1
|
Kart PÖ, Yıldız N, Gürgen SG, Sarsmaz HY, Cansu A. Effects of valproic acid, levetiracetam, carbamazepine, lamotrigine, and topiramate on LIF, E-cadherin, and FOXO1 mediator molecules in rat embryo implantation. Food Chem Toxicol 2025; 199:115352. [PMID: 40020989 DOI: 10.1016/j.fct.2025.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND This study investigated the effects of valproic acid (VPA), levetiracetam (LEV), carbamazepine (CBZ), lamotrigine (LTG), and topiramate (TPM) on LIF, E-cadherin, and FOXO1 mediator molecules during implantation in rat embryos. MATERIALS AND METHODS Sixty female rats were divided into six experimental groups, and the control solution and drugs were administered by gavage for 90 days. At the end of three months, implantation sites were obtained, and histological and immunohistochemical staining protocols were applied. RESULTS Embryonic trophectoderm cells were surrounded by inflammatory cells in the VPA group. Increased eosinophilic staining was seen in the primary decidual zone cells in the CBZ group, mast cells in the LTG group, and intense inflammatory cells in the TMP group. LIF staining in the VPA, CBZ, LTG, and TPM groups showed weak to moderate LIF expression (p < 0.001). In E-cadherin staining, the LTG group showed moderate and the TPM group showed weak immune reactions (p < 0.001). Embryonic cells and primary decidual zone cells in control, LEV, CBZ, and LTG groups showed weak to strong expression of FOXO1, while VPA and TPM groups showed no reaction (p < 0.001). CONCLUSIONS In summary, antiseizure medication use had a negative effect on the expression of proteins that play key roles in embryo implantation in young non-epileptic rats to varying degrees.
Collapse
Affiliation(s)
- Pınar Özkan Kart
- Department of Pediatric Neurology, Trabzon Kanuni Training and Research Hospital, Health Science University, Trabzon, Türkiye.
| | - Nihal Yıldız
- Department of Pediatric Neurology, Zonguldak Bülent Ecevit University Faculty of Medicine, Zonguldak, Türkiye.
| | - Seren Gülşen Gürgen
- Department of Histology and Embryology, Celal Bayar University Faculty of Health Sciences, Manisa, Türkiye.
| | - Hayrunnisa Yeşil Sarsmaz
- Department of Histology and Embryology, Celal Bayar University Faculty of Health Sciences, Manisa, Türkiye.
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Türkiye.
| |
Collapse
|
2
|
Zhang D, Liang Q, Jiang J, Liu W, Chu Y, Chen Z, Li B, Chen T, Tsao JR, Hu K. SIRT3 mitigates dry eye disease through the activation of autophagy by deacetylation of FOXO1. Exp Eye Res 2025; 254:110328. [PMID: 40064414 DOI: 10.1016/j.exer.2025.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Dry eye disease (DED) is a complex ocular condition characterized by oxidative stress, inflammation, and apoptosis. An increasing number of studies suggest that Sirtuin3 (SIRT3), a mitochondrial deacetylase, may offer protection against related pathologies. Despite these indications, the precise function and underlying mechanisms of SIRT3 in the context of DED have not been fully elucidated. Here, we observed a decline in SIRT3 expression in human corneal epithelial cells (HCE-Ts) and the corneal conjunctiva of mice as the disease advanced. Overexpression of SIRT3 in HCE-Ts reduced the accumulation of reactive oxygen species (ROS), inflammatory cytokines, and the rate of apoptosis, while its inhibition had the opposite effect. Importantly, the function of SIRT3 was exerted through the enhancement of autophagic flux. Further studies have shown that chloroquine-induced inhibition of autophagy neutralized the beneficial effects of SIRT3. In our in vivo experiments, the application of eye drops containing a SIRT3 agonist ameliorated the symptoms of DED and increased corneal autophagy in mice. Mechanistically, our study identified that the deacetylation and nuclear translocation of FOXO1 (Forkhead box O1) are pivotal for the SIRT3-mediated enhancement of autophagic flux. These findings posit that SIRT3 as an encouraging therapeutic target for DED, offering new insights into the disease's underlying mechanisms.
Collapse
Affiliation(s)
- Di Zhang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, Zhejiang China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Wei Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, China
| | - Yiran Chu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Zeying Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Boda Li
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, China
| | - Taige Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
3
|
Fang H, Liang H, Yang C, Jiang D, Luo Q, Cao WM, Zhang H, Chen C. STAMBPL1 activates the GRHL3/HIF1A/VEGFA axis through interaction with FOXO1 to promote angiogenesis in triple-negative breast cancer. eLife 2025; 13:RP102433. [PMID: 40208233 PMCID: PMC11984952 DOI: 10.7554/elife.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
In the clinic, anti-tumor angiogenesis is commonly employed for treating recurrent, metastatic, drug-resistant triple-negative, and advanced breast cancer. Our previous research revealed that the deubiquitinase STAMBPL1 enhances the stability of MKP-1, thereby promoting cisplatin resistance in breast cancer. In this study, we discovered that STAMBPL1 could upregulate the expression of the hypoxia-inducible factor HIF1α in breast cancer cells. Therefore, we investigated whether STAMBPL1 promotes tumor angiogenesis. We demonstrated that STAMBPL1 increased HIF1A transcription in a non-enzymatic manner, thereby activating the HIF1α/VEGFA signaling pathway to facilitate triple-negative breast cancer angiogenesis. Through RNA-seq analysis, we identified the transcription factor GRHL3 as a downstream target of STAMBPL1 that is responsible for mediating HIF1A transcription. Furthermore, we discovered that STAMBPL1 regulates GRHL3 transcription by interacting with the transcription factor FOXO1. These findings shed light on the role and mechanism of STAMBPL1 in the pathogenesis of breast cancer, offering novel targets and avenues for the treatment of triple-negative and advanced breast cancer.
Collapse
Affiliation(s)
- Huan Fang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Sciences, University of Chinese Academy of SciencesKunmingChina
| | - Huichun Liang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Chuanyu Yang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Dewei Jiang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Qianmei Luo
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Wen-Ming Cao
- The Department of Breast Medical Oncology, Zhejiang Cancer HospitalHangzhouChina
| | - Huifeng Zhang
- Department of Pharmacy, the First People’s Hospital of Yunnan Province/the Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Ceshi Chen
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Academy of Biomedical Engineering, Kunming Medical UniversityKunmingChina
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
4
|
Sharma P, Mohanty S, Ahmad Y. Decoding Proteomic cross-talk between hypobaric and normobaric hypoxia: Integrative analysis of oxidative stress, cytoskeleton remodeling, and inflammatory pathways. Life Sci 2025; 371:123611. [PMID: 40187642 DOI: 10.1016/j.lfs.2025.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
AIMS To investigate the differential regulation of proteomic landscapes elicited by hypobaric hypoxia (HH) and normobaric hypoxia (NH) and to shed light on the molecular cross-talk underlying pre-acclimatization strategies. MATERIALS AND METHODS Label-free LCMS-MS quantitative proteomics was employed to evaluate the lung tissues of SD rats (n = 6) subjected to 6 h of acute HH at 25,000 ft associated with reduced barometric pressure, 282 mmHg, and NH at 8 % FiO2. KEY FINDINGS Our findings indicate that NH facilitated the minimal downregulation of proteins involved in maintaining pulmonary cytoskeleton integrity, including calpain 2, vitronectin, and beta-arrestin 1, whereas HH leads to severe downregulation of these proteins, causing a greater cytoskeleton disruption. Proteins contributing to redox homeostasis such as iNOS and SOD, were upregulated in both hypoxic conditions. However, SIRT1-mediated ROS-triggered proteins, including FOXO1 and FOXO4, exhibited upregulation in HH and downregulation in NH. Other proteins, HIF-1α and IDH, were upregulated in HH compared to NH. Additionally, Hemopexin was severely downregulated in HH relative to NH. SIGNIFICANCE For the first time, this study uncovers the comparative proteomic analysis of two distinct pre-acclimatization interventions by employing varied hypoxia modeling strategies highlighting the key molecular mechanism involved in HH acclimatization induced by differential hypoxia simulating technique.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
5
|
Liu J, Zhen L, Yu D, Wang W. EFFECT AND REGULATORY MECHANISM OF SIRT6 ON POSTCARDIAC ARREST BRAIN INJURY IN RATS. Shock 2025; 63:648-655. [PMID: 39749948 DOI: 10.1097/shk.0000000000002545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ABSTRACT Aims: Brain injury occupies the predominant cause of neurological dysfunction and mortality after successful cardiopulmonary resuscitation (CPR) from cardiac arrest (CA). This study investigates the role and mechanism of Sirtuin 6 (SIRT6) in postcardiac arrest brain injury in rats. Methods: All rats were subjected to asphyxial CA followed by CPR. Two weeks before modeling, rats were infected with lentivirus containing oe-SIRT6 and oe-FOXO1 through lateral ventricular injection. qRT-PCR and Western blot quantified SIRT6 and FOXO1 expressions in brain tissues. Neurological deficit scores evaluated the neural function of rats at different time points, and Water Maze Test assessed the changes in short-term learning and memory abilities. The survival status of rats 7 days after modeling was recorded. The pathological changes in brain tissues, inflammatory factors, and apoptosis were evaluated by H&E staining, ELISA, and TUNEL, respectively. Ch-IP measured the enrichment of SIRT6 and H3K9ac in the FOXO1 promoter. Results: SIRT6 was poorly expressed while FOXO1 was highly expressed in CA/CPR rats. Elevation of SIRT6 expression alleviated neural function, behavioral ability, and survival rate, as well as abated pathological damage, inflammatory responses, and cell apoptosis in CA/CPR rats. Mechanistically, SIRT6 curbed FOXO1 transcription and expression by lowering the H3K9ac level in the FOXO1 promoter; FOXO1 overexpression abolished the improvement effect of SIRT6 overexpression on brain injury in CA/CPR rats. Conclusions: Elevation of SIRT6 expression restrained the FOXO1 expression by diminishing the H3K9ac level in the FOXO1 promoter, thereby mitigating postcardiac arrest brain injury in rats.
