1
|
Shin S, Park J, Choi HY, Bu Y, Lee K. Antihypertensive Effects of Lindera erythrocarpa Makino via NO/cGMP Pathway and Ca 2+ and K + Channels. Nutrients 2024; 16:3003. [PMID: 39275318 PMCID: PMC11397354 DOI: 10.3390/nu16173003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Studies have demonstrated the therapeutic effects of Lindera plants. This study was undertaken to reveal the antihypertensive properties of Lindera erythrocarpa leaf ethanolic extract (LEL). Aorta segments of Sprague-Dawley rats were used to study the vasodilatory effect of LEL, and the mechanisms involved were evaluated by treating specific inhibitors or activators that affect the contractility of blood vessels. Our results revealed that LEL promotes a vasorelaxant effect through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, blocking the Ca2+ channels, opening the K+ channels, and inhibiting the vasoconstrictive action of angiotensin II. In addition, the effects of LEL on blood pressure were investigated in spontaneously hypertensive rats by the tail-cuff method. LEL (300 or 1000 mg/kg) was orally administered to the rats, and 1000 mg/kg of LEL significantly lowered the blood pressure. Systolic blood pressure decreased by -20.06 ± 4.87%, and diastolic blood pressure also lowered by -30.58 ± 5.92% at 4 h in the 1000 mg/kg LEL group. Overall, our results suggest that LEL may be useful to treat hypertensive diseases, considering its vasorelaxing and hypotensive effects.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Chakraborty S, Verma A, Garg R, Singh J, Verma H. Cardiometabolic Risk Factors Associated With Type 2 Diabetes Mellitus: A Mechanistic Insight. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231220780. [PMID: 38148756 PMCID: PMC10750528 DOI: 10.1177/11795514231220780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
A complex metabolic condition referred to as Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR) and decreased insulin production. Obesity, dyslipidemia, hypertension, and chronic inflammation are just a few of the cardiometabolic illnesses that people with T2DM are more likely to acquire and results in cardiovascular issues. It is essential to comprehend the mechanistic insights into these risk variables in order to prevent and manage cardiovascular problems in T2DM effectively. Impaired glycemic control leads to upregulation of De novo lipogenesis (DNL), promote hepatic triglyceride (TG) synthesis, worsening dyslipidemia that is accompanied by low levels of high density lipoprotein cholesterol (HDL-C) and high amounts of small, dense low-density lipoprotein cholesterol (LDL-C) further developing atherosclerosis. By causing endothelial dysfunction, oxidative stress, and chronic inflammation, chronic hyperglycemia worsens already existing cardiometabolic risk factors. Vasoconstriction, inflammation, and platelet aggregation are caused by endothelial dysfunction, which is characterized by decreased nitric oxide production, increased release of vasoconstrictors, proinflammatory cytokines, and adhesion molecules. The loop of IR and endothelial dysfunction is sustained by chronic inflammation fueled by inflammatory mediators produced in adipose tissue. Infiltrating inflammatory cells exacerbate inflammation and the development of plaque in the artery wall. In addition, the combination of chronic inflammation, dyslipidemia, and IR contributes to the emergence of hypertension, a prevalent comorbidity in T2DM. The ability to target therapies and management techniques is made possible by improvements in our knowledge of these mechanistic insights. Aim of present review is to enhance our current understanding of the mechanistic insights into the cardiometabolic risk factors related to T2DM provides important details into the interaction of pathophysiological processes resulting in cardiovascular problems. Understanding these pathways will enable us to create efficient plans for the prevention, detection, and treatment of cardiovascular problems in T2DM patients, ultimately leading to better overall health outcomes.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- Overseas R & D Centre, Overseas HealthCare Pvt Ltd., Phillaur, Punjab, India
| | - Anjali Verma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev Garg
- IKG Punjab Technical University, Kapurthala, India
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Hitesh Verma
- Overseas R & D Centre, Overseas HealthCare Pvt Ltd., Phillaur, Punjab, India
- IKG Punjab Technical University, Kapurthala, India
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
- Biofern Life Sciences Pvt Ltd, Karnataka, India
| |
Collapse
|
3
|
Satyadev N, Rivera MI, Nikolov NK, Fakoya AOJ. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol 2023; 14:1241096. [PMID: 37745252 PMCID: PMC10515224 DOI: 10.3389/fphys.2023.1241096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic disorders worldwide. However, T2DM still remains underdiagnosed and undertreated resulting in poor quality of life and increased morbidity and mortality. Given this ongoing burden, researchers have attempted to locate new therapeutic targets as well as methodologies to identify the disease and its associated complications at an earlier stage. Several studies over the last few decades have identified exosomes, small extracellular vesicles that are released by cells, as pivotal contributors to the pathogenesis of T2DM and its complications. These discoveries suggest the possibility of novel detection and treatment methods. This review provides a comprehensive presentation of exosomes that hold potential as novel biomarkers and therapeutic targets. Additional focus is given to characterizing the role of exosomes in T2DM complications, including diabetic angiopathy, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and diabetic wound healing. This study reveals that the utilization of exosomes as diagnostic markers and therapies is a realistic possibility for both T2DM and its complications. However, the majority of the current research is limited to animal models, warranting further investigation of exosomes in clinical trials. This review represents the most extensive and up-to-date exploration of exosomes in relation to T2DM and its complications.
