1
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Lu HY, Wu JJ, Shen J, Xing XX, Hua XY, Zheng MX, Xiao LB, Xu JG. Altered Brain Functional and Effective Connectivity Induced by Electroacupuncture in Rats Following Anterior Cruciate Ligament Transection. J Pain Res 2024; 17:2495-2505. [PMID: 39100139 PMCID: PMC11296374 DOI: 10.2147/jpr.s465983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024] Open
Abstract
Background The chronic pain arising from knee osteoarthritis (KOA) is a prevalent clinical manifestation. As a traditional Chinese approach, electroacupuncture (EA) has a positive influence in relieving chronic pain from KOA. The study aims to explore functional connectivity (FC) and effective connectivity (EC) alterations induced by EA in anterior cruciate ligament transection (ACLT) rat model of KOA using resting-state functional magnetic resonance imaging (fMRI). Methods After the establishment of ACLT, rats were randomly divided into the EA group and the sham-EA group. The EA group received EA intervention while the sham-EA group received sham-intervention for 3 weeks. Mechanical pain threshold (MPT) assessment was performed before and after intervention, and fMRI was conducted after intervention. Results EA intervention effectively relieved pain in post-ACLT rats. Results of rest-state functional connectivity (rs-FC) analysis revealed that compared with the sham-EA group, the EA group had higher FC between the right raphe and the left auditory cortex, the left caudate_ putamen and the left internal capsule (IC), as well as the right zona incerta (ZI) and the left piriform cortex, but lower FC between the right raphe and the left hippocampus ventral, as well as the right septum and the left septum. Furthermore, Granger causality analysis (GCA) found the altered EC between the right septum and the left septum, as well as the left IC and the right septum. Conclusion The results confirmed the effect of EA on analgesia in post- ACLT rats. The alterations of FC and EC, mainly involving basal ganglia and limbic system neural connections, might be one of the neural mechanisms underlying the effect of EA, providing novel information about connectomics plasticity of EA following ACLT.
Collapse
Affiliation(s)
- Hao-Yu Lu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun Shen
- Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lian-Bo Xiao
- Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian-Guang Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Guan C, Feng Y, Cao L, Wang Y, Zhang Q, Liu L, Xie H, Yu K, Shen X, Wu Y, Wang N. Acupuncture for stroke: A bibliometric analysis of global research from 2000 to 2022. Heliyon 2024; 10:e33827. [PMID: 39050433 PMCID: PMC11268209 DOI: 10.1016/j.heliyon.2024.e33827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aimed to explore the global and future research trends in acupuncture interventions for stroke between 2000 and 2022 using bibliometric analysis. Method A bibliometric analysis of literature from 2000 to 2022 in the Web of Science Core Collection was conducted in this study. The analysis utilized CiteSpace, VOSviewer, and Scimago Graphica software to identify the major contributors to publications, including authors, countries, institutions, journals, references, and keywords. Results The bibliometric analysis yielded a total of 860 publications. There was a gradual increase in the number of publications over the study period. China published the most articles. Evidence-Based Complementary and Alternative Medicine was the journal with the greatest number of publications. The most frequently used keywords were "acupuncture," "stroke," and "electroacupuncture." Conclusion These analysis uncovers the research trends in acupuncture for stroke spanning 2000 to 2022 and points to prospective research frontiers. This study provides a deeper and more thorough understanding of the connotations of acupuncture for stroke and guidance and support for future research in this field.
Collapse
Affiliation(s)
- Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yashuo Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xueyan Shen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
4
|
Kuang H, Zhu X, Chen H, Tang H, Zhao H. The immunomodulatory mechanism of acupuncture treatment for ischemic stroke: research progress, prospects, and future direction. Front Immunol 2024; 15:1319863. [PMID: 38756772 PMCID: PMC11096548 DOI: 10.3389/fimmu.2024.1319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.
Collapse
Affiliation(s)
- Hongjun Kuang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huan Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Han Tang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Li S, Xing X, Hua X, Zhang Y, Wu J, Shan C, Wang H, Zheng M, Xu J. Electroacupuncture modulates abnormal brain connectivity after ischemia reperfusion injury in rats: A graph theory-based approach. Brain Behav 2024; 14:e3504. [PMID: 38698583 PMCID: PMC11066419 DOI: 10.1002/brb3.3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.
Collapse
Affiliation(s)
- Si‐Si Li
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Physical Medicine and RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiang‐Xin Xing
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yu‐Wen Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Jia‐Jia Wu
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chun‐Lei Shan
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| | - He Wang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
6
|
Fu TC, Wang GR, Li YX, Xu ZF, Wang C, Zhang RC, Ma QT, Ma YJ, Guo Y, Dai XY, Guo Y. Mobilizing endogenous neuroprotection: the mechanism of the protective effect of acupuncture on the brain after stroke. Front Neurosci 2024; 18:1181670. [PMID: 38737099 PMCID: PMC11084281 DOI: 10.3389/fnins.2024.1181670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.
Collapse
Affiliation(s)
- Tian-cong Fu
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guan-ran Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu-xuan Li
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhi-fang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Can Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Run-chen Zhang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qing-tao Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ya-jing Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-yu Dai
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Chang X, Hao P, Zhang S, Dang Y, Liu A, Zheng N, Dong Z, Zhao H. Multi-scale analysis of acupuncture mechanisms for motor and sensory cortex activity based on SEEG data. Cereb Cortex 2024; 34:bhae127. [PMID: 38652551 PMCID: PMC11484309 DOI: 10.1093/cercor/bhae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/25/2024] Open
Abstract
Acupuncture, a traditional Chinese therapy, is gaining attention for its impact on the brain. While existing electroencephalogram and functional magnetic resonance image research has made significant contributions, this paper utilizes stereo-electroencephalography data for a comprehensive exploration of neurophysiological effects. Employing a multi-scale approach, channel-level analysis reveals notable $\delta $-band activity changes during acupuncture. At the brain region level, acupuncture modulated connectivity between the paracentral lobule and the precentral gyrus. Whole-brain analysis indicates acupuncture's influence on network organization, and enhancing $E_{glob}$ and increased interaction between the motor and sensory cortex. Brain functional reorganization is an important basis for functional recovery or compensation after central nervous system injury. The use of acupuncture to stimulate peripheral nerve trunks, muscle motor points, acupoints, etc., in clinical practice may contribute to the reorganization of brain function. This multi-scale perspective provides diverse insights into acupuncture's effects. Remarkably, this paper pioneers the introduction of stereo-electroencephalography data, advancing our understanding of acupuncture's mechanisms and potential therapeutic benefits in clinical settings.
Collapse
Affiliation(s)
- Xiaoyu Chang
- School of Comeputer and Artificial Intelligence, Beijing Technology and Business University, Beijing, No. 11/33, Fucheng Road, Haidian District, 100048 Beijing, China
| | - Pengliang Hao
- Central Medical Branch of PLA General Hospital, Chinese PLA General Hospital, 21 Andeli North Street, Dongcheng District, 100120 Beijing, China
| | - Shuhua Zhang
- Department of Neurology, International Headache Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853 Beijing, China
| | - Yuanyuan Dang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853 Beijing, China
| | - Aijun Liu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853 Beijing, China
| | - Nan Zheng
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190 Beijing, China
| | - Zhao Dong
- Department of Neurology, International Headache Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853 Beijing, China
| | - Hulin Zhao
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853 Beijing, China
| |
Collapse
|
8
|
Cheng CJ, Yu HB. Global trends and development of acupuncture for stroke: A review and bibliometric analysis. Medicine (Baltimore) 2024; 103:e36984. [PMID: 38241541 PMCID: PMC10798747 DOI: 10.1097/md.0000000000036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
The objective of this review is to elaborate on the status, hotspots, and trends of researches on acupuncture for stroke over the past 26 years. Publications about acupuncture for stroke were downloaded from the Web of Science Core Collection, and these papers were published up to December 31, 2022. A bibliometric analysis of acupuncture for stroke was conducted by CiteSpace (6.2.R4) and VOSviewer (1.6.17). In this study, VOSviewer was used for visual analysis of countries, institutions, authors, journals, keywords, and co-cited references. CiteSpace was used to draw a keyword burst map and a co-cited reference burst map. A total of 534 papers were obtained from the Web of Science Core Collection. The number of papers per year showed a rapid upward trend. The most productive country and institution in this field were China (452) and the Fujian University of Traditional Chinese Medicine (43), respectively. Tao Jing had the highest number of articles (34), and EZ Longa was the most popular author (129 co-citations). Neural Regeneration Research (51) was the most productive journal, and Stroke (1346) was the most co-cited journal. An paper written by EZ Longa was the most influential reference, with the highest citation count. The hotspots and frontiers of this area of research were focused on the mechanisms of acupuncture, especially its neural regenerative or neuroprotective effects. This study used CiteSpace and VOSviewer for bibliometric analysis to provide researchers with information on the research status, hotspots, and trends in acupuncture for stroke research over the past 26 years.
