1
|
Olopade EO, Morakinyo AE, Alao JO, Oyedepo TA. Effects of n-hexane fraction of Piper guineense seed extract on N ω-nitro-L-arginine methyl ester hydrochloride-induced hypertension in rats. Cell Biochem Funct 2024; 42:e4095. [PMID: 39004810 DOI: 10.1002/cbf.4095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
This study aimed to investigate the effects of the n-hexane fraction of the ethanolic seed extract of PG (NFESEPG) on hypertension induced by Nω-nitro-L-arginine methyl ester (L-NAME) in rats. Specifically, the study examined the impact of NFESEPG on blood pressure, oxidative stress markers, NO concentration, angiotensin-converting enzyme (ACE) and arginase activities, and cardiac biomarkers in hypertensive rats. The study involved collecting, identifying, and processing the PG plant to obtain the ethanolic seed extract. The extract was then partitioned with solvents to isolate the n-hexane fraction. Hypertension was induced in rats by oral administration of L-NAME for 10 days, while concurrent treatment with NFESEPG at two doses (200 and 400 mg/kg/day) was administered orally. Blood pressure was measured using a noninvasive tail-cuff method, and various biochemical parameters were assessed. Treatment with both doses of NFESEPG significantly reduced systolic and diastolic blood pressure in L-NAME-induced hypertensive rats. Additionally, NFESEPG administration increased NO concentration and decreased ACE and arginase activities, malondialdehyde (MDA) levels, and cardiac biomarkers in hypertensive rats. The findings indicate that NFESEPG effectively lowered blood pressure in hypertensive rats induced by L-NAME, potentially through mechanisms involving the modulation of oxidative stress, NO bioavailability, and cardiac biomarkers. These results suggest the therapeutic potential of NFESEPG in managing hypertension and related cardiovascular complications.
Collapse
Affiliation(s)
| | | | - Jude Oluwapelumi Alao
- School of Public Health and Interdisciplinary Studies, Auckland University of Technology, Auckland, New Zealand
| | | |
Collapse
|
2
|
Amirkhosravi A, Mirtajaddini Goki M, Heidari MR, Karami-Mohajeri S, Iranpour M, Torshabi M, Mehrabani M, Mandegary A, Mehrabani M. Combination of losartan with pirfenidone: a protective anti-fibrotic against pulmonary fibrosis induced by bleomycin in rats. Sci Rep 2024; 14:8729. [PMID: 38622264 PMCID: PMC11018867 DOI: 10.1038/s41598-024-59395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-β (TGF-β1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahmoud Reza Heidari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayyeh Karami-Mohajeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Sripratak K, Chamsodsai P, Siriwaseree J, Choowongkomon K, Tabtimmai L. Losartan as a Reproposing Therapeutic Agent in Acute Respiratory Distress Syndrome: Modulating Inflammatory Responses and Cytokine Production. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:120-132. [PMID: 39184821 PMCID: PMC11344567 DOI: 10.22088/ijmcm.bums.13.2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 08/27/2024]
Abstract
Seeking a new drug has become a significant milestone in drug discovery. However, it might not be immediately used in urgent situations or during a pandemic. Acute Respiratory Distress Syndrome (ARDS) contributes to mild-to-severe symptoms in patients due to cytokine storms, leading to morbidity and mortality. Hypertension is recognized as an independent risk factor for the severity of ARDS regarding to both ACE Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs) treatment, although the precise mechanism remains unclear. In this study, murine macrophage cell lines (RAW264.7) and alveolar epithelial type II-like cell lines (A549) were utilized to investigate the effect of Losartan (LOS). LOS attenuated nitric oxide production in a dose-dependent manner and collectively reduced intracellular reactive oxygen species (ROS) compared to Diclofenac under LPS-stimulation conditions. For ADRS-mimicking conditions, LPS-induced inflammatory A549 cells were performed to monitor the effect of LOS. The results showed that LOS exhibited a protective effect by increasing cell viability and decreasing intracellular ROS levels. Notably, a high dose of LOS increased intracellular ROS levels. Moreover, LOS treatment downregulated NF-kappaB activation and AT1R at the protein level. Correspondingly, proinflammatory mediator cytokines (TNF-alpha and IL-8) were downregulated, but not IL-6, during LOS treatment. Hence, LOS may provide substantial benefits to ARDS patients by modulating proinflammatory cytokine production through AT1R downregulation and NF-kappaB inactivation. The mechanistic insight into LOS's anti-inflammatory effect holds promise for reducing mortality rates among ARDS patients.
Collapse
Affiliation(s)
- Khate Sripratak
- Central Chest Institute of Thailand (CCIT), Department of Medical Services, Minister of Public Health, Nonthaburi, Thailand.
- Khate Sripratak and Phumin Chamsodsai equally contributed to the work.
| | - Phumin Chamsodsai
- Interdisciplinary Program in genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand.
- Khate Sripratak and Phumin Chamsodsai equally contributed to the work.
| | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand.
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand.
- Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand.
| |
Collapse
|
4
|
Zambom FFF, Albino AH, Tessaro HM, Foresto-Neto O, Malheiros DMAC, Saraiva Camara NO, Zatz R. Chronic environmental hypoxia attenuates innate immunity activation and renal injury in two CKD models. Am J Physiol Renal Physiol 2023; 325:F283-F298. [PMID: 37439199 DOI: 10.1152/ajprenal.00200.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Tissue hypoxia has been pointed out as a major pathogenic factor in chronic kidney disease (CKD). However, epidemiological and experimental evidence inconsistent with this notion has been described. We have previously reported that chronic exposure to low ambient Po2 promoted no renal injury in normal rats and in rats with 5/6 renal ablation (Nx) unexpectedly attenuated renal injury. In the present study, we investigated whether chronic exposure to low ambient Po2 would also be renoprotective in two additional models of CKD: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. In both models, normobaric ambient hypoxia attenuated the development of renal injury and inflammation. In addition, renal hypoxia limited the activation of NF-κB and NOD-like receptor family pyrin domain containing 3 inflammasome cascades as well as oxidative stress and intrarenal infiltration by angiotensin II-positive cells. Renal activation of hypoxia-inducible factor (HIF)-2α, along with other adaptive mechanisms to hypoxia, may have contributed to these renoprotective effects. The present findings may contribute to unravel the pathogenesis of CKD and to the development of innovative strategies to arrest its progression.NEW & NOTEWORTHY Hypoxia is regarded as a major pathogenic factor in chronic kidney disease (CKD). In disagreement with this view, we show here that sustained exposure to low ambient Po2 lessened kidney injury and inflammation in two CKD models: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. Together with our previous findings in the remnant kidney, these observations indicate that local changes elicited by hypoxia may exert renoprotection in CKD, raising the prospect of novel therapeutic strategies for this disease.
Collapse
Affiliation(s)
| | - Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Helena Mendonça Tessaro
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Razzaq MA, Younis W, Malik MNH, Alsahli TG, Jahan S, Ehsan R, Gasparotto Junior A, Bashir A. Pulegone Prevents Hypertension through Activation of Muscarinic Receptors and Cyclooxygenase Pathway in L-NAME-Induced Hypertensive Rats. Cardiovasc Ther 2023; 2023:8166840. [PMID: 37214130 PMCID: PMC10195173 DOI: 10.1155/2023/8166840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 05/24/2023] Open
Abstract
The current study was designed to determine pulegone's antihypertensive and vasoprotective activity in L-NAME-induced hypertensive rats. Firstly, the hypotensive dose-response relationship of pulegone was evaluated in normotensive anesthetized rats using the invasive method. Secondly, the mechanism involved in hypotensive activity was determined in the presence of pharmacological drugs such as atropine/muscarinic receptor blocker (1 mg/kg), L-NAME/NOS inhibitor (20 mg/kg), and indomethacin/COX inhibitor (5 mg/kg) in anesthetized rats. Furthermore, studies were carried out to assess the preventive effect of pulegone in L-NAME-induced hypertensive rats. Hypertension was induced in rats by administering L-NAME (40 mg/kg) orally for 28 days. Rats were divided into six groups which were treated orally with tween 80 (placebo), captopril (10 mg/kg), and different doses of pulegone (20 mg/kg, 40 mg/kg, and 80 mg/kg). Blood pressure, urine volume, sodium, and body weight were monitored weekly. After 28 days, the effect of pulegone on lipid profile, hepatic markers, antioxidant enzymes, and nitric oxide was estimated from the serum of treated rats. Moreover, plasma mRNA expression of eNOS, ACE, ICAM1, and EDN1 was measured using real-time PCR. Results show that pulegone dose-dependently decreased blood pressure and heart rate in normotensive rats, with the highest effect at 30 mg/kg/i.v. The hypotensive effect of pulegone was reduced in the presence of atropine and indomethacin, whereas L-NAME did not change its hypotensive effect. Concurrent treatment with pulegone for four weeks in L-NAME-treated rats caused a reduction in both systolic blood pressure and heart rate, reversed the reduced levels of serum nitric oxide (NO), and ameliorated lipid profile and oxidative stress markers. Treatment with pulegone also improved the vascular response to acetylcholine. Plasma mRNA expression of eNOS was reduced, whereas ACE, ICAM1, and EDN1 levels were high in the L-NAME group, which was facilitated by pulegone treatment. To conclude, pulegone prevented L-NAME-induced hypertension by demonstrating a hypotensive effect through muscarinic receptors and cyclooxygenase pathway, indicating its use as a potential candidate in managing hypertension.
