteins (Gi/Go) resulting in the inhibition of adenylyl cyclase, a decreased opening of N-type Ca2+ channels and the activation of G protein-gated inward rectifier (GIRK) channels. This combination of signaling effects dampens neuronal activity in both CNS excitatory and inhibitory pathways by decreasing action potential formation and neurotransmitter release. Despite this knowledge, the relationship between the chemical structure of the SCs and their CB1 receptor-mediated molecular actions is not well understood. In addition, the potency and efficacy of newer SC structural groups has not been determined. To address these limitations, various cell-based assay technologies are being utilized to develop structure versus activity relationships (SAR) for the SCs and to explore the effects of these compounds on noncannabinoid receptor targets. This review focuses on describing and evaluating these assays and summarizes our current knowledge of SC molecular pharmacology.
Collapse
Affiliation(s)
- Kenneth B. Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC 29208, USA;
| | | |
Collapse
|
44
|
Abstract
Abstract
Purpose
The purpose of this work is to establish if there are any problems in precise quantitation of methyl 2-[1-(5-fluoropentyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (5F-ADB) in human urine by QuEChERS extraction coupled with gas chromatography–tandem mass spectrometry (GC–MS/MS).
Methods
To establish the method for quantifying 5F-ADB in human urine samples, QuEChERS extraction coupled with GC–MS/MS was applied. To elucidate 5F-ADB degradation products, liquid chromatography coupled with linear trap quadrupole-orbitrap hybrid MS (LC–MS) was used.
Results
The applied QuEChERS GC–MS/MS procedure appeared to be satisfactory for 5F-ADB estimation in acidic and alkaline urine samples. Its validation parameters were the following: good linearity (R2 = 0.9988), high detection (limit of detection = 0.33 ng/mL) and quantitation (limit of quantitation = 1.1 ng/mL) sensitivities and satisfactory inter- and intraday precisions (% relative standard deviation below 5.6%). 5F-ADB recovery from acidic urine by QuEChERS procedure was slightly lower than that from urine sample with neutral pH; however, the difference in the recovery was not statistically significant. The recovery of the drug from alkaline urine is extremely low. LC–MS analysis proved the presence of 5F-ADB hydrolysis products in alkaline urine and in alkaline solution of the drug.
Conclusions
The presented studies indicate that the validated QuEChERS technique can be successfully used in routine analyses of 5F-ADB in urine. Yet, due to hydrolytical instability of 5F-ADB, the medical diagnosis of the health condition of the patient suspected of 5F-ADB abuse on the basis of the drug concentration in his/her urine may be incorrect, especially when the urine is alkaline.
Collapse
|
45
|
Montgomery S, Sirju K, Bear J, Ganti L, Shivdat J. Recurrent priapism in the setting of cannabis use. J Cannabis Res 2020; 2:7. [PMID: 33526129 PMCID: PMC7819303 DOI: 10.1186/s42238-020-0015-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/19/2020] [Indexed: 01/29/2023] Open
Abstract
Priapism (persistent and painful erection of the penis) is a notable urological emergency, with over 90% of those remaining erect for 24 h losing sexual function. Drug-induced priapism is common in the adult population, with intracavernosal injectables for erectile dysfunction topping the list. A variety of illicit drugs associated with priapism have been described; however, we are not aware of any other case reports showing cannabis alone as the inciting factor. Here, we present a case of a healthy 32-year-old African American man with a history of stuttering (recurrent) priapism secondary to mild cannabis substance use without comorbid substance use, licit or illicit.
Collapse
Affiliation(s)
- Sebastian Montgomery
- Coliseum Medical Centers/ Mercer University, 350 Hospital Drive, 31217, Macon, Georgia, United States
| | - Kristal Sirju
- Coliseum Medical Centers/ Mercer University, 350 Hospital Drive, 31217, Macon, Georgia, United States
| | - Joseph Bear
- Coliseum Medical Centers/ Mercer University, 350 Hospital Drive, 31217, Macon, Georgia, United States.,Southeastern Urology Associates, Macon, Georgia, United States
| | - Latha Ganti
- Coliseum Medical Centers/ Mercer University, 350 Hospital Drive, 31217, Macon, Georgia, United States. .,Envision Physician Services, Nashville, Tennessee, United States.
| | - John Shivdat
- Coliseum Medical Centers/ Mercer University, 350 Hospital Drive, 31217, Macon, Georgia, United States.,Envision Physician Services, Nashville, Tennessee, United States
| |
Collapse
|
46
|
Worob A, Wenthur C. DARK Classics in Chemical Neuroscience: Synthetic Cannabinoids (Spice/K2). ACS Chem Neurosci 2019; 11:3881-3892. [PMID: 31799831 DOI: 10.1021/acschemneuro.9b00586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This Review covers the background, pharmacology, adverse effects, synthesis, pharmacokinetics, metabolism, and history of synthetic cannabinoid compounds. Synthetic cannabinoids are a class of novel psychoactive substances that act as agonists at cannabinoid receptors. This class of compounds is structurally diverse and rapidly changing, with multiple generations of molecules having been developed in the past decade. The structural diversity of synthetic cannabinoids is supported by the breadth of chemical space available for exploitation by clandestine chemists and incentivized by attempts to remain ahead of legal pressures. As a class, synthetic cannabinoid products have a more serious adverse effect profile than that of traditional phytocannabinoids, including notable risks of lethality, as well as a history of dangerous adulteration. Most synthetic cannabinoids are rapidly metabolized to active species with prolonged residence times and peripheral tissue distribution, and analytical confirmation of use of these compounds remains challenging. Overall, the emergence of synthetic cannabinoids serves as a noteworthy example of the pressing public health challenges associated with the increasing development of easily synthesized, structurally flexible, highly potent, psychoactive drugs.
