1
|
Lin Y, Chen K, Zhu M, Song W, Wu G, Pan A. Atractylenolide II regulates the proliferation, ferroptosis, and immune escape of hepatocellular carcinoma cells by inactivating the TRAF6/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7697-7710. [PMID: 38709266 DOI: 10.1007/s00210-024-03046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/09/2024] [Indexed: 05/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC. The role and mechanisms of AT-II were assessed through cell counting kit-8, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescence, and western blot experiments in Hep3B and Huh7 cells. In vivo experiments were conducted in BALB/c nude mice using immunohistochemistry and western blot assays. AT-II decreased the cell viability of Hep3B and Huh7 cells with a IC50 of 96.43 µM and 118.38 µM, respectively. AT-II increased relative Fe2+ level, which was further promoted with the incubation of erastin and declined with the ferrostatin-1 in Hep3B and Huh7 cells. AT-II enhanced the level of ROS and MDA, but reduced the GSH level, and the expression of xCT and GPX4. AT-II elevated the percent of CD8+ T cells and the IFN-γ contents, and declined the IL-10 concentrations and the expression of PD-L1 in Hep3B and Huh7 cells. AT-II downregulated the relative protein level of TRAF6, p-p65/p-65, and p-IkBα/IkBα, which was rescued with overexpression of TRAF6. Upregulation of TRAF6 also reversed the effect of AT-II on proliferation, ferroptosis, and immune escape in Hep3B cells. In vivo, AT-II reduced tumor volume and weight, the level of GPX4, xCT, and PD-L1, and the expression of TRAF6, p-p65/p-65, and p-IkBα/IkBα, with the increased expression of CD8. AT-II modulated the proliferation, ferroptosis, and immune escape of HCC cells by downregulating the TRAF6/NF-κB pathway.
Collapse
Affiliation(s)
- Yujie Lin
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China
| | - Ke Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China
| | - Min Zhu
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China
| | - Wei Song
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University Shenshan Central Hospital, Shanwei, 516600, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China.
| | - Aizhen Pan
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China.
| |
Collapse
|
2
|
Wang K, Shen K, Wang J, Yang K, Zhu J, Chen Y, Liu X, He Y, Zhu X, Zhan Q, Shi T, Li R. BUB1 potentiates gastric cancer proliferation and metastasis by activating TRAF6/NF-κB/FGF18 through m6A modification. Life Sci 2024; 353:122916. [PMID: 39025206 DOI: 10.1016/j.lfs.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
AIMS Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. High expression of the mitotic kinase BUB1 has been shown to be associated with the development of many cancers, but the role of BUB1 in GC is still unclear. The current study aimed to investigate the role of BUB1 in GC. MATERIALS AND METHODS BUB1 inhibitor, siRNA or BUB1 overexpression plasmid-mediated functional studies were performed in vitro and in vivo to explore the oncogenic role of BUB1 in GC. The expression of BUB1 and FGF18 in GC tumor samples was determined by IHC staining. RNA-seq, Western blot, MeRIP-qPCR and Co-IP assays were used to investigate the molecular mechanisms by which BUB1 regulates GC progression. KEY FINDINGS Knockdown of BUB1 significantly inhibited the proliferation and metastasis of GC cells in vitro and in vivo. Moreover, overexpression of BUB1 significantly promoted the proliferation, migration and invasion of GC cells. High expression of BUB1 and FGF18 in GC tissues predicted poor prognosis in GC patients. Mechanistically, BUB1 interacted with METTL3 and induced m6A modification of TRAF6 mRNA, further activating the NF-κB/FGF18 axis in GC cells. SIGNIFICANCE Our results confirmed that BUB1 acts as a positive regulator of GC cell proliferation and metastasis by activating the TRAF6/NF-κB/FGF18 pathway through METTL3-mediated m6A methylation. Targeting the BUB1/METTL3/TRAF6/NF-κB/FGF18 axis might be a novel diagnostic and therapeutic strategy in GC.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, China
| | - Xin Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingchao Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Qin Zhan
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Rui Li