Collapse
Affiliation(s)
- Jianxiong Liu
- Department of Emergency Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | | | | | | |
Collapse
|
6
|
Li S, Ye T, Hou Z, Wang Y, Hao Z, Chen J. FOXO6: A unique transcription factor in disease regulation and therapeutic potential. Pharmacol Res 2025; 214:107691. [PMID: 40058512 DOI: 10.1016/j.phrs.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
FOXO6, a unique member of the Forkhead box O (FOXO) transcription factor family, has emerged as a pivotal regulator in various physiological and pathological processes, including apoptosis, oxidative stress, autophagy, cell cycle control, and inflammation. Unlike other FOXO proteins, FOXO6 exhibits distinct regulatory mechanisms, particularly its inability to undergo classical nucleocytoplasmic shuttling. These unique properties suggest that FOXO6 may function through alternative pathways, positioning it as a novel research target. This review provides the first comprehensive review of FOXO6's biological functions and its roles in the progression of multiple diseases, such as cancer, metabolic disorders, neurodegenerative conditions, and cardiovascular dysfunction. We highlight FOXO6's interaction with critical signaling pathways, including PI3K/Akt, PPARγ, and TXNIP, and discuss its contributions to tumor progression, glucose and lipid metabolism, oxidative stress, and neuronal degeneration. Moreover, FOXO6's potential as a therapeutic target is explored, with particular emphasis on its ability to modulate drug resistance and its implications for disease treatment. Despite its promising therapeutic potential, the development of FOXO6-targeted therapies remains challenging due to overlapping functions within the FOXO family and the context-dependent nature of FOXO6's regulatory roles. This review underscores the need for further experimental and clinical studies to elucidate the molecular mechanisms underlying FOXO6's functions and to validate its application in disease prevention and treatment. By systematically analyzing current research, this review aims to provide a foundational reference for future studies on FOXO6, paving the way for novel therapeutic strategies targeting this unique transcription factor.
Collapse
Affiliation(s)
- Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhitao Hou
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhihua Hao
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
7
|
Zhu JY, Chen M, Mu WJ, Luo HY, Li Y, Li S, Yan LJ, Li RY, Yin MT, Li X, Chen HM, Guo L. Exercise-induced anti-obesity effects in male mice generated by a FOXO1-KLF10 reinforcing loop promoting adipose lipolysis. Nat Commun 2025; 16:3111. [PMID: 40169574 PMCID: PMC11961606 DOI: 10.1038/s41467-025-58467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Exercise combats obesity and metabolic disorders, but the underlying mechanism is incompletely understood. KLF10, a transcription factor involved in various biological processes, has an undefined role in adipose tissue and obesity. Here, we show that exercise facilitates adipocyte-derived KLF10 expression via SIRT1/FOXO1 pathway. Adipocyte-specific knockout of KLF10 blunts exercise-promoted white adipose browning, energy expenditure, fat loss, glucose tolerance in diet-induced obese male mice. Conversely, adipocyte-specific transgenic expression of KLF10 in male mice enhanced the above metabolic profits induced by exercise. Mechanistically, KLF10 interacts with FOXO1 and facilitates the recruitment of KDM4A to form a ternary complex on the promoter regions of Pnpla2 and Lipe genes to promote these key lipolytic genes expression by demethylating H3K9me3 on their promoters, which facilitates lipolysis to defend against obesity in male mice. As a downstream effector responding to exercise, adipose KLF10 could act as a potential target in the fight against obesity.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
8
|
Qian Q, Lyu H, Wang W, Wang Q, Li D, Liu X, He Y, Shen M. Combined transcriptomic and proteomic analyses reveal relevant myelin features in mice with ischemic stroke. Funct Integr Genomics 2025; 25:64. [PMID: 40085348 PMCID: PMC11909235 DOI: 10.1007/s10142-025-01573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Ischemic stroke (IS), a leading cause of global disability and mortality, is characterized by white matter damage and demyelination. Despite advances, the molecular mechanisms driving post-IS myelin pathology remain poorly understood, limiting therapeutic development. This study investigates key myelin-related genes (MRGs) and their regulatory networks to identify novel therapeutic targets. A transient middle cerebral artery occlusion (MCAO) model was established in C57BL/6 mice, with brain tissues collected at four timepoints (Sham0D, MCAO0D, MCAO7D, MCAO14D). Transcriptomic and proteomic sequencing were performed, followed by soft clustering (Mfuzz), functional enrichment (GO/KEGG), and ROC analysis to identify key MRGs. Competing endogenous RNA (ceRNA) networks were constructed, and drug prediction was conducted using the Comparative Toxicogenomics Database (CTD) and molecular docking. Expression validation was performed via qRT-PCR and Western blot. Integrated multi-omics analysis identified Wasf3 and Slc25a5 as key MRGs, enriched in mitochondrial respiration, calcium metabolism, and cytoskeletal regulation. The AUC values of the one-to-one model scores were all greater than 0.7, suggesting that Wasf3 and Slc25a5 were able to effectively discriminate between samples from different time points. A ceRNA network revealed critical interactions, including the Wasf3-mmu-miR-423-5p-H19 axis, linking apoptosis and myelin dysfunction. Drug prediction highlighted valproic acid (VPA) as a high-affinity binder for both genes (binding energies: - 4.2 and - 4.7 kcal/mol), suggesting its potential as a therapeutic candidate for IS. Experimental validation confirmed significant downregulation of Wasf3 mRNA (p < 0.01) and protein (p = 0.069) post-IS, while Slc25a5 showed no significant changes, potentially due to sample size limitations. This study establishes Wasf3 and Slc25a5 as pivotal regulators of post-IS myelin pathology and proposes VPA as a promising therapeutic candidate to enhance remyelination. The findings underscore the utility of multi-omics approaches in bridging molecular mechanisms to clinical translation, offering new strategies for IS diagnosis and treatment.
Collapse
Affiliation(s)
- Qiuyang Qian
- Department of Rehabilitation Medicine, People's Hospital of Longhua, No 38 Jinglong Construction Road, Shenzhen, 518109, Longhua District, China
| | - Hao Lyu
- Department of Neurosurgery, Shenzhen Second People'S Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Wang
- Department of Rehabilitation Medicine, People's Hospital of Longhua, No 38 Jinglong Construction Road, Shenzhen, 518109, Longhua District, China
| | - Qiwen Wang
- Department of Rehabilitation Medicine, People's Hospital of Longhua, No 38 Jinglong Construction Road, Shenzhen, 518109, Longhua District, China
| | - Desheng Li
- Department of Rehabilitation Medicine, People's Hospital of Longhua, No 38 Jinglong Construction Road, Shenzhen, 518109, Longhua District, China
| | - Xiaojia Liu
- Department of Neurosurgery, Shenzhen Second People'S Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yi He
- Department of Neurosurgery, Shenzhen Second People'S Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Mei Shen
- Department of Rehabilitation Medicine, People's Hospital of Longhua, No 38 Jinglong Construction Road, Shenzhen, 518109, Longhua District, China.
| |
Collapse
|
9
|
Huang Y, Zhang J, Zhu Y, Zhao R, Xie Z, Qu X, Duan Y, Li N, Tang D, Luo X. BMP9 alleviates iron accumulation-induced osteoporosis via the USP10/FOXO1/GPX4 axis. J Adv Res 2025:S2090-1232(25)00153-5. [PMID: 40068762 DOI: 10.1016/j.jare.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Ferroptosis induced by iron accumulation can disrupt the physiological functions of bone marrow mesenchymal stem cells (BMSCs). BMP9 is an effective osteogenic factor. However, the role of BMP9 and its molecular mechanisms in osteoporosis induced by iron accumulation remain unclear. OBJECTIVES This study aims to explore the role and mechanism of BMP9 in alleviating iron accumulation induced osteoporosis. METHODS Clinical samples were collected to analyze the relationship between iron accumulation and osteoporosis. The effect of BMP9 on lipid peroxidation levels in BMSCs under iron accumulation conditions was assessed using C11-BODIPY staining, MitoSOX staining, MDA and SOD activity measurement. The osteogenic capacity of BMP9 in BMSCs under iron accumulation conditions was evaluated by measuring ALP activity and calcium nodule formation. The mechanisms of BMP9 in regulating BMSCs under iron accumulation conditions were explored through experiments including cycloheximide treatment, RT-PCR, Western blot, GST pull-down, ChIP, and CO-IP. RESULTS It was observed in human samples that serum ferritin levels were negatively correlated with the bone mineral density of the lumbar spine and femoral neck. Meanwhile, ferroptosis is considered a key factor affecting bone health. Further research indicated that BMP9 could inhibit ferroptosis in cells and animal models with iron accumulation, while also improving oxidative stress and osteogenic capacity. In-depth investigation of its mechanism reveals that BMP9 promotes the expression of USP10, which removes the K48-linked ubiquitin chains on FOXO1, inhibiting its excessive ubiquitination in the cytoplasm. This stabilization allows FOXO1 to accumulate in the cytoplasm and eventually re-enter the nucleus. This process activated the expression of the key inhibitor of cell death, GPX4, enhancing the cell's antioxidant response, reducing ferroptosis-induced damage to BMSCs, and promoting their osteogenic differentiation. CONCLUSION This study reveals that BMP9 inhibits ferroptosis through the USP10/FOXO1/GPX4 axis, providing a new therapeutic strategy for osteoporosis caused by iron accumulation.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yafei Zhu
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Runhan Zhao
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhou Xie
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Qu
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yingtao Duan
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ningdao Li
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dagang Tang
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoji Luo
- Department of Orthopaedic Surgery, Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine/Orthopaedic Research Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| |
Collapse
|
10
|