Collapse
Affiliation(s)
- Chang-Jiang Cheng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hai-Bo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
9
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Nguyen THV, Chiu KC, Shih YH, Liu CJ, Bao Quach TV, Hsia SM, Chen YH, Shieh TM. Protective Effect of Electroacupuncture on Chemotherapy-Induced Salivary Gland Hypofunction in a Mouse Model. Int J Mol Sci 2023; 24:11654. [PMID: 37511411 PMCID: PMC10380826 DOI: 10.3390/ijms241411654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy and chemotherapy can impair salivary gland (SG) function, which causes xerostomia and exacerbate other side effects of chemotherapy and oral infection, reducing patients' quality of life. This animal study aimed to assess the efficacy of electroacupuncture (EA) as a means of preventing xerostomia induced by 5-fluorouracil (5-FU). A xerostomia mouse model was induced via four tail vein injections of 5-FU (80 mg/kg/dose). EA was performed at LI4 and LI11 for 7 days. The pilocarpine-stimulated salivary flow rate (SFR) and salivary glands weight (SGW) were recorded. Salivary immunoglobulin A (SIgA) and lysozyme were determined via enzyme-linked immunosorbent assay (ELISA). SG was collected for hematoxylin and eosin staining to measure acini number and acinar cell size. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and aquaporin 5 (AQP5) mRNA expressions in SG were quantified via RT-qPCR. 5-FU caused significant decreases in SFR, SGW, SIgA, lysozyme, AQP5 expression, and acini number, while TNF-α and IL-1β expressions and acinar cell size were significantly increased. EA treatment can prevent 5-FU damage to the salivary gland, while pilocarpine treatment can only elevate SFR and AQP5 expression. These findings provide significant evidence to support the use of EA as an alternative treatment for chemotherapy-induced salivary gland hypofunction and xerostomia.
Collapse
Affiliation(s)
- Thanh-Hien Vu Nguyen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | | | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Fu LW, Gong YD, Nguyen AT, Guo ZL, Tjen-A-Looi SC, Malik S. Sympathoinhibitory electroacupuncture (EA) interacts positively with anti-inflammatory EA alleviating blood pressure in hypertensive rats. Front Cardiovasc Med 2023; 10:1140255. [PMID: 37324636 PMCID: PMC10262041 DOI: 10.3389/fcvm.2023.1140255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Elevated sympathetic activity and chronic inflammation are known contributory factors observed in hypertension. We have observed that sympathoinhibitory electroacupuncture (SI-EA) at acupoints ST36-37 alleviates sympathetic activity and hypertension. Additionally, EA at acupoints SP6-7 exerts anti-inflammatory (AI-EA) effects. However, it is not known whether simultaneous stimulation of this combination of acupoints attenuates or enhances individual effects. A 2 × 2 factorial design was used to test the hypothesis that combining SI-EA and AI-EA (cEA) leads to greater reduction of hypertension by decreasing sympathetic activity and inflammation in hypertensive rats than either set of acupoints alone. Dahl salt-sensitive hypertensive (DSSH) rats were treated with four EA regimens including cEA, SI-EA, AI-EA, and sham-EA twice weekly for five weeks. A group of normotensive (NTN) rats served as control. Systolic and diastolic BP (SBP and DBP) and heart rate (HR) were measured non-invasively by tail-cuff. Plasma norepinephrine (NE), high-sensitivity C-reactive protein (hs-CRP) and interleukin 6 (IL-6) concentrations were determined with ELISA at the completion of treatments. DSSH rats on high salt diet progressively developed moderate hypertension within five weeks. DSSH rats treated with sham-EA showed continuous increase in SBP and DBP and elevations in plasma NE, hs-CRP, and IL-6 levels relative to NTN control. Both SI-EA and cEA decreased SBP and DBP, and had corresponding changes in biomarkers (NE, hs-CRP, and IL-6) compared with sham-EA. AI-EA prevented SBP and DBP elevation and decreased IL-6 and hs-CRP relative to sham-EA. Importantly in DSSH rats that received repetitive cEA treatment, SI-EA interacted positively with AI-EA leading to greater reduction of SBP, DBP, NE, hs-CRP, and IL-6 than SI-EA or AI-EA alone. These data suggest that by targeting both elevated sympathetic activity and chronic inflammation, cEA regimen results in a greater reduction of BP effects in treating hypertension compared to using individual SI-EA or AI-EA alone.
Collapse
|
12
|
Yin S, Pang A, Liu C, Li Y, Liu N, Li S, Li C, Sun H, Fu Z, Wang Y, Zhang Y, Yang M, Sun J, Wang Y, Yang X. Peptide OM-LV20 protects astrocytes against oxidative stress via the 'PAC1R/JNK/TPH1' axis. J Biol Chem 2022; 298:102429. [PMID: 36037970 PMCID: PMC9513268 DOI: 10.1016/j.jbc.2022.102429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke can lead to severe nerve injury and debilitation, resulting in considerable social and economic burdens. Due to the high complexity of post-injury repair mechanisms, drugs approved for use in stroke are extremely scarce, and thus, the discovery of new antistroke drugs and targets is critical. Tryptophan hydroxylase 1 (TPH1) is involved in a variety of mental and neurobehavioral processes, but its effects on stroke have not yet been reported. Here, we used primary astrocyte culture, quantitative real-time PCR, double immunofluorescence assay, lentiviral infection, cell viability analysis, Western blotting, and other biochemical experiments to explore the protective mechanism of peptide OM-LV20, which previously exhibited neuroprotective effects in rats after ischemic stroke via a mechanism that may involve TPH1. First, we showed that TPH1 was expressed in rat astrocytes. Next, we determined that OM-LV20 impacted expression changes of TPH1 in CTX-TNA2 cells and exhibited a protective effect on the decrease in cell viability and catalase (CAT) levels induced by hydrogen peroxide. Importantly, we also found that TPH1 expression induced by OM-LV20 may be related to the level of change in the pituitary adenylate cyclase-activating peptide type 1 receptor (PAC1R) and to the JNK signaling pathways, thereby exerting a protective effect on astrocytes against oxidative stress. The protective effects of OM-LV20 likely occur via the ‘PAC1R/JNK/TPH1’ axis, thus highlighting TPH1 as a novel antistroke drug target.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Chengxing Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shanshan Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huilin Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Effect of Electroacupuncture on Short-Chain Fatty Acids in Peripheral Blood after Middle Cerebral Artery Occlusion/Reperfusion in Rats Based on Gas Chromatography–Mass Spectrometry. Mediators Inflamm 2022; 2022:3997947. [PMID: 36052308 PMCID: PMC9427317 DOI: 10.1155/2022/3997947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Previous fundamental and clinical research has shown that electroacupuncture (EA) at the acupoints of Quchi (LI11) and Zusanli (ST36) can successfully alleviate motor dysfunction following stroke. Additionally, it has been discovered that gut microbiota and their metabolites play an essential role in stroke. However, the relationship between the metabolites of gut microbiota and the efficacy of EA is still unclear. Therefore, the aim of this study was to evaluate the mechanism of EA at LI11 and ST36 in the treatment of motor dysfunction after middle cerebral artery occlusion/reperfusion (MCAO/R) in model rats by comparing the differences and correlation between different short-chain fatty acids (SCFAs) and the recovery of motor function. The results indicated that EA at LI11 and ST36 acupoints enhanced the neurological function, motor function, and infarct volume of MCAO/R rats. The levels of acetic acid, propionic acid, and total SCFAs were considerably lower in the MCAO/R group than in the sham group (P < 0.05). Acetic acid, propionic acid, and total SCFA concentrations were substantially higher in the MCAO/R + EA group than in the MCAO/R group (P < 0.05). Finally, Pearson correlation analysis revealed that the propionic acid concentration was substantially favorably connected with the duration on the rotarod (r = 0.633 and P < 0.05) and highly negatively correlated with the modified neurological severity score (mNSS) (r = −0.698 and P < 0.05) and the percentage of cerebral infarct volume (r = −0.729 and P < 0.05). Taken together, these findings indicate that the increase in propionic acid may be one of the mechanisms and targets of EA at LI11 and ST36 acupoints to improve poststroke motor dysfunction in MCAO/R rats.
Collapse
|
14
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
15
|
Li SS, Xing XX, Hua XY, Zhang YW, Wu JJ, Shan CL, Zheng MX, Wang H, Xu JG. Alteration of brain functional networks induced by electroacupuncture stimulation in rats with ischemia–reperfusion: An independent component analysis. Front Neurosci 2022; 16:958804. [PMID: 35992929 PMCID: PMC9382119 DOI: 10.3389/fnins.2022.958804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Motor dysfunction is the major sequela of ischemic stroke. Motor recovery after stroke has been shown to be associated with remodeling of large-scale brain networks, both functionally and structurally. Electroacupuncture (EA) is a traditional Chinese medicine application that has frequently been recommended as an alternative therapy for ischemic stroke and is reportedly effective for alleviating motor symptoms in patients. In the present study, the effect of EA on the alterations of functional resting state networks (RSNs) was explored after middle cerebral artery occlusion/reperfusion (MCAO/R) injury using resting-state functional MRI. Rats were randomly assigned to three groups, including the sham group, MCAO/R group and MCAO/R+EA group. The ladder rung walking test was conducted prior to and after modeling to assess behavioral changes. RSNs were identified based on the independent component analysis (ICA) performed on the fMRI data from groups. EA treatment effectively reduced the occurrence of contralateral forelimb foot faults. Furthermore, our results suggested the disrupted function of the whole-brain network following ischemic stroke and the modulatory effect of acupuncture. The sensorimotor network (SMN), interoceptive network (IN), default mode network (DMN) and salience network (SN) were related to the therapeutic effect of EA on stroke recovery. Collectively, our findings confirmed the effect of EA on motor function recovery after cerebral ischemia reperfusion and shed light on the assessment of EA intervention-induced effects on brain networks. This study provides neuroimaging evidence to explain the therapeutic effects of EA in ischemic stroke and will lay the groundwork for further studies.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Wen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mou-Xiong Zheng,
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- He Wang,
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
16
|
Wang Y, Wang L, Wang Y, Lu M, Xu L, Liu R, Wei J, Wan J, Zhang H, Zou Y. Sensorimotor Responses in Post-Stroke Hemiplegic Patients Modulated by Acupuncture at Yanglingquan (GB34): A fMRI Study Using Intersubject Functional Correlation (ISFC) Analysis. Front Neurol 2022; 13:900520. [PMID: 35734477 PMCID: PMC9208550 DOI: 10.3389/fneur.2022.900520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
Motor dysfunction is common in patients with stroke. Acupuncture has become an acceptable alternative method for stroke rehabilitation. Previous studies have shown various functional connectivity changes activated by acupuncture. We introduced intersubject correlation (ISC) and intersubject functional correlation (ISFC) analyses into the functional magnetic resonance imaging (fMRI) for ischemic stroke to seek a common activation and suppression pattern triggered by acupuncture. In this study, 63 ischemic stroke patients with motor dysfunction and 42 normal controls were analyzed. Three functional scans were conducted during the resting state, motor task, and acupuncture at Yanglingquan (GB34) task. Twenty-two sensory, motor, and movement-imagination cortices in the bilateral hemispheres were selected as the region of interest (ROI). We performed ISC and ISFC analyses among these ROIs in three fMRI runs on patients and controls. Subgroup analyses by course or severity were also conducted. The results showed that acupuncture at GB34 triggered ISFC among upper limb motor, upper limb/hand/face, lower limb, tongue/larynx sensory, and movement imagination regions in the patient group. Subgroup ISC and ISFC analyses showed that patients tended to have increasing responses in the early stage of stroke (within 1 month) and decreasing responses afterward (1–3 months). Patients with mild clinical functional damage (NIHSS 2–4) tended to generate more responses via acupuncture than those with moderate damage (NIHSS 5–15). Our findings may help understand the clinical effects and modulatory features of acupuncture based on the group-level post-stroke neuroplasticity.