Collapse
Affiliation(s)
- Nihal Satyadev
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Milagros I. Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | | | | |
Collapse
|
4
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
5
|
Chuan W, Yuan L, Wen J, Jianwei Z, Caiji W, Zeqi Z, Yalan L, Renlong J, Kang L, Wei L, Houguang L, Wen L, Yuehua Q, Xuanyi L. cAMP-Epac1 signaling is activated in DDAVP-induced endolymphatic hydrops of guinea pigs. Braz J Otorhinolaryngol 2023; 89:469-476. [PMID: 37116375 PMCID: PMC10165185 DOI: 10.1016/j.bjorl.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVE To explore whether Cyclic Adenosine Monophosphate (cAMP)-Epac1 signaling is activated in 1-Desamino-8-D-arginine-Vasopressin-induced Endolymphatic Hydrops (DDAVP-induced EH) and to provide new insight for further in-depth study of DDAVP-induced EH. METHODS Eighteen healthy, red-eyed guinea pigs (36 ears) weighing 200-350 g were randomly divided into three groups: the control group, which received intraperitoneal injection of sterile saline (same volume as that in the other two groups) for 7 consecutive days; the DDAVP-7d group, which received intraperitoneal injection of 10 mg/mL/kg DDAVP for 7 consecutive days; and the DDAVP-14d group, which received intraperitoneal injection of 10 μg/mL/kg DDAVP for 14 consecutive days. After successful modeling, all animals were sacrificed, and cochlea tissues were collected to detect the mRNA and protein expression of the exchange protein directly activated by cAMP-1 and 2 (Epac1, Epac2), and Repressor Activator Protein-1 (Rap1) by Reverse Transcription (RT)-PCR and western blotting, respectively. RESULTS Compared to the control group, the relative mRNA expression of Epac1, Epac2, Rap1A, and Rap1B in the cochlea tissue of the DDAVP-7d group was significantly higher (p < 0.05), while no significant difference in Rap1 GTPase activating protein (Rap1gap) mRNA expression was found between the two groups. The relative mRNA expression of Epac1, Rap1A, Rap1B, and Rap1gap in the cochlea tissue of the DDAVP-14d group was significantly higher than that of the control group (p < 0.05), while no significant difference in Epac2 mRNA expression was found between the DDAVP-14d and control groups. Comparison between the DDAVP-14d and DDAVP-7d groups showed that the DDAVP-14d group had significantly lower Epac2 and Rap1A (p < 0.05) and higher Rap1gap (p < 0.05) mRNA expression in the cochlea tissue than that of the DDAVP-7d group, while no significant differences in Epac1 and Rap1B mRNA expression were found between the two groups. Western blotting showed that Epac1 protein expression in the cochlea tissue was the highest in the DDAVP-14d group, followed by that in the DDAVP-7d group, and was the lowest in the control group, showing significant differences between groups (p < 0.05); Rap1 protein expression in the cochlea tissue was the highest in the DDAVP-7d group, followed by the DDAVP-14d group, and was the lowest in the control group, showing significant differences between groups (p < 0.05); no significant differences in Epac2 protein expression in the cochlea tissue were found among the three groups. CONCLUSION DDAVP upregulated Epac1 protein expression in the guinea pig cochlea, leading to activation of the inner ear cAMP-Epac1 signaling pathway. This may be an important mechanism by which DDAVP regulates endolymphatic metabolism to induce EH and affect inner ear function. OXFORD CENTRE FOR EVIDENCE-BASED MEDICINE 2011 LEVELS OF EVIDENCE: Level 5.