Jiang Y, Zhang H, Shi J, Shan T, Liu M, Wang P, Liang X, Liang H. Nicotinamide riboside alleviates sweeteners-induced brain and cognitive impairments in immature mice. Food Funct 2025; 16:1947-1968. [PMID: 39957299 DOI: 10.1039/d4fo05553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The consumption of sweeteners is high around the world. Sweet beverages are one of the most important and popular sources of sweeteners. Previous studies have reported that excessive sweeteners might cause health hazards, including cognitive impairment. Nicotinamide riboside (NR), a precursor of NAD+, has been found to alleviate several cognitive impairments. However, the protective effects of NR against sweetener-induced cognitive impairment remain unclear. Hence, we evaluated the effects of sweeteners and NR (400 mg kg-1 d-1) on the brain and cognition of mice by simulating an extreme lifestyle of completely replacing water with sugar-sweetened beverage (simulated with 10% sucrose solution) or sugar-free sweet beverage (simulated with 0.05% aspartame solution) from weaning to adulthood. The results revealed that continuous exposure to sucrose or aspartame for eight weeks did not significantly cause differences in body weight but significantly induced cognitive impairments, including anxiety- and depressive-like behaviours, impairments in learning, memory and sociability. Moreover, sucrose or aspartame exposure induced neuronal injury, reduction of Nissl bodies, overactivation of the TLR4/NF-κB/NLRP3/ASC/Caspase-1 pathway and increased downstream inflammatory cytokines in mouse hippocampus, and also induced an imbalance of oxidative stress, apoptosis and autophagy, large consumptions of intracellular antioxidant factors, and overactivation of the PI3K/Akt/FOXO1 and PI3K/Akt/mTOR pathways in mouse brain. NR treatment increased NAD+ in the brain, and prevented and alleviated these impairments effectively. In summary, we found that NR supplementation protected against cognitive impairment caused by sucrose or aspartame in immature mice, which might be related to increased brain NAD+ level, relieved neuroinflammation and pyroptosis in the hippocampus, and maintained a balance of oxidative stress, apoptosis and autophagy in the brain.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Jing Shi
- College of continuing education, Qingdao University, Qingdao, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Man Liu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Wang C, Wu H, Xie Y, Wang J, Huang L, Ni X, Deng S, Zhang Y, Chen X, Zhang H, Yuan S, Tang L. Berberine Inhibits Migration and Apoptosis of Rat Podocytes in Diabetic Nephropathy via the Novel lncRNA LOC102549726 Related Pathway. Phytother Res 2025; 39:1615-1631. [PMID: 39916312 DOI: 10.1002/ptr.8452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 03/11/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) stands as one of the most severe complications of diabetes. Podocytes injury, particularly its attachment to the lateral glomerular basement membrane, serves as a crucial indicator of DN. Growing evidence suggests that berberine (BBR) can mitigate the onset and progression of DN. However, the molecular mechanisms through which BBR exerts its beneficial effects in the treatment of DN remain incompletely elucidated. PURPOSE To explore the underlying mechanisms by which BBR exerts its therapeutic effects in DN. METHODS High-throughput lncRNA sequencing on the renal cortex of both the DN model group and the normal SD group was performed to dig for differentially expressed lncRNAs. The expression of LOC102549726 was evaluated using qPCR. The biological functions of LOC102549726 were analyzed in podocyets and DN rats. The bioinformatics techniques, qPCR and WB were used to explore the potential molecular mechanisms. RESULTS We found that lncRNA LOC102549726 was highly expressed in renal cortex of DN rats and podocytes subjected to high glucose conditions. Silencing LOC102549726 inhibited migration and apoptosis of podocytes. Mechanistically, LOC102549726 was identified as a facilitator of the expression of EGF and forkhead box O1 (FOXO1). BBR, a known therapeutic agent for DN, exhibited the ability to diminish the level of LOC102549726, EGF and FOXO1 in both DN rats and podocytes. CONCLUSION Our findings suggested that BBR suppresses migration and apoptosis of podocytes in DN through targeting the LOC102549726/EGF/FOXO1 axis. This sheds light on a potential therapeutic avenue for mitigating the impact of DN on podocyte function.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Hao Wu
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Yongsheng Xie
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Jiajia Wang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Lingzhi Huang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Shujun Deng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Yang Zhang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Xinyi Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Huihui Zhang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, China
| |
Collapse
|
12
|
Xu X, Wang R, Pei L, Wang Q, Liu C. Glucose Transport by Follicle-Stimulating Hormone Is Mediated Through the Akt/FOXO1 Pathway in Ovine Granulosa Cells. Vet Med Sci 2025; 11:e70294. [PMID: 40065595 PMCID: PMC11893720 DOI: 10.1002/vms3.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Glycolysis in granulosa cells (GCs) is the primary location of energy metabolism and its substrates in oocytes and is closely related to follicular development in mammals. The complex morphological structure and physiological functions of GCs are regulated by follicle-stimulating hormone (FSH), but little is known about how FSH regulates glycolysis in GCs, and its mechanism remains unclear. The purpose of this study is to investigate the mechanism by which FSH activates the Akt/FOXO1 pathway, thereby regulating glucose metabolism in ovine GCs. Granulosa cells were cultured in the presence of different concentrations of FSH and a CCK-8 assay was used to measure the proliferation of the treated cells. Next, qRT-PCR was performed to measure the transcription of the target genes, glucose transporter (GLUT). Western-blot analysis of the phospho-Akt and -FOXO1 levels induced by FSH through the glucose signalling pathway, in addition to the effects of these proteins on the expression levels of the downstream GLUT genes, was measured. Results showed that the addition of 10ng/mL FSH to the culture medium increased the viability of granulosa cells. Transcription of GLUT1 and 4 was significantly up-regulated in FSH-treated cells through activation of the Akt/FOXO1 phosphorylation pathway, thereby affecting glucose metabolism. This study contributes to the current understanding of the metabolic features of and the associated developmental pathways of ovine follicular GCs.
Collapse
Affiliation(s)
- Xin Xu
- College of Life Science and TechnologyState Key Laboratory Incubation Base for Conservation and Utilization of Bio‐Resource in Tarim BasinTarim UniversityAlarChina
| | - Ruotong Wang
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| | - Linlin Pei
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| | - Quanfeng Wang
- Jinken Animal Husbandry Technology Co., Ltd.HetianChina
| | - Chunjie Liu
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| |
Collapse
|
13
|
Baik S, Qianshi Y, Park S, Lee H, Heo H, Lee J, Yuan C, Sung J. Flavonoid Derivatives Isolated from Hypericum monogynum Ameliorate Insulin Resistance via Modulation of IRS-1/PI3K/Akt/FOXO1 Pathway in HepG2 Cells. J Med Food 2025; 28:243-255. [PMID: 39711189 DOI: 10.1089/jmf.2024.k.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3-O-β-d-galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from Hypericum monogynum flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis. They upregulate the phosphorylation of glycogen synthase kinase-3β, which may affect glycogen synthesis. Furthermore, the production of reactive oxygen species was decreased by the two compounds. This study provides novel mechanistic insights into the protective effects of flavonoid derivatives isolated from H. monogynum flowers in preventing and managing insulin resistance and associated metabolic disorders.
Collapse
Affiliation(s)
- Seungjoo Baik
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Yunhua Qianshi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
- Natural Products Research Center of Guizhou Province, Guiyang, P.R. China
| | - Samuel Park
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| |
Collapse
|
14
|
Qian C, Huang Y, Zhang S, Yang C, Zheng W, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Integrated identification and mechanism exploration of bioactive ingredients from Salvia miltiorrhiza to induce vascular normalization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156427. [PMID: 39892310 DOI: 10.1016/j.phymed.2025.156427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The clinical management of ischemic disease and cancer is complex, with disruptions in local vascular function and tumor angiogenesis contributing to blood stasis, which complicates treatment strategies. Salvia miltiorrhiza, a natural product, is known to restore vascular structure and function. However, its specific roles in concurrently addressing ischemic disease and cancer within the same organism remain poorly understood. PURPOSE This study aimed to explore the material basis, pharmacological effects, and underlying mechanisms of Salvia miltiorrhiza extract (SME) in promoting blood flow recovery in ischemic hindlimbs and inducing tumor vascular normalization. METHODS The pharmacological effects of SME were evaluated in a mouse model combining ischemic hindlimbs and tumors. Mice were administered low (SME-L) or high (SME-H) doses of SME daily, and the gastrocnemius muscle mass and tumor vascular structure were assessed. Laser Doppler perfusion imaging (LDPI) was used to monitor hindlimb blood flow recovery and tumor vascular perfusion. The pharmacokinetics of the key bioactive constituents in SME were characterized by liquid chromatography-mass spectrometry (LC-MS). Interactions between SME's active compounds and predicted targets were investigated using molecular docking, microscale thermophoresis (MST), and luciferase reporter assays. The synergistic effects of the primary components, Tanshinone I (Tan I) and Salvianolic acid A (Sal A), were analyzed through tube formation assays, enzyme-linked immunosorbent assays (ELISA), immunofluorescence staining, and western blot. RESULTS Phytochemical profiling revealed that SME contains several active compounds, including Danshensu, Sal A, Sal B, Tan IIA, and Tan I. SME treatment reduced the frequency of necrotic toes, increased muscle mass, and alleviated hypoxia in the gastrocnemius muscle. SME significantly improved tumor vascular perfusion and notably enhanced pericyte coverage and basement membrane integrity. Pharmacokinetic analysis identified Tan I and Sal A as the key bioactive components that promote vascular normalization. Tan I inhibited FoxO1, preventing endothelial cell activation induced by angiopoietin 2 (Ang2), while Sal A bound to Ang2, facilitating Tie2 activation mediated by Ang1. Both in vitro and in vivo results demonstrated that the combination of Tan I and Sal A exerted a synergistic therapeutic effect on correcting abnormal blood vessels in ischemic hindlimbs and tumors. CONCLUSION Our study innovatively revealed a reliable mouse model wherein the Ang2/Tie2 signaling cascade disrupted the endothelial homeostasis to aggravate the progression of hindlimb ischemia and tumor angiogenesis. This balance can be rescued by the combination therapy of Tan I and Sal A that were both from SME, leading to the occurrence of vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Weiwei Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
15
|
Chen Y, Peng S, Liang J, Wei K. SIRT1 in acute lung injury: unraveling its pleiotropic functions and therapeutic development prospects. Mol Cell Biochem 2025; 480:1449-1464. [PMID: 39269678 DOI: 10.1007/s11010-024-05111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, often associated with severe complications and even death. In ALI, macrophages, alveolar epithelial cells and vascular endothelial cells in the lung are damaged to varying degrees and their function is impaired. Research in recent years has focused on the use of SIRT1 for the treatment of ALI. In this paper, we reviewed the role of SIRT1 in ALI in terms of its cellular and molecular mechanism, targeting of SIRT1 by non-coding RNAs and drug components, as well as pointing out the value of SIRT1 for clinical diagnosis and prognosis. Based on the current literature, SIRT1 exhibits diverse functionalities and possesses significant therapeutic potential. Targeting SIRT1 may provide new therapeutic ideas for the treatment of ALI.