Collapse
|
17
|
Electroacupuncture attenuates brain injury through α7 nicotinic acetylcholine receptor-mediated suppression of neuroinflammation in a rat model of asphyxial cardiac arrest. J Neuroimmunol 2022; 367:577873. [DOI: 10.1016/j.jneuroim.2022.577873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
|
18
|
Xin YY, Wang JX, Xu AJ. Electroacupuncture ameliorates neuroinflammation in animal models. Acupunct Med 2022; 40:474-483. [PMID: 35229660 DOI: 10.1177/09645284221076515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Neuroinflammation refers to a wide range of immune responses occurring in the brain or spinal cord. It is closely related to a variety of neurodegenerative diseases, for which it potentially represents a new direction for treatment. Electroacupuncture (EA) is one method of acupuncture treatment, which can be used as an adjuvant therapy for many diseases. This review focuses on molecular mechanisms of EA in the reduction of neuroinflammation, summarizes relevant basic research and outlines future directions for investigation. Findings: A growing body of basic research has shown that EA can ameliorate neuroinflammation centrally (in animal models of ischemic stroke, Alzheimer’s disease, traumatic brain injury, spinal cord injury, Parkinson’s disease and vascular dementia) and peripherally (e.g. after a surgical insult or injection of lipopolysaccharide) and that its effects involve different molecular mechanisms, including activation of the α7 nicotinic acetylcholine receptor signaling pathway and P2 type purinergic receptors, inhibition of nuclear factor κB, and mitigation of damage secondary to oxidative stress and NOD-like receptor protein 3 inflammasome activation. Conclusions: EA is capable of regulating multiple cell signal transduction pathways to alleviate neuroinflammation in animal models. Although the findings of animal studies are encouraging, further prospective clinical trials are needed to verify the efficacy of EA for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Yue-yang Xin
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-xu Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-jun Xu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Li N, Guo Y, Gong Y, Zhang Y, Fan W, Yao K, Chen Z, Dou B, Lin X, Chen B, Chen Z, Xu Z, Lyu Z. The Anti-Inflammatory Actions and Mechanisms of Acupuncture from Acupoint to Target Organs via Neuro-Immune Regulation. J Inflamm Res 2022; 14:7191-7224. [PMID: 34992414 PMCID: PMC8710088 DOI: 10.2147/jir.s341581] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation plays a significant role in the occurrence and development of multiple diseases. This study comprehensively reviews and presents literature from the last five years, showing that acupuncture indeed exerts strong anti-inflammatory effects in multiple biological systems, namely, the immune, digestive, respiratory, nervous, locomotory, circulatory, endocrine, and genitourinary systems. It is well known that localized acupuncture-mediated anti-inflammatory effects involve the regulation of multiple populations and functions of immune cells, including macrophages, granulocytes, mast cells, and T cells. In acupuncture stimulation, macrophages transform from the M1 to the M2 phenotype and the negative TLR4 regulator PPARγ is activated to inhibit the intracellular TLR/MyD88 and NOD signaling pathways. The downstream IκBα/NF-κB and P38 MAPK pathways are subsequently inhibited by acupuncture, followed by suppressed production of inflammasome and proinflammatory mediators. Acupuncture also modulates the balance of helper T cell populations. Furthermore, it inhibits oxidative stress by enhancing SOD activity via the Nrf2/HO-1 pathway and eliminates the generation of oxygen free radicals, thereby preventing inflammatory cell infiltration. The anti-inflammatory effects of acupuncture on different biological systems are also specific to individual organ microenvironments. As part of its anti-inflammatory action, acupuncture deforms connective tissue and upregulates the secretion of various molecules in acupoints, further activating the NF-κB, MAPK, and ERK pathways in mast cells, fibroblasts, keratinocytes, and monocytes/macrophages. The somatic afferents present in acupuncture-activated acupoints also convey sensory signals to the spinal cord, brainstem, and hypothalamic neurons. Upon information integration in the brain, acupuncture further stimulates multiple neuro-immune pathways, including the cholinergic anti-inflammatory, vagus-adrenal medulla-dopamine, and sympathetic pathways, as well as the hypothalamus-pituitary-adrenal axis, ultimately acting immune cells via the release of crucial neurotransmitters and hormones. This review provides a scientific and reliable basis and viewpoints for the clinical application of acupuncture in various inflammatory conditions.
Collapse
Affiliation(s)
- Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Wen Fan
- Suzuka University of Medical Science, Suzuka City, Japan
| | - Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People's Republic of China
| |
Collapse
|
20
|
Zhang B, Shi H, Cao S, Xie L, Ren P, Wang J, Shi B. Revealing the magic of acupuncture based on biological mechanisms: A literature review. Biosci Trends 2022; 16:73-90. [PMID: 35153276 DOI: 10.5582/bst.2022.01039] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bo Zhang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haojun Shi
- Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shengnan Cao
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangyu Xie
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengcheng Ren
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianmin Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Shi
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Li SS, Hua XY, Zheng MX, Wu JJ, Ma ZZ, Xing XX, Ma J, Shan CL, Xu JG. Electroacupuncture treatment improves motor function and neurological outcomes after cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 17:1545-1555. [PMID: 34916440 PMCID: PMC8771092 DOI: 10.4103/1673-5374.330617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Electroacupuncture (EA) has been widely used for functional restoration after stroke. However, its role in post-stroke rehabilitation and the associated regulatory mechanisms remain poorly understood. In this study, we applied EA to the Zusanli (ST36) and Quchi (LI11) acupoints in rats with middle cerebral artery occlusion and reperfusion. We found that EA effectively increased the expression of brain-derived neurotrophic factor and its receptor tyrosine kinase B, synapsin-1, postsynaptic dense protein 95, and microtubule-associated protein 2 in the ischemic penumbra of rats with middle cerebral artery occlusion and reperfusion. Moreover, EA greatly reduced the expression of myelin-related inhibitors Nogo-A and NgR in the ischemic penumbra. Tyrosine kinase B inhibitor ANA-12 weakened the therapeutic effects of EA. These findings suggest that EA can improve neurological function after middle cerebral artery occlusion and reperfusion, possibly through regulating the activity of the brain-derived neurotrophic factor/tyrosine kinase B signal pathway. All procedures and experiments were approved by the Animal Research Committee of Shanghai University of Traditional Chinese Medicine, China (approval No. PZSHUTCM200110002) on January 10, 2020.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
22
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
23
|
Kho AR, Hong DK, Kang BS, Park WJ, Choi KC, Park KH, Suh SW. The Effects of Atorvastatin on Global Cerebral Ischemia-Induced Neuronal Death. Int J Mol Sci 2021; 22:ijms22094385. [PMID: 33922266 PMCID: PMC8122811 DOI: 10.3390/ijms22094385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background and Purpose: Global cerebral ischemia-induced severe hypoxic brain damage is one of the main causes of mortality and long-term neurologic disability even after receiving early blood reperfusion. This study aimed to test the hypothesis that atorvastatin potentially has neuroprotective effects in global cerebral ischemia (GCI). (2) Methods: We performed two sets of experiments, analyzing acute (1-week) and chronic (4-week) treatments. For the vehicle (Veh) and statin treatments, 1 mL of 0.9% saline and 5 mg/kg of atorvastatin (ATOR) were administered orally. For histological analysis, we used the following staining protocols: Fluoro-Jade B and NeuN, 4-hydroxynonenal, CD11b and GFAP, IgG, SMI71, and vWF. Finally, we evaluated the cognitive function with a battery of behavioral tests. (3) Results: The GCI-ATOR group showed significantly reduced neuronal death, oxidative stress, inflammation, and BBB disruption compared with the GCI-Veh group. Moreover, the GCI-ATOR group showed decreased endothelial damage and VV proliferation and had significantly improved cognitive function compared with the GCI-Veh group in both models. (4) Conclusions: ATOR has neuroprotective effects and helps recover the cognitive function after GCI in rats. Therefore, administration of atorvastatin may be a therapeutic option in managing GCI after CA.
Collapse
Affiliation(s)
- A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (A.R.K.); (D.K.H.); (B.S.K.)
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (A.R.K.); (D.K.H.); (B.S.K.)
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (A.R.K.); (D.K.H.); (B.S.K.)
| | - Woo-Jung Park
- Division of Cardiovascular Disease, Hallym University Medical Center, Anyang 14068, Korea;
| | - Kyung Chan Choi
- Department of Pathology, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Kyoung-Ha Park
- Division of Cardiovascular Disease, Hallym University Medical Center, Anyang 14068, Korea;
- Correspondence: (K.-H.P.); (S.W.S.); Tel.: +82-31-380-1725 (K.-H.P.); +82-10-8573-6364 (S.W.S.); Fax: +82-31-386-2269 (K.-H.P.); +82-33-248-2580 (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (A.R.K.); (D.K.H.); (B.S.K.)