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Wang L, Liu X, Han Y, Tsai HI, Dan Z, Yang P, Xu Z, Shu F, He C, Eriksson JE, Zhu H, Chen H, Cheng F. TRAF6 enhances PD-L1 expression through YAP1-TFCP2 signaling in melanoma. Cancer Lett 2024; 590:216861. [PMID: 38583649 DOI: 10.1016/j.canlet.2024.216861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Zilin Dan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Peiru Yang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Guo Y, Zhang X, Li J, Zhou Z, Zhu S, Liu W, Su J, Chen X, Peng C. TRAF6 regulates autophagy and apoptosis of melanoma cells through c-Jun/ATG16L2 signaling pathway. MedComm (Beijing) 2023; 4:e309. [PMID: 37484971 PMCID: PMC10357248 DOI: 10.1002/mco2.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
Autophagy and apoptosis are essential processes that participate in cell death and maintain cellular homeostasis. Dysregulation of these biological processes results in the development of diseases, including cancers. Therefore, targeting the interaction between apoptosis and autophagy offers a potential strategy for cancer therapy. Melanoma is the most lethal skin cancer. We previously found that tumor necrosis factor receptor-associated factor 6 (TRAF6) is overexpressed in melanoma and benefits the malignant phenotype of melanoma cells. Additionally, TRAF6 promotes the activation of cancer-associated fibroblasts in melanoma. However, the role of TRAF6 in autophagy and apoptosis remains unclear. In this study, we found that knockdown of TRAF6 induced both apoptosis and autophagy in melanoma cells. Transcriptomic data and real-time PCR analysis demonstrated reduced expression of autophagy related 16 like 2 (ATG16L2) in TRAF6-deficient melanoma cells. ATG16L2 knockdown resulted in increased autophagy and apoptosis. Mechanism studies confirmed that TRAF6 regulated ATG16L2 expression through c-Jun. Importantly, targeting TRAF6 with cinchonine, a TRAF6 inhibitor, effectively suppressed the growth of melanoma cells by inducing autophagy and apoptosis through the TRAF6/c-Jun/ATG16L2 signaling pathway. These findings highlight the pivotal role of TRAF6 in regulating autophagy and apoptosis in melanoma, emphasizing its significance as a novel therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yeye Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xu Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Jie Li
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Zhe Zhou
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Susi Zhu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Waner Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Juan Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisHunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| |
Collapse
|
5
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Yang B, Lou C, Chen S, Zhang Z, Xu Q. XIAP and PHB1 Regulate Anoikis through Competitive Binding to TRAF6. Mol Cancer Res 2023; 21:127-139. [PMID: 36346305 DOI: 10.1158/1541-7786.mcr-22-0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Anoikis resistance is a prerequisite for circulating tumor cells to survive. However, the mechanism underlying anoikis resistance is poorly understood. In the current study, the effect of TNF receptor-associated factor 6 (TRAF6)-induced NF-kB activation on anoikis susceptibility in tumor cells was evaluated. Differential TRAF6-binding proteins in anoikis-sensitive versus anoikis-resistant tumor cells were screened by LC/MS-MS analysis. The effects of TRAF6-binding proteins on the stability of TRAF6, the activation of NF-kB signaling and anoikis susceptibility in tumor cells were detected. We found that the loss of TRAF6 expression is an important molecular event linked to anoikis. X-linked inhibitor of apoptosis protein (XIAP), an E3 ligase, can bind, ubiquitinate, and degrade TRAF6 and may lead to inactivation of NF-κB signaling and anoikis sensitivity. High expression of prohibitin 1 (PHB1) competes with XIAP for binding to TRAF6 and confers anoikis resistance to tumor cells. PHB1 and TRAF6 knockdown eliminated tumor cells from the circulation in vivo. Significant correlations between elevated PHB1 and TRAF6 expression and distant metastasis were observed in patients with oral cancer. Collectively, we elucidated a novel mechanism governing anoikis. Our data also indicated that TRAF6 and PHB1 are potential therapeutic targets for tumor cells disseminating in the circulation. IMPLICATIONS Our data implicate that PHB1 competes with XIAP for binding to TRAF6 and confers anoikis resistance to tumor cells.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chao Lou