Collapse
Affiliation(s)
- Yina Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuangyan Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
16
|
Wang C, Xu N, Zhong X, Liu B, Tang W, He Z, Bu X, Cao M, Zeng H, Guo H. ALKBH5 facilitates tumor progression via an m6A-YTHDC1-dependent mechanism in glioma. Cancer Lett 2025; 612:217439. [PMID: 39761866 DOI: 10.1016/j.canlet.2025.217439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/29/2024] [Accepted: 01/01/2025] [Indexed: 02/03/2025]
Abstract
N6-methyladenosine (m6A) methylation, is a well-known epigenetic modification involved in various biological processes, including tumorigenesis. However, the role of AlkB homolog 5 (ALKBH5), a critical component of m6A modification, remains unclear in glioma. This study investigates the function of ALKBH5 in glioma progression and its potential as a therapeutic target. We found that ALKBH5 expression was dramatically increased in glioma, and high expression of ALKBH5 predicted poor prognosis. Overexpression of ALKBH5 promotes cell proliferation, migration, and invasion in vitro and accelerates tumor growth in vivo. Furthermore, m6A-MeRIP-seq, MeRIP-qPCR, RNA pulldown, and immunoprecipitation assays revealed that the transcription factor, forkhead box protein O1 (FOXO1), was the potential target of ALKBH5. Mechanistically, ALKBH5 facilitates glioma progression by demethylating m6A-modified FOXO1 mRNA, thereby destroying FOXO1 stability and expression through a YTHDC1-dependent pathway. The downregulated FOXO1 interacts with β-catenin, increasing its nuclear accumulation and thus promoting oncogenic Wnt/β-catenin signaling. Our findings suggest that targeting the ALKBH5/FOXO1 axis may provide a novel therapeutic strategy for glioma treatment.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Ningbo Xu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Boyang Liu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenhui Tang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Xiaolu Bu
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Mengyao Cao
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Huijun Zeng
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hongbo Guo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
17
|
Yang J, Li L, An Z, Lv Y, Li R, Li J, Guo M, Sun H, Yang H, Wang L, Liu Y, Guo H. Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125632. [PMID: 39755352 DOI: 10.1016/j.envpol.2025.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive. The transcription factor forkhead box protein O 1 (FOXO1) plays a crucial role in regulating hepatic glucolipid metabolism; however, its involvement in PFOS-induced hepatic glucolipid metabolic disorders has not been thoroughly explored. Molecular docking revealed high binding affinity between PFOS and FOXO1. Male C57BL/6 mice were exposed to PFOS at doses of 0.3, 1.0, and 3.0 mg/kg body weight for 12 weeks to assess its subchronic effects on hepatic glucolipid metabolism in this work. The results indicate that PFOS exposure increases hepatic acetylated FOXO1 expression, promotes liver lipid accumulation, suppresses gluconeogenesis, whereas fasting blood glucose levels remain unaffected but this dysregulation results in insulin resistance. Furthermore, hepatic deletion of FOXO1 in PFOS-exposed mice ameliorates liver injury and reduces lipid accumulation by suppressing hepatic autophagy without significantly affecting gluconeogenesis. In conclusion, FOXO1 may play a pivotal role in the development of PFOS-induced hepatic glucolipid metabolic disorder.
Collapse
Affiliation(s)
- Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750001, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Heming Sun
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huiling Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
18
|
Cheng D, Bao Y, Wang X, Xiang H, Guo T, Du Y, Zhang Z, Guo H. WNT3A promotes the cementogenic differentiation of dental pulp stem cells through the FOXO1 signaling pathway. Eur J Med Res 2025; 30:68. [PMID: 39905528 DOI: 10.1186/s40001-024-02259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Dental pulp stem cells (DPSCs) possess capability of multidirectional differentiation, and their cementogenic differentiation potential enables them to participate in cementum repair and regeneration. The molecular mechanisms underlying cementogenic differentiation of DPSCs remain unclear. METHODS DPSC data set GSE138179 was retrieved from gene expression omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was employed to identify significant modules. Pathway enrichment exploration was conducted utilizing gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Metascape tools. CIBERSORT was utilized to analyze immune cell infiltration analysis. The comparative toxicogenomics database (CTD) was utilized for the validation of core targets. Subsequently, cell experiments were conducted to validate the core targets. Changes in protein expression related to the FOXO1 signaling pathway, cell cycle, and apoptosis were evaluated using western blotting (WB). RESULTS Differentially expressed genes (DEGs) associated with DPSC cementogenic differentiation were predominantly enriched in crucial pathways such as the signaling pathway, cell apoptosis, and Wnt signaling pathway. Bioinformatics analysis confirmed WNT3A as a pivotal biomarker for DPSC cementogenic differentiation, and WNT3A was highly expressed in the cementogenic differentiation group. Western blotting results demonstrated that compared to the DPSC group, molecules such as Caspase-3, Caspase-9, FAS, P53, and BAX were downregulated in the CDDPSC group, suggesting reduced apoptosis. Furthermore, upregulation of WNT3A expression in CDDPSC-OE further suppressed the expression of these apoptotic molecules, suggesting a mitigated apoptotic response. Downregulation of WNT3A expression in CDDPSC-KO resulted in increased expression of apoptosis-related molecules, thereby enhancing apoptosis. CONCLUSIONS WNT3A is highly expressed in the cementogenic differentiation of DPSC, and WNT3A mediates FOXO1 pathway to promote differentiation of dental pulp stem cells into cementogenic differentiation, thus realizing the formation and maintenance of cementum tissue.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yang Bao
- Department of Oral Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xue Wang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Haidong Xiang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Tianyuan Guo
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yong Du
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhiyong Zhang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Han Guo
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
19
|
Zhu F, Feng J, Pan Y, Ouyang L, He T, Xing Y. Mettl3-Mediated N6-Methyladenosine Modification Mitigates Ganglion Cell Loss and Retinal Dysfunction in Retinal Ischemia-Reperfusion Injury by Inhibiting FoxO1-Mediated Autophagy. Invest Ophthalmol Vis Sci 2025; 66:58. [PMID: 39982709 PMCID: PMC11855173 DOI: 10.1167/iovs.66.2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Purpose N6-methyladenosine (m6A) modification has been implicated in ischemia-reperfusion injury in various systems and in several neurodegenerative diseases. Glaucoma is characterized by degeneration of retinal ganglion cells (RGCs) and shares similar pathologic injury characteristics with retinal ischemia-reperfusion (RIR) injury. However, the specific role of m6A modification in RIR injury is unclear, and the involvement of autophagy in RIR injury also remains controversial. Therefore, our study explored the role of m6A modification and autophagy in RIR injury. Methods Male wild-type C57BL/6J mice (6-8 weeks old) were used to induce RIR injury. Retinal flat-mount immunofluorescence was performed to assess RGC survival rate. Electroretinogram and optomotor response were conducted to evaluate the retinal electrophysiologic function and visual acuity. Autophagy level was reflected by Western blot and transmission electron microscope images. M6A modification levels were determined via m6A dot blot. Methyltransferase-like protein 3 (Mettl3) and forkhead box O1 (FoxO1) protein expressions were tested by Western blot. Methylated RNA immunoprecipitation-quantitative PCR was conducted to examine m6A modification level on FoxO1 mRNA. We also employed 3-methyladenine and rapamycin to regulate autophagy level in RIR injury. Results Inhibiting autophagy ameliorated RGC loss and preserved retinal electrophysiologic function in RIR injury. Additionally, a decrease in Mettl3-mediated m6A modification was observed in RIR injury mice. By overexpressing Mettl3 via intravitreal injection of type 2 recombinant adeno-associated virus before RIR injury, we established that Mettl3 overexpression can also ameliorate RGC loss and retinal electrophysiologic dysfunction induced by RIR injury. Furthermore, Mettl3 overexpression inhibited autophagy and reduced FoxO1 expression by upregulating m6A modifications on FoxO1 mRNA. Conclusions Mettl3-mediated m6A modification mitigates RGC loss and retinal electrophysiologic dysfunction by inhibiting FoxO1-mediated autophagy in RIR injury.
Collapse
Affiliation(s)
- Feiyan Zhu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Eye Institute, The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Jiazhen Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Eye Institute, The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Eye Institute, The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Lingyi Ouyang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Eye Institute, The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Eye Institute, The First Clinical College of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Jiang H, Liu Y, Yu Y, Yan Y. Sirtuin 1 Suppresses Hydrogen Peroxide-Induced Senescence and Promotes Viability and Migration in Lens Epithelial Cells by Inhibiting Forkhead Box Protein O1/Toll-Like Receptor 4 Pathway. J Biochem Mol Toxicol 2025; 39:e70150. [PMID: 39866090 DOI: 10.1002/jbt.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Age-related cataracts (ARCs) are associated with increased oxidative stress and cellular senescence. Our objective is to investigate the function of Sirtuin 1 (SIRT1) within ARCs. In ARCs tissues and H2O2-treated lens epithelial cells (LECs), the expression levels of SIRT1 were examined. Senescence-associated β-galactosidase (SA-β-gal) staining was employed to evaluate cellular senescence. The Cell Counting Kit-8 assay was employed to measure viability. A wound healing assay was performed to assess migratory capacity in LECs. Oxidative stress-related indicators were determined by enzyme-linked immunosorbent assay kits. Additionally, the Coxpresdb and GeneCards databases were utilized to identify downstream pathways of SIRT1 in ARCs. The expression levels of protein and mRNA were detected using western blot and real-time quantitative polymerase chain reaction, respectively. The expression of SIRT1 was downregulated in ARCs tissues with an increase in reactive oxygen species. In H2O2-induced LECs, SIRT1 was downregulated and its overexpression inhibited oxidative stress and cellular senescence while promoting viability and migration. Furthermore, FoxO1/TLR4 pathway was screened out as the key pathway of SIRT1, which was activated in H2O2-induced LECs senescence. Overexpression of SIRT1 suppressed FoxO1/TLR4 pathway. Further research demonstrated that the activation of FoxO1/TLR4 pathway reversed the inhibitory role of SIRT1 in oxidative stress-induced cellular senescence and the promotion effect of SIRT1 on viability and migration in H2O2-induced LECs. SIRT1 inhibits oxidative stress-induced cellular senescence and promotes the viability and migration in H2O2-induced LECs via suppressing FoxO1/TLR4 pathway.
Collapse
Affiliation(s)
- Hongda Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuting Liu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yinggui Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Yan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
22
|
Hong H, Ding D, Zhang Y, Chen Y, Chen S, Jiang M, Zhang H, Wang Q, Hu Y, He J, Yuan J. Circ_BLNK is a Unique Molecular Marker in Non-small Cell Lung Cancer. Biochem Genet 2025; 63:104-123. [PMID: 38411943 DOI: 10.1007/s10528-023-10661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/30/2023] [Indexed: 02/28/2024]
Abstract
Non-small cell lung cancer (NSCLC) patients are characterized by distant metastasis and poor prognosis. Growing evidence has implied that circular RNAs (circRNAs) are involved in multiple tumor progression, including NSCLC. The objective of the present study was to functionally dissect the role and mechanism of circ_BLNK in NSCLC development and progression. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of circ_BLNK, miR-942-5p, and forkhead box protein O1 (FOXO1) in NSCLC tissues and cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay detected cell proliferation; the protein expression levels were tested by western blot assay; cell apoptosis was measured by flow cytometry, and transwell assay detected cell migration and invasion. The molecular targeting relationship was determined by dual-luciferase reporter assay. The effect of circ_BLNK overexpression on tumor growth was detected by in vivo experiments and immunohistochemistry. Circ_BLNK was dramatically decreased in NSCLC, and overexpression of circ_BLNK inhibited proliferation, migration, and invasion of NSCLC cells and promoted cell apoptosis. Circ_BLNK level was negatively correlated with miR-942-5p expression and positively correlated with FOXO1 expression. Moreover, circ_BLNK acted as a sponge for miR-942-5p, which targeted FOXO1. Rescue assays presented that miR-942-5p reversed the anticancer action of circ_BLNK in NSCLC. Besides that, miR-942-5p inhibition suppressed the oncogenic behaviors, which were attenuated by FOXO1 knockdown. Animal experiments exhibited that circ_BLNK upregulation repressed tumor growth in vivo. Our study demonstrated a novel regulatory mechanism that circ_BLNK/miR-942-5p/FOXO1 axis adjusted non-small cell lung cancer development.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Mice
- Cell Proliferation
- Male
- Female
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Apoptosis
- Mice, Nude
- Cell Movement
- Middle Aged
- Mice, Inbred BALB C
- A549 Cells
Collapse
Affiliation(s)
- Haihua Hong
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Dongxiao Ding
- Department of Thoracic Surgery, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, 315800, Zhejiang, China.
| | - Yonghua Zhang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Yongbin Chen
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Shiyuan Chen
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Maofen Jiang
- Department of Pathology, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, 315800, Zhejiang, China
| | - Hairong Zhang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Qinqin Wang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Yue Hu
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Jianghong He
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Jiawei Yuan
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| |
Collapse
|
23
|
Li Y, Pan AP, Ye Y, Shao X, Tu R, Liu Y, Yu AY. FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06744-6. [PMID: 39878886 DOI: 10.1007/s00417-025-06744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
PURPOSE To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation. METHODS Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed. RESULTS HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191. CONCLUSION FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.