- Correspondence: (K.-H.P.); (S.W.S.); Tel.: +82-31-380-1725 (K.-H.P.); +82-10-8573-6364 (S.W.S.); Fax: +82-31-386-2269 (K.-H.P.); +82-33-248-2580 (S.W.S.)
| |
Collapse
|
24
|
Xu H, Wang Y, Luo Y. OTULIN is a new target of EA treatment in the alleviation of brain injury and glial cell activation via suppression of the NF-κB signalling pathway in acute ischaemic stroke rats. Mol Med 2021; 27:37. [PMID: 33836646 PMCID: PMC8035756 DOI: 10.1186/s10020-021-00297-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Ovarian tumour domain deubiquitinase with linear linkage specificity (OTULIN) is a potent negative regulator of the nuclear factor-κB (NF-κB) signalling pathway, and it plays a strong neuroprotective role following acute ischemic stroke. Electroacupuncture (EA) is an effective adjuvant treatment for reducing brain injury and neuroinflammation via the inhibition of NF-κB p65 nuclear translocation, but the underlying mechanism is not clear. The present study investigated whether OTULIN was necessary for EA to mitigate brain injury and glial cell activation in a transient middle cerebral artery occlusion (tMCAO) model in rats. METHODS An acute ischaemic stroke model was established via tMCAO surgery in Sprague-Dawley (SD) rats. EA was performed once daily at "Baihui (GV 20)", "Hegu (LI 4)", and "Taichong (LR 3)" acupoints. The effect of EA on the spatiotemporal expression of OTULIN in the ischaemic penumbra of the cerebral cortex was detected within 7 days after reperfusion. The effects of OTULIN gene silencing on EA neurological deficits, cerebral infarct volume, neuronal damage, the activation of microglia and astrocytes, the contents of tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6), and the expression of p-IκBa, IκBa and nucleus/cytoplasm NF-κB p65 protein were assessed. RESULTS EA treatment increased endogenous OTULIN expression, which peaked at 48 h. Enhanced OTULIN was primarily located in neurons, but a small amount of OTULIN was detected in microglia. OTULIN silencing obviously reversed EA neuroprotection, which was demonstrated by worsened neurobehavioural performance, cerebral infarct volume and neuronal injury. The inhibitory effect of EA on the NF-κB pathway was also attenuated by enhanced IκBα phosphorylation and NF-κB p65 nuclear translocation. EA partially inhibited the transformation of microglia and astrocytes from resting states to activated states and reduced the secretion of TNF-α, IL-1β and IL-6. However, these preventive effects were reversed after the silencing of OTULIN expression. CONCLUSIONS OTULIN provides a new potential therapeutic target for EA to alleviate acute ischaemic stroke-induced brain injury and the activation of glial cells, which are related to suppression of the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, 550004, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - You Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Liu H, Zhang Z, Zang C, Wang L, Yang H, Sheng C, Shang J, Zhao Z, Yuan F, Yu Y, Yao X, Bao X, Zhang D. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113491. [PMID: 33091490 DOI: 10.1016/j.jep.2020.113491] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides J. Ellis (Fructus Gardenia) is a traditional Chinese medicine with diverse pharmacological functions, such as anti-inflammation, anti-depression, as well as improvement of cognition and ischemia brain injury. GJ-4 is a natural extract from Gardenia jasminoides J. Ellis (Fructus Gardenia) and has been proved to improve memory impairment in Alzheimer's disease (AD) mouse model in our previous studies. AIM OF THE STUDY This study aimed to evaluate the therapeutic effects of GJ-4 on vascular dementia (VD) and explore the potential mechanisms. MATERIAL AND METHODS In our experiment, a focal cerebral ischemia and reperfusion rat model was successfully developed by the middle cerebral artery occlusion and reperfusion (MCAO/R). GJ-4 (10 mg/kg, 25 mg/kg, 50 mg/kg) and nimodipine (10 mg/kg) were orally administered to rats once a day for consecutive 12 days. Learning and memory behavioral performance was assayed by step-down test and Morris water maze test. The neurological scoring test was performed to evaluate the neurological function of rats. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and Nissl staining were respectively employed to determine the infarct condition and neuronal injury of the brain. Iba1 immunohistochemistry was used to show the activation of microglia. Moreover, the synaptic damage and inflammatory level were detected by Western blot. RESULTS GJ-4 could significantly improve memory impairment, cerebral infraction, as well as neurological deficits of VD rats induced by MCAO/R. Further research indicated VD-induced neuronal injury was alleviated by GJ-4. In addition, GJ-4 could protect synapse of VD rats by upregulating synaptophysin (SYP) expression, post synaptic density 95 protein (PSD95) expression, and downregulating N-Methyl-D-Aspartate receptor 1 (NMDAR1) expression. Subsequent investigation of the underlying mechanisms identified that GJ-4 could suppress neuroinflammatory responses, supported by inhibited activation of microglia and reduced expression of inflammatory proteins, which ultimately exerted neuroprotective effects on VD. Further mechanistic study indicated that janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1) pathway was inhibited by GJ-4 treatment. CONCLUSION These results suggested that GJ-4 might serve as a potential drug to improve VD. In addition, our study indicated that inhibition of neuroinflammation might be a promising target to treat VD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/prevention & control
- Dementia, Vascular/psychology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Gardenia
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/physiopathology
- Inflammation Mediators/metabolism
- Janus Kinase 2/metabolism
- Male
- Memory/drug effects
- Memory Disorders/enzymology
- Memory Disorders/etiology
- Memory Disorders/prevention & control
- Memory Disorders/psychology
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Nootropic Agents/pharmacology
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Reperfusion Injury/enzymology
- Reperfusion Injury/etiology
- Reperfusion Injury/physiopathology
- Reperfusion Injury/prevention & control
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
- Rats
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Yu
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
26
|
Chen L, Huang X, Wang L, Wang C, Tang X, Gu M, Jing J, Ma R, Ge X, Yao B. Electroacupuncture Reduces Oocyte Number and Maintains Vascular Barrier Against Ovarian Hyperstimulation Syndrome by Regulating CD200. Front Cell Dev Biol 2021; 9:648578. [PMID: 33693006 PMCID: PMC7938326 DOI: 10.3389/fcell.2021.648578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a common complication caused by ovulatory stimulation therapy, which manifests as an increase in ovarian volume, an increase in the number of oocytes retrieved, and increased vascular permeability throughout the body and especially in ovarian tissue. In our previous study, we found that electroacupuncture (EA) could prevent the progression of OHSS, by mainly affecting ovary. However, the specific molecules and the mechanism of this process were still unknown. In order to explore the underlying mechanism, OHSS rat model was established and EA treatment was performed, which was followed by proteomic analysis of ovaries. Results showed a significant increase in the expression level of CD200 in the ovaries of OHSS group treated with EA than those of OHSS group. Clinical data showed that the level of CD200 in follicular fluid was negatively correlated with the number of oocytes retrieved and serum E2 level. Further in vitro experiments showed a concentration-dependent role of human chorionic gonadotropin (hCG) in reducing CD200 and CD200R levels, and increasing inflammatory cytokine levels in cultured KGN cells. In human umbilical vein endothelial cells (HUVECs), the vascular barrier function was improved by CM (cultural medium from KGN cell) which treated with CD200Fc (CD200R agonist). Meanwhile, the results of in vivo experiments indicated that EA reduced the number of ovarian corpora lutea, decreased inflammatory response, and improved the vascular barrier function by increasing the expression of CD200 and CD200R in rat ovaries. These findings suggest that EA treatment may reduce oocyte number and maintain vascular barrier against OHSS through ovarian anti-inflammatory response mediated by CD200. Therefore, this study is the first to identify CD200 as a main of EA in the ovary and elucidate the possible mechanism of EA on preventing and treating OHSS, which provide a scientific basis for CD200 as an effector and indicator in EA treatment.
Collapse
Affiliation(s)
- Li Chen
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xuan Huang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Li Wang
- Reproductive Medical Center, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Cencen Wang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xu Tang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Minghui Gu
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Jiangsu, China
| |
Collapse
|
27
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
28
|
Neuromodulatory Effect of Sensorimotor Network Functional Connectivity of Temporal Three-Needle Therapy for Ischemic Stroke Patients with Motor Dysfunction: Study Protocol for a Randomized, Patient-Assessor Blind, Controlled, Neuroimaging Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8820324. [PMID: 33488759 PMCID: PMC7801060 DOI: 10.1155/2021/8820324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Background The clinical efficacy of temporal three-needle therapy for stroke dysfunction has been previously demonstrated in China. However, the central mechanism of temporal three-needle therapy remains unclear. Temporal three-needle projects the sensory cortex and the motor cortex, which may impact the cortex function. Current studies seldom focus on it. Hence, according to the “scalp-cortex corresponding theory,” the underlying mechanism of temporal three-needle remains a domain for further research. Methods This trial is designed to provide objective and visual evidence for the neuromodulatory effect and neuroimaging mechanism of temporal three-needle therapy for stroke patients. This ongoing study is a prospective, randomized, controlled, patient-assessor blind, single-center, neuroimaging trial involving two-parallel patient groups and a healthy control group. Forty eligible patients will be recruited from Shenzhen Nanshan District People's Hospital and randomized into either the experimental group or the control group. Twenty healthy volunteers will be recruited in the healthy control group and undergo baseline magnetic resonance imaging scans without any intervention. Patients in the control group will receive acupuncture at Dingnieqianxiexian (MS6), in addition to basic medicine and rehabilitative treatments. Patients in the experimental group will receive temporal three-needle therapy plus basic medicine and rehabilitative treatments 5 days per week, 10 sessions over two consecutive weeks. The primary outcome is resting-state functional connectivity, and the secondary outcomes are regional homogeneity, amplitude of low-frequency fluctuations, Fugl–Meyer assessment of the upper limb, and modified Barthel Index. All outcome measures will be assessed at baseline and after 2 weeks of intervention. Discussion. The results will explore the neuromodulatory effects and illustrate the central mechanism of temporal three-needle treatment from the network-level viewpoint of sensorimotor network functional plasticity and promote widespread application in real-world practice. This trial was registered at Chinese Clinical Trial Registry on 14 March 2018 with ChiCTR1800015209.