Collapse
Affiliation(s)
- Muryam Abdul Razzaq
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Waqas Younis
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ 07103, USA
| | | | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Roma Ehsan
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Asifa Bashir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Parboiled Germinated Brown Rice Improves Cardiac Structure and Gene Expression in Hypertensive Rats. Foods 2022; 12:foods12010009. [PMID: 36613225 PMCID: PMC9818593 DOI: 10.3390/foods12010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hypertension leads to oxidative stress, inflammation, and fibrosis. The suppression of these indicators may be one treatment approach. Parboiled germinated brown rice (PGBR), obtained by steaming germinated Jasmine rice, reduces oxidative stress and inflammation in vivo. PGBR contains more bioactive compounds than brown rice (BR) and white rice (WR). Anti-hypertensive benefits of PGBR have been predicted, but research is lacking. The anti-hypertensive effects of PGBR were investigated in the downstream gene network of hypertension pathogenesis, including the renin-angiotensin system, fibrosis, oxidative stress production, and antioxidant enzymes in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. To strengthen our findings, the cardiac structure was also studied. PGBR-exposed rats showed significant reductions in systolic blood pressure (SBP) compared to the hypertensive group. WR did not reduce SBP because of the loss of bioactive compounds during intensive milling. PGBR also reduced the expression of the angiotensin type 1 receptor (AT1R), transforming growth factor-β (TGF-β), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4), which contribute to the renin-angiotensin system, fibrosis, and oxidative stress production, respectively. Losartan (Los, an anti-hypertensive drug)-treated rats also exhibited similar gene expression, implying that PGBR may reduce hypertension using the same downstream target as Los. Our data also indicated that PGBR reduced cardiac lesions, such as the cardiomyopathy induced by L-NAME. This is the first report on the anti-hypertensive effects of PGBR in vivo by the suppression of the renin response, fibrosis, and improved cardiac structure.
Collapse
|
7
|
Gao J, Akbari A, Wang T. Green tea could improve elderly hypertension by modulating arterial stiffness, the activity of the renin/angiotensin/aldosterone axis, and the sodium-potassium pumps in old male rats. J Food Biochem 2022; 46:e14398. [PMID: 36181277 DOI: 10.1111/jfbc.14398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Hypertension is a major health problem common in the elderly people. Green tea is a popular beverage recommended in folk medicine for lowering blood pressure. However, the molecular mechanisms involved in the antihypertensive effects of green tea are not fully understood. Therefore, the aim of this study was to investigate the antihypertensive effects of green tea on high-salt diet-induced hypertension in old male rats. Forty old male rats were divided into five groups: control, hypertensive, and hypertensive-green tea (2, 4, and 6 g/kg). Heart rate (HR) and systolic blood pressure (SBP) were measured. Cardiac and renal histology were also performed. Lipid profile, NO, angiotensin II (Ang II), and aldosterone were determined, and the expression of eNOS, ATIR and ATIIR, aldosterone receptor, and Atp1a1 were measured. Green tea could significantly decrease HR and SBP, lipid profiles, renin-angiotensin II-aldosterone system activity, and Ang II signaling in kidney tissue of hypertensive rats (p < .01). It also increased Atp1a1, Nrf2, and eNOS expression along with antioxidant enzymes activity and NO concentration (p < .05) and decreased NF-ĸB and iNOS expression and IL-1β levels in the heart, kidneys, and aorta of rats with hypertension. It can be concluded that green tea can improve salt-induced blood pressure by modulating the function of the renin-angiotensin-aldosterone system, enhancing the synthesis of nitric oxide in the endothelium, increasing antioxidant activity and suppressing inflammation in the heart and kidney, improving the expression of the sodium-potassium pump, and reduction in serum lipids and glucose in aged male rats. PRACTICAL APPLICATIONS: The results of this study showed that green tea could improve hypertension in elderly rats by modulating (1) the expression of the sodium-potassium pump in the heart, kidney, and aortic tissues, (2) the activity of the renin-angiotensin II-aldosterone system in kidney, (3) enhancing antioxidant and anti-inflammatory activities in the heart, aorta, and kidneys, (4) enhancing the synthesis of nitric oxide in the endothelium, and (5) lowering lipid profile. The results of these studies show that the consumption of green tea and its products can be a good candidate for the prevention of cardiovascular diseases such as hypertension in the elderly. In addition, attention to its bioactive compounds can be considered by researchers as an independent therapeutic strategy or adjunctive therapy for the treatment of hypertension.
Collapse
Affiliation(s)
- Jing Gao
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Tao Wang
- Department of Cardiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Chao YM, Rauchová H, Chan JYH. Disparate Roles of Oxidative Stress in Rostral Ventrolateral Medulla in Age-Dependent Susceptibility to Hypertension Induced by Systemic l-NAME Treatment in Rats. Biomedicines 2022; 10:biomedicines10092232. [PMID: 36140333 PMCID: PMC9496567 DOI: 10.3390/biomedicines10092232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
This study aims to investigate whether tissue oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, plays an active role in age-dependent susceptibility to hypertension in response to nitric oxide (NO) deficiency induced by systemic l-NAME treatment, and to decipher the underlying molecular mechanisms. Systolic blood pressure (SBP) and heart rate (HR) in conscious rats were recorded, along with measurements of plasma and RVLM level of NO and reactive oxygen species (ROS), and expression of mRNA and protein involved in ROS production and clearance, in both young and adult rats subjected to intraperitoneal (i.p.) infusion of l-NAME. Pharmacological treatments were administered by oral gavage or intracisternal infusion. Gene silencing of target mRNA was made by bilateral microinjection into RVLM of lentivirus that encodes a short hairpin RNA (shRNA) to knock down gene expression of NADPH oxidase activator 1 (Noxa1). We found that i.p. infusion of l-NAME resulted in increases in SBP, sympathetic neurogenic vasomotor activity, and plasma norepinephrine levels in an age-dependent manner. Systemic l-NAME also evoked oxidative stress in RVLM of adult, but not young rats, accompanied by augmented enzyme activity of NADPH oxidase and reduced mitochondrial electron transport enzyme activities. Treatment with L-arginine via oral gavage or infusion into the cistern magna (i.c.), but not i.c. tempol or mitoQ10, significantly offset the l-NAME-induced hypertension in young rats. On the other hand, all treatments appreciably reduced l-NAME-induced hypertension in adult rats. The mRNA microarray analysis revealed that four genes involved in ROS production and clearance were differentially expressed in RVLM in an age-related manner. Of them, Noxa1, and GPx2 were upregulated and Duox2 and Ucp3 were downregulated. Systemic l-NAME treatment caused greater upregulation of Noxa1, but not Ucp3, mRNA expression in RVLM of adult rats. Gene silencing of Noxa1 in RVLM effectively alleviated oxidative stress and protected adult rats against l-NAME-induced hypertension. These data together suggest that hypertension induced by systemic l-NAME treatment in young rats is mediated primarily by NO deficiency that occurs both in vascular smooth muscle cells and RVLM. On the other hand, enhanced augmentation of oxidative stress in RVLM may contribute to the heightened susceptibility of adult rats to hypertension induced by systemic l-NAME treatment.
Collapse
Affiliation(s)
- Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-77338415
| |
Collapse
|
9
|
Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307:120866. [PMID: 35944663 PMCID: PMC9356576 DOI: 10.1016/j.lfs.2022.120866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Severe COVID-19 is associated with the dynamic changes in coagulation parameters. Coagulopathy is considered as a major extra-pulmonary risk factor for severity and mortality of COVID-19; patients with elevated levels of coagulation biomarkers have poorer in-hospital outcomes. Oxidative stress, alterations in the activity of cytochrome P450 enzymes, development of the cytokine storm and inflammation, endothelial dysfunction, angiotensin-converting enzyme 2 (ACE2) enzyme malfunction and renin–angiotensin system (RAS) imbalance are among other mechanisms suggested to be involved in the coagulopathy induced by severe acute respiratory syndrome coronavirus (SARS-CoV-2). The activity and function of coagulation factors are reported to have a circadian component. Melatonin, a multipotential neurohormone secreted by the pineal gland exclusively at night, regulates the cytokine system and the coagulation cascade in infections such as those caused by coronaviruses. Herein, we review the mechanisms and beneficial effects of melatonin against coagulopathy induced by SARS-CoV-2 infection.
Collapse
|
10
|
Dawood AF, Maarouf A, Alzamil NM, Momenah MA, Shati AA, Bayoumy NM, Kamar SS, Haidara MA, ShamsEldeen AM, Yassin HZ, Hewett PW, Al-Ani B. Metformin Is Associated with the Inhibition of Renal Artery AT1R/ET-1/iNOS Axis in a Rat Model of Diabetic Nephropathy with Suppression of Inflammation and Oxidative Stress and Kidney Injury. Biomedicines 2022; 10:biomedicines10071644. [PMID: 35884947 PMCID: PMC9313150 DOI: 10.3390/biomedicines10071644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes is the most common cause of end-stage renal disease, also called kidney failure. The link between the renal artery receptor angiotensin II type I (AT1R) and endothelin-1 (ET-1), involved in vasoconstriction, oxidative stress, inflammation and kidney fibrosis (collagen) in diabetes-induced nephropathy with and without metformin incorporation has not been previously studied. Diabetes (type 2) was induced in rats and another group started metformin (200 mg/kg) treatment 2 weeks prior to the induction of diabetes and continued on metformin until being culled at week 12. Diabetes significantly (p < 0.0001) modulated renal artery tissue levels of AT1R, ET-1, inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS), and the advanced glycation end products that were protected by metformin. In addition, diabetes-induced inflammation, oxidative stress, hypertension, ketonuria, mesangial matrix expansion, and kidney collagen were significantly reduced by metformin. A significant correlation between the AT1R/ET-1/iNOS axis, inflammation, fibrosis and glycemia was observed. Thus, diabetes is associated with the augmentation of the renal artery AT1R/ET-1/iNOS axis as well as renal injury and hypertension while being protected by metformin.