Collapse
Affiliation(s)
- Yike Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - An-Peng Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yishan Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xu Shao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruixue Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
24
|
Walls KM, Joh JY, Martinez MM, Hong KU, Hein DW. Metabolic effects of heterocyclic amines on insulin‑induced AKT phosphorylation and gluconeogenic gene expression are modified by N-acetyltransferase 2 genetic polymorphism. Pharmacogenet Genomics 2025:01213011-990000000-00084. [PMID: 39878101 DOI: 10.1097/fpc.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
OBJECTIVE Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N-hydroxylation via CYP1A2 followed by O-acetylation via N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes. METHODS We assessed the effect of some of the most common HCAs found in cooked meat, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, on insulin signaling and gluconeogenic gene expression in cryopreserved human hepatocytes characterized by their NAT2 genotype and phenotype to investigate the role of NAT2 genetic polymorphism in HCA-induced metabolic dysregulation. RESULTS HCA treatment significantly reduced insulin-induced protein kinase B phosphorylation and significantly increased expression of genes involved in gluconeogenesis (G6PC, PCK1, FOXO1, and PPARA) in cryopreserved human hepatocytes from rapid but not from slow acetylators. CONCLUSION The findings suggest that NAT2 genetic polymorphism modifies HCA-induced insulin resistance and gluconeogenic gene expression, implying that individuals with rapid acetylator phenotype may be at greater risk of dysregulated glucose homeostasis following exposure to HCAs.
Collapse
Affiliation(s)
- Kennedy M Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | |
Collapse
|
25
|
Chang X, Li D, Guo Y, Sheng X, Wang X, Xing K, Xiao L, Lv X, Long C, Qi X. α-Linolenic acid promotes testosterone synthesis by improving mitochondrial function in primary rooster Leydig cells. Theriogenology 2025; 232:9-19. [PMID: 39504870 DOI: 10.1016/j.theriogenology.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The present study aimed to investigate the direct effects of α-Linolenic acid (ALA) on the in vitro production of testosterone and the expression of key enzymes and proteins related to steroidogenesis in Leydig cells of roosters. METHODS Purified primary Leydig cells isolated from 65-week-old roosters were purified and treated with different concentrations of ALA treatments: (0 μm/L [control], solvent control group (DMSO), 20 μM/L, 40 μM/L, and 80 μM/L) and cell counting-8 (CCK-8) for cell viability assay, Enzyme-linked immunosorbent assay (ELISA) kit for the determination of testosterone in cell supernatants, quantitative (real-time) PCR, and analysis of activities of antioxidants catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA), evaluation of mitochondrial membrane potential, pro- and anti-apoptotic proteins/genes Bcl-2, Bcl-2-associated X protein (Bax), apoptosis-inducing factor (AIF) were done respectively. RESULTS Our results showed that ALA significantly increased testosterone secretion in primary rooster Leydig cells (P < 0.05), and 40 μM/L is the optimal dose. Leydig cells supplemented with ALA (20, 40, 80 μM) increased the expression of key enzymes and proteins 3β-hydroxysteroid dehydrogenase (3β-HSD), steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc) concerning steroidogenesis, enhanced antioxidant capability, improved mitochondrial biogenesis, and markedly improved the mitochondrial membrane potential (P < 0.05). Furthermore, the expression of the apoptosis-suppressive gene Bcl-2 was significantly increased, but Bax and AIF expression was decreased in the ALA group compared to that in the control group (P < 0.05). CONCLUSION ALA promoted testosterone production, enhanced steroidogenic enzyme expression, improved mitochondrial function, and antioxidant capacity, and reduced apoptosis in primary rooster Leydig cells, with 40 μM/L identified as the optimal concentration.
Collapse
Affiliation(s)
- Xuerui Chang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Danyang Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
26
|
Amer AE, Ghoneim HA, Abdelaziz RR, Shehatou GSG, Suddek GM. L-carnitine attenuates autophagic flux, apoptosis, and necroptosis in rats with dexamethasone-induced non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2024; 25:102. [PMID: 39736705 DOI: 10.1186/s40360-024-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND UpToDate, no drugs have been approved to treat nonalcoholic steatohepatitis, the advanced stage of the most prevalent liver disease, non-alcoholic fatty liver disease. The present study was conducted to explore the potential influences of L-carnitine on the pathomechanisms of hepatic injury that mediate progression to non-alcoholic steatohepatitis in dexamethasone-toxified rats. METHODS Male Wistar rats were allocated as follows: dexamethasone group, rats received dexamethasone (8 mg/kg/day, intraperitoneally) for 6 days; DEXA-LCAR300, DEXA-LCAR500, and DEXA-MET groups, rats administered L-carnitine (300 or 500 mg/kg/day, IP) or metformin (500 mg/kg/day, orally) one week prior to dexamethasone injection (8 mg/kg/day, IP) and other six days alongside dexamethasone administration. Two groups of age-matched normal rats received either the drug vehicle (the control group) or the higher dose of L-carnitine (the drug-control group). At the end of the experiment, sets of biochemical, histological, and immunohistochemical examinations were performed. RESULTS L-carnitine (mainly at the dose of 500 mg/kg/day) markedly abolished dexamethasone-induced alterations in glucose tolerance, hepatic histological features, and serum parameters of hepatic function and lipid profile. Moreover, it significantly ameliorated dexamethasone-induced elevations of hepatic oxidative stress, SREBP-1 and p-MLKL protein levels, and nuclear FOXO1, LC3, P62, and caspase-3 immunohistochemical expression. Furthermore, it markedly diminished dexamethasone-induced suppression of hepatic Akt phosphorylation and Bcl2 immunohistochemical expression. The effects of L-carnitine (500 mg/kg/day) were comparable to those of metformin in most assessments and better than its corresponding lower dose. CONCLUSION These findings introduce L-carnitine as a potential protective drug that may mitigate the rate of disease progression in non-alcoholic fatty liver disease patients with early stages or those at the highest risks.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, 35712, Egypt.
| | - Hamdy A Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, 35712, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
27
|
Chen J, Cen C, Wang M, Qin S, Liu B, Shen Z, Cui X, Hou X, Gao F, Chen M. Foxo1 directs the transdifferentiation of mouse Sertoli cells into granulosa-like cells. J Genet Genomics 2024:S1673-8527(24)00355-2. [PMID: 39681193 DOI: 10.1016/j.jgg.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Sertoli and granulosa cells, the initial differentiated somatic cells in bipotential gonads, play crucial roles in directing male and female gonad development, respectively. The transcription factor Foxo1 is involved in diverse cellular processes, and its expression in gonadal somatic cells is sex-dependent. While Foxo1 is abundantly expressed in ovarian granulosa cells, it is notably absent in testicular Sertoli cells. Nevertheless, its function in gonadal somatic cell differentiation remains elusive. In this study, we find that ectopic expression of Foxo1 in Sertoli cells leads to defects in testes development. Further study uncovers that the ectopic expression of Foxo1 induces the abundant expression of Foxl2 in Sertoli cells, along with the upregulation of other female-specific genes. In contrast, the expression of male-specific genes is reduced. Mechanistic studies indicate that Foxo1 directly binds to the promoter region of Foxl2, inducing its expression. Our findings highlight that Foxo1 serves as a key regulator for the lineage maintenance of ovarian granulosa cells. This study contributes valuable insights into understanding the regulatory mechanisms governing the lineage maintenance of gonadal somatic cells.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Qin
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272000, China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Hou
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Zhou Z, Lv Y, Li L, Yuan X, Zhou X, Li J. FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1. Animals (Basel) 2024; 14:3514. [PMID: 39682478 DOI: 10.3390/ani14233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is well known that the function of granulosa cells (GCs) is closely related to follicular development, and FoxO1 and histone methylation have been implicated in follicular development. However, the specific mechanisms by which FoxO1 and histone methylation regulate follicular development are still largely unknown. To explore the specific mechanism of FoxO1 in regulating follicular development, in this study, we showed that the expression of FoxO1 in immature ovaries and small follicles was significantly higher than in mature ovaries and large follicles of sows, respectively. FoxO1 was found to inhibit the secretion of testosterone and proliferation of porcine GCs and promote the secretion of progesterone and apoptosis of porcine GCs. Furthermore, H3K27me3, as a transcriptional inhibitor, can inhibit the transcription of FoxO1. FoxO1 could promote the transcription of CYP1A1, and CYP1A1 was found to inhibit the proliferation and facilitate the ferroptosis of porcine GCs. Collectively, our results revealed that the H3K27me3-FoxO1-CYP1A1 pathway might participate in follicular development, and these findings could provide potential targets for improving follicular development in sows.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Lv
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liying Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Sakayanathan P, Loganathan C, Thayumanavan P. Astaxanthin-S-Allyl Cysteine Ester Protects Pancreatic β-Cell From Glucolipotoxicity by Suppressing Oxidative Stress, Endoplasmic Reticulum Stress and mTOR Pathway Dysregulation. J Biochem Mol Toxicol 2024; 38:e70058. [PMID: 39555722 DOI: 10.1002/jbt.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Glucolipotoxicity (GLT) has emerged as established mechanism in the progression of diabetes. Identifying compounds that mitigate GLT-induced deleterious effect on β-cells are considered important strategy to overcome diabetes. Hence, in the present study, astaxanthin-s-allyl cysteine (AST-SAC) diester was studied against GLT in β-cells. Mus musculus pancreatic β-cell line (βTC-tet) was treated with high glucose (25 mM; HG) and 95 μM palmitate (PA) for 24 h to induce GLT. AST-SAC at various concentrations (5, 10, and 15 μg/ml) were treated to understand the protective effect against HG + PA exposure in β-cells. Under HG + PA exposure conditions oxidative stress, deregulation of mTOR pathway and endoplasmic reticulum (ER) stress are witnessed. AST-SAC treatment eased oxidative stress, mitochondrial depolarization, DNA damage, calcium overload and accumulation of autophagosome against HG + PA exposure conditions thereby protected the cell viability of β-cells. AST-SAC maintained the level of proteins involved in mTOR pathway under HG + PA exposure conditions. Also, AST-SAC treatment has mitigated the increased expression of genes and proteins such as IRE1 and PERK involved in ER stress-mediated unfolded protein response (UPR) signaling pathways. In correspondence to it, the expression of genes involved in insulin secretion was preserved by AST-SAC. Due to these protective effects of AST-SAC the insulin secretion was well-maintained in β-cells under HG + PA exposure conditions. AST-SAC through normalizing antioxidant status and mTOR axis as well as preventing the harmful effect of ER-stress mediated UPR pathway has promoted the β-cell survival and insulin secretion against GLT. Simultaneously targeting oxidative stress/mTOR axis/ER stress is required to efficiently overcome GLT in β-cells.