Collapse
|
29
|
Hao T, Yang Y, Li N, Mi Y, Zhang G, Song J, Liang Y, Xiao J, Zhou D, He D, Hou Y. Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153353. [PMID: 33007731 DOI: 10.1016/j.phymed.2020.153353] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Increasing evidence has shown that microglia-induced neuroinflammation is involved in the pathogenesis of ischemic stroke. Stepharine, one of the alkaloids extracted from Stephania japonica (Thunb.) Miers, exhibited strong inhibitory effect on microglial overactivation. However, it is not known whether it has the potential to prevent ischemic stroke. METHODS The neuroprotective and anti-neuroinflammatory effects of stepharine were investigated in vivo and in vitro, using a rat model of middle cerebral artery occlusion (MCAO) and lipopolysaccharide (LPS)-stimulated BV-2 cells, respectively. RESULTS In vivo, stepharine (500 μg/kg) suppressed neurological deficits scores, brain water content and cerebral infarct volume induced by MCAO. Moreover, stepharine (500 μg/kg) inhibited NeuN+ cells loss and Iba-1+ cells increase in the MCAO ischemic cortex. In vitro, stepharine (10, 30 μM) substantially inhibited nitric oxide release as well as the mRNA and protein expression of pro-inflammatory mediators [inducible nitric oxide synthase, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β] in LPS-activated BV-2 cells. LPS-induced increase of TLR4 expression, IκBα phosphorylation, and NF-κB p65 nuclear translocation was inhibited by stepharine (10, 30 μM). Molecular docking analysis showed that stepharine directly interacted with TLR4. SPR assay further confirmed that stepharine could bind to the TLR4/MD2 complex. Meanwhile, stepharine exhibited neuroprotective effects on SH-SY5Y cells cultured with LPS-treated conditioned medium. CONCLUSION Our study demonstrated for the first time that stepharine improved the outcomes in MCAO rats, reduced neuronal loss, and suppressed microglial overactivation via the inhibition of TLR4/NF-κB pathway. These results suggest that stepharine might be a potential therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tingyu Hao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Yanqiu Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Guijie Zhang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Junyu Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yusheng Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiao Xiao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Dakuo He
- College of Information Science and Engineering, Northeastern University, Shenyang, China; State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
30
|
Electroacupuncture Attenuates Inflammation after Ischemic Stroke by Inhibiting NF- κB-Mediated Activation of Microglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8163052. [PMID: 32922507 PMCID: PMC7453260 DOI: 10.1155/2020/8163052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Microglial activation and microglia-mediated inflammation play an important role in the occurrence, development, and outcome of stroke. Brain injury induces the activation and release of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin- (IL-) 1β, and IL-6. Many studies have confirmed that acupuncture is effective in treating ischemic stroke. However, its protective mechanism against ischemic brain injury is complex and multifactorial. In this study, we observed the effects of electroacupuncture at Baihui (GV20) and Dazhui (GV14) on microglial activation and inflammation in the cortical ischemic penumbra (IP) of permanent middle cerebral artery occlusion (pMCAO) rats. It was found that electroacupuncture inhibited the degeneration and necrosis of microglia in the cortical IP and ameliorated mitochondrial damage. Immunofluorescence and western blot analysis showed that microglia were in a resting state or weakly activated in the normal brain. After cerebral ischemia, the expression of microglial markers (Iba-1 and CD11b) increased, and NF-κB p65, IL-1β, and TNF-α expression gradually increased. The dynamic changes were generally temporally consistent. Electroacupuncture downregulated the expressions of Iba-1 and CD11b. Additionally, it inhibited the expression of NF-κB p65, IL-1β, and TNF-α and reduced the conversion of microglia to the M1 phenotype after ischemia. Electroacupuncture regulated the activation of microglia and microglia-mediated inflammation after cerebral ischemia, confirming the relevant theories regarding the effect of acupuncture treatment on cerebral ischemia and guiding clinical practice.
Collapse
|
31
|
Electroacupuncture Pretreatment Alleviates LPS-Induced Acute Respiratory Distress Syndrome via Regulating the PPAR Gamma/NF-Kappa B Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4594631. [PMID: 32774418 PMCID: PMC7396021 DOI: 10.1155/2020/4594631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Electroacupuncture (EA) is reported to possess anti-inflammatory properties and has beneficial effects on acute respiratory distress syndrome (ARDS). However, the underlying mechanisms of the effects of EA on ARDS remain unclear. This study aims to investigate the protective effect of EA on LPS-induced ARDS. In this study, Sprague-Dawley male rats were treated with EA at Hegu (LI4) for 45 minutes before LPS instillation (0.4 mg/kg, 100 ul). H&E staining, wet-to-dry weight (W/D) ratio, PaO2, and protein content in BALF were employed to determine the function of lung tissues. Inflammatory cytokines in serum and BALF were detected by enzyme-linked immunoassay assay (ELISA). The levels of oxidative stress markers were detected to determine the oxidative stress status. Cell apoptosis was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and western blot. Here, we found that EA pretreatment effectively alleviated lung pathological damage. Moreover, EA suppressed the oxidative stress damage by upregulating glutathione and superoxide dismutase and downregulating malondialdehyde. EA pretreatment also regulated apoptosis-related proteins, such as Bax and Bcl-2. We found that peroxisome proliferators-activated receptors γ (PPARγ) play a critical role during ARDS, EA up-regulated the expression of PPARγ, which inhibited the activation of nuclear factor-kappa B (NF-κB) and decreased the inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). When rats were treated with GW9662, a selective PPARγ antagonist, these effects of EA were reversed. Our study demonstrated that EA pretreatment had a beneficial effect on LPS-induced ARDS in rats by anti-inflammatory, antioxidative, and antiapoptotic properties which was regulated via PPARγ/NF-κB signaling pathway.
Collapse
|
32
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
33
|
Wei TH, Hsieh CL. Effect of Acupuncture on the p38 Signaling Pathway in Several Nervous System Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E4693. [PMID: 32630156 PMCID: PMC7370084 DOI: 10.3390/ijms21134693] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acupuncture is clinically used to treat various diseases and exerts positive local and systemic effects in several nervous system diseases. Advanced molecular and clinical studies have continually attempted to decipher the mechanisms underlying these effects of acupuncture. While a growing understanding of the pathophysiology underlying several nervous system diseases shows it to be related to inflammation and impair cell regeneration after ischemic events, the relationship between the therapeutic mechanism of acupuncture and the p38 MAPK signal pathway has yet to be elucidated. This review discusses the latest advancements in the identification of the effect of acupuncture on the p38 signaling pathway in several nervous system diseases. We electronically searched databases including PubMed, Embase, and the Cochrane Library from their inception to April 2020, using the following keywords alone or in various combinations: "acupuncture", "p38 MAPK pathway", "signaling", "stress response", "inflammation", "immune", "pain", "analgesic", "cerebral ischemic injury", "epilepsy", "Alzheimer's disease", "Parkinson's disease", "dementia", "degenerative", and "homeostasis". Manual acupuncture and electroacupuncture confer positive therapeutic effects by regulating proinflammatory cytokines, ion channels, scaffold proteins, and transcription factors including TRPV1/4, Nav, BDNF, and NADMR1; consequently, p38 regulates various phenomena including cell communication, remodeling, regeneration, and gene expression. In this review article, we found the most common acupoints for the relief of nervous system disorders including GV20, GV14, ST36, ST37, and LI4. Acupuncture exhibits dual regulatory functions of activating or inhibiting different p38 MAPK pathways, contributing to an overall improvement of clinical symptoms and function in several nervous system diseases.
Collapse
Affiliation(s)
- Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
34
|
Li Z, Yang M, Lin Y, Liang S, Liu W, Chen B, Huang S, Li J, Tao J, Chen L. Electroacupuncture promotes motor function and functional connectivity in rats with ischemic stroke: an animal resting-state functional magnetic resonance imaging study. Acupunct Med 2020; 39:146-155. [PMID: 32576025 DOI: 10.1177/0964528420920297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To evaluate whether electroacupuncture (EA) treatment at LI11 and ST36 could reduce motor impairments and enhance brain functional recovery in a rat model of ischemic stroke. METHODS A rat model of middle cerebral artery occlusion (MCAO) was established. EA at LI11 and ST36 was started at 24 h (MCAO + EA group) after ischemic stroke modeling. Untreated model (MCAO) and sham-operated (Sham) groups were included as controls. The neurological deficits of all groups were assessed using modified neurologic severity scores (mNSS) at 24 h and 14 days after MCAO. To further investigate the effect of EA on infarct volume and brain function, functional magnetic resonance imaging was used to estimate the size of the brain lesions and neural activities of each group at 14 days after ischemic stroke. RESULTS EA treatment of MCAO rats led to a significant reduction in the infarct volumes accompanied by functional recovery, reflected in improved mNSS outcomes and motor functional performances. Furthermore, functional connectivity between the left motor cortex and left cerebellum posterior lobe, right motor cortex, left striatum and bilateral sensory cortex were decreased in MCAO group but increased after EA treatment. CONCLUSION EA at LI11 and ST36 could enhance the functional connectivity between the left motor cortex and the motor function-related brain regions, including the motor cortex, sensory cortex and striatum, in rats. EA exhibits potential as a treatment for ischemic stroke.