Collapse
Affiliation(s)
- Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK;
| | - Norah M. Alzamil
- Department of Clinical Science, Family Medicine, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maha A. Momenah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Samaa S. Kamar
- Department of Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Asmaa M. ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Hanaa Z. Yassin
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Peter W. Hewett
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence:
| |
Collapse
|
11
|
Olabiyi AA, Ajayi K. Diet, herbs and erectile function: A good friendship! Andrologia 2022; 54:e14424. [PMID: 35319120 DOI: 10.1111/and.14424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and plant materials have been used for thousands of years to treat and control erectile dysfunction in men. This practice has spanned many cultures and traditions around the world, with the therapeutic effects of many plants attributed to their phytochemical constituents. This review explains how polyphenols (including phenolic acids, flavonoids, terpenoids, carotenoids, alkaloids and polyunsaturated fatty acids) in plants and plant food products interact with key enzymes (phosphodiesterase-5 [PDE-5], angiotensin-converting enzyme [ACE], acetylcholinesterase [AChE], adenosine deaminase [ADA] and arginase) associated with erectile dysfunction. By modulating or altering the activity of these physiologically important enzymes, various bioactive compounds from plants or plant products can synergistically or additively provide tremendous protection against male erectile problems.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Department of Medical Biochemistry, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| | - Kayode Ajayi
- Department of Nutrition and Dietetics, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
12
|
COVID-19, Oxidative Stress, and Neuroinflammation in the Depression Route. J Mol Neurosci 2022; 72:1166-1181. [PMID: 35322375 PMCID: PMC8942178 DOI: 10.1007/s12031-022-02004-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is associated with oxidative stress, peripheral hyper inflammation, and neuroinflammation, especially in individuals with a more severe form of the disease. Some studies provide evidence on the onset or exacerbation of major depressive disorder (MDD), among other psychiatric disorders due to COVID-19. Oxidative stress and neuroinflammation are associated conditions, especially in the more severe form of MDD and in refractoriness to available therapeutic strategies. Inflammatory cytokines in the COVID-19 hyper inflammation process can activate the hypothalamic–pituitary–adrenal (HPA) axis and the indoleamine-2,3-dioxygenase (IDO) enzyme. IDO activation can reduce tryptophan and increase toxic metabolites of the kynurenine pathway, which increases glial activation, neuroinflammation, toxicity, and neuronal death. This review surveyed a number of studies and analyzed the mechanisms of oxidative stress, inflammation, and neuroinflammation involved in COVID-19 and depression. Finally, the importance of more protocols that can help elucidate the interaction between these mechanisms underlying COVID-19 and MDD and the possible therapeutic strategies involved in the interaction of these mechanisms are highlighted.
Collapse
|
13
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
14
|
Jing H, Xie R, Bai Y, Duan Y, Sun C, Wang Y, Cao R, Ling Z, Qu X. The Mechanism Actions of Astragaloside IV Prevents the Progression of Hypertensive Heart Disease Based on Network Pharmacology and Experimental Pharmacology. Front Pharmacol 2021; 12:755653. [PMID: 34803698 PMCID: PMC8602690 DOI: 10.3389/fphar.2021.755653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Astragaloside IV (AS-IV) has been used to treat cardiovascular disease. However, whether AS-IV exerts a protective effect against hypertensive heart disease has not been investigated. This study aimed to investigate the antihypertensive and cardioprotective effects of AS-IV on L-NAME-induced hypertensive rats via network pharmacology and experimental pharmacology. The network pharmacology and bioinformatics analyses were performed to obtain the potential targets of AS-IV and hypertensive heart disease. The rat hypertension model was established by administrated 50 mg/kg/day of L-NAME for 5 weeks. Meanwhile, hypertension rats were intragastrically administrated with vehicle or AS-IV or fosinopril for 5 weeks. Cardiovascular parameters (systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rates, and body weight), cardiac function parameters (LVEDd, LVEDs, and fractional shortening), cardiac marker enzymes (creatine kinase, CK-MB, and lactate dehydrogenase), cardiac hypertrophy markers (atrial natriuretic peptide and brain natriuretic peptide), endothelial function biomarkers (nitric oxide and eNOS), inflammation biomarkers (IL-6 and TNF-α) and oxidative stress biomarkers (SOD, MDA, and GSH) were measured and cardiac tissue histology performed. Network pharmacological analysis screened the top 20 key genes in the treatment of hypertensive heart disease treated with AS-IV. Besides, AS-IV exerted a beneficial effect on cardiovascular and cardiac function parameters. Moreover, AS-IV alleviated cardiac hypertrophy via down-regulating the expression of ANP and BNP and improved histopathology changes of cardiac tissue. AS-IV improved endothelial function via the up-regulation of eNOS expression, alleviated oxidative stress via increasing antioxidant enzymes activities, and inhibited cardiac inflammation via down-regulating IL-6 and TNF-α expression. Our findings suggested that AS-IV is a potential therapeutic drug to improve L-NAME-induced hypertensive heart disease partly mediated via modulation of eNOS and oxidative stress.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongsheng Xie
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Bai
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuchen Duan
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chongyang Sun
- Department of CT, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Wang
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongyi Cao
- Blood Transfusion Department, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zaisheng Ling
- Department of CT, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:antiox10091440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
|
16
|
González-Blázquez R, Alcalá M, Fernández-Alfonso MS, Steckelings UM, Lorenzo MP, Viana M, Boisvert WA, Unger T, Gil-Ortega M, Somoza B. C21 preserves endothelial function in the thoracic aorta from DIO mice: role for AT2, Mas and B2 receptors. Clin Sci (Lond) 2021; 135:1145-1163. [PMID: 33899912 DOI: 10.1042/cs20210049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diet, High-Fat
- Drug Evaluation, Preclinical
- Endothelium, Vascular/drug effects
- Human Umbilical Vein Endothelial Cells
- Humans
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Male
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/complications
- Obesity/metabolism
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor Cross-Talk
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Bradykinin B2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
- Vascular Diseases/prevention & control
- Mice
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid 28040, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - M Paz Lorenzo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, U.S.A
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| |
Collapse
|
17
|
Kountouri A, Korakas E, Ikonomidis I, Raptis A, Tentolouris N, Dimitriadis G, Lambadiari V. Type 1 Diabetes Mellitus in the SARS-CoV-2 Pandemic: Oxidative Stress as a Major Pathophysiological Mechanism Linked to Adverse Clinical Outcomes. Antioxidants (Basel) 2021; 10:752. [PMID: 34065123 PMCID: PMC8151267 DOI: 10.3390/antiox10050752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
Recent reports have demonstrated the association between type 1 diabetes mellitus (T1DM) and increased morbidity and mortality rates during coronavirus disease (COVID-19) infection, setting a priority of these patients for vaccination. Impaired innate and adaptive immunity observed in T1DM seem to play a major role. Severe, life-threatening COVID-19 disease is characterized by the excessive release of pro-inflammatory cytokines, known as a "cytokine storm". Patients with T1DM present elevated levels of cytokines including interleukin-1a (IL), IL-1β, IL-2, IL-6 and tumor necrosis factor alpha (TNF-α), suggesting the pre-existence of chronic inflammation, which, in turn, has been considered the major risk factor of adverse COVID-19 outcomes in many cohorts. Even more importantly, oxidative stress is a key player in COVID-19 pathogenesis and determines disease severity. It is well-known that extreme glucose excursions, the prominent feature of T1DM, are a potent mediator of oxidative stress through several pathways including the activation of protein kinase C (PKC) and the increased production of advanced glycation end products (AGEs). Additionally, chronic endothelial dysfunction and the hypercoagulant state observed in T1DM, in combination with the direct damage of endothelial cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may result in endothelial and microcirculation impairment, which contribute to the pathogenesis of acute respiratory syndrome and multi-organ failure. The binding of SARS-CoV-2 to angiotensin converting enzyme 2 (ACE2) receptors in pancreatic b-cells permits the direct destruction of b-cells, which contributes to the development of new-onset diabetes and the induction of diabetic ketoacidosis (DKA) in patients with T1DM. Large clinical studies are required to clarify the exact pathways through which T1DM results in worse COVID-19 outcomes.
Collapse
Affiliation(s)
- Aikaterini Kountouri
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| | - Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Raptis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| | - Nikolaos Tentolouris
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - George Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| |
Collapse
|
18
|
Maneesai P, Iampanichakul M, Chaihongsa N, Poasakate A, Potue P, Rattanakanokchai S, Bunbupha S, Chiangsaen P, Pakdeechote P. Butterfly Pea Flower ( Clitoria ternatea Linn.) Extract Ameliorates Cardiovascular Dysfunction and Oxidative Stress in Nitric Oxide-Deficient Hypertensive Rats. Antioxidants (Basel) 2021; 10:523. [PMID: 33801631 PMCID: PMC8065438 DOI: 10.3390/antiox10040523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we examine whether Clitoria ternatea Linn. (CT) can prevent Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced cardiac and vascular dysfunction in rats. Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) and orally administered with CT extract (300 mg/kg/day) or lisinopril (2.5 mg/kg/day) for 5 weeks. The main phytochemical components of the CT extract were found to be flavonoids. The CT extract alleviated the high blood pressure in rats receiving L-NAME. Decreased vasorelaxation responses to acetylcholine and enhanced contractile responses to sympathetic nerve stimulation in aortic rings and mesenteric vascular beds of L-NAME treated rats were ameliorated by CT extract supplementation. Left ventricular hypertrophy and dysfunction were developed in L-NAME rats, which were partially prevented by CT extract treatment. The CT extract alleviated upregulated endothelial nitric oxide synthase expression, decreased plasma nitrate/nitrite levels, and increased oxidative stress in L-NAME rats. It suppressed high levels of serum angiotensin-converting enzyme activity, plasma angiotensin II, and cardiac angiotensin II type 1 receptor, NADPH oxidases 2, nuclear factor-kappa B, and tumor necrosis factor-alpha expression. The CT extract, therefore, partially prevented L-NAME-induced hypertension and cardiovascular alterations in rats. These effects might be related to a reduction in the oxidative stress and renin-angiotensin system activation due to L-NAME in rats.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Chiang SS, Chen LS, Chu CY. Active food ingredients production from cold pressed processing residues of Camellia oleifera and Camellia sinensis seeds for regulation of blood pressure and vascular function. CHEMOSPHERE 2021; 267:129267. [PMID: 33338714 DOI: 10.1016/j.chemosphere.2020.129267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Hypertension is one of the most common illnesses worldwide. Accurate control of blood pressure can help reduce the incidence of complications. Nω-nitro-l-arginine methyl ester (l-NAME) is a nitric oxide synthase inhibitor that increases oxidative stress and inflammatory responses, activating the expression of transforming growth factor-beta (TGF-β), which thickens the vessel wall and ultimately contributes to hypertension. Studies have shown that seeds of Camellia oleifera Abel and Camellia sinensis (L). O. Kuntze (Oolong tea) possesses antibacterial, antioxidant, and anti-inflammatory functions. Therefore, this study aimed was to investigate the functional components in the seed pomace ethanol extracts of C. oleifera Abel (CPE) and Oolong tea (OPE) and to evaluate the ameliorative effects of CPE and OPE on oxidative stress, inflammation, and vascular remodeling in l-NAME induced hypertensive C57BL/6J mice. After 8 weeks of treatment, all CPE and OPE dose groups significantly reduced systolic and diastolic blood pressure, by over 30 mmHg and 15 mmHg, respectively. Additionally, CPE and OPE decreased transforming growth factor-beta (TGF-β) expression in the thoracic aortic and thoracic aortic intima-media thickness. Moreover, CPE and OPE decreased the malondialdehyde concentration in the liver by over 33%, as well as levels of tumor necrosis factor-α, interleukin 6, and interleukin-1β in the kidney and heart. Collectively, CPE and OPE can reduce oxidative stress and vascular remodeling, lowering blood pressure, and reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Shen-Shih Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 40227, Taichung, Taiwan.