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shengkai Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Li DK, Wang GH. Asiaticoside reverses M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by TRAF6/NF-κB inhibition. PHARMACEUTICAL BIOLOGY 2022; 60:1635-1645. [PMID: 35989576 PMCID: PMC9415541 DOI: 10.1080/13880209.2022.2109688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT M2 phenotype macrophage polarization is an attractive target for therapeutic intervention. Asiaticoside (ATS) has multiple pharmacological functions. OBJECTIVE This study investigates the effect of ATS on M2 phenotype macrophage polarization in osteosarcoma. MATERIALS AND METHODS The differentiation of human THP-1 monocytes into M0 phenotype macrophages was induced by 100 nM phorbol myristate acetate for 24 h, and treated with 20 ng/mL IL-4 and 20 ng/mL IL-13 for 48 h to obtain M2 phenotype macrophages. The function of ATS on the growth and invasion was investigated by cell counting kit-8, transwell, and western blot under the co-culture of M2 phenotype macrophages and osteosarcoma cells for 24 h. The mechanism of ATS on osteosarcoma was assessed using molecular experiments. RESULTS ATS reduced the THP-1 cell viability with an IC50 of 128.67 μM. Also, ATS repressed the M2 phenotype macrophage polarization induced by IL-4/IL-13, and the effect was most notably at a 40 μM dose. ATS (40 μM) restrained the growth and invasion of osteosarcoma cells induced by M2 phenotype macrophages. In addition, ATS reduced the tumour necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB activity in osteosarcoma cells and the TRAF6 knockdown reduced the growth and invasion of osteosarcoma cells induced by M2 phenotype macrophages. TRAF6 (2 μg/mL) attenuated the inhibitory effect of ATS on the growth and invasion of osteosarcoma cells caused by M2 phenotype macrophages. In vivo studies further confirmed ATS (2.5, 5, or 10 mg/kg) repressed osteosarcoma tumour growth. DISCUSSION AND CONCLUSIONS ATS reversed M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by reducing TRAF6/NF-κB activity, suggesting ATS might be a promising drug for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dang-ke Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Qingdao, China
| | - Guang-hui Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
8
|
Kuo YH, Hung HS, Tsai CW, Chiu SC, Liu SP, Chiang YT, Shyu WC, Lin SZ, Fu RH. A Novel Splice Variant of BCAS1 Inhibits β-Arrestin 2 to Promote the Proliferation and Migration of Glioblastoma Cells, and This Effect Was Blocked by Maackiain. Cancers (Basel) 2022; 14:cancers14163890. [PMID: 36010884 PMCID: PMC9405932 DOI: 10.3390/cancers14163890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that β-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of β-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and β-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the β-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.
Collapse
Affiliation(s)
- Yun-Hua Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|
9
|
SASH1 knockdown suppresses TRAF6 ubiquitination to regulate hemangioma progression by mediating EZH2 degradation. Exp Cell Res 2022; 418:113270. [DOI: 10.1016/j.yexcr.2022.113270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
|
10
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Cheng T, Zhu X, Lu J, Teng X. MiR-532-3p suppresses cell proliferation, migration and invasion of colon adenocarcinoma via targeting FJX1. Pathol Res Pract 2022; 232:153835. [DOI: 10.1016/j.prp.2022.153835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
|
12
|
Zhu G, Cheng Z, Wang Q, Lin C, Lin P, He R, Chen H, Hoffman RM, Ye J. TRAF6 regulates the signaling pathway influencing colorectal cancer function by ubiquitination mechanisms. Cancer Sci 2022; 113:1393-1405. [PMID: 35179811 PMCID: PMC8990288 DOI: 10.1111/cas.15302] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor receptor‐associated factor‐6 (TRAF6) is a ubiquitin E3 ligase. TRAF6 plays an important role in tumor invasion and metastasis. However, the specific mechanism by which TRAF6 promotes colorectal cancer (CRC) metastasis is incompletely understood. This study aimed to determine whether TRAF6 affects the LPS‐NF‐κB‐VEGF‐C signaling pathway through ubiquitination, which plays a role in colorectal cancer metastasis. Here, our results showed that TRAF6 affected lymphangiogenesis through the LPS‐NF‐κB‐VEGF‐C signaling pathway. Using ubiquitination experiments, we found that TRAF6 was mainly ubiquitinated with the K63‐linked chains, and LPS promoted ubiquitination of TRAF6 and K63‐linked chains. More importantly, TRAF6 124mut is the main ubiquitination site of TRAF6 interacting with K63‐linked chains. TRAF6 affected the migration, invasion, and lymphatic metastasis of colorectal cancer through its ubiquitination. In subcutaneous xenograft models, TRAF6 124mut inhibited tumor growth. In conclusion, our results provide new insight for studying the mechanism of lymphangiogenesis in colorectal cancer to promote cancer metastasis, which may provide new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| | - Qin Wang
