1
|
Rowlands CE, Folberg AM, Beickman ZK, Devor EJ, Leslie KK, Givens BE. Particles and Prejudice: Nanomedicine Approaches to Reducing Health Disparities in Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300096. [PMID: 37312613 PMCID: PMC10716380 DOI: 10.1002/smll.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Endometrial cancer is the most common gynecological malignancy worldwide and unfortunately has a much higher mortality rate in Black women compared with White women. Many potential factors contribute to these mortality rates, including the underlying effects of systemic and interpersonal racism. Furthermore, other trends in medicine have potential links to these rates including participation in clinical trials, hormone therapy, and pre-existing health conditions. Addressing the high incidence and disparate mortality rates in endometrial cancer requires novel methods, such as nanoparticle-based therapeutics. These therapeutics have been growing in increasing prevalence in pre-clinical development and have far-reaching implications in cancer therapy. The rigor of pre-clinical studies is enhanced by the likeness of the model to the human body. In systems for 3D cell culture, for example, the extracellular matrix mimics the tumor more closely. The increasing emphasis on precision medicine can be applied to cancer using nanoparticle-based methods and applied to pre-clinical models by using patient-derived model data. This review highlights the intersections of nanomedicine, precision medicine, and racial disparities within endometrial cancer and provides insights into reducing health disparities using recent scientific advances on the nanoscale.
Collapse
Affiliation(s)
- Claire E Rowlands
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| | - Abigail M Folberg
- Department of Psychology, University of Nebraska at Omaha, 6100 W. Dodge Road, ASH 347E, Omaha, NE, 68182, USA
| | - Zachary K Beickman
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center | The University of New Mexico Health Sciences Center, 1021 Medical Arts Ave NE, Albuquerque, NM, 87131, USA
| | - Brittany E Givens
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| |
Collapse
|
2
|
Dhas Y, Biswas N, M R D, Jones LD, Ashili S. Repurposing metabolic regulators: antidiabetic drugs as anticancer agents. MOLECULAR BIOMEDICINE 2024; 5:40. [PMID: 39333445 PMCID: PMC11436690 DOI: 10.1186/s43556-024-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Drug repurposing in cancer taps into the capabilities of existing drugs, initially designed for other ailments, as potential cancer treatments. It offers several advantages over traditional drug discovery, including reduced costs, reduced development timelines, and a lower risk of adverse effects. However, not all drug classes align seamlessly with a patient's condition or long-term usage. Hence, repurposing of chronically used drugs presents a more attractive option. On the other hand, metabolic reprogramming being an important hallmark of cancer paves the metabolic regulators as possible cancer therapeutics. This review emphasizes the importance and offers current insights into the repurposing of antidiabetic drugs, including metformin, sulfonylureas, sodium-glucose cotransporter 2 (SGLT2) inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), thiazolidinediones (TZD), and α-glucosidase inhibitors, against various types of cancers. Antidiabetic drugs, regulating metabolic pathways have gained considerable attention in cancer research. The literature reveals a complex relationship between antidiabetic drugs and cancer risk. Among the antidiabetic drugs, metformin may possess anti-cancer properties, potentially reducing cancer cell proliferation, inducing apoptosis, and enhancing cancer cell sensitivity to chemotherapy. However, other antidiabetic drugs have revealed heterogeneous responses. Sulfonylureas and TZDs have not demonstrated consistent anti-cancer activity, while SGLT2 inhibitors and DPP-4 inhibitors have shown some potential benefits. GLP-1RAs have raised concerns due to possible associations with an increased risk of certain cancers. This review highlights that further research is warranted to elucidate the mechanisms underlying the potential anti-cancer effects of these drugs and to establish their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Yogita Dhas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | | | - Lawrence D Jones
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
3
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zdanowicz A, Grosicka-Maciąg E. The Interplay between Autophagy and Mitochondria in Cancer. Int J Mol Sci 2024; 25:9143. [PMID: 39273093 PMCID: PMC11395105 DOI: 10.3390/ijms25179143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Besides producing cellular energy, mitochondria are crucial in controlling oxidative stress and modulating cellular metabolism, particularly under stressful conditions. A key aspect of this regulatory role involves the recycling process of autophagy, which helps to sustain energy homeostasis. Autophagy, a lysosome-dependent degradation pathway, plays a fundamental role in maintaining cellular homeostasis by degrading damaged organelles and misfolded proteins. In the context of tumor formation, autophagy significantly influences cancer metabolism and chemotherapy resistance, contributing to both tumor suppression and surveillance. This review focuses on the relationship between mitochondria and autophagy, specifically in the context of cancer progression. Investigating the interaction between autophagy and mitochondria reveals new possibilities for cancer treatments and may result in the development of more effective therapies targeting mitochondria, which could have significant implications for cancer treatment. Additionally, this review highlights the increasing understanding of autophagy's role in tumor development, with a focus on modulating mitochondrial function and autophagy in both pre-clinical and clinical cancer research. It also explores the potential for developing more-targeted and personalized therapies by investigating autophagy-related biomarkers.