Collapse
Affiliation(s)
- Penislusshiyan Sakayanathan
- Department of Biochemistry, Periyar University, Salem, India
- Bioinnov Solutions LLP, Research and Development Center, Salem, India
| | - Chitra Loganathan
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical And Technical Sciences (SIMATS), Chennai, India
| | | |
Collapse
|
30
|
Nasrullah MZ, Neamtalllah T, Alshibani M, Bagalagel AA, Noor AO, Bakhsh HT, Abdel-Naim AB. Caffeic acid phenethyl ester ameliorates colistin-induced nephrotoxicity in rats via modulation of FOXO1/Nrf2/Sirt1 axis. Clin Exp Pharmacol Physiol 2024; 51:e70000. [PMID: 39448197 DOI: 10.1111/1440-1681.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Colistin (Cst) is one of the antimicrobial peptides and is reserved for use against multi-drug-resistant Gram-negative bacteria. However, the clinical value of Cst is limited by its nephrotoxic adverse effects. Caffeic acid phenethyl ester (CAPE) is a honeybee propolis flavonoid recognised for its diverse pharmacological potential. It has demonstrated d antioxidant and anti-inflammatory properties, as well as protective effects against chemically induced toxicity in variuos biological systems. This study aimed to investigate the impact of CAPE on nephrotoxicity induced in rats by Cst. METHODS Animals were randomly divided into five groups. Group 1 served as control, group 2 received CAPE (10 mg/kg) orally, group 3 received Cst IP, group 4 received Cst + CAPE (5 mg/kg) and group 5 received Cst + CAPE (10 mg/kg). All treatments were given daily for 10 consecutive days. RESULTS CAPE notably attenuated Cst-inducednephrotoxicity as shown by reducing urea serum levels, creatinine, cystatin C, urinary protein contents and urinary N-acetyl-β-D-glucosaminidase (NAG). This was confirmed by histological investigations that indicated amelioration of histopathological changes in the kidney architecture as well as the deposition of collagen in renal tissues. CAPE exhibited antioxidant effects supported by the prevention of rise in Cst-induced lipid peroxidation and depletion of superoxide dismutase and catalase enzymatic activities. In addition, CAPE inhibited the expression of the inflammatory markers including tumour necrosis factor-α, nuclear factor kappa B and interleukin-6. These actions were associated with modulation of messenger ribonucleic acid (mRNA) expression of Bax and Bcl-2 in favour of anti-apoptosis. CAPE inhibited Cst-induced rise in forkhead box O1 (FOXO1) expression and downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Sirtuin 1 (Sirt1) immune-expression. CONCLUSION CAPE protects against nephrotoxicity induced by Cst in ratsprimarily through its antioxidant, antiinflammatory and antiapoptotic activities. These pritective effects are mediated via modulation of FOXO1/Nrf2/Sirt1 axis.
Collapse
Affiliation(s)
- Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamtalllah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohannad Alshibani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa A Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad O Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussain T Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Chen L, Ge Q, Wu A, You S, Sheng L, Lai Y, Bao Y, Jiang C. FoxO1 regulates human haematopoietic stem cells self-renewal and engraftment. Mol Biol Rep 2024; 52:31. [PMID: 39614041 DOI: 10.1007/s11033-024-10140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is one of the most effective ways to treat hematological malignant diseases, but the traditional culture of hematopoietic stem cells (HSCs) in vitro will soon lose their ability to self-renewal or differentiate into multilineage blood cells. METHODS To determine whether Forkhead boxO1 (FoxO1) is implicated in the development of HSCs, lentiviral vectors expressing knockdown (KD) or overexpression (OE) of FoxO1 were utilized in fetal liver-derived hematopoietic stem and progenitor cells (FL-HSPCs). The impacts on the proliferation and hematopoietic differentiation of FL-HSPCs were subsequently evaluated via flow cytometry (FCM). Furthermore, the effect of FoxO1-OE on the self-renewal of cord blood-derived hematopoietic stem and progenitor cells (CB-HSPCs) was investigated. Additionally, the transplantation ability of hematopoietic stem cells derived from these CB-HSPCs in mice after secondary transplantation was also assessed by FCM. RESULT After knocking down FoxO1 in FL-HSPCs, the apoptosis rate was significantly increased, and the expression of hCD45 was significantly decreased. Conversely, overexpression of FoxO1 reversed this phenomenon, effectively promoting the expansion and differentiation of FL-HSPCs in vitro. Similarly, it was found that FoxO1-OE could effectively enhance the expansion of CB-HSPCs. Furthermore, upon transplantation of CB-HSPCs overexpressing FoxO1 into NSG mice, multilineage human hematopoietic reconstruction was promoted. Notably, the results of secondary transplantation revealed that only the FoxO1-OE group exhibited multilineage reconstitution. CONCLUSION In conclusion, our study confirmed that FoxO1-OE could enhance the self-renewal and engraftment of CB-HSPCs.
Collapse
Affiliation(s)
- Lieguang Chen
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Qunfang Ge
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - An Wu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Shasha You
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Lixia Sheng
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yanli Lai
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yurong Bao
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Congfa Jiang
- Department of Hematology, Xiangshan First People's Hospital Medical Health Group, Ningbo, 315700, China.
| |
Collapse
|
32
|
Shi LL, Ye K, Wang SZ, Hou CJ, Song AK, Liu H, Wang HL. Deletion of the foxO1 gene reduces hypoxia tolerance in zebrafish embryos by influencing erythropoiesis. Life Sci 2024; 357:123048. [PMID: 39270834 DOI: 10.1016/j.lfs.2024.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
FoxO1 (Forkhead box O1) belongs to the evolutionarily conserved FoxO subfamily and is involved in diverse physiologic processes, including apoptosis, cell cycle, DNA damage repair, oxidative stress and cell differentiation. FoxO1 plays an important role in regulating the hypoxia microenvironment such as cancers, but its role in hypoxia adaptation remains unclear in animals. To understand the function of foxO1 in hypoxia response, we constructed foxO1a and foxO1b mutant zebrafish using CRISPR/Cas9 technology. It was found that foxO1a and foxO1b destruction affected the hematopoietic system in the early zebrafish embryos. Specifically, FoxO1a and FoxO1b were found to affect the transcriptional activity of runx1, a marker gene for hematopoietic stem cells (HSCs). Moreover, foxO1a and foxO1b had complementary features in hypoxia response, and foxO1a or/and foxO1b destruction resulted in tolerance of zebrafish becoming weakened in hypoxia due to insufficient hemoglobin supply. Additionally, the transcriptional activity of these two genes was demonstrated to be regulated by Hif1α. In conclusion, foxO1a and foxO1b respond to Hif1α-mediated hypoxia response by participating in zebrafish erythropoiesis. These results will provide a theoretical basis for further exploring the function of FoxO1 in hematopoiesis and hypoxia response.
Collapse
Affiliation(s)
- Lin-Lin Shi
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Ke Ye
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Su-Zhen Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Chao-Jie Hou
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - An-Kang Song
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
33
|
Shin D, Kang Y, Kim A, Tae WS, Han MR, Han KM, Ham BJ. The Effect of Forkhead Box O1 Single Nucleotide Polymorphisms on Cortical Thickness and White Matter Integrity in High Suicide Risk Patients. Psychiatry Investig 2024; 21:1238-1250. [PMID: 39610235 DOI: 10.30773/pi.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/01/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Neuroinflammation's role is increasingly emphasized in the pathology of major depressive disorder (MDD), and its close association with the risk of suicide is being reported. The Forkhead Box O1 (FoxO1) gene is known to play a role in regulating mood and emotion and is associated with susceptibility to suicidality in relation to environmental stress. This research aims to explore the relationship between FoxO1 and the risk of suicide in individuals with MDD. METHODS We enrolled 127 healthy controls (HC) and 231 patients diagnosed with MDD, including 119 individuals with high suicide risk (HSR). All participants underwent the Hamilton Rating Scale for Depression Assessment and magnetic resonance imaging. Cortical thickness and white matter integrity were evaluated. RESULTS In the HSR group, cortical thinning was observed in the left triangular part of the inferior frontal gyrus and right transverse frontopolar gyrus compared to HC. Additionally, fractional anisotropy (FA) values were decreased in the left posterior thalamic radiation, sagittal stratum, and uncinate fasciculus. Although no differences were observed based on allele variations for the two FoxO1 single nucleotide polymorphisms (SNPs), those with the minor allele of FoxO1 rs34733279, especially in the HSR group, displayed increased cortical thinning and reduced FA values in the left cingulum. CONCLUSION Our study reveals close association between the minor allele of the FoxO1 gene rs34733279 and suicide risk in the left cingulum highlights the potential key role of the FoxO1 gene rs34733279 in the context of suicidal vulnerability. Further investigations are warranted to elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Woo Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Su S, Tian R, Jiao Y, Zheng S, Liang S, Liu T, Tian Z, Cao X, Xing Y, Ma C, Ni P, Yu F, Jiang T, Wang J. Ubiquitination and deubiquitination: Implications for the pathogenesis and treatment of osteoarthritis. J Orthop Translat 2024; 49:156-166. [PMID: 40226783 PMCID: PMC11993839 DOI: 10.1016/j.jot.2024.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 01/12/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that affects multiple cells and associated extracellular matrix (ECM). Chondrocytes and chondroextracellular matrix together constitute articular cartilage tissue. Any factors that affect the activity of chondrocytes and destroy the metabolic balance of the chondrocyte ECM will lead to the inability of articular cartilage to perform normal functions. The articular subchondral bone and articular cartilage must be coordinated to resist enough friction and mechanical stress, so the articular subchondral bone lesion will aggravate the articular cartilage defect and vice versa. Synoviocytes, including fibroblast-like synoviocytes (FLSs) and synovial macrophages at the joint, are also important factors that cause low-grade chronic progressive inflammation of OA. Regulation of phenotype transformation of synovial macrophages has become another possible target for the clinical treatment of OA. Ubiquitination and deubiquitination are the main post-translational protein modification pathways in the human body, which are widely involved in multiple signaling pathways and physiological processes. Naturally, they also play a very important regulatory role in the occurrence and development of OA. These effects are summarized in this review, including (A) regulating the aging and apoptosis of chondrocytes, FLSs and osteoblasts; (B) regulation of ECM degradation; (C) regulation of macrophage phenotypic transformation; (D) modulation of skeletal muscle and adipose tissues. Ubiquitination targeting drugs for OA treatment are also listed. Depending on the high efficiency of ubiquitination and deubiquitination, understanding OA-related ubiquitination pathways can help design more efficient drugs to treat OA and provide more potential targets for clinical treatment. The Translational Potential of This Article. In this paper, the ubiquitination-related pathways in osteoarthritis (OA), including aging, apoptosis and autophagy in chondrocytes, osteoblasts, FLSs and macrophages were investigated. In particular, several ubiquitination-related targets are expected to be effective approaches for OA clinical treatment. In addition, in the process of OA occurrence and development, the complex relationship between the local joint area and other tissues including skeletal muscle and adipose tissue is also discussed. These myokines and adipokines from musculoskeletal tissues are all expected to become efficient targets for OA treatment apart from the joint itself. In addition, those myokines secreted by cardiovascular tissues would show potential therapeutic effects as well. What if altering the contents for these ubiquitination-related targets in the serum through exercise will provide a new idea for OA therapy or prevent OA from deteriorating continuously?