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Jianxin Ye
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
13
|
Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP, Ahn KS, Nabavi N, Khan H, Makvandi P, Varma RS. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol 2021; 157:112576. [PMID: 34571052 DOI: 10.1016/j.fct.2021.112576] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Phd student of pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
14
|
TRAF6 Promoted Tumor Glycolysis in Non-Small-Cell Lung Cancer by Activating the Akt-HIF α Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3431245. [PMID: 34409101 PMCID: PMC8367595 DOI: 10.1155/2021/3431245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
TRAF6 has been reported to be associated with poor prognosis in non-small-cell lung cancer (NSCLC). However, its precise role in tumor development has not been elaborated. In the present study, the function and the mechanism by which TRAF6 contributes to development were intensively investigated. TRAF6 was found to be overexpressed in primary NSCLC tumor tissue and all tested cell lines. Knockdown of TRAF6 with shRNA substantially attenuated NSCLC cell proliferation and anchorage-independent growth. Moreover, tumor glycolysis, such as glucose consumption and lactate production, also significantly impaired. In TRAF6-deficient cells, hexokinase-2 expression was significantly reduced, which was caused by the decrease of HIF-1α transcriptional activity. Further investigations demonstrated that TRAF6 played an important role in the regulation of Akt activation, and exogenous overexpression of constitutively activated Akt substantially rescued glycolysis suppression in TRAF6 knockdown cells. The results of the xenograft model confirmed that downregulation of TRAF6 in NSCLC tumor cells dramatically restrained tumor growth in vivo. Taken together, our studies revealed the mechanism by which TRAF6 exerts its role in NSCLC development and suggested TRAF6 maybe was a promising candidate target for lung cancer prevention and therapy.
Collapse
|
15
|
Li N, Luo L, Wei J, Liu Y, Haque N, Huang H, Qi Y, Huang Z. Identification of a new TRAF6 inhibitor for the treatment of hepatocellular carcinoma. Int J Biol Macromol 2021; 182:910-920. [PMID: 33865893 DOI: 10.1016/j.ijbiomac.2021.04.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase that plays a crucial role in signal transduction. Previous studies have demonstrated that TRAF6 is overexpressed in hepatocellular carcinoma (HCC) and that TRAF6 knockdown dramatically attenuates tumor cell growth. Thus, TRAF6 may represent a potential therapeutic target for the treatment of HCC. Herein, we identified bis (4-hydroxy-3,5-dimethylphenyl) sulfone (TMBPS) as a novel inhibitor that can directly bind to and downregulate the level of TRAF6. In vitro experimental results showed that TMBPS arrests the cell cycle in the G2/M phase by inactivating the protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways and induces apoptosis by activating the p38/mitogen-activated protein kinase (MAPK) signaling pathway. In addition, TMBPS exhibited significant tumor growth inhibition in mouse xenograft models. In summary, our findings offer a proof-of-concept for the use of TMBPS as a novel chemotherapy drug for the prevention or treatment of HCC.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Lianxiang Luo
- The Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yong Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Neshatul Haque
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hongbin Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yi Qi
- The Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
16
|