| | - Le-Shu Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 40227, Taichung, Taiwan.
| | - Chen-Yeon Chu
- Institute of Green Products, Feng Chia University, 40724, Taichung, Taiwan; Master's Program of Green Energy Science and Technology, Feng Chia University, 40724, Taichung, Taiwan.
| |
Collapse
|
20
|
Poasakate A, Maneesai P, Rattanakanokchai S, Bunbupha S, Tong-Un T, Pakdeechote P. Genistein Prevents Nitric Oxide Deficiency-Induced Cardiac Dysfunction and Remodeling in Rats. Antioxidants (Basel) 2021; 10:antiox10020237. [PMID: 33557258 PMCID: PMC7914683 DOI: 10.3390/antiox10020237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Genistein is an isoflavone found in soybeans. This study evaluates the protective effects of genistein on Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension, cardiac remodeling, and dysfunction in rats. Male Wistar rats were treated with L-NAME 40 mg/kg/day together for 5 weeks, with or without genistein at a dose of 40 or 80 mg/kg/day or lisinopril 5 mg/kg/day (n = 8 per group). Genistein prevented L-NAME-induced hypertension in rats. Increases in the left ventricular weight, metalloproteinase-2, metalloproteinase-9, and collagen type I intensity were observed in L-NAME rats, and these changes were attenuated in the genistein-treated group. Genistein reduced circulating angiotensin-converting enzyme activity and angiotensin II concentrations in L-NAME rats. L-NAME increased plasma and cardiac malondialdehyde and vascular superoxide generations, as well as reductions of serum and cardiac catalase activities in rats. Plasma nitrate/nitrite were protected in the genistein-treated group. Genistein prevented the L-NAME-induced overexpression of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 2 (gp91phox), and transforming growth factor beta I (TGF-β1) in hypertensive rats. In conclusion, genistein exhibited a cardioprotective effect in hypertensive rats in this study. The molecular mechanisms might be mediated by suppression of oxidative stress through the Ang II/AT1R/NADPH oxidase/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Terdthai Tong-Un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-86-852-6060; Fax: +66-4334-8394
| |
Collapse
|
21
|
Angiotensin II type 1a receptor loss ameliorates chronic tubulointerstitial damage after renal ischemia reperfusion. Sci Rep 2021; 11:982. [PMID: 33441837 PMCID: PMC7806698 DOI: 10.1038/s41598-020-80209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
We investigate whether suppressing the activation of the angiotensin II type 1a receptor (AT1a) can ameliorate severe chronic tubulointerstitial damage (TID) after renal ischemia reperfusion (IR) using AT1a knockout homozygous (AT1a−/−) male mice. To induce severe chronic TID after renal IR, unilateral renal ischemia was performed via clamping of the right renal pedicle in both AT1a−/− and wild-type (AT1a+/+) mice for 45 min. While marked renal atrophy and severe TID at 70 days postischemia was induced in the AT1a+/+ mice, such a development was not provoked in the AT1a−/− mice. Although the AT1a+/+ mice were administered hydralazine to maintain the same systolic blood pressure (SBP) levels as the AT1a−/− mice with lower SBP levels, hydralazine did not reproduce the renoprotective effects observed in the AT1a−/− mice. Acute tubular injury at 3 days postischemia was similar between the AT1a−/− mice and the AT1a+/+ mice. From our investigations using IR kidneys at 3, 14, and 28 days postischemia, the multiple molecular mechanisms may be related to prevention of severe chronic TID postischemia in the AT1a−/− mice. In conclusion, inactivation of the AT1 receptor may be useful in preventing the transition of acute kidney injury to chronic kidney disease.
Collapse
|
22
|
Pechanova O, Vrankova S, Cebova M. Chronic L-Name-Treatment Produces Hypertension by Different Mechanisms in Peripheral Tissues and Brain: Role of Central eNOS. PATHOPHYSIOLOGY 2020; 27:46-54. [PMID: 35366256 PMCID: PMC8830472 DOI: 10.3390/pathophysiology27010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The goal of our study was to analyze the time course of the effect of NG-nitro-L-arginine methyl ester (L-NAME) on nitric oxide synthase (NOS) isoforms and nuclear factor–κB (NF-κB) protein expression, total NOS activity, and blood pressure (BP) in rats. Adult 12-week-old male Wistar rats were subjected to treatment with L-NAME (40 mg/kg/day) for four and seven weeks. BP was increased after 4- and 7-week L-NAME treatments. NOS activity decreased after 4-week-L-NAME treatment; however, the 7-week treatment increased NOS activity in the aorta, heart, and kidney, while it markedly decreased NOS activity in the brainstem, cerebellum, and brain cortex. The 4-week-L-NAME treatment increased eNOS expression in the aorta, heart, and kidney and this increase was amplified after 7 weeks of treatment. In the brain regions, eNOS expression remained unchanged after 4-week L-NAME treatment and prolonged treatment led to a significant decrease of eNOS expression in these tissues. NF-κB expression increased in both peripheral and brain tissues after 4 weeks of treatment and prolongation of treatment decreased the expression in the aorta, heart, and kidney. In conclusion, decreased expression of eNOS in the brain regions after 7-week L-NAME treatment may be responsible for a remarkable decrease of NOS activity in these regions. Since the BP increase persisted after 7 weeks of L-NAME treatment, we hypothesize that central regulation of BP may contribute significantly to L-NAME-induced hypertension.
Collapse
|
23
|
Liu B, Zhang B, Roos CM, Zeng W, Zhang H, Guo R. Upregulation of Orai1 and increased calcium entry contribute to angiotensin II-induced human coronary smooth muscle cell proliferation: Running Title: Angiotensin II-induced human coronary smooth muscle cells proliferation. Peptides 2020; 133:170386. [PMID: 32827590 DOI: 10.1016/j.peptides.2020.170386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Angiotensin II (Ang II) is an oligopeptide of the renin-angiotensin system, and Ang II-induced vascular smooth muscle cell (VSMC) proliferation is an important pathophysiological process involved in atherosclerosis; however, the underlying mechanism remains unclear. Orai1 and Stim1 are the main components of store-operated Ca2+ entry (SOCE), which has an important effect on VSMC proliferation. In the present study, we showed that Ang II-induced human coronary smooth muscle cell (HCSMC) proliferation was associated with increased calcium entry. The expression of Orai1, but not that of Stim1, was significantly upregulated in Ang II-treated HCSMCs. However, knockdown of Orai1 or Stim1 decreased HCSMC proliferation and SOCE activity in Ang II-treated HCSMCs. Orai1 was significantly downregulated in HCSMCs transfected with short interfering RNA (siRNA) against NOX2 or NF-κB. Transfection with siRNA against NOX2 or p65 also decreased Ang II-induced HCSMCs SOCE activation and proliferation. These findings suggested that Ang II upregulated Orai1 via the NF-κB and NOX2 pathways, leading to increased SOCE and HCSMC proliferation. The molecular factors mediating Ang II-induced SOCE upregulation are potential therapeutic targets for the prevention of Ang II-sensitive or Ang II-dependent HCSMC proliferation.
Collapse
Affiliation(s)
- Bei Liu
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China
| | - Bin Zhang
- Division of Cardiovascular Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Carolyn M Roos
- Division of Cardiovascular Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Wenjun Zeng
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China
| | - Haiping Zhang
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China
| | - Ruiwei Guo
- Department of Cardiology, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, Yunnan, 650032, China.
| |
Collapse
|
24
|
Hallaj S, Ghorbani A, Mousavi-Aghdas SA, Mirza-Aghazadeh-Attari M, Sevbitov A, Hashemi V, Hallaj T, Jadidi-Niaragh F. Angiotensin-converting enzyme as a new immunologic target for the new SARS-CoV-2. Immunol Cell Biol 2020; 99:192-205. [PMID: 32864784 DOI: 10.1111/imcb.12396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected the daily lives of millions of people worldwide and had caused significant mortality; hence, the assessment of therapeutic options is of great interest. The leading cause of death among COVID-19 patients is acute respiratory distress syndrome caused by hyperinflammation secondary to cytokine release syndrome (CRS). Cytokines, such as tumor necrosis factor-α, interleukin-6, interferon-γ and interleukin-10, are the main mediators of CRS. Based on recent evidence, the angiotensin-converting enzyme (ACE) II is known to be the target of the COVID-19 spike protein, which enables the virus to penetrate human cells. ACE II also possesses an anti-inflammatory role in many pathologies such as cardiovascular disease, hypertension, diabetes mellitus and other conditions, which are the main risk factors of poor prognosis in COVID-19 infection. Changes in tissue ACE II levels are associated with many diseases and hyperinflammatory states, and it is assumed that elevated levels of ACE II could aggravate the course of COVID-19 infection. Therefore, the use of renin-angiotensin-aldosterone system inhibitors (RASis) in COVID-19 patients could be hypothetically considered, though sufficient evidence is not presented by the scientific community. In this work, based on the most recent pieces of evidence, the roles of RAS and RASi in immunologic interactions are addressed. Furthermore, the molecular and immunologic aspects of RASi and their potential significance in COVID-19 are discussed.