Collapse
Affiliation(s)
- Wang Chuan
- The Suqian Clinical College of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Suqian, China; Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Yuan
- Affiliated Hospital of Xuzhou Medical University, Department of Radiology, Xuzhou, China
| | - Jiang Wen
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Zeng Jianwei
- Affiliated Hospital of Xuzhou Medical University, Department of Radiology, Xuzhou, China
| | - Wang Caiji
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Zhao Zeqi
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Yalan
- Gulou Hospital Affiliated to Medical College of Nanjing University, Department of Otolaryngology Head and Neck Surgery, Nanjing, China
| | - Ji Renlong
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Kang
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Wei
- Fudan University, Hearing Research Key Lab of Health Ministry of China, Eye and Ear Nose and Throat Hospital, Department of Otology and Skull Base Surgery, Shanghai, China
| | - Liu Houguang
- China University of Mining and Technology, School of Mechatronic Engineering, Xuzhou, China
| | - Liu Wen
- Xuzhou Medical University, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou, China; Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China
| | - Qiao Yuehua
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Xuanyi
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China.
| |
Collapse
|
6
|
Jardin I, Berna-Erro A, Nieto-Felipe J, Macias A, Sanchez-Collado J, Lopez JJ, Salido GM, Rosado JA. Similarities and Differences between the Orai1 Variants: Orai1α and Orai1β. Int J Mol Sci 2022; 23:ijms232314568. [PMID: 36498894 PMCID: PMC9735889 DOI: 10.3390/ijms232314568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Orai1, the first identified member of the Orai protein family, is ubiquitously expressed in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store depletion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+ release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC) current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secretory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3). Furthermore, Orai1 possesses two variants, Orai1α and Orai1β, the latter lacking 63 amino acids in the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each variant. Here, we review the current knowledge about the differences between Orai1α and Orai1β, the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory effect within the cell.
Collapse
|
7
|
Wang C, Li Y, Liu W, Wang C, Jiang W, Zhao Z, Li X, Qiao Y, Dai C. The expression and significance of Epac1 and Epac2 in the inner ear of guinea pigs. Eur Arch Otorhinolaryngol 2022; 279:5207-5214. [PMID: 35438345 DOI: 10.1007/s00405-022-07380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To detect the expression of Epac1 and Epac2 in the inner ear of guinea pigs and its association with microcirculation in the inner ear. METHODS The temporal bones of 30 healthy red-eye guinea pigs (60 ears) weighing 200-350 g were collected, then the surrounding bone wall of the cochlea was removed under a dissection microscope. Real-time quantitative PCR (RT-qPCR) and Western blot were used to detect mRNA and protein expression, respectively, of Epac1 and Epac2 in the inner ear and to compare their expression in heart, liver, kidney, intestine, and lung tissues. The specimens of the cochlea included the stria vascularis, basilar membrane, saccule, and utricles isolated under a microscope to detect the localization of Epac1 and Epac2 proteins in various parts of the inner ear through immunofluorescence staining. RESULTS The RT-qPCR and Western blot results showed that Epac1 mRNA was universally expressed in the inner ear, heart, liver, kidneys, intestines, and lungs, and was highly expressed in the liver, kidneys, and intestines (p < 0.05 vs heart, liver, kidney, intestine; p > 0.05 vs lung). Epac2 mRNA was expressed in the inner ear and heart, but not in the liver, kidneys, intestines, or lungs (p < 0.05 vs Heart). Epac1 and Epac2 proteins were both expressed in the inner ear, heart, liver, kidneys, intestines, and lungs. The relative expression of Epac1 proteins in the inner ear was significantly different from the liver, kidneys, intestines, and lungs (p < 0.05). The relative expression of Epac2 proteins in the inner ear was significantly different from the liver, kidneys, and lungs (p < 0.05), but not from the heart (p = 0.127) or intestines (p = 0.274). Immunofluorescence staining observed under confocal microscopy indicated that Epac1 and Epac2 proteins were expressed in the stria vascularis, basilar membrane, saccule, and utricles of the inner ear. They were expressed in maginal cells, intermediate cells, and basal cells of the stria vascularis, and highly expressed in capillary endothelial cells. CONCLUSIONS Epac1 and Epac2 mRNA and proteins were both expressed in the inner ear of guinea pigs and evenly expressed in the spiral ganglion, basilar membrane, saccule, and utricles. However, their expression in capillary endothelial cells of the stria vascularis was more obvious, suggesting that cyclic adenosine monophosphate-Epac1 signaling may play an important role in maintaining the function of the blood-labyrinth barrier and regulating the stability of microcirculation in the inner ear.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Yuan Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Wen Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Caiji Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Wen Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yuehua Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Chunfu Dai