Collapse
Affiliation(s)
- Shibo Su
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Ruijiao Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shudan Zheng
- Plastic Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Siqiang Liang
- Zhongke Comprehensive Medical Transformation Center Research Institute (Hainan) Co., Ltd, Haikou, 571199, China
| | - Tianyi Liu
- Department of Pharmacology, Zibo Hospital of Traditional Chinese Medicine, Zibo, 255300, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Jining, 272002, China
| | - Xiuhong Cao
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Yanlong Xing
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Chuqing Ma
- The Second Clinical College, Hainan Medical University, Haikou, 571199, China
| | - Panli Ni
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Fabiao Yu
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Juan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
35
|
Cheng J, Yang S, Shou D, Chen J, Li Y, Huang C, Chen H, Zhou Y. FOXO1 induced fatty acid oxidation in hepatic cells by targeting ALDH1L2. J Gastroenterol Hepatol 2024; 39:2197-2207. [PMID: 38923573 DOI: 10.1111/jgh.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Lipid metabolism disorder is the primary feature of numerous refractory chronic diseases. Fatty acid oxidation, an essential aerobic biological process, is closely related to the progression of NAFLD. The forkhead transcription factor FOXO1 has been reported to play an important role in lipid metabolism. However, the molecular mechanism through which FOXO1 regulates fatty acid oxidation remains unclear. METHODS Transcriptomic analysis was performed to examine the cellular expression profile to determine the functional role of FOXO1 in HepG2 cells with palmitic acid (PA)-induced lipid accumulation. FOXO1-binding motifs at the promoter region of aldehyde dehydrogenase 1 family member L2 (ALDH1L2) were predicted via bioinformatic analysis and confirmed via luciferase reporter assay. Overexpression of ALDH1L2 was induced to recover the impaired fatty acid oxidation in FOXO1-knockout cells. RESULTS Knockout of FOXO1 aggravated lipid deposition in hepatic cells. Transcriptomic profiling revealed that knockout of FOXO1 increased the expression of genes associated with fatty acid synthesis but decreased the expression of carnitine palmitoyltransferase1a (CPT1α) and adipose triglyceride lipase (ATGL), which contribute to fatty acid oxidation. Mechanistically, FOXO1 was identified as a transcription factor of ALDH1L2. Knockout of FOXO1 significantly decreased the protein expression of ALDH1L2 and CPT1α in vitro and in vivo. Furthermore, overexpression of ALDH1L2 restored fatty acid oxidation in FOXO1-knockout cells. CONCLUSION The findings of this study indicate that FOXO1 modulates fatty acid oxidation by targeting ALDH1L2.
Collapse
Affiliation(s)
- Jiemin Cheng
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Siqi Yang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Jiawei Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
36
|
Wang X, Xu L, Meng Y, Chen F, Zhuang J, Wang M, An W, Han Y, Chu B, Chai R, Liu W, Wang H. FOXO1-NCOA4 Axis Contributes to Cisplatin-Induced Cochlea Spiral Ganglion Neuron Ferroptosis via Ferritinophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402671. [PMID: 39206719 PMCID: PMC11515924 DOI: 10.1002/advs.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mammalian cochlea spiral ganglion neurons (SGNs) are crucial for sound transmission, they can be damaged by chemotherapy drug cisplatin and lead to irreversible sensorineural hearing loss (SNHL), while such damage can also render cochlear implants ineffective. However, the mechanisms underlying cisplatin-induced SGNs damage and subsequent SNHL are still under debate and there is no currently effective clinical treatment. Here, this study demonstrates that ferroptosis is triggered in SGNs following exposure to cisplatin. Inhibiting ferroptosis protects against cisplatin-induced SGNs damage and hearing loss, while inducing ferroptosis intensifies these effects. Furthermore, cisplatin prompts nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in SGNs, while knocking down NCOA4 mitigates cisplatin-induced ferroptosis and hearing loss. Notably, the upstream regulator of NCOA4 is identified and transcription factor forkhead box O1 (FOXO1) is shown to directly suppress NCOA4 expression in SGNs. The knocking down of FOXO1 amplifies NCOA4-mediated ferritinophagy, increases ferroptosis and lipid peroxidation, while disrupting the interaction between FOXO1 and NCOA4 in NCOA4 knock out mice prevents the cisplatin-induced SGN ferroptosis and hearing loss. Collectively, this study highlights the critical role of the FOXO1-NCOA4 axis in regulating ferritinophagy and ferroptosis in cisplatin-induced SGNs damage, offering promising therapeutic targets for SNHL mitigation.
Collapse
Affiliation(s)
- Xue Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yu Meng
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fang Chen
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Jinzhu Zhuang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Man Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Weibin An
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yuechen Han
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Wenwen Liu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| |
Collapse
|
37
|
Qin H, Chen S, Liu X, Liang J, Wu H, Zhu X. miR-132-3p downregulates FOXO1 in CD4 + T cells and is associated with disease manifestations in patients with lupus. J Int Med Res 2024; 52:3000605241286762. [PMID: 39429035 PMCID: PMC11494630 DOI: 10.1177/03000605241286762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression status of miR-132-3p in CD4+ T cells in patients with systemic lupus erythematosus (SLE) and explore its potential role in SLE development. METHODS The study included 60 patients with SLE and 30 healthy controls. miR-132-3p expression in CD4+ T cells was detected by real-time quantitative reverse transcription polymerase chain. Bioinformatics analyses were employed to predict target genes and explore the potential role of miR-132-3p. The associations between miR-132-3p levels and SLE Disease Activity Index (SLEDAI) score, as well as laboratory characteristics, were analyzed. RESULTS miR-132-3p levels in CD4+ T cells were significantly higher in patients with SLE compared with healthy controls. Bioinformatics analysis identified FOXO1 as a potential target gene of miR-132-3p, with a particular emphasis on the FOXO signaling pathway. miR-132-3p up-regulation in CD4+ T cells was associated with high SLEDAI score, high anti-double-stranded DNA levels, low C3 and C4 levels, positive anti-ribosomal P, and high 24-hour urinary protein levels in patients with SLE. CONCLUSIONS miR-132-3p may contribute to CD4+ T cell dysregulation during SLE by targeting FOXO1 and could potentially be used to assess disease severity.
Collapse
Affiliation(s)
| | | | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Alexander AK, Rodriguez KF, Chen YY, Amato CM, Estermann MA, Nicol B, Xu X, Hung-Chang Yao H. Single-nucleus multiomics reveals the gene-regulatory networks underlying sex determination of murine primordial germ cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581036. [PMID: 39386556 PMCID: PMC11463670 DOI: 10.1101/2024.02.19.581036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs towards a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K. Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karina F. Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Martin A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
39
|
Zhang L, Bai W, Peng Y, Lin Y, Tian M. Role of O-GlcNAcylation in Central Nervous System Development and Injuries: A Systematic Review. Mol Neurobiol 2024; 61:7075-7091. [PMID: 38367136 DOI: 10.1007/s12035-024-04045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The development of central nervous system (CNS) can form perceptual, memory, and cognitive functions, while injuries to CNS often lead to severe neurological dysfunction and even death. As one of the prevalent post-translational modifications (PTMs), O-GlcNAcylation has recently attracted great attentions due to its functions in regulating the activity, subcellular localization, and stability of target proteins. It has been indicated that O-GlcNAcylation could interact with phosphorylation, ubiquitination, and methylation to jointly regulate the function and activity of proteins. Furthermore, a growing number of studies have suggested that O-GlcNAcylation played an important role in the CNS. During development, O-GlcNAcylation participated in the neurogenesis, neuronal development, and neuronal function. In addition, O-GlcNAcylation was involved in the progress of CNS injuries including ischemic stroke, subarachnoid hemorrhage (SAH), and intracerebral hemorrhage (ICH) and played a crucial role in the improvement of brain damage such as attenuating cognitive impairment, inhibiting neuroinflammation, suppressing endoplasmic reticulum (ER) stress, and maintaining blood-brain barrier (BBB) integrity. Therefore, O-GlcNAcylation showed great promise as a potential target in CNS development and injuries. In this article, we presented a review highlighting the role of O-GlcNAcylation in CNS development and injuries. Hence, on the basis of these properties and effects, intervention with O-GlcNAcylation may be developed as therapeutic agents for CNS diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Jiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
40
|
Zhang Y, Wang M, Tang L, Yang W, Zhang J. FoxO1 silencing in Atp7b -/- neural stem cells attenuates high copper-induced apoptosis via regulation of autophagy. J Neurochem 2024; 168:2762-2774. [PMID: 38837406 DOI: 10.1111/jnc.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Wilson disease (WD) is a severely autosomal genetic disorder triggered by dysregulated copper metabolism. Autophagy and apoptosis share common modulators that process cellular death. Emerging evidences suggest that Forkhead Box O1 over-expression (FoxO1-OE) aggravates abnormal autophagy and apoptosis to induce neuronal injury. However, the underlying mechanisms remain undetermined. Herein, the aim of this study was to investigate how regulating FoxO1 affects cellular autophagy and apoptosis to attenuate neuronal injury in a well-established WD cell model, the high concentration copper sulfate (CuSO4, HC)-triggered Atp7b-/- (Knockout, KO) neural stem cell (NSC) lines. The FoxO1-OE plasmid, or siRNA-FoxO1 (siFoxO1) plasmid, or empty vector plasmid was stably transfected with recombinant lentiviral vectors into HC-induced Atp7b-/- NSCs. Toxic effects of excess deposited copper on wild-type (WT), Atp7b-/- WD mouse hippocampal NSCs were tested by Cell Counting Kit-8 (CCK-8). Subsequently, the FoxO1 expression was evaluated by immunofluorescence (IF) assay, western blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Meanwhile, the cell autophagy and apoptosis were evaluated by flow cytometry (FC), TUNEL staining, 2,7-dichlorofluorescein diacetate (DCFH-DA), JC-1, WB, and qRT-PCR. The current study demonstrated a strong rise in FoxO1 levels in HC-treated Atp7b-/- NSCs, accompanied with dysregulated autophagy and hyperactive apoptosis. Also, it was observed that cell viability was significantly decreased with the over-expressed FoxO1 in HC-treated Atp7b-/- WD model. As intended, silencing FoxO1 effectively inhibited abnormal autophagy in HC-treated Atp7b-/- NSCs, as depicted by a decline in LC3II/I, Beclin-1, ATG3, ATG7, ATG13, and ATG16, whereas simultaneously increasing P62. In addition, silencing FoxO1 suppressed apoptosis via diminishing oxidative stress (OS), and mitochondrial dysfunction in HC-induced Atp7b-/- NSCs. Collectively, these results clearly demonstrate the silencing FoxO1 has the neuroprotective role of suppressing aberrant cellular autophagy and apoptosis, which efficiently attenuates neuronal injury in WD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Department of Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Meixia Wang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
41
|
Hu Z, Chen D, Yan P, Zheng F, Zhu H, Yuan Z, Yang X, Zuo Y, Chen C, Lu H, Wu L, Lyu J, Bai Y. Puerarin suppresses macrophage M1 polarization to alleviate renal inflammatory injury through antagonizing TLR4/MyD88-mediated NF-κB p65 and JNK/FoxO1 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155813. [PMID: 38905846 DOI: 10.1016/j.phymed.2024.155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.