Collapse
Affiliation(s)
- Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, China
| | - Minguang Yang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Yunjiao Lin
- TCM Rehabilitation Research Center of SATCM, Fuzhou, China.,Xiamen Humanity Rehabilitation Hospital, Xiamen, China
| | - Shengxiang Liang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bin Chen
- Department of Rehabilitation, The Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sheng Huang
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Jianhong Li
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
35
|
Crosstalk between Acupuncture and NF- κB in Inflammatory Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7924985. [PMID: 32595736 PMCID: PMC7301242 DOI: 10.1155/2020/7924985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Acupuncture has been used in China for thousands of years and concerned as a typical alternative medicine in inflammatory diseases nowadays. The nuclear factor-κB (NF-κB) transcription factor is an important regulator of inflammation. In this article, we discuss the role of acupuncture in NF-κB pathways and also present the acupoints selection, acupuncture administration, and related inflammation diseases and models from previous studies to bring readers close to a more complete understanding of the mechanisms between acupuncture and NF-κB in inflammatory diseases.
Collapse
|
36
|
The poly-ADP ribose polymerase-1/apoptosis-inducing factor pathway may help mediate the protective effect of electroacupuncture on early brain injury after subarachnoid hemorrhage. Neuroreport 2020; 31:605-612. [PMID: 32301816 DOI: 10.1097/wnr.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a clinically common, acute, critical cerebrovascular disease associated with high mortality. Here, we investigated the effects of electroacupuncture on early brain injury after SAH. We successfully established a Sprague-Dawley rat model of the SAH model, and randomly divided the rats into four groups: sham-operated group, SAH group, positive control group, and electroacupuncture group. Electroacupuncture effectively decreased the number of transferase UTP nick end labeling-positive cells and extent of DNA fragmentation compared with the control, indicating a decrease in apoptosis. Moreover, electroacupuncture decreased the expression of proteins involved in the poly-ADP ribose polymerase-1/apoptosis-inducing factor (PARP-1/AIF) pathway in vivo, and the difference was statistically significant (P < 0.05). Treatment with electroacupuncture resulted in a significant improvement in neurological function. It inhibited the increase in blood-brain barrier permeability by regulating the protein expression of matrix metalloproteinase-9, occludin, and claudin-5. Additionally, electroacupuncture limited the development of cerebral edema and microglial activation in early brain injury after SAH. In conclusion, electroacupuncture can ameliorate early brain injury after SAH, and this may occur via inhibition of the PARP-1/AIF pathway.
Collapse
|
37
|
Ma Z, Zhang Z, Bai F, Jiang T, Yan C, Wang Q. Electroacupuncture Pretreatment Alleviates Cerebral Ischemic Injury Through α7 Nicotinic Acetylcholine Receptor-Mediated Phenotypic Conversion of Microglia. Front Cell Neurosci 2019; 13:537. [PMID: 31866829 PMCID: PMC6908971 DOI: 10.3389/fncel.2019.00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) pretreatment alleviates cerebral ischemic injury through α7 nicotinic acetylcholine receptor (α7nAChR). We attempted to investigate whether the phenotypic conversion of microglia was involved in the therapeutic effect of EA pretreatment in cerebral ischemia through α7nAChR. Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) after EA or α7nAChR agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide hydrochloride (PHA-543,613 hydrochloride) and antagonist α-bungarotoxin (α-BGT) pretreatment. Primary microglia were subjected to drug pretreatment and oxygen-glucose deprivation (OGD). The expressions of the classical activated phenotype (M1) microglia markers induced nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and cluster of differentiation 86 (CD86); the alternative activated phenotype (M2) microglia markers arginase-1 (Arg-1), transforming growth factor-β1 (TGF-β1), and cluster of differentiation 206 (CD206); and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in the ischemic penumbra or in the supernatant of primary microglia were analyzed. The infarction volume and neurological scores were assessed 72 h after reperfusion. The cell viability and lactate dehydrogenase (LDH) release of neurons co-cultured with microglia were analyzed using cell counting kit-8 (CCK-8) and LDH release assays. EA pretreatment decreased the expressions of M1 markers (iNOS, IL-1β, and CD86) and pro-inflammatory cytokines (TNF-α and IL-6), whereas it increased the expressions of M2 markers (Arg-1, TGF-β1, and CD206) and anti-inflammatory cytokines (IL-4 and IL-10) by activating α7nAChR. EA pretreatment also significantly reduced the infarction volume and improved the neurological deficit. The activation of α7nAChR in microglia relieved the inflammatory response of primary microglia subjected to OGD and attenuated the injury of neurons co-cultured with microglia. In conclusion, EA pretreatment alleviates cerebral ischemic injury through α7nAChR-mediated phenotypic conversion of microglia, which may be a new mechanism for the EA pretreatment-induced neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Zhi Ma
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zengli Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuhai Bai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoying Yan
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Rakib F, Ali CM, Yousuf M, Afifi M, Bhatt PR, Ullah E, Al-Saad K, Ali MHM. Investigation of Biochemical Alterations in Ischemic Stroke Using Fourier Transform Infrared Imaging Spectroscopy-A Preliminary Study. Brain Sci 2019; 9:brainsci9110293. [PMID: 31717715 PMCID: PMC6895834 DOI: 10.3390/brainsci9110293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Brain damage, long-term disability and death are the dreadful consequences of ischemic stroke. It causes imbalance in the biochemical constituents that distorts the brain dynamics. Understanding the sub-cellular alterations associated with the stroke will contribute to deeper molecular understanding of brain plasticity and recovery. Current routine approaches examining lipid and protein biochemical changes post stoke can be difficult. Fourier Transform Infrared (FTIR) imaging spectroscopy can play a vital role in detecting these molecular alterations on a sub-cellular level due to its high spatial resolution, accuracy and sensitivity. This study investigates the biochemical and molecular changes in peri-infract zone (PIZ) (contiguous area not completely damaged by stroke) and ipsi-lesional white matter (WM) (right below the stroke and PIZ regions) nine weeks post photothrombotic ischemic stroke in rats. Materials and Methods: FTIR imaging spectroscopy and transmission electron microscopy (TEM) techniques were applied to investigate brain tissue samples while hematoxylin and eosin (H&E) stained images of adjacent sections were prepared for comparison and examination the morphological changes post stroke. Results: TEM results revealed shearing of myelin sheaths and loss of cell membrane, structure and integrity after ischemic stroke. FTIR results showed that ipsi-lesional PIZ and WM experienced reduction in total protein and total lipid content compared to contra-lesional hemisphere. The lipid/protein ratio reduced in PIZ and adjacent WM indicated lipid peroxidation, which results in lipid chain fragmentation and an increase in olefinic content. Protein structural change is observed in PIZ due to the shift from random coli and α-helical structures to β-sheet conformation. Conclusion: FTIR imaging bio-spectroscopy provide novel biochemical information at sub-cellular levels that be difficult to be obtained by routine approaches. The results suggest that successful therapeutic strategy that is based on administration of anti-oxidant therapy, which could reduce and prevent neurotoxicity by scavenging the lipid peroxidation products. This approach will mitigate tissue damage in chronic ischemic period. FTIR imaging bio-spectroscopy can be used as a powerful tool and offer new approach in stroke and neurodegenerative diseases research.
Collapse
Affiliation(s)
- Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Carmen M. Ali
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha 2713, Qatar;
| | - Mohammed Afifi
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Pooja R. Bhatt
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar;
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
- Correspondence: (K.A.-S.); (M.H.M.A.)
| | - Mohamed H. M. Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
- Qatar National Library, Doha 5825, Qatar
- Correspondence: (K.A.-S.); (M.H.M.A.)
| |
Collapse
|
39
|
Signal Transduction Pathways of Acupuncture for Treating Some Nervous System Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2909632. [PMID: 31379957 PMCID: PMC6657648 DOI: 10.1155/2019/2909632] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
In this article, we review signal transduction pathways through which acupuncture treats nervous system diseases. We electronically searched the databases, including PubMed, MEDLINE, clinical Key, the Cochrane Library, and the China National Knowledge Infrastructure from their inception to December 2018 using the following MeSH headings and keywords alone or in varied combination: acupuncture, molecular, signal transduction, genetic, cerebral ischemic injury, cerebral hemorrhagic injury, stroke, epilepsy, seizure, depression, Alzheimer's disease, dementia, vascular dementia, and Parkinson's disease. Acupuncture treats nervous system diseases by increasing the brain-derived neurotrophic factor level and involves multiple signal pathways, including p38 MAPKs, Raf/MAPK/ERK 1/2, TLR4/ERK, PI3K/AKT, AC/cAMP/PKA, ASK1-JNK/p38, and downstream CREB, JNK, m-TOR, NF-κB, and Bcl-2/Bax balance. Acupuncture affects synaptic plasticity, causes an increase in neurotrophic factors, and results in neuroprotection, cell proliferation, antiapoptosis, antioxidant activity, anti-inflammation, and maintenance of the blood-brain barrier.