- National Health Commission Key Laboratory of Hearing Medicine (Fudan University), Department of Otology and Skull Base Surgery, Shanghai, 200000, People's Republic of China
| |
Collapse
|
8
|
Pinto MC, Botelho HM, Silva IAL, Railean V, Neumann B, Pepperkok R, Schreiber R, Kunzelmann K, Amaral MD. Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. J Mol Biol 2022; 434:167436. [PMID: 34990652 DOI: 10.1016/j.jmb.2021.167436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
An attractive approach to treat people with Cystic Fibrosis (CF), a life-shortening disease caused by mutant CFTR, is to compensate for the absence of this chloride/bicarbonate channel by activating alternative (non-CFTR) chloride channels. One obvious target for such "mutation-agnostic" therapeutic approach is TMEM16A (anoctamin-1/ANO1), a calcium-activated chloride channel (CaCC) which is also expressed in the airways of people with CF, albeit at low levels. To find novel TMEM16A regulators of both traffic and function, with the main goal of identifying candidate CF drug targets, we performed a fluorescence cell-based high-throughput siRNA microscopy screen for TMEM16A trafficking using a double-tagged construct expressed in human airway cells. About 700 genes were screened (2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs enhanced and 83 decreased TMEM16A traffic), being G-protein coupled receptors (GPCRs) enriched on the primary hit list. Among the 179 TMEM16A traffic enhancer siRNAs subjected to secondary screening 20 were functionally validated. Further hit validation revealed that siRNAs targeting two GPCRs - ADRA2C and CXCR3 - increased TMEM16A-mediated chloride secretion in human airway cells, while their overexpression strongly diminished calcium-activated chloride currents in the same cell model. The knockdown, and likely also the inhibition, of these two TMEM16A modulators is therefore an attractive potential therapeutic strategy to increase chloride secretion in CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal. https://twitter.com/madalenacfpinto
| | - Hugo M Botelho
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Iris A L Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Violeta Railean
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Beate Neumann
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
9
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
10
|
Fuentes N, McCullough M, Panettieri RA, Druey KM. RGS proteins, GRKs, and beta-arrestins modulate G protein-mediated signaling pathways in asthma. Pharmacol Ther 2021; 223:107818. [PMID: 33600853 PMCID: PMC8192426 DOI: 10.1016/j.pharmthera.2021.107818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Asthma is a highly prevalent disorder characterized by chronic lung inflammation and reversible airways obstruction. Pathophysiological features of asthma include episodic and reversible airway narrowing due to increased bronchial smooth muscle shortening in response to external and host-derived mediators, excessive mucus secretion into the airway lumen, and airway remodeling. The aberrant airway smooth muscle (ASM) phenotype observed in asthma manifests as increased sensitivity to contractile mediators (EC50) and an increase in the magnitude of contraction (Emax); collectively these attributes have been termed "airways hyper-responsiveness" (AHR). This defining feature of asthma can be promoted by environmental factors including airborne allergens, viruses, and air pollution and other irritants. AHR reduces airway caliber and obstructs airflow, evoking clinical symptoms such as cough, wheezing and shortness of breath. G-protein-coupled receptors (GPCRs) have a central function in asthma through their impact on ASM and airway inflammation. Many but not all treatments for asthma target GPCRs mediating ASM contraction or relaxation. Here we discuss the roles of specific GPCRs, G proteins, and their associated signaling pathways, in asthma, with an emphasis on endogenous mechanisms of GPCR regulation of ASM tone and lung inflammation including regulators of G-protein signaling (RGS) proteins, G-protein coupled receptor kinases (GRKs), and β-arrestin.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ, United States of America
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America.