Collapse
Affiliation(s)
- Shahin Hallaj
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Seyed Ali Mousavi-Aghdas
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Andrey Sevbitov
- Head of Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vida Hashemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Prince PD, Fraga CG, Galleano M. (-)-Epicatechin administration protects kidneys against modifications induced by short-term l-NAME treatment in rats. Food Funct 2020; 11:318-327. [PMID: 31808777 DOI: 10.1039/c9fo02234a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of this work was to evaluate the protective effects of (-)-epicatechin on the kidneys of NO-deprived rats. Male Sprague Dawley rats were divided into three groups: control (C), receiving water and standard diet; l-NAME (L), receiving a solution of N(ω)-nitro-l-arginine methyl ester (l-NAME) (360 mg l-1 in water) as a beverage and standard diet; and l-NAME-(-)-epicatechin (LE), receiving l-NAME solution as a beverage and standard diet supplemented with (-)-epicatechin (4 g kg-1 diet). The L-group showed altered kidney function parameters, evaluated based on plasma urea and creatinine. In parallel, kidney oxidative stress markers, i.e. superoxide anion production, malondialdehyde content, and 3-nitrotyrosine protein adducts, were significantly increased in the L group. In addition, l-NAME treatment induced modifications in kidney NO bioavailability determinants: increased expression of NOX subunits (p47phox, gp91phox, NOXO1, and NOX4) and lowered NOS activity. (-)-Epicatechin administration restored kidney function parameters, oxidative stress markers, expression of p47phox, gp91phox, and NOX4 and NOS activity to control values. These results indicate that (-)-epicatechin can mitigate NO-mediated impairment of kidney function, in part due to its capacity to modulate NOXs, NOSs, and consequently oxidative stress, and NO bioavailability.
Collapse
Affiliation(s)
- Paula D Prince
- Cátedra de Fisicoquímica, Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
26
|
Potue P, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Cratoxylum Formosum extract exhibits antihypertensive effects via suppressing the renin-angiotensin cascade in hypertensive rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Pakdeechote P, Meephat S, Sakonsinsiri C, Phetcharaburanin J, Bunbupha S, Maneesai P. Syzygium gratum Extract Alleviates Vascular Alterations in Hypertensive Rats. ACTA ACUST UNITED AC 2020; 56:medicina56100509. [PMID: 33007813 PMCID: PMC7600592 DOI: 10.3390/medicina56100509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Background and Objectives: Syzygium gratum (SG) is a local vegetable and widely consumed in Thailand. Previously, a strong antioxidative effect of SG extract has been reported. The effects of SG extract on hypertension have remained unknown. The effect of SG aqueous extract on blood pressure and vascular changes were examined in L-NAME-induced hypertensive rats (LHR), and its potential active constituents were also explored. Materials and Methods: Male Sprague Dawley rats were allocated to control, L-NAME (40 mg/kg/day), L-NAME + SG (100, 300, 500 mg/kg/day), or captopril (5 mg/kg/day) groups. The components of SG extract were analyzed. Results: The analysis of aqueous SG extract was carried out using HPLC-Mass spectroscopy, and phenolic compounds could be identified as predominant components which might be responsible for its antihypertensive effects observed in the LHR model (p < 0.05). Additionally, SG extract also improved vascular responses to acetylcholine and decreased vascular remodeling in LHR (p < 0.05). Enhancements of eNOS expression and plasma nitric oxide metabolite levels, and attenuation of angiotensin converting enzyme (ACE) activity and plasma angiotensin II levels were observed in the LHR group treated with SG. Moreover, SG exhibited strong antioxidant activities by reducing vascular superoxide generation and systemic malondialdehyde in LHRs. Captopril suppressed high blood pressure and alleviated vascular changes and ACE activity in LHRs, similar to those of the SG extract (p < 0.05). Conclusion: Our results suggest that the SG extract exhibited antihypertensive effects, which is relevant to alleviation of vascular dysfunction and vascular remodeling of LHRs. These effects might be mediated by phenolic compounds to inhibit ACE activity and scavenge reactive oxygen species in LHR.
Collapse
Affiliation(s)
- Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Correspondence: ; Tel.: +66-43348394
| |
Collapse
|
28
|
Beltrán-García J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Mulet S, Sanchis-Gomar F, Carbonell N, García-Giménez JL. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants (Basel) 2020; 9:E936. [PMID: 33003552 PMCID: PMC7599810 DOI: 10.3390/antiox9100936] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak emerged, countless efforts are being made worldwide to understand the molecular mechanisms underlying the coronavirus disease 2019 (COVID-19) in an attempt to identify the specific clinical characteristics of critically ill COVID-19 patients involved in its pathogenesis and provide therapeutic alternatives to minimize COVID-19 severity. Recently, COVID-19 has been closely related to sepsis, which suggests that most deceases in intensive care units (ICU) may be a direct consequence of SARS-CoV-2 infection-induced sepsis. Understanding oxidative stress and the molecular inflammation mechanisms contributing to COVID-19 progression to severe phenotypes such as sepsis is a current clinical need in the effort to improve therapies in SARS-CoV-2 infected patients. This article aims to review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress and inflammation, which can contribute to sepsis progression. We also provide an overview of potential antioxidant therapies and active clinical trials that might prevent disease progression or reduce its severity.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain; (J.B.-G.); (F.V.P.)
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010 Valencia, Spain; (R.O.-V.); (F.S.-G.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010 Valencia, Spain; (R.O.-V.); (F.S.-G.)
| | - Federico V. Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain; (J.B.-G.); (F.V.P.)
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010 Valencia, Spain; (R.O.-V.); (F.S.-G.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Valencia, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - María Rodríguez
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Mulet
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010 Valencia, Spain; (R.O.-V.); (F.S.-G.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain; (J.B.-G.); (F.V.P.)
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010 Valencia, Spain; (R.O.-V.); (F.S.-G.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.F.); (M.R.); (S.M.)
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Valencia, Spain
| |
Collapse
|
29
|
Zhang J, Wang M, Ding W, Wan J. The interaction of RAAS inhibitors with COVID-19: Current progress, perspective and future. Life Sci 2020; 257:118142. [PMID: 32712300 PMCID: PMC7377983 DOI: 10.1016/j.lfs.2020.118142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently defined as the worst pandemic disease. SARS-CoV-2 infects human cells via the binding of its S protein to the receptor angiotensin-converting enzyme (ACE2). The use of ACEIs/ARBs (RAAS inhibitors) regulates the renin-angiotensin-aldosterone system (RAAS) and may increase ACE2 expression. Considering the large use of ACEIs/ARBs in hypertensive patients, some professional groups are concerned about whether the use of RAAS inhibitors affects the risk of SARS-CoV-2 infection or the risk of severe illness and mortality in COVID-19 patients. In this review, we summarize preclinical and clinical studies to investigate whether the use of ACEIs/ARBs increases ACE2 expression in animals or patients. We also analyzed whether the use of these drugs affects the risk of SARS-CoV-2 infection, severe illness or mortality based on recent studies. Finally, the review suggests that current evidence does not support the concerns.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
30
|
Chiangsaen P, Maneesai P, Kukongviriyapan U, Tong-un T, Ishida W, Prachaney P, Pakdeechote P. Tangeretin ameliorates erectile and testicular dysfunction in a rat model of hypertension. Reprod Toxicol 2020; 96:1-10. [DOI: 10.1016/j.reprotox.2020.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
|
31
|
Masuku NP, Unuofin JO, Lebelo SL. Promising role of medicinal plants in the regulation and management of male erectile dysfunction. Biomed Pharmacother 2020; 130:110555. [PMID: 32795922 DOI: 10.1016/j.biopha.2020.110555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Male erectile dysfunction (ED) refers to incompetency to reaching and retaining adequate penile tumescence for sexual intercourse. Over 152 million men globally suffer from ED and by 2025, the number of affected individuals is anticipated to be around 322 million. Pharmacological and nonpharmacological therapies such as phosphodiesterase (PDE) inhibitors, alprostadil, penile prosthesis surgery, and hormonal replacement are available for management and recuperation of ED. Nevertheless, such therapies are reported to have adverse effects as well as life-threatening. Accordingly, diversity of medicinal plant species and bioactive active compounds are preferred as therapeutic options because they are natural, abundant, available, low-cost and cause fewer or no side effects. This current review will emphasise the aetiology, risk factors, mechanisms underlying the pathophysiology of ED, treatments of ED as well as their side effects. It also provides medicinal plants that are proven effective in vivo and in vitro for the mitigation and treatment of male ED. This knowledge could be used in the future in drug discovery for the development of more natural drugs with no side effects.
Collapse
Affiliation(s)
- Nelisiwe Prenate Masuku
- Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet and Pioneer Ave, Private Bag X6, Florida, 1710, South Africa
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet and Pioneer Ave, Private Bag X6, Florida, 1710, South Africa.