Li J, Tian M, Hua T, Wang H, Yang M, Li W, Zhang X, Yuan H. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy 2021; 17:4062-4082. [PMID: 33834930 PMCID: PMC8726676 DOI: 10.1080/15548627.2021.1900498] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved process, plays an important role in the regulation of immune inflammation and nervous system homeostasis. However, the exact role and mechanism of autophagy in pain is still unclear. Here, we showed that impaired autophagy flux mainly occurred in astrocytes during the maintenance of neuropathic pain. No matter the stage of neuropathic pain induction or maintenance, activation of autophagy relieved the level of pain, whereas inhibition of autophagy aggravated pain. Moreover, the levels of neuroinflammation and reactive oxygen species (ROS) were increased or decreased following autophagy inhibition or activation. Further study showed that inhibition of autophagy slowed the induction, but increased the maintenance of neuroinflammatory responses, which could be achieved by promoting the binding of TRAF6 (TNF receptor-associated factor 6) to K63 ubiquitinated protein, and increasing the levels of p-MAPK8/JNK (mitogen-activated protein kinase 8) and nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB/NF-κB). Impaired autophagy also reduced the protective effect of astrocytes on neurons against ROS stress because of the decrease in the level of glutathione released by astrocytes, which could be improved by activating the NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2) pathway. We also demonstrated that simultaneous activation of autophagy and the NFE2L2 pathway further relieved pain, compared to activating autophagy alone. Our study provides an underlying mechanism by which autophagy participates in the regulation of neuropathic pain, and a combination of autophagy and NFE2L2 activation may be a new treatment approach for neuropathic pain. Abbreviation: 3-MA: 3-methyladenine; 8-OHdG: 8-hydroxydeoxy-guanosine; ACTB: actin, beta; AMPAR: alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor; ATG: autophagy-related; CAMK2/CaMKII: calcium/calmodulin-dependent protein kinase II; CCL7: chemokine (C-C motif) ligand 7; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABA: gamma-aminobutyrate; GCLC: glutamate-cysteine ligase, catalytic subunit; GFAP: glial fibrillary acidic protein; GSH: glutathione; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch-like ECH-associated protein 1; MAP1LC3/LC3-II: microtubule-associated protein 1 light chain 3 beta (phosphatidylethanolamine-conjugated form); MAPK: mitogen-activated protein kinase; MAPK1/ERK: mitogen-activated protein kinase 1; MMP2: matrix metallopeptidase 2; MAPK8/JNK: mitogen-activated protein kinase 8; MAPK14/p38: mitogen-activated protein kinase 14; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; ROS: reactive oxygen species; SLC12A5: solute carrier family 12, member 5; SNL: spinal nerve ligation; TLR4: toll-like receptor 4; TRAF6: TNF receptor-associated factor; TRP: transient receptor potential.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mouli Tian
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Wenqian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaoping Zhang
- Department of Interventional & Vascular Surgery, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
17
|
Zhao L, Hao Y, Song Z, Fan Y, Li S. TRIM37 negatively regulates inflammatory responses induced by virus infection via controlling TRAF6 ubiquitination. Biochem Biophys Res Commun 2021; 556:87-92. [PMID: 33839419 DOI: 10.1016/j.bbrc.2021.03.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/20/2023]
Abstract
Virus-induced cytokine storm has been a devastating actuality in clinic. The abnormal production of type I interferon (IFN-1) and upregulation of multiple cytokines induced strong inflammation and thus lead to shock and organ failure. As an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37) regulates the ubiquitination of multiple proteins including TRAFs. RNA sequencing was performed to investigated the alteration of transcriptional profile of H1N1-infected patients. qRT-PCR assay was performed to investigate the RNA levels of certain genes. The group of immune cells was examined by the Flow cytometry analysis. H&E staining was applied to evaluate lung inflammation of WT and TRIM37-KO mice. ELISA assay was performed to demonstrate the alteration of multiple cytokines. The protein levels in NF-kB signaling was estimated by western blotting and immunoprecipitation assays were applied to demonstrate the direct interaction between TRIM37 and TRAF-6. The RNA level of TRIM37 decreased in CD11b+ cells of Flu-infected patients. Knockout of TRIM37 inhibited the immune responses of H1N1-infected mice. TRIM37 deficiency reduced the levels of virous proinflammatory cytokines in bone marrow derived macrophages (BMDMs). Mechanically, TRIM37 promoted the K63-linked ubiquitination of TRAF6. TRIM37 negatively regulated inflammatory responses induced by virus infection via promoting TRAF6 ubiquitination at K63.