| |
Collapse
|
11
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
12
|
Paulo M, Costa DEFR, Bonaventura D, Lunardi CN, Bendhack LM. Nitric Oxide Donors as Potential Drugs for the Treatment of Vascular Diseases Due to Endothelium Dysfunction. Curr Pharm Des 2021; 26:3748-3759. [PMID: 32427079 DOI: 10.2174/1381612826666200519114442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction and consequent vasoconstriction are a common condition in patients with hypertension and other cardiovascular diseases. Endothelial cells produce and release vasodilator substances that play a pivotal role in normal vascular tone. The mechanisms underlying endothelial dysfunction are multifactorial. However, enhanced reactive oxygen species (ROS) production and consequent vasoconstriction instead of endothelium-derived relaxant generation and consequent vasodilatation contribute to this dysfunction considerably. The main targets of the drugs that are currently used to treat vascular diseases concerning enzyme activities and protein functions that are impaired by endothelial nitric oxide synthase (eNOS) uncoupling and ROS production. Nitric oxide (NO) bioavailability can decrease due to deficient NO production by eNOS and/or NO release to vascular smooth muscle cells, which impairs endothelial function. Considering the NO cellular mechanisms, tackling the issue of eNOS uncoupling could avoid endothelial dysfunction: provision of the enzyme cofactor tetrahydrobiopterin (BH4) should elicit NO release from NO donors, to activate soluble guanylyl cyclase. This should increase cyclic guanosine-monophosphate (cGMP) generation and inhibit phosphodiesterases (especially PDE5) that selectively degrade cGMP. Consequently, protein kinase-G should be activated, and K+ channels should be phosphorylated and activated, which is crucial for cell membrane hyperpolarization and vasodilation and/or inhibition of ROS production. The present review summarizes the current concepts about the vascular cellular mechanisms that underlie endothelial dysfunction and which could be the target of drugs for the treatment of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Michele Paulo
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| | - Daniela E F R Costa
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Claure N Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Brasilia, Brazil
| | - Lusiane M Bendhack
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| |
Collapse
|
13
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
14
|
Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21176275. [PMID: 32872570 PMCID: PMC7503727 DOI: 10.3390/ijms21176275] [Citation(s) in RCA: 1203] [Impact Index Per Article: 240.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.
Collapse
|
15
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
16
|
Chen YF, Huang G, Wang YM, Cheng M, Zhu FF, Zhong JN, Gao YD. Exchange protein directly activated by cAMP (Epac) protects against airway inflammation and airway remodeling in asthmatic mice. Respir Res 2019; 20:285. [PMID: 31852500 PMCID: PMC6921488 DOI: 10.1186/s12931-019-1260-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background β2 receptor agonists induce airway smooth muscle relaxation by increasing intracellular cAMP production. PKA is the traditional downstream signaling pathway of cAMP. Exchange protein directly activated by cAMP (Epac) was identified as another important signaling molecule of cAMP recently. The role of Epac in asthmatic airway inflammation and airway remodeling is unclear. Methods We established OVA-sensitized and -challenged acute and chronic asthma mice models to explore the expression of Epac at first. Then, airway inflammation and airway hyperresponsiveness in acute asthma mice model and airway remodeling in chronic asthma mice model were observed respectively after treatment with Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP (8pCPT) and Epac inhibitor ESI-09. Next, the effects of 8pCPT and ESI-09 on the proliferation and apoptosis of in vitro cultured mouse airway smooth muscle cells (ASMCs) were detected with CCK-8 assays and Annexin-V staining. Lastly, the effects of 8pCPT and ESI-09 on store-operated Ca2+ entry (SOCE) of ASMCs were examined by confocal Ca2+ fluorescence measurement. Results We found that in lung tissues of acute and chronic asthma mice models, both mRNA and protein expression of Epac1 and Epac2, two isoforms of Epac, were lower than that of control mice. In acute asthma mice model, the airway inflammatory cell infiltration, Th2 cytokines secretion and airway hyperresponsiveness