Collapse
|
40
|
The Effects of Sodium Dichloroacetate on Mitochondrial Dysfunction and Neuronal Death Following Hypoglycemia-Induced Injury. Cells 2019; 8:cells8050405. [PMID: 31052436 PMCID: PMC6562710 DOI: 10.3390/cells8050405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Our previous studies demonstrated that some degree of neuronal death is caused by hypoglycemia, but a subsequent and more severe wave of neuronal cell death occurs due to glucose reperfusion, which results from the rapid restoration of low blood glucose levels. Mitochondrial dysfunction caused by hypoglycemia leads to increased levels of pyruvate dehydrogenase kinase (PDK) and suppresses the formation of ATP by inhibiting pyruvate dehydrogenase (PDH) activation, which can convert pyruvate into acetyl-coenzyme A (acetyl-CoA). Sodium dichloroacetate (DCA) is a PDK inhibitor and activates PDH, the gatekeeper of glucose oxidation. However, no studies about the effect of DCA on hypoglycemia have been published. In the present study, we hypothesized that DCA treatment could reduce neuronal death through improvement of glycolysis and prevention of reactive oxygen species production after hypoglycemia. To test this, we used an animal model of insulin-induced hypoglycemia and injected DCA (100 mg/kg, i.v., two days) following hypoglycemic insult. Histological evaluation was performed one week after hypoglycemia. DCA treatment reduced hypoglycemia-induced oxidative stress, microglial activation, blood–brain barrier disruption, and neuronal death compared to the vehicle-treated hypoglycemia group. Therefore, our findings suggest that DCA may have the therapeutic potential to reduce hippocampal neuronal death after hypoglycemia.
Collapse
|
41
|
Fang M, Zhong L, Jin X, Cui R, Yang W, Gao S, Lv J, Li B, Liu T. Effect of Inflammation on the Process of Stroke Rehabilitation and Poststroke Depression. Front Psychiatry 2019; 10:184. [PMID: 31031649 PMCID: PMC6470379 DOI: 10.3389/fpsyt.2019.00184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
A considerable body of evidence has shown that inflammation plays an important role in the process of stroke rehabilitation and development of poststroke depression (PSD). However, the specific molecular and cellular mechanisms involved remain unclear. In this review, we summarize how neuroinflammation affects stroke rehabilitation and PSD. We mainly focus on the immune/inflammatory response, involving astrocytes, microglia, monocyte-derived macrophages, cytokines (tumor necrosis factor alpha, interleukin 1), and microRNAs (microRNA-124, microRNA 133b). This review provides new insights into the effect of inflammation on the process of stroke rehabilitation and PSD and potentially offer new therapeutic targets of stroke and PSD.
Collapse
Affiliation(s)
- Meidan Fang
- Department of General Surgery, Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Oncology and Hematology, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Lv
- Chang Chun University of Chinese Medicine, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Xing Y, Zhang M, Li WB, Dong F, Zhang F. Mechanisms Involved in the Neuroprotection of Electroacupuncture Therapy for Ischemic Stroke. Front Neurosci 2018; 12:929. [PMID: 30618558 PMCID: PMC6297779 DOI: 10.3389/fnins.2018.00929] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the main causes of death all over the world. As the combination of acupuncture and electric stimulation, electroacupuncutre is a safe and effective therapy, which is commonly applied in ischemic stroke therapy in both experimental studies and clinical settings. The review was performed via searching for related articles in the databases of OVID, PUBMED, and ISI Web of Science from their respective inceptions to May 2018. In this review, we summarized the mechanism of EA for ischemic stroke via a series of factors, consisting of apoptosis related-factors, inflammatory factors, autophagy-related factors, growth factors, transcriptional factors, cannabinoid CB1 receptors, and other factors. In summary, EA stimulation may effectively alleviate ischemic brain injury via a series of signal pathways and various other factors.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
43
|
Zhang J, Wang Y, Guo Y, Ji X, Wang S. [Effect of electro-acupuncture at Zusanli acupoint on postoperative T cell immune function in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1384-1388. [PMID: 30514690 DOI: 10.12122/j.issn.1673-4254.2018.11.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To study the effect of electro- acupuncture at Zusanli acupoint in regulating perioperative cell immune functions in rats. METHODS Forty-two SD rats were divided into blank control group (n=6), model group (n=18), and electroacupuncture group (n=18). The rats in the latter two groups underwent thigh incision and femoral dissection under anesthesia; the rats in electro-acupuncture group received electro-acupuncture at bilateral Zusanli acupoint for 15 min before anesthesia and 1 h after the surgery. The rats in the model group and electro-acupuncture group were sacrificed at 6 h, 24 h, and 72 h after the operation and blood samples were taken from the ventricle for analyzing CD3, CD4, and CD8 T cell subpopulations and calculation of CD4/CD8 using flow cytometry. ELISA was used to detect the levels of interleukin-1 (IL-1) and IL-6. RESULTS The CD3 T cell subpopulation was significantly lower in the model group and electro-acupuncture group than in the blank group at 6 h and 24 h after the operation. At 72 h after the operation, CD3 subpopulation levels still remained low in the model group, but recovered the control level in electro-acupuncture group. At each time point of measurement, CD3 level was significantly lower in the model group than in the electro-acupuncture group. CD4 level in the model group was significantly lowered at 6 h and 24 h after the operation, and recovered the control level at 72 h. In the electro-acupuncture group, CD4 level was significantly lowered at 6 h after the operation, but recovered the control level at 24 h. At 24 h and 72 h, the levels of CD4 were significantly lower in the model group than in the electro-acupuncture group. CD8 level underwent no significant changes after the operation in either the model group or electro-acupuncture group. CD4/CD8 was significantly lowered at 24 h and 72 h after the operation in the model group but showed no significant variation in the electro-acupuncture group. Compared with that in the control group, IL-1 level was significantly lowered in both the model group and electroacupuncture group at 6 h, 24 h, and 72 h after the operation, and was significantly lower in the model group than in the electroacupuncture group at these time points. IL-6 level increased significantly in the model group and the electro- acupuncture group at 6 h and 24 h. at 72 h, IL-6 level was obviously lowered in the electro-acupuncture group but remained elevated in the model group. CONCLUSIONS Electro-acupuncture alleviates postoperative immune suppression and promotes recovery of the immune function in rats, suggesting a protective effect of electro-acupuncture at Zusanli acupoint on cellular immune function after surgery.
Collapse
Affiliation(s)
- Jianxing Zhang
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yan Wang
- Department of Science and Education, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yuanbo Guo
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xuexia Ji
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
44
|
Xu H, Mu S, Qin W. Microglia TREM2 is required for electroacupuncture to attenuate neuroinflammation in focal cerebral ischemia/reperfusion rats. Biochem Biophys Res Commun 2018; 503:3225-3234. [PMID: 30149915 DOI: 10.1016/j.bbrc.2018.08.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Neuroinflammation plays a critical role in ischemic stroke pathology and could be a promising target in ischemic stroke. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglia-specific receptor in the CNS that is involved in regulating neuroinflammation in cerebral ischemia. However, the role of TREM2 in ischemic stroke is controversial. Electroacupuncture (EA) is an effective therapy for alleviating stroke-induced neuroinflammation. Here, we found that ischemic stroke induced an increased microglial TREM2 expression, and EA treatment can further promote microglial TREM2 expression following cerebral ischemia. TREM2 overexpression was observed to play a neuroprotective role by improving the neurobehavioral deficit and reducing the cerebral infarct volume 72 h after reperfusion, whereas TREM2 silencing had the opposite effects. Moreover, the effects of EA on improving stroke outcome and suppressing neuroinflammation in the brain were reversed by TREM2 silencing. Finally, TREM2 silencing also suppressed the ability of EA to regulate the PI3K/Akt and NF-κB signaling pathways. Altogether, the results show that TREM2 could be a potential target in EA treatment for attenuating inflammatory injury following cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Song Mu
- Department of Anus & Intestine Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, 550004, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
45
|
Xing Y, Yang SD, Wang MM, Dong F, Feng YS, Zhang F. Electroacupuncture Alleviated Neuronal Apoptosis Following Ischemic Stroke in Rats via Midkine and ERK/JNK/p38 Signaling Pathway. J Mol Neurosci 2018; 66:26-36. [PMID: 30062439 DOI: 10.1007/s12031-018-1142-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
This study aimed to evaluate the effects of electroacupuncture (EA) intervention administered at rats of middle cerebral artery occlusion (MCAO)/reperfusion. Fifty-four male Sprague-Dawley rats were divided into three groups, consisting of sham group, MCAO/R group, and EA group. EA treatment at Quchi and Zusanli acupoints was applied in rats of EA group at 24 h after MCAO once per day for 3 days. Our results indicated that EA treatment reduced infarct volumes and neurological deficits, as well alleviated the apoptotic cells in peri-infarct cortex, indicating that EA exerted neuroprotective effect in cerebral ischemic rats. Moreover, EA treatment may effectively reverse the upregulation of caspase-3 and Bim and alleviate the inhibition of Bcl-2 following 72-h ischemic stroke. EA may significantly reverse the promoted relative density level of p-ERK1/2, p-JNK, and p-p38 in the EA group compared with the MCAO/R group. In addition, the growth factor midkine (MK) was upregulated at 72 h after MCAO/R, and EA treatment may significantly prompt expression of MK. Our study demonstrated that EA exerted neuroprotective effect against neuronal apoptosis and the mechanism might involve in upregulation of MK and mediation of ERK/JNK/p38 signal pathway.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Si-Dong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China. .,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
46
|
Park JY, Namgung U. Electroacupuncture therapy in inflammation regulation: current perspectives. J Inflamm Res 2018; 11:227-237. [PMID: 29844696 PMCID: PMC5963483 DOI: 10.2147/jir.s141198] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although acupuncture therapy is increasingly used to treat diverse symptoms and disorders in humans, its underlying mechanism is not known well. Only recently have experimental studies begun to provide insights into how acupuncture stimulation generates and relates to pathophysiological responsiveness. Acupuncture intervention is frequently used to control pathologic symptoms in several visceral organs, and a growing number of studies using experimental animal models suggest that acupuncture stimulation may be involved in inducing anti-inflammatory responses. The vagus nerve, a principal parasympathetic nerve connecting neurons in the central nervous system to cardiovascular systems and a majority of visceral organs, is known to modulate neuroimmune communication and anti-inflammatory responses in target organs. Here, we review a broad range of experimental studies demonstrating anti-inflammatory effects of electroacupuncture in pathologic animal models of cardiovascular and visceral organs and also ischemic brains. Then, we provide recent progress on the role of autonomic nerve activity in anti-inflammation mediated by electroacupuncture. We also discuss a perspective on the role of sensory signals generated by acupuncture stimulation, which may induce a neural code unique to acupuncture in the central nervous system.