Collapse
Affiliation(s)
- Lifen Zhao
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Yanyan Hao
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Zhuohui Song
- Department of Physiology, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Yimin Fan
- Functional Comprehensive Laboratory, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Shufen Li
- Department of Physiology, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, 046000, Shanxi, China.
| |
Collapse
|
18
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
19
|
Lin X, Han L, Gu C, Lai Y, Lai Q, Li Q, He C, Meng Y, Pan L, Liu S, Li A. MiR-452-5p promotes colorectal cancer progression by regulating an ERK/MAPK positive feedback loop. Aging (Albany NY) 2021; 13:7608-7626. [PMID: 33658394 PMCID: PMC7993669 DOI: 10.18632/aging.202657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND MiR-452-5p plays an essential role in the development of a variety of tumors, but little is known about its biological function and mechanism in colorectal cancer (CRC). METHODS The expression levels of miR-452-5p in CRC tissues and cells were detected by real-time quantitative PCR (qRT-PCR). Besides, the biological effects of miR-452-5p on CRC were investigated by functional experiments in vitro and in vivo. Furthermore, bioinformatics analysis, dual-luciferase reporter assay, chromatin immunecipitation assay, western blotting and recovery experiments were implemented to investigate the underlying molecular mechanism. RESULTS The expression level of miR-452-5p was up-regulated in CRC tissues. MiR-452-5p promoted CRC cell proliferation, cell cycle transition and chemoresistance, and inhibited cell apoptosis. Moreover, miR-452-5p directly targeted PKN2 and DUSP6 and subsequently activated the ERK/MAPK signaling pathway, and it was transcriptionally regulated by c-Jun. CONCLUSION To conclude, miR-452-5p expression is up-regulated in CRC, which promotes the progression of CRC by activating the miR-452-5p-PKN2/DUSP6-c-Jun positive feedback loop. These findings indicate that miR-452-5p may act as a potential therapeutic target and clinical response biomarker for CRC.
Collapse
Affiliation(s)
- Xin Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yihong Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Meng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lei Pan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Song G, Zhang Y, Tian J, Ma J, Yin K, Xu H, Wang S. TRAF6 Regulates the Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Tumor-Bearing Host. Front Immunol 2021; 12:649020. [PMID: 33717204 PMCID: PMC7946975 DOI: 10.3389/fimmu.2021.649020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous cells derived from the bone marrow and they are the major component of the tumor-induced immunosuppressive environment. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, catalyzes the polyubiquitination of target proteins. TRAF6 plays a critical role in modulating the immune system. However, whether TRAF6 is involved in the regulation of MDSCs has not been thoroughly elucidated to date. In this study, we found that the expression of TRAF6 in MDSCs derived from tumor tissue was significantly upregulated compared with that of MDSCs from spleen of tumor-bearing mice. Knockdown of TRAF6 remarkably attenuated the immunosuppressive effects of MDSCs. Mechanistically, TRAF6 might improve the immunosuppression of MDSCs by mediating K63-linked polyubiquitination and phosphorylation of signal transducer and activator of transcription 3 (STAT3). Additionally, it was discovered that the accumulation of MDSCs was abnormal in peripheral blood of lung cancer patients. TRAF6 and arginase 1 were highly expressed in MDSCs of patients with lung cancer. Taken together, our study demonstrated that TRAF6 participates in promoting the immunosuppressive function of MDSCs and provided a potential target for antitumor immunotherapy.