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet and Pioneer Ave, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
32
|
Zhao Y, Zeng H, Liu B, He X, Chen JX. Endothelial prolyl hydroxylase 2 is necessary for angiotensin II-mediated renal fibrosis and injury. Am J Physiol Renal Physiol 2020; 319:F345-F357. [PMID: 32715763 DOI: 10.1152/ajprenal.00032.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (ANG II) is the key contributor to renal fibrosis and injury. The present study investigated the role of endothelium prolyl hydroxylase 2 (PHD2) in ANG II-mediated renal fibrosis and injury. In vitro, endothelial cells (ECs) were isolated from PHD2f/f control [wild-type (WT)] mice or PHD2 EC knockout (PHD2ECKO) mice. In vivo, WT and PHD2ECKO mice were infused with ANG II (1,000 ng·kg-1·min-1) for 28 days. Renal fibrosis, reactive oxygen species (ROS), and iron contents were measured. Knockout of PHD2 resulted in a significant increase in the expression of hypoxia-inducible factor (HIF)-1α and HIF-2α in ECs. Intriguingly, knockout of PHD2 significantly reduced expression of the ANG II type 1 receptor (AT1R) in ECs. WT mice infused with ANG II caused increases in renal fibrosis, ROS formation, and iron contents. ANG II treatment led to a downregulation of PHD1 expression and upregulation of HIF-1α and HIF-2α in the renal cortex and medulla. Knockout of PHD2 in EC blunted ANG II-induced downregulation of PHD1 expression. Furthermore, knockout of PHD2 in ECs attenuated ANG II-induced expression of HIF-1α, HIF-2α, transforming growth factor-β1, p47phox, gp91phox, heme oxygenase-1, and ferroportin. This was accompanied by a significant suppression of renal fibrosis, ROS formation, and iron accumulation. In summary, knockout of endothelial PHD2 suppressed the expression of AT1R in ECs and blunted ANG II-induced downregulation of PHD1 and upregulation of HIF-α in the kidney. Our study, for the first time, demonstrates a necessary role of endothelial PHD2 in ANG II-mediated renal fibrosis and injury.
Collapse
Affiliation(s)
- Yongzhen Zhao
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bo Liu
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xiaochen He
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
33
|
Ahad A, Raish M, Bin Jardan YA, Alam MA, Al-Mohizea AM, Al-Jenoobi FI. Effect of Hibiscus sabdariffa and Zingiber officinale on the antihypertensive activity and pharmacokinetic of losartan in hypertensive rats. Xenobiotica 2020; 50:847-857. [PMID: 32048541 DOI: 10.1080/00498254.2020.1729446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 01/20/2023]
Abstract
The present study aimed to determine the effect of Hibiscus sabdariffa and Zingiber officinale on antihypertensive activity and pharmacokinetic of losartan in hypertensive rats.Hypertension was induced in rats by oral administration of L-NAME (40 mg/kg per day). Pharmacodynamics and pharmacokinetics of losartan were evaluated without and with herbal treatment in hypertensive rats.Treatment of hypertensive rats with investigated herbs substantially reduced systolic blood pressure (SBP), and diastolic blood pressure (DBP) of rats. Treatment of rats (n = 5) with L-NAME plus H. sabdariffa plus losartan and L-NAME plus Z. officinale plus losartan reduced SBP by 16.20% and 14.88% and DBP by 14.82% and 17.52% respectively after 12 h, as compared to L-NAME alone treated rats. In a pharmacokinetic study, the Cmax and AUC0-t of losartan in L-NAME plus H. sabdariffa plus losartan and L-NAME plus Z. officinale plus losartan treated rats was increased by 0.7, 1.99 and 1.51, 3.00 fold respectively in comparison to the Cmax and AUC0-t obtained for L-NAME plus losartan treated group. In conclusion, both the investigated herbs significantly increased the antihypertensive effect and plasma concentration of losartan in L-NAME induced hypertensive rats. The current study predicted that the herb-drug interaction between H. sabdariffa-losartan and Z. officinale-losartan could occur; hence these results in rats may warrant further studies in humans, either in humans or in in vitro human liver microsomes.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Pagliaro P, Penna C. ACE/ACE2 Ratio: A Key Also in 2019 Coronavirus Disease (Covid-19)? Front Med (Lausanne) 2020; 7:335. [PMID: 32626721 PMCID: PMC7314898 DOI: 10.3389/fmed.2020.00335] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
35
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
36
|
Ahad A, Raish M, Bin Jardan YA, Alam MA, Al-Mohizea AM, Al-Jenoobi FI. Potential pharmacodynamic and pharmacokinetic interactions of Nigella Sativa and Trigonella Foenum-graecum with losartan in L-NAME induced hypertensive rats. Saudi J Biol Sci 2020; 27:2544-2550. [PMID: 32994710 PMCID: PMC7499079 DOI: 10.1016/j.sjbs.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
The objective of this investigation was to study whether Nigella Sativa and Trigonella Foenum-graecum, could modulate the losartan pharmacodynamic (PD) and pharmacokinetic (PK) in experimental L-NAME induced hypertensive rats. For in vivo study, the systolic blood pressure (SBP) of rats was measured by the “tail-cuff system” after the treatment of rats with herb alone and herb + losartan in hypertensive rats. The SBP of rats treated with L-NAME + losartan also recorded. For the PK study, blood samples were obtained for up to 12 h to determine the concentrations of the drug, and various PK parameters were calculated. The data displayed that the SBP was significantly (p < 0.05) decreased in the rats when administered with L-NAME + N. Sativa or L-NAME + T. Foenum-graecum in contrast to the rats administered with L-NAME alone. A more prominent decline (p < 0.05) in SBP was detected in rats administered with L-NAME + N. Sativa + losartan and L-NAME + T. Foenum-graecum + losartan. In a PK study, higher losartan Cmax and AUC0-t were noted in rats treated with N. Sativa + losartan and T. Foenum-graecum + losartan, although the difference was not significant in contrast to the control group. This study proposed that the interaction between N. Sativa & losartan and T. Foenum-graecum & losartan could take place on concurrent administration; consequently, the dose of losartan may need to be accustomed when they are utilized simultaneously.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Lu T, Bian Y, Zhu Y, Guo M, Yang Y, Guo J, Gu C, Duan JA. HUANGKUISIWUFANG inhibits pyruvate dehydrogenase to improve glomerular injury in anti-Thy1 nephritis model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112682. [PMID: 32087318 DOI: 10.1016/j.jep.2020.112682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/05/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkuisiwufang (HKSWF) is composed of Abelmoschus manihot (L.) Medik., Astragalus mongholicus, Polygonum cuspidatum, Curcuma longa L. Abelmoschus Manihot (L.) Medik. has been widely used for the treatment of chronic renal disease, oral ulcers and burn in China for centuries (Committee of the Pharmacopoeia of PR China, 2010). Abelmoschus manihot (L.) Medik., Polygonum cuspidatum, Curcuma longa L. have been mainly applied in folk medicine for their therapeutic effects on diabetes, cancer, heart disease and other diseases. AIM OF THE STUDY We aimed to investigate the renoprotective function of HKSWF in anti-Thy nephritis model and clarify the relevant mechanisms. MATERIALS AND METHODS One week after the model of glomerulonephritis created by injecting anti-thymocyte serum (ATS), rats were treated with Huangkui capsule, enalapril or HKSWF by gavage for a period of 8 weeks. The therapeutic effect was evaluated by detection of proteinuria, plasma creatine, blood urea nitrogen (BUN), podocyte injury, glomerular accumulation of extracellular matrix (ECM) and the markers of oxidative stress and renal fibrosis. RNA Sequencing (RNA-seq), KEGG and western blotting analysis were performed to indicate the signaling pathway involved in the therapeutic effect of HKSWF. RESULTS Nephritic rats presented the increase of BUN, serum creatinine (Scr), proteinuria, podocyte damage, glomerular fibrosis, Ang II type 1 receptor (AT1R), and the reduction of creatinine clearance (Ccr). In contrast, application of HKSWF to nephritic rats decreased the levels of BUN and proteinuria, promoted mesangial cell recovery and improved oxidative stress level and podocyte injury. KEGG analysis revealed that pyruvate metabolism was the most significantly upregulated pathway in rats treated with HKSWF compared to disease control group. Increased pyruvate dehydrogenase and PAI-1 caused by nephritis was inhibited by HKSWF interposition. Furthermore, dichloroacetate sodium (DCA), an agonist of pyruvate dehydrogenase, could stimulate PAI-1 expression, which was suppressed by HKSWF. CONCLUSION Chinese herbal preparation HKSWF has remarkable curative effects on glomerulonephritis animals. HKSWF attenuates pyruvate dehydrogenase to improve glomerular injury.
Collapse
Affiliation(s)
- Ting Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicisne, 210023, Nanjing, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicisne, 210023, Nanjing, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicisne, 210023, Nanjing, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicisne, 210023, Nanjing, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicisne, 210023, Nanjing, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
38
|
Wunpathe C, Maneesai P, Rattanakanokchai S, Bunbupha S, Kukongviriyapan U, Tong-un T, Pakdeechote P. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats. Food Funct 2020; 11:1322-1333. [DOI: 10.1039/c9fo02365h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tangeretin alleviates ventricular alterations in l-NAME hypertensive rats.