Collapse
Affiliation(s)
- Ji-Yeun Park
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| |
Collapse
|
47
|
Frank LR, Roynard PFP. Veterinary Neurologic Rehabilitation: The Rationale for a Comprehensive Approach. Top Companion Anim Med 2018; 33:49-57. [PMID: 30236409 DOI: 10.1053/j.tcam.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/07/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
The increase in client willingness to pursue surgical procedures, the heightened perceived value of veterinary patients, and the desire to provide comprehensive medical care have driven the recent demand of using an integrative treatment approach in veterinary rehabilitation. Physical therapy following neurologic injury has been the standard of care in human medicine for decades, whereas similar rehabilitation techniques have only recently been adapted and utilized in veterinary medicine. Spinal cord injury is the most common neurologic disease currently addressed by veterinary rehabilitation specialists and will be the primary focus of this review; however, research in other neurologic conditions will also be discussed. Of particular interest, to clients and veterinarians are techniques and modalities used to promote functional recovery after neurologic injury, which can mean the difference between life and death for many veterinary patients. The trend in human neurologic rehabilitation, often regardless of etiology, is a multimodal approach to therapy. Evidence supports faster and improved recoveries in people after neurologic injury using a combination of rehabilitation techniques. Although the primary neurological disorders researched tend to be spinal cord injury, peripheral neuropathies, allodynia, multiple sclerosis, and strokes-many correlations can be made to common veterinary neurological disorders. Such comprehensive protocols entail gait training activities in combination with neuromuscular electrical stimulation and directed exercises. Additionally, pain-relieving and functional benefits are bolstered when acupuncture is used in addition to rehabilitation. Studies, both laboratory and clinical, support the use of acupuncture in the management of neurologic conditions in small animals, specifically in cases of intervertebral disc disease, other myelopathies, and neuropathic pain conditions. Acupuncture's ability to promote analgesia, stimulate trophic factors, and decrease inflammation, including neuroinflammation, make it an alluring adjunct therapy after neurologic injury. Although there is limited research in veterinary medicine on physical techniques that expedite recovery after neurologic injury, there are sparse publications on clinical veterinary research suggesting the benefits of acupuncture, rehabilitation, and LASER in dogs with intervertebral disk disease. Accordingly, due to the relative lack of evidence-based studies in veterinary neurologic rehabilitation, much of the data available is human or laboratory-animal based, however, evidence supports the utilization of an early, comprehensive treatment protocol for optimal neurologic recovery. The rationale for why an integrative approach is critical will be detailed in this review; in addition, literature on specific physical rehabilitation techniques that have evidence of improved recoveries after neurologic injury, will be addressed.
Collapse
Affiliation(s)
- Lauren R Frank
- Physical Rehabilitation and Acupuncture Service, Long Island Veterinary Specialists, Plainview, NY, USA
| | - Patrick F P Roynard
- Neurology/Neurosurgery Department, Long Island Veterinary Specialists, Plainview, NY, USA; Fipapharm, Mont-Saint-Aignan, France.
| |
Collapse
|
48
|
Effects of Protocatechuic Acid (PCA) on Global Cerebral Ischemia-Induced Hippocampal Neuronal Death. Int J Mol Sci 2018; 19:ijms19051420. [PMID: 29747437 PMCID: PMC5983751 DOI: 10.3390/ijms19051420] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Global cerebral ischemia (GCI) is one of the main causes of hippocampal neuronal death. Ischemic damage can be rescued by early blood reperfusion. However, under some circumstances reperfusion itself can trigger a cell death process that is initiated by the reintroduction of blood, followed by the production of superoxide, a blood⁻brain barrier (BBB) disruption and microglial activation. Protocatechuic acid (PCA) is a major metabolite of the antioxidant polyphenols, which have been discovered in green tea. PCA has been shown to have antioxidant effects on healthy cells and anti-proliferative effects on tumor cells. To test whether PCA can prevent ischemia-induced hippocampal neuronal death, rats were injected with PCA (30 mg/kg/day) per oral (p.o) for one week after global ischemia. To evaluate degenerating neurons, oxidative stress, microglial activation and BBB disruption, we performed Fluoro-Jade B (FJB), 4-hydroxynonenal (4HNE), CD11b, GFAP and IgG staining. In the present study, we found that PCA significantly decreased degenerating neuronal cell death, oxidative stress, microglial activation, astrocyte activation and BBB disruption compared with the vehicle-treated group after ischemia. In addition, an ischemia-induced reduction in glutathione (GSH) concentration in hippocampal neurons was recovered by PCA administration. Therefore, the administration of PCA may be further investigated as a promising tool for decreasing hippocampal neuronal death after global cerebral ischemia.
Collapse
|
49
|
Xu H, Qin W, Hu X, Mu S, Zhu J, Lu W, Luo Y. Lentivirus-mediated overexpression of OTULIN ameliorates microglia activation and neuroinflammation by depressing the activation of the NF-κB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflammation 2018; 15:83. [PMID: 29544517 PMCID: PMC5856386 DOI: 10.1186/s12974-018-1117-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background Ischemic stroke-induced neuroinflammation is mainly mediated by microglial cells. The nuclear factor kappa B (NF-κB) pathway is the key transcriptional pathway that initiates inflammatory responses following cerebral ischemia. OTULIN, a critical negative regulator of the NF-κΒ signaling pathway, exerts robust effects on peripheral immune cell-mediated inflammation and is regarded as an essential mediator for repressing inflammation in vivo. The effect of OTULIN on inflammatory responses in the central nervous system (CNS) was previously unstudied. This current study investigated the anti-inflammatory effect of OTULIN both in vitro and in vivo in ischemic stroke models. Methods Sprague-Dawley (SD) rats were subjected to transient middle cerebral artery occlusion (tMCAO) or an intraperitoneal injection of lipopolysaccharide (LPS). Overexpression of the OTULIN gene was utilized to observe the effect of OTULIN on ischemic stroke outcomes. The effect of OTULIN overexpression on microglia-mediated neuroinflammation was examined in rat primary microglia (PM) and in the microglial cell line N9 after induction by oxygen-glucose deprivation (OGD)-treated neuronal medium. The activation and inflammatory responses of microglia were detected using immunofluorescence, ELISA, and qRT-PCR. The details of molecular mechanism were assessed using Western blotting. Results In the tMCAO rats, the focal cerebral ischemia/reperfusion injury induced a continuous increase in OTULIN expression within 72 h, and OTULIN expression was increased in activated microglial cells. OTULIN overexpression obviously decreased the cerebral infarct volume, improved the neurological function deficits, and reduced neuronal loss at 72 h after reperfusion, and it also inhibited the activation of microglia and attenuated the release of TNF-α, IL-1β, and IL-6 by suppressing the NF-κB pathway at 24 h after tMCAO. In vitro, OTULIN overexpression inhibited the microglia-mediated neuroinflammation by reducing the production of TNF-α, IL-1β, and IL-6 via depressing the NF-κB pathway in both PM and N9 cells. Conclusions OTULIN provides a potential therapeutic target for ischemic brain injury by ameliorating the excessive activation of microglial cells and neuroinflammation through repressing the NF-κB signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12974-018-1117-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's hospital, Guizhou, 50002, China
| | - Song Mu
- Department of Anus & Intestine surgery, the Affiliated Hospital of Guizhou Medical University, Guizhou, 550004, China
| | - Jun Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenhao Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
50
|
Liu XY, Dai XH, Zou W, Yu XP, Teng W, Wang Y, Yu WW, Ma HH, Chen QX, Liu P, Guan RQ, Dong SS. Acupuncture through Baihui (DU20) to Qubin (GB7) mitigates neurological impairment after intracerebral hemorrhage. Neural Regen Res 2018; 13:1425-1432. [PMID: 30106055 PMCID: PMC6108213 DOI: 10.4103/1673-5374.235298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays an important role in nerve defects caused by intracerebral hemorrhage. Repairing brain damage by inhibiting the macrophage-inducible C-type lectin/spleen tyrosine kinase (Mincle/Syk) signaling pathway is a potential new target for treating cerebral hemorrhage. In this study, we aimed to determine whether acupuncture through Baihui (DU20) to Qubin (GB7) is an effective treatment for intracerebral hemorrhage through the Mincle/Syk signaling pathway. An intracerebral hemorrhage rat model was established by autologous blood infusion into the caudate nucleus. Acupuncture through Baihui to Qubin was performed for 30 minutes, once every 12 hours, for a total of three times. Piceatannol (34.62 mg/kg), a Syk inhibitor, was intraperitoneally injected as a control. Modified neurological severity score was used to assess neurological function. Brain water content was measured. Immunohistochemistry and western blot assay were used to detect immunoreactivity and protein expression levels of Mincle, Syk, and CARD9. Real-time polymerase chain reaction was used to determine interleukin-1β mRNA levels. Hematoxylin-eosin staining was performed to observe histopathological changes. Our results showed that acupuncture through Baihui to Qubin remarkably improved neurological function and brain water content, and inhibited immunoreactivity and expression of Mincle, Syk, CARD9, and interkeukin-1β. Moreover, this effect was similar to piceatannol. These findings suggest that acupuncture through Baihui to Qubin can improve neurological impairment after cerebral hemorrhage by inhibiting the Mincle/Syk signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine; Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Teng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ying Wang
- Department of Pharmacology of Dali University, Dali, Yunnan Province, China
| | - Wei-Wei Yu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Hui-Hui Ma
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Qiu-Xin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Peng Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Rui-Qiao Guan
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Shan-Shan Dong
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|