Collapse
Affiliation(s)
- Ge Song
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| |
Collapse
|
21
|
Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4607197. [PMID: 33294443 PMCID: PMC7714562 DOI: 10.1155/2020/4607197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, is a signal transduction molecule shared by the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) family and the TNFR superfamily. TRAF6 has a unique TRAF domain and RING finger domain that mediate intracellular signaling events. In the immune system, TRAF6-mediated signaling has been shown to be critical for the development, homeostasis, and activation of a variety of immune cells, including B cells, T cells, dendritic cells, and macrophages. Although the pathogenesis and etiology of autoimmune diseases and cancer are not fully understood, it is worth noting that existing studies have shown that TRAF6 is involved in the pathogenesis and development of a variety of these diseases. Herein, we reviewed the role of TRAF6 in certain immune cells, as well as the function and potential effect of TRAF6 in autoimmune diseases and cancer. Our review indicates that TRAF6 may be a novel target for autoimmune diseases and cancer.
Collapse
|
22
|
Zhu G, Cheng Z, Lin C, Wang Q, Huang Y, Zheng W, Yang S, Ye J. The Effects of TRAF6 on Growth and Progression in Colorectal Cancer are Regulated by miRNA-140. Onco Targets Ther 2020; 13:11991-12001. [PMID: 33244241 PMCID: PMC7685390 DOI: 10.2147/ott.s257733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Aim Some studies have confirmed that miRNA-140 exhibits a suppressive role in gastric cancer, Wilms’ tumor. However, the function of miRNA-140 in colorectal cancer has not been completely elucidated. The present study aims to verify TRAF6 as the targeted gene by miRNA-140 which was investigated in colorectal cancer tissues and cells, and its effects on the biological characteristics of colorectal cancer cells were determined, in order to provide an experimental and theoretical basis for the application of TRAF6 in the treatment of colorectal cancer. Methods qPCR analyzed miRNA-140 expression levels in colorectal cancer tissues, normal colorectal cancer tissues and colorectal cells including SW480 and HCT116 cancer cells and FHC normal colorectal epithetical cells. A serial biological experiment analyzed miRNA-140 effects on cell proliferation, migration and invasion capacities in SW480 and HCT116 cells. miRNA targeting gene prediction and a dual luciferase assay were used to analyze miRNA-140-targeted TRAF6. qPCR and Western blot analyzed miRNA-140 effects on the mRNA and protein expression of TRAF6. Western blot analyzed miRNA-140 effects on NF-κB/c-jun signaling pathways. Animal studies were performed to investigate the effects of miRNA-140 on colorectal cancer implantation tumor growth. Immunohistochemistry analyzed TRAF6 expression in animal experimentation tumors. Results miRNA-140 expression is lower in colorectal cancer tissues and colorectal cancer cells. Over-expression of miRNA-140 inhibited the proliferation, migration and invasion capacities of colorectal cancer cells. miRNA-140 targeted the TRAF6 mRNA 3ʹUTR area and decreased TRAF6 protein expression. miRNA-140 suppressed p-NF-κB/p-c-jun proteins expression. miRNA-140 inhibited colorectal cancer implantation tumor growth in the mice model. Conclusion miRNA-140 targeting TRAF6 affects the progression and growth of colorectal cancer, the mechanism could be miRNA-140 decreasing the TRAF6 expression effects on the NF-κB/c-jun signaling pathways.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Qin Wang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| |
Collapse
|
23
|
He G, Yao W, Li L, Wu Y, Feng G, Chen L. LOXL1-AS1 contributes to the proliferation and migration of laryngocarcinoma cells through miR-589-5p/TRAF6 axis. Cancer Cell Int 2020; 20:504. [PMID: 33061856 PMCID: PMC7552551 DOI: 10.1186/s12935-020-01565-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.