Collapse
Affiliation(s)
- Zujian Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Dong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Penghua Yan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fan Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Ziwei Yuan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yidan Zuo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lianfeng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
42
|
Zhang Q, Fei X, Li Y, Zhang H, Chen L, Ruan J, Dong N. Epigallocatechin-3-gallate attenuates fluoride induced apoptosis via PI3K/FoxO1 pathway in ameloblast-like cells. Toxicon 2024; 247:107857. [PMID: 38996976 DOI: 10.1016/j.toxicon.2024.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells. We observed that NaF triggered apoptotic alterations in cell morphology, excessive NaF arrested cell cycle at the G1, and induced apoptosis by up-regulating Bax and down-regulating Bcl-2. NaF activated the insulin-like growth factor receptor (IGFR), and phosphatidylinositol-3-hydroxylase (p-PI3K), while dose-dependently down-regulating the expression of Forkhead box O1 (FoxO1). EGCG supplements reversed the changes in LS8 morphology, the cell cycle, and apoptosis induced by fluoride. These results indicated that EGCG possesses a protective effect against fluoride toxicity. Furthermore, EGCG suppressed the activation of p-PI3K and the down-regulation of FoxO1 caused by fluoride. Collectively, our findings suggested that EGCG attenuated fluoride-induced apoptosis by inhibiting the PI3K/FoxO1 signaling pathway. EGCG may serve as a new alternative method for dental fluorosis prevention, control, and treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiuzhi Fei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hengwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Ning Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
Kolecka-Bednarczyk A, Frydrychowicz M, Budny B, Ruciński M, Dompe C, Gabryel P, Płachno BJ, Ruchała M, Ziemnicka K, Zieliński P, Budna-Tukan J. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:8642. [PMID: 39201328 PMCID: PMC11354976 DOI: 10.3390/ijms25168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.
Collapse
Affiliation(s)
- Agata Kolecka-Bednarczyk
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
| | - Claudia Dompe
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Cracow, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Paweł Zieliński
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
44
|
Chen Q, Li J. Molecular mechanism analysis of nontuberculous mycobacteria infection in patients with cystic fibrosis. Future Microbiol 2024; 19:877-888. [PMID: 38700285 PMCID: PMC11290754 DOI: 10.2217/fmb-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Aim: This study aims to explore the molecular mechanisms of cystic fibrosis (CF) complicated with nontuberculous mycobacteria (NTM) infection. Materials & methods: Expression profiles of CF with NTM-infected patients were downloaded from GEO database. Intersection analysis yielded 78 genes associated with CF with NTM infection. The protein-protein interaction (PPI) network and the functions of hub genes were investigated. Results: Five hub genes (PIK3R1, IL1A, CXCR4, ACTN1, PFN1) were identified, which were primarily enriched in actin-related biological processes and pathways. Transcription factors RELA, JUN, NFKB1 and FOS that regulated hub genes modulated IL1A expression, while 21 other transcription factors regulated CXCR4 expression. Conclusion: In summary, this study may provide new insights into the mechanisms of CF with NTM infection.
Collapse
Affiliation(s)
- Qihuang Chen
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Jin Li
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| |
Collapse
|
45
|
Tan X, Long Y, Zhang R, Zhang Y, You Z, Yang L. Punicalagin Ameliorates Diabetic Liver Injury by Inhibiting Pyroptosis and Promoting Autophagy via Modulation of the FoxO1/TXNIP Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300912. [PMID: 38847553 DOI: 10.1002/mnfr.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Indexed: 07/04/2024]
Abstract
Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1β, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.
Collapse
Affiliation(s)
- Xiuying Tan
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, 410005, China
| | - Rou Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yuhan Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Ziyi You
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
46
|
Lee HW, Karki R, Han JH. Inhibition of the RPS6KA1/FoxO1 signaling axis by hydroxycitric acid attenuates HFD-induced obesity through MCE suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155551. [PMID: 38569293 DOI: 10.1016/j.phymed.2024.155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Hyung-Won Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, South Korea; Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
47
|
Petit A, Tesseraud S, Collin A, Couroussé N, Berri C, Bihan-Duval EL, Métayer-Coustard S. Ontogeny of hepatic metabolism in two broiler lines divergently selected for the ultimate pH of the Pectoralis major muscle. BMC Genomics 2024; 25:438. [PMID: 38698322 PMCID: PMC11067279 DOI: 10.1186/s12864-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid β-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.
Collapse
Affiliation(s)
| | | | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | - Cécile Berri
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | | |
Collapse
|
48
|
Liu Q, Li S, Tang T, Wu Y. The roles of stress-induced premature senescence and Akt/FoxO1 signaling in periapical lesions. Oral Dis 2024; 30:2463-2472. [PMID: 37530471 DOI: 10.1111/odi.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES There is little knowledge about oxidative stress-induced senescence involvement in apical periodontitis. Here, we explored its molecular mechanism in periapical lesions. METHODS Ten cases of radicular cysts and five cases of periapical granulomas were randomly selected. Immunohistochemical analysis was performed to detect the expression and correlation between Senescence-associated factor polymerase I and transcript release factor (PTRF) and Akt/FoxO1 signaling. Human periodontal ligament cells (hPDLCs) pretreated with LY294002 were exposed to H2O2-induced oxidative stress conditions and then cell proliferation, senescence, apoptosis, and associated signaling were evaluated by EdU labeling, β-galactosidase assay, RT-qPCR, and western blot analysis, respectively. RESULTS Polymerase I and transcript release factor and Akt/FoxO1 signaling were more frequently expressed in the radicular cyst than in periapical granulomas. Notably, cells in radicular cysts showed Akt activation, FoxO1 phosphorylation, and cytoplasmic translocation. In vitro, prominent H2O2-induced senescence was observed in hPDLCs. LY294002, a PI3K inhibitor, attenuated the expression levels of senescence (Klotho, P16INK4), apoptosis (Bad, Fas), phosphorylated Akt, and phosphorylated FoxO1; however, did not affect cell proliferation. CONCLUSIONS Our data indicated that senescence is present in clinical periapical lesions, and Akt/FoxO1 signaling is involved in the H2O2-induced cellular senescence, which could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ting Tang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
49
|
Sun H, Chang Z, Li H, Tang Y, Liu Y, Qiao L, Feng G, Huang R, Han D, Yin DT. Multi-omics analysis-based macrophage differentiation-associated papillary thyroid cancer patient classifier. Transl Oncol 2024; 43:101889. [PMID: 38382228 PMCID: PMC10900934 DOI: 10.1016/j.tranon.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The reclassification of Papillary Thyroid Carcinoma (PTC) is an area of research that warrants attention. The connection between thyroid cancer, inflammation, and immune responses necessitates considering the mechanisms of differential prognosis of thyroid tumors from an immunological perspective. Given the high adaptability of macrophages to environmental stimuli, focusing on the differentiation characteristics of macrophages might offer a novel approach to address the issues related to PTC subtyping. METHODS Single-cell RNA sequencing data of medullary cells infiltrated by papillary thyroid carcinoma obtained from public databases was subjected to dimensionality reduction clustering analysis. The RunUMAP and FindAllMarkers functions were utilized to identify the gene expression matrix of different clusters. Cell differentiation trajectory analysis was conducted using the Monocle R package. A complex regulatory network for the classification of Immune status and Macrophage differentiation-associated Papillary Thyroid Cancer Classification (IMPTCC) was constructed through quantitative multi-omics analysis. Immunohistochemistry (IHC) staining was utilized for pathological histology validation. RESULTS Through the integration of single-cell RNA and bulk sequencing data combined with multi-omics analysis, we identified crucial transcription factors, immune cells/immune functions, and signaling pathways. Based on this, regulatory networks for three IMPTCC clusters were established. CONCLUSION Based on the co-expression network analysis results, we identified three subtypes of IMPTCC: Immune-Suppressive Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (ISMPTCC), Immune-Neutral Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (INMPTCC), and Immune-Activated Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (IAMPTCC). Each subtype exhibits distinct metabolic, immune, and regulatory characteristics corresponding to different states of macrophage differentiation.
Collapse
Affiliation(s)
- Hanlin Sun
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hongqiang Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yifeng Tang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yihao Liu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Lixue Qiao
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Guicheng Feng
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China.
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - De-Tao Yin
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China; Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China; Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
50
|
Gupta A, Haldhar R, Agarwal V, Rajput DS, Chun KS, Han SB, Raj V, Lee S. Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach. Biomol Ther (Seoul) 2024; 32:390-398. [PMID: 38586882 PMCID: PMC11063485 DOI: 10.4062/biomolther.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 04/09/2024] Open
Abstract
FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID- 3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Dharmendra Singh Rajput
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|