Collapse
Affiliation(s)
- Aleksandra Zdanowicz
- Department of Biochemistry, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 81 Str., 02-091 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland
| |
Collapse
|
5
|
Pi M, Agarwal R, Smith MD, Smith JC, Quarles LD. GPRC6A is a Potential Therapeutic Target for Metformin Regulation of Glucose Homeostasis in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608635. [PMID: 39229180 PMCID: PMC11370357 DOI: 10.1101/2024.08.19.608635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Understanding the mechanism of metformin actions in treating type 2 diabetes is limited by an incomplete knowledge of the specific protein targets mediating its metabolic effects. Metformin has structural similarities to L-Arginine (2-amino-5-guanidinopentanoic acid), which is a ligand for GPRC6A, a Family C G-protein coupled receptor that regulates energy metabolism. Ligand activation of GPRC6A results in lowering of blood glucose and other metabolic changes resembling the therapeutic effect of metformin. In the current study, we tested if metformin activates GPRC6A. We used Alphafold2 to develop a structural model for L-Arginine (L-Arg) binding to the extracellu-lar bilobed venus flytrap domain (VFT) of GPRC6A. We found that metformin docked to the site in the VFT that overlaps the binding site for L-Arg. Metformin resulted in a dose-dependent stimulation of GPRC6A activity in HEK-293 cells transfected with full-length wild-type GPRC6A but not in untransfected control cells. In addition, metformin failed to activate an alternatively spliced GPRC6A isoform lacking the putative binding site in the VFT. More specifically, mutation of the predicted metformin key binding residues Glu170 and Asp303 in the GPRC6A VFT resulted in loss of metformin receptor activation in vitro. The in vivo role of GPRC6A in mediating the effects of metformin was tested in Gprc6a-/- mice. Administration of therapeutic doses of metformin lowered blood glucose levels following a glucose tolerance test in wild-type but not Gprc6a-/- mice. Finally, we EN300, created by adding a carboxymethyl group from L-Arg to the biguanide backbone of metformin. EN300 showed dose-dependent stimulation of GPRC6A activity in vitro with greater potency than L-Arginine, but less than metformin. Thus, we suggest that GPRC6A is a potential molecular target for metformin which may be used to understand the therapeutic actions of metformin and develop novel small molecules to treat T2D.
Collapse
Affiliation(s)
- Min Pi
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Rupesh Agarwal
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - L. Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Oak Ridge Therapeutic Discovery, LLC, Memphis, Tennessee 38137
| |
Collapse
|
6
|
Wang D, Wang J, Cui Y. Tandem mass tag-based quantitative proteomic analysis of metformin's inhibitory effects on ovarian cancer cells. J Cancer Res Ther 2024; 20:1293-1299. [PMID: 39206991 DOI: 10.4103/jcrt.jcrt_2449_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Metformin (MET), a type 2 diabetes treatment, has attracted increased attention for