Collapse
Affiliation(s)
- Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Putcharawipa Maneesai
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Siwayu Rattanakanokchai
- Veterinary Teaching Hospital
- Faculty of Veterinary Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Terdthai Tong-un
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| |
Collapse
|
39
|
Oyagbemi A, Omobowale T, Adejumobi O, Ugbor F, Asenuga E, Ajibade T, Afolabi J, Ogunpolu B, Falayi O, Gbadamos I, Ola-Davies O, Saba A, Ashafa A, Yakubu M, Adedapo A, Oguntibeju O. Antihypertensive effect of methanol leaf extract of Azadirachta indica is mediated through suppression of renal caspase 3 expressions on Nω-Nitro-l-arginine methyl ester induced hypertension. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Gai Z, Wang Z, Zhang L, Ma J, Zhu Q. Paeonol protects against hypertension in spontaneously hypertensive rats by restoring vascular endothelium. Biosci Biotechnol Biochem 2019; 83:1992-1999. [PMID: 31362597 DOI: 10.1080/09168451.2019.1648203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ABSTRACT
The present study focused on the effect of paeonol, one of the main components of Guizhi Fuling Pill, on blood pressure, cerebral blood flow, and vascular endothelium injury in spontaneously hypertensive rats to provide theoretical basis for the treatment of hypertension. After treatment with paeonol, the mean arterial pressure (MAP) of LSHRT and HSHRT rats decreased gradually with the prolongation of treatment time. The systolic blood flow velocity (Vs), diastolic blood flow velocity (Vd) and mean blood flow velocity (Vm) were significantly increased after paeonol treatment (p < 0.05). Paeonol effectively improved the blood pressure and increased the cerebral blood flow velocity in spontaneously hypertensive rats. This may be related to the fact that paeonol reduced the blood viscosity and the oxidative stress and improved the antioxidant capacity. Moreover, paeonol protected vascular endothelial cells and reduced vascular endothelial injury in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Zhonghui Gai
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Zhenxing Wang
- Department of Encephalopathy, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Lei Zhang
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jun Ma
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qiao Zhu
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| |
Collapse
|
41
|
Zambom FFF, Oliveira KC, Foresto-Neto O, Faustino VD, Ávila VF, Albino AH, Arias SCA, Volpini RA, Malheiros DMAC, Saraiva Camara NO, Zatz R, Fujihara CK. Pathogenic role of innate immunity in a model of chronic NO inhibition associated with salt overload. Am J Physiol Renal Physiol 2019; 317:F1058-F1067. [PMID: 31411073 DOI: 10.1152/ajprenal.00251.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide inhibition with Nω-nitro-l-arginine methyl ester (l-NAME), along with salt overload, leads to hypertension, albuminuria, glomerulosclerosis, glomerular ischemia, and interstitial fibrosis, characterizing a chronic kidney disease (CKD) model. Previous findings of this laboratory and elsewhere have suggested that activation of at least two pathways of innate immunity, Toll-like receptor 4 (TLR4)/NF-κB and nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome/IL-1β, occurs in several experimental models of CKD and that progression of renal injury can be slowed with inhibition of these pathways. In the present study, we investigated whether activation of innate immunity, through either the TLR4/NF-κB or NLRP3/IL-1β pathway, is involved in the pathogenesis of renal injury in chronic nitric oxide inhibition with the salt-overload model. Adult male Munich-Wistar rats that received l-NAME in drinking water with salt overload (HS + N group) were treated with allopurinol (ALLO) as an NLRP3 inhibitor (HS + N + ALLO group) or pyrrolidine dithiocarbamate (PDTC) as an NF-κB inhibitor (HS + N + PDTC group). After 4 wk, HS + N rats developed hypertension, albuminuria, and renal injury along with renal inflammation, oxidative stress, and activation of both the NLRP3/IL-1β and TLR4/NF-κB pathways. ALLO lowered renal uric acid and inhibited the NLRP3 pathway. These effects were associated with amelioration of hypertension, albuminuria, and interstitial inflammation/fibrosis but not glomerular injury. PDTC inhibited the renal NF-κB system and lowered the number of interstitial cells staining positively for NLRP3. PDTC also reduced renal xanthine oxidase activity and uric acid. Overall, PDTC promoted a more efficient anti-inflammatory and nephroprotective effect than ALLO. The NLRP3/IL-1β and TLR4/NF-κB pathways act in parallel to promote renal injury/inflammation and must be simultaneously inhibited for best nephroprotection.
Collapse
Affiliation(s)
| | - Karin Carneiro Oliveira
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Viviane Dias Faustino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rildo Aparecido Volpini
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Lira DGD, Oliveira DCD, Brayner FA, Aires ADL, Albuquerque MCPA, Vieira LD, Castro CMMBD, Paixão AD. Superimposing a high-fat diet on Schistosoma mansoni infection affects renin-angiotensin system components in the mouse kidney. Rev Soc Bras Med Trop 2019; 52:e20180371. [PMID: 30843967 DOI: 10.1590/0037-8682-0371-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The levels of the full-length form of the (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), may be reduced in the membranes of kidneys in renal diseases. This study aimed to investigate the RAS components in the kidneys of mice submitted to a combination of a high-fat diet and Schistosoma mansoni infection. METHODS Female BALB/c mice were maintained on a control or high-fat diet from 3 weeks of age. After 10 weeks on the designated diets, half the mice in each group were infected with S. mansoni cercariae. The blood and kidneys were harvested 8 weeks after infection. RESULTS The high-fat diet increased the number of eggs in the feces and the number of adult worms in the mesenteric bed. Schistosoma mansoni infection reduced the plasma levels of glucose, triglycerides, and HDL cholesterol in the control and high-fat diet groups. In mice on the control diet, S. mansoni infection resulted in increased expression of IL-6 in the kidneys; however, in mice on the high-fat diet, the levels of IL-6 were reduced and those of superoxide anions were increased. The RAS components evaluated were ACE2, renin, PRR, AT1R, and AT2R, and the levels of PRR were found to be reduced in the kidneys of infected mice on the high-fat diet. CONCLUSIONS The finding regarding PRR is not yet clear. However, combining a high-fat diet and S. mansoni infection resulted in increased oxidative stress in the kidney that can aggravate hypertension as well as its associated complications.
Collapse
Affiliation(s)
- Danielle Guedes Dantas Lira
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Centro de Pesquisas Aggeu Magalhães, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - André de Lima Aires
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Mônica Camelo Pessoa A Albuquerque
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Leucio Duarte Vieira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Célia Maria Machado Barbosa de Castro
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Ana Durce Paixão
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
43
|
Jiang L, Zhou X, Yang H, Guan R, Xin Y, Wang J, Shen L, Zhu D, Ma S, Wang J. Upregulation of AT 1 Receptor Mediates a Pressor Effect Through ROS-SAPK/JNK Signaling in Glutamatergic Neurons of Rostral Ventrolateral Medulla in Rats With Stress-Induced Hypertension. Front Physiol 2019; 9:1860. [PMID: 30670978 PMCID: PMC6331519 DOI: 10.3389/fphys.2018.01860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
The present study examined whether angiotensin II (Ang II) mediates the pressor effect through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS)-mitogen-activated protein kinase (MAPK) signaling in the glutamatergic neurons of the rostral ventrolateral medulla (RVLM) in stress-induced hypertensive rats (SIHR). The SIHR model was established using electric foot-shocks combined with noises for 15 days. We observed that Ang II type 1 receptor (AT1R) and the glutamatergic neurons co-localized in the RVLM of SIHR. Furthermore, glutamate levels in the intermediolateral column of the spinal cord were higher in SIHR than in controls. Microinjection of Ang II into the RVLM of SIHR activated stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), extracellular signal-regulated protein kinase (ERK) 1/2, and p38MAPK. Compared with controls, the activation of SAPK/JNK, ERK1/2, p38MAPK, and ROS in the RVLM were higher in SIHR, an effect that was blocked by an NADPH oxidase inhibitor (apocynin) and an AT1R antagonist (candesartan). RVLM microinjection of apocynin or a SAPK/JNK inhibitor (SP600125), but not an ERK1/2 inhibitor (U0126) or a p38MAPK inhibitor (SB203580), decreased AT1R mRNA and mean arterial blood pressure (MABP) in SIHR. The increase of AT1R protein expression and MABP was inhibited by intracerebroventricular infusion (ICV), for 14 days, of SP600125, but not U0126 or SB203580 in SIHR. We conclude that Ang II modulates the pressor effect through AT1R-dependent ROS-SAPK/JNK signaling in glutamatergic neurons in the RVLM of SIHR.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shulan Ma
- Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Dong B, Yuan S, Hu J, Yan Y. Effects of Ginkgo leaf tablets on the pharmacokinetics of losartan and its metabolite EXP3174 in rats and its mechanism. PHARMACEUTICAL BIOLOGY 2018; 56:333-336. [PMID: 29953302 PMCID: PMC6130633 DOI: 10.1080/13880209.2018.1481107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Ginkgo leaf tablets (GLTs) and losartan are often simultaneously used for the treatment of hypertension in Chinese clinics. However, the herb-drug interaction between GLT and losartan is still unknown. OBJECTIVE This study investigates the effects of GLT on the pharmacokinetics of losartan and its metabolite EXP3174 in rats and its potential mechanism. MATERIALS AND METHODS The pharmacokinetic profiles of losartan and EXP3174 of orally administered losartan (10 mg/kg) with or without GLT pretreatment (80 mg/kg/day for 10 days) in Sprague-Dawley rats were determined. In vitro, the effects of GLT on the metabolic stability of losartan were investigated with rat liver microsomes. RESULTS The Cmax (1.22 ± 0.25 vs 1.85 ± 0.37 μg/mL) and the AUC(0-t) (6.99 ± 1.05 vs 11.94 ± 1.79 mg·h/L) of losartan increased significantly (p < 0.05) with GLT pretreatment, while the Cmax (1.05 ± 0.19 vs 0.72 ± 0.12 μg/mL) of EXP3174 decreased significantly (p < 0.05) compared to the control. The t1/2 of losartan was prolonged significantly from 3.94 ± 0.62 to 4.75 ± 0.52 h (p < 0.05). The metabolic stability of losartan was increased from 37.4 min to 59.6 min with GLT pretreatment. DISCUSSION AND CONCLUSIONS The results indicate that GLT might increase the plasma concentration of losartan and decrease the concentration of EXP3174 through inhibiting the metabolism of losartan.