Collapse
Affiliation(s)
- Guijun He
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Wenfeng Yao
- Department of Otolaryngology, The First People's Hospital of Xinxiang City, Xinxiang, 453000 Henan China
| | - Liang Li
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Yang Wu
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Guojian Feng
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Li Chen
- Department of Otorhinolaryngology, Zaozhuang Municipal Hospital, No. 41, Longtou Middle Road, Shizhong District, Zaozhuang, 277100 Shandong China
| |
Collapse
|
24
|
Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-κB pathway. Cell Death Dis 2020; 11:788. [PMID: 32968054 PMCID: PMC7511409 DOI: 10.1038/s41419-020-02989-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a newly discovered type of biological molecule that belongs to the noncoding RNA family. Abundant evidence has shown that circRNAs are involved in the progression of various cancers. However, the particular functions of circRNAs in colorectal cancer (CRC) remain elusive. In this study, we investigated the differentially expressed circRNAs in three pairs of cancer tissue and adjacent normal tissue of CRC. We revealed that circGLIS2 expression was higher in CRC tissue and cell lines. Gain-and-loss function assays showed that circGLIS2 was involved in the regulation of cell migration. Moreover, overexpressing circGLIS2 in CRC cells activated the NF-κB pathway and induced pro-inflammatory chemokine production, which evoked tumor-associated inflammation through recruiting leukocytes. In turn, when the cancer cells were exposed to the supernatant of circGLIS2 overexpressed cancer cells, they were endowed with the ability of migration and chemokines production. Furthermore, the rescue assay confirmed that circGLIS2 activated NF-κB signaling and promoted cell migration by sponging miR-671. Overall, our study reveals that circGLIS2, acting as a potential oncogene, maintains the abnormal activation state of the NF-κB signaling pathway via the miR-671 sponge mechanism in CRC cells. This study provides a scientific basis for targeting circGLIS2 in colorectal cancer interventions.
Collapse
|
25
|
Abstract
Tumor necrosis factor receptor (TNFR)-related factors (TRAFs) are important linker molecules in the tumor necrosis factor superfamily (TNFSF) and the Toll-like/interleukin-1 receptor (TLR/ILR) superfamily. There are seven members: TRAF1-TRAF7, among those members, tumor necrosis factor receptor-associated factor 6 (TRAF6) is upregulated in various tumors, which has been related to tumorigenesis and development. With the in-depth study of the relationship between TRAF6 and different types of tumors, TRAF6 has oncogenic characteristics involved in tumorigenesis, tumor development, invasion, and metastasis through various signaling pathways, therefore, targeting TRAF6 has provided a novel strategy for tumor treatment. This review summarizes and analyzes the role of TRAF6 in tumorigenesis and tumor development in combination with the current research on TRAF6 and tumors.
Collapse
|
26
|
Zhou S, Zhao N, Wang J. Gambogenic acid suppresses bladder cancer cells growth and metastasis by regulating NF-κB signaling. Chem Biol Drug Des 2020; 96:1272-1279. [PMID: 32491272 DOI: 10.1111/cbdd.13737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gambogenic acid (GNA) is one of the main active components of Gamboge, and its anticancer role has been reported in some cancers. The study was to investigate the inhibitory effects of GNA on the proliferation and metastasis of bladder cancer (BC) cells and its potential regulatory mechanisms. MATERIALS AND METHODS BC cell lines (BIU-87 cells, T24 cells, and J82 cells) were treated with different doses of GNA for different time, and then the effects of GNA on BC cell were examined in vitro using CCK-8 assay, apoptosis assays, and Transwell tests. NF-κB signaling activity was detected by the NF-κB p65 luciferase reporter assay. Western blot was used to detect the expressions of cIAP2, XIAP, Survivin, and p65. RESULTS GNA inhibited the viability of BC cells in vitro in a dose- and time-dependent manner and facilitated apoptosis of BC cells. Moreover, GNA could remarkably impede the migration and invasion abilities of BC cells. In terms of mechanism, GNA administration reduced the activity of NF-κB signaling and down-regulated the expressions of p65, survivin, XIAP, and cIAP2. CONCLUSION GNA blocks the growth and metastasis of BC cells via inhibiting the NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- Shiming Zhou
- Department of Urology, Liaocheng People's Hospital, Liaocheng, China
| | - Nan Zhao
- Department of Reproductive Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Jialei Wang
- Department of Urology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|