Collapse
Affiliation(s)
- Adam Worob
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Cody Wenthur
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
47
|
Sachdev S, Vemuri K, Banister SD, Longworth M, Kassiou M, Santiago M, Makriyannis A, Connor M. In vitro determination of the efficacy of illicit synthetic cannabinoids at CB 1 receptors. Br J Pharmacol 2019; 176:4653-4665. [PMID: 31412133 DOI: 10.1111/bph.14829] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The morbidity and mortality associated with recreational use of synthetic cannabinoid receptor agonists (SCRAs) may reflect strong activation of CB1 receptors and is a major health concern. The properties of SCRA at CB1 receptors are not well defined. Here we have developed an assay to determine acute CB1 receptor efficacy using receptor depletion with the irreversible CB1 receptor antagonist AM6544, with application of the Black and Leff operational model to calculate efficacy. EXPERIMENTAL APPROACH Receptor depletion in mouse AtT-20 pituitary adenoma cells stably expressing human CB1 receptors was achieved by pretreatment of cells with AM6544 (10 μM, 60 min). The CB1 receptor-mediated hyperpolarisation of AtT-20 cells was measured using fluorescence-based membrane potential dye. From data fit to the operational model, the efficacy (τ) and affinity (KA ) parameters were obtained for each drug. KEY RESULTS AM6544 did not affect the potency or maximal effect of native somatostatin receptor-induced hyperpolarization. The τ value of ∆9 -THC was 80-fold less than the reference CB receptor agonist CP55940 and 260-fold less than the highest efficacy SCRA, 5F-MDMB-PICA. The operational efficacy of SCRAs ranged from 233 (5F-MDMB-PICA) to 28 (AB-PINACA), with CP55940 in the middle of the efficacy rank order. There was no correlation between the τ and KA values. CONCLUSIONS AND IMPLICATIONS All SCRAs tested showed substantially higher efficacy at CB1 receptors than ∆9 -THC, which may contribute to the adverse effects seen with these drugs but not ∆9 -THC.
Collapse
Affiliation(s)
- Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kiran Vemuri
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Chemistry, The University of Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
48
|
Fraguas-Sánchez AI, Fernández-Carballido A, Simancas-Herbada R, Martin-Sabroso C, Torres-Suárez AI. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int J Pharm 2019; 574:118916. [PMID: 31811927 DOI: 10.1016/j.ijpharm.2019.118916] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Cannabidiol (CBD) has emerged as a potential agent for breast cancer management. In this work, the potential use of cannabidiol in solution (CBDsol) and encapsulated in polymeric microparticles when combined with paclitaxel (PTX) and doxorubicin (DOX) in breast cancer treatment has been evaluated for the first time using MCF-7 and MDA-MB-231 cells. CBDsol, previously administered at suboptimal concentrations (cell death < 10%), enhanced the PTX and DOX effect in both breast cancer cells. The co-administration of CBDsol and PTX or DOX showed a synergistic effect. PLGA-502 was selected as the most suitable polymer to develop CBD-loaded microparticles. The developed formulation (CBD-Mps) was effective as monotherapy, showing extended antiproliferative activity for at least 10 days, and when combined with PTX or DOX. In fact, the use of CBD-Mps allows the combination of both, pre and co-administration strategies, with a single administration, also showing a significant increase in PTX and DOX antiproliferative activity. Finally, the anticancer effect of both CBDsol and CBD-Mps as monotherapy or in combination with PTX was also confirmed in ovo, usingMDA-MB-231-derived tumours. This data evidences the promising inclusion of CBD in conventional breast cancer chemotherapy and the use of CBD-Mps for the extended release of this cannabinoid, optimising the effect of the chemotherapeutic agents.
Collapse
Affiliation(s)
- A I Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - A Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain
| | - R Simancas-Herbada
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - C Martin-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain
| | - A I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain.
| |
Collapse
|
49
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
50
|
Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M. Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Front Neurosci 2019; 13:1163. [PMID: 31736697 PMCID: PMC6831561 DOI: 10.3389/fnins.2019.01163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
AKB48 is a designer drug belonging to the indazole synthetic cannabinoids class, illegally sold as herbal blend, incense, or research chemicals for their psychoactive cannabis-like effects. In the present study, we investigated the in vivo pharmacological and behavioral effects of AKB48 in male rats and measured the pharmacodynamic effects of AKB48 and simultaneously determined its plasma pharmacokinetic. AKB48 at low doses preferentially stimulated dopamine release in the nucleus accumbens shell (0.25 mg/kg) and impaired visual sensorimotor responses (0.3 mg/kg) without affecting acoustic and tactile reflexes, which are reduced only to the highest dose tested (3 mg/kg). Increasing doses (0.5 mg/kg) of AKB48 impaired place preference and induced hypolocomotion in rats. At the highest dose (3 mg/kg), AKB48 induced hypothermia, analgesia, and catalepsy; inhibited the startle/pre-pulse inhibition test; and caused cardiorespiratory changes characterized by bradycardia and mild bradipnea and SpO2 reduction. All behavioral and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM251. AKB48 plasma concentrations rose linearly with increasing dose and were correlated with changes in the somatosensory, hypothermic, analgesic, and cataleptic responses in rats. For the first time, this study shows the pharmacological and behavioral effects of AKB48 in rats, correlating them to the plasma levels of the synthetic cannabinoid. Chemical Compound Studied in This Article: AKB48 (PubChem CID: 57404063); AM251 (PubChem CID: 2125).
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Soverchia
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabina Strano-Rossi
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Ferrara, Italy
| |
Collapse
|