Collapse
Affiliation(s)
- Baiping Dong
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
| | - Suowei Yuan
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
| | - Jinsheng Hu
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
| | - Yanzhen Yan
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
- CONTACT Yanzhen Yan Department of Neurology, Caoxian People’s Hospital, No. 1, Fuminda Road, Heze274400, Shandong Province, China
| |
Collapse
|
45
|
JYYS Granule Mitigates Renal Injury in Clinic and in Spontaneously Hypertensive Rats by Inhibiting NF- κB Signaling-Mediated Microinflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8472963. [PMID: 30598687 PMCID: PMC6287156 DOI: 10.1155/2018/8472963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Introduction Hypertensive renal damage is a chronic and life-threatening kidney disease all over the world. The traditional Chinese medicine Jiang Ya Yi Shen (JYYS) granule has been a perfect drug for patients with hypertensive renal injury in clinic for 20 years in China. However, the molecular mechanism of JYYS granule remains unknown in treatment of this disease. Methods The clinic data were from this study's patients. The clinical symptoms of patients were indicated by (N-Acetyl-β-D-Glucosaminidase) NAG, (albumin) Alb, and (β2-microglobin) β2-MG content in urinary of patients, and renal artery's hemodynamic parameters including (pulse index) PI, mean velocity of the arterial blood (Vm), minimum velocity of the diastolic stage (Vdmin) and peak velocity of the systolic wave (Vsmax). To further observe the effect of JYYS granule on renal damage, the rats were included in six groups: normal rats (WKY), spontaneously hypertensive rats (SHR), positive drug-treated rats (Benazepril), low dose JYYS (L), middle dose JYYS (M), and high dose JYYS (H). Then, we observed the effect of JYYS on renal function, renal tubules, inflammatory cell infiltration, and small artery thickening, and we explored the potential mechanism of JYYS in treatment of renal injury. Results JYYS significantly improved the clinic symptoms of patients with hypertensive nephropathy by downregulating NAG, Alb, and β2-MG content in urinary of patients and by decreasing renal artery's hemodynamic parameters including PI, Vm, Vdmin, and Vsmax. In SHR, JYYS significantly improved renal function including creatinine clearance rate, urinary albumin/creatinine, β2-MG/creatinine and arteria caudalis pressure in SHR. Secondly, light and electron microscopic examinations told that after administration of JYYS and Benazepril, the mesangial region exhibited no hyperplasia and renal capsule did not expanded, and there no abnormalities were observed in renal tubules, inflammatory cell infiltration and small artery thickening in SHR. Thirdly, JYYS exhibited its protective role by inhibiting nuclear factor kappa beta signaling-mediated micro-inflammation cytokines including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein 1 (MCP-1) in SHR. Conclusion JYYS is a promising prescription of Chinese medicine for patients with hypertension and hypertensive renal damage.
Collapse
|
46
|
Gan Z, Huang D, Jiang J, Li Y, Li H, Ke Y. Captopril alleviates hypertension-induced renal damage, inflammation, and NF-κB activation. ACTA ACUST UNITED AC 2018; 51:e7338. [PMID: 30183974 PMCID: PMC6125835 DOI: 10.1590/1414-431x20187338] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Hypertensive renal damage generally occurs during the middle and late stages of hypertension, which is typically characterized by proteinuria and renal inflammation. Captopril, an angiotensin-converting enzyme (ACE) inhibitor, has been widely used for therapy of arterial hypertension and cardiovascular diseases. However, the protective effects of captopril on hypertension-induced organ damage remain elusive. The present study was designed to explore the renoprotective action of captopril in spontaneously hypertensive rats (SHR). The 6-week-old male SHR and age-matched Wistar-Kyoto rats were randomized into long-term captopril-treated (34 mg/kg) and vehicle-treated groups. The results showed that in SHR there was obvious renal injury characterized by the increased levels of urine albumin, total protein, serum creatinine, blood urea nitrogen, renal inflammation manifested by the increased mRNA and protein expression of inflammatory factors including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase, and enhanced nuclear factor-κB (NF-κB) activation. Captopril treatment could lower blood pressure, improve renal injury, and suppress renal inflammation and NF-κB activation in SHR rats. In conclusion, captopril ameliorates renal injury and inflammation in SHR possibly via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Zhongyuan Gan
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Huang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaye Jiang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Li
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanqing Li
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Ke
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Role of NADPH oxidase pathway in renal protection induced by procyanidin B2: In L-NAME induced rat hypertension model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
48
|
Zhao Q, Wei J, Zhang H. Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. Xenobiotica 2018; 49:563-568. [PMID: 29768080 DOI: 10.1080/00498254.2018.1478168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. This study investigates the influence of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. 2. The pharmacokinetic profiles of losartan and EXP3174 of orally administered losartan (10 mg/kg) with or without pretreatment with quercetin (20 mg/kg/day for 7 days) were investigated. Additionally, Caco-2 cell transwell model and rat liver microsome incubation experiments were also conducted to investigate its potential mechanism. 3. The results showed that when the rats were pretreated with quercetin, the Cmax (2.16 ± 0.40 vs. 1.33 ± 0.21 mg/L) and the AUC(0-t) (13.89 ± 1.22 vs. 7.34 ± 0.75 mg·h/L) of losartan increased significantly (p < .05), and while the Cmax (0.76 ± 0.09 vs. 1.14 ± 0.18 mg/L) of EXP3174 decreased significantly compared to the control (p < .05). The t1/2 of losartan was prolonged from 3.27 ± 0.45 h to 4.74 ± 0.51 h (p < .05). The results also indicated that quercetin could increase losartan absorption rate by inhibiting the activity of P-gp and decrease its metabolic stability by inhibiting the activity of CYP450 enzyme. 4. These results indicated that the herb-drug interaction between quercetin and losartan might occur when they are co-administered in rats, quercetin could increase the systemic exposure of losartan and decrease the plasma concentration of EXP3174, possibly by inhibiting the activity of P-gp or CYP450 enzyme.
Collapse
Affiliation(s)
- Qingling Zhao
- a Department of Public Health , Yidu Central Hospital of Weifang , Shandong , China
| | - Jinlan Wei
- a Department of Public Health , Yidu Central Hospital of Weifang , Shandong , China
| | - Hongying Zhang
- b Department of Obstetrics , Yidu Central Hospital of Weifang , Shandong , China
| |
Collapse
|
49
|
Abdel-Zaher AO, Farghaly HSM, El-Refaiy AEM, Abd-Eldayem AM. Protective effect of the standardized leaf extract of Ginkgo biloba (EGb761) against hypertension-induced renal injury in rats. Clin Exp Hypertens 2018; 40:703-714. [PMID: 29351002 DOI: 10.1080/10641963.2018.1425421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ginkgo biloba leaves extract has been widely used worldwide to protect against oxidative stress-induced cell damage and improves blood circulation. METHODS The potential protective role of the standardized leaf extract of Ginkgo biloba (EGb761) on hypertension-induced renal injury was investigated in rats. Hypertension was induced in rats by L-NAME. RESULT Repeated treatment with EGb761 produced progressive reductions in the systolic, diastolic and mean arterial blood pressure. Also, EGb761 increased the progressive reductions in blood pressure induced by losartan. Hypertension-induced marked elevation of renal malondialdehyde (MDA) and nitrite levels and reduction of reduced glutathione (GSH) level were inhibited by EGb761. In addition, hypertension-induced increases in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)) levels in renal tissues were inhibited by EGb761. Also, treatment with EGb761 inhibited hypertension-induced decrease in endothelial nitric oxide synthase (eNOS) protein expression and increase in the protein expressions of inducible NO synthase (iNOS), TNF-α, IL-6 and IL-1B in the kidney tissues. EGb761 enhanced losartan effects on renal tissues oxidative stress, nitrite, and inflammatory markers levels and on protein expressions of eNOS, iNOS, TNF-α, IL-6 and IL-1B. effects. CONCLUSIONS These results indicate that EGb761 has the ability to protect against hypertension-induced renal injury.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- a Pharmacology Department, Assiut University, Faculty of Medicine , Assiut , Egypt
| | - Hanan S M Farghaly
- a Pharmacology Department, Assiut University, Faculty of Medicine , Assiut , Egypt
| | - Abeer E M El-Refaiy
- b Pathology Department, Assiut University, Faculty of Medicine , Assiut , Egypt
| | - Ahmed M Abd-Eldayem
- a Pharmacology Department, Assiut University, Faculty of Medicine , Assiut , Egypt
| |
Collapse
|
50
|
Cai W, Zhang Z, Huang Y, Sun H, Qiu L. Vaccarin alleviates hypertension and nephropathy in renovascular hypertensive rats. Exp Ther Med 2017; 15:924-932. [PMID: 29399101 PMCID: PMC5772753 DOI: 10.3892/etm.2017.5442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
The kidney is an important organ in the regulation of blood pressure, and it is also one of the primary target organs of hypertension. Kidney damage in response to hypertension eventually leads to renal insufficiency. The authors previously demonstrated that vaccarin exhibits a protective role in endothelial injury. However, the effects of vaccarin on the two-kidney, one clip (2K1C) renovascular hypertension model and subsequent kidney injury have yet to be fully elucidated. The present study was designed to investigate the roles and mechanisms of vaccarin in attenuating hypertension and whether vaccarin had beneficial effects on kidney injury. The 2K1C rats had greater fibrosis, apoptosis, reactive oxygen species production, inflammation, angiotensin II (Ang II) and angiotensin type 1 (AT1) receptors in the right kidney compared with normotensive rats, which were alleviated by a high dose of vaccarin and captopril. Vaccarin treatment attenuated hypertension, reduced fibrosis markers, NADPH oxidase (NOX)-2, NOX-4, 3-nitrotyrosine, tumor necrosis factor-α, interleukin 1β (IL-1β), and IL-6 protein levels and altered pro-apoptotic protein levels including caspase-3, anti-apoptosis protein B cell lymphoma (Bcl)-2 and Bcl-2 associated X, apoptosis regulator in the right kidney of 2K1C rats. These findings suggest that the protective effects of vaccarin on the right kidney in renovascular hypertension are possibly due to downregulation of fibrosis, inflammatory molecules, oxidative stress, Ang II, and AT1 receptor levels.
Collapse
Affiliation(s)
- Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenpeng Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yiqi Huang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|