were significantly attenuated by 8pCPT and aggravated by ESI-09. In chronic asthma mice model, 8pCPT decreased airway inflammatory cell infiltration and airway remodeling indexes such as collagen deposition and airway smooth muscle cell proliferation, while ESI-09 increased airway inflammation and airway remodeling. In vitro cultured mice ASMCs, 8pCPT dose-dependently inhibited, whereas ESI-09 promoted ASMCs proliferation. Interestingly, 8pCPT promoted the apoptosis of ASMCs, whereas ESI-09 had no effect on ASMCs apoptosis. Lastly, confocal Ca2+ fluorescence examination found that 8pCPT could inhibit SOCE in ASMCs at 100 μM, and ESI-09 promoted SOCE of ASMCs at 10 μM and 100 μM. In addition, the promoting effect of ESI-09 on ASMCs proliferation was inhibited by store-operated Ca2+ channel blocker, SKF-96365. Conclusions Our results suggest that Epac has a protecting effect on asthmatic airway inflammation and airway remodeling, and Epac reduces ASMCs proliferation by inhibiting SOCE in part.
Collapse
Affiliation(s)
- Yi-Fei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ge Huang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Yi-Min Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ming Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Fang-Fang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Jin-Nan Zhong
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
17
|
Leal MAS, Aires R, Pandolfi T, Marques VB, Campagnaro BP, Pereira TMC, Meyrelles SS, Campos-Toimil M, Vasquez EC. Sildenafil reduces aortic endothelial dysfunction and structural damage in spontaneously hypertensive rats: Role of NO, NADPH and COX-1 pathways. Vascul Pharmacol 2019; 124:106601. [PMID: 31689530 DOI: 10.1016/j.vph.2019.106601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/07/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
Arterial hypertension is a condition associated with endothelial dysfunction, accompanied by an imbalance in the production of reactive oxygen species (ROS) and NO. The aim of this study was to investigate and elucidate the possible mechanisms of sildenafil, a selective phosphodiesterase-5 inhibitor, actions on endothelial function in aortas from spontaneously hypertensive rats (SHR). SHR treated with sildenafil (40 mg/kg/day, p.o., 3 weeks) were compared to untreated SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and vascular reactivity was determined in isolated rat aortic rings. Circulating endothelial progenitor cells and systemic ROS were measured by flow cytometry. Plasmatic total antioxidant capacity, NO production and aorta lipid peroxidation were determined by spectrophotometry. Scanning electron microscopy was used for structural analysis of the endothelial surface. Sildenafil reduced high SBP and partially restored the vasodilator response to acetylcholine and sodium nitroprusside in SHR aortic rings. Using selective inhibitors, our experiments revealed an augmented participation of NO, with a simultaneous decrease of oxidative stress and of cyclooxygenase-1 (COX-1)-derived prostanoids contribution in the endothelium-dependent vasodilation in sildenafil-treated SHR compared to non-treated SHR. Also, the relaxant responses to sildenafil and 8-Br-cGMP were normalized in sildenafil-treated SHR and sildenafil restored the pro-oxidant/antioxidant balance and the endothelial architecture. In conclusion, sildenafil reverses endothelial dysfunction in SHR by improving vascular relaxation to acetylcholine with increased NO bioavailability, reducing the oxidative stress and COX-1 prostanoids, and improving cGMP/PKG signaling. Also, sildenafil reduces structural endothelial damage. Thus, sildenafil is a promising novel pharmacologic strategy to treat endothelial dysfunction in hypertensive states reinforcing its potential role as adjuvant in the pharmacotherapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Marcos A S Leal
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Thamirys Pandolfi
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Vinicius Bermond Marques
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Thiago M C Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, ES, Brazil; Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Manuel Campos-Toimil
- Pharmacology of Chronic Diseases (CD PHARMA), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil; Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| |
Collapse
|
18
|
Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 2019; 176:1038-1050. [PMID: 29468666 PMCID: PMC6451069 DOI: 10.1111/bph.14167] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Eicosanoids represent a diverse family of lipid mediators with fundamental roles in physiology and disease. Within the eicosanoid superfamily are prostanoids, which are specifically derived from arachidonic acid by the enzyme cyclooxygenase (COX). COX has two isoforms; COX-1 and COX-2. COX-2 is the therapeutic target for the nonsteroidal anti-inflammatory drug (NSAID) class of pain medications. Of the prostanoids, prostacyclin, first discovered by Sir John Vane in 1976, remains amongst the best studied and retains an impressive pedigree as one of the fundamental cardiovascular protective pathways. Since this time, we have learnt much about how eicosanoids, COX enzymes and prostacyclin function in the cardiovascular system, knowledge that has allowed us, for example, to harness the power of prostacyclin as therapy to treat pulmonary arterial hypertension and peripheral vascular disease. However, there remain many unanswered questions in our basic understanding of the pathways, and how they can be used to improve human health. Perhaps, the most important and controversial outstanding question in the field remains; 'how do NSAIDs produce their much publicized cardiovascular side-effects?' This review summarizes the history, biology and cardiovascular function of key eicosanoids with particular focus on prostacyclin and other COX products and discusses how our knowledge of these pathways can applied in future drug discovery and be used to explain the cardiovascular side-effects of NSAIDs. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Jane A Mitchell
- Cardiothoracic PharmacologyNational Heart and Lung InstituteLondonUK
| | - Nicholas S Kirkby
- Cardiothoracic PharmacologyNational Heart and Lung InstituteLondonUK
| |
Collapse
|
19
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
20
|
Chen GH, Li YC, Lin NH, Kuo PC, Tzen JTC. Characterization of Vasorelaxant Principles from the Needles of Pinus morrisonicola Hayata. Molecules 2017; 23:molecules23010086. [PMID: 29301239 PMCID: PMC6017640 DOI: 10.3390/molecules23010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Pinus morrisonicola Hayata, usually called Taiwan five-leaf pine (5LP), is an endemic species in Taiwan and is traditionally used to relieve hypertension symptoms and improve cardiovascular function. In this study, the needle extract of 5LP was fractionated and analyzed by LC/MS/MS to search for possible antihypertensive candidates. In addition, bioassay-guided purification of the bioactive components was performed by Ca2+ fluorescent signal (Fluo 4-AM) assays. Two dihydrobenzofuran lignans, pinumorrisonide A (1) and icariside E4 (2), and one acylated flavonoid glycoside, kaempferol 3-O-α-(6‴-p-coumaroylglucosyl-β-1,4-rhamnoside) (3) were characterized from the active fractions. The structure of a new compound 1 was established on the basis of 2D NMR spectroscopic and mass spectrometric analyses, and the known compounds 2 and 3 were identified by comparison of their physical and spectroscopic data with those reported in the literature. The purified compounds 1–3 exhibited significant inhibition of Ca2+ fluorescence with IC50 values of 0.71, 0.36, and 0.20 mM, respectively. A mechanism study showed that these compounds showed vasorelaxant effects by blocking the voltage-operated Ca2+ channel (VOCC) and inhibiting Ca2+ influx to the cytoplasmic. These results suggested that 5LP and the three characterized components could be promising antihypertensive candidates for the use as VOCC blockers.
Collapse
Affiliation(s)
- Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Nan-Hei Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
21
|
García-Morales V, Luaces-Regueira M, Campos-Toimil M. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells. Biochem Pharmacol 2017; 145:94-101. [PMID: 28912066 DOI: 10.1016/j.bcp.2017.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 02/05/2023]
Abstract
3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca2+ concentration ([Ca2+]c) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca2+]c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca2+, was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca2+]c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP.
Collapse
Affiliation(s)
- Verónica García-Morales
- Pharmacology of Chronic Diseases (CD Pharma), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Luaces-Regueira
- Pharmacology of Chronic Diseases (CD Pharma), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Pharmacology of Chronic Diseases (CD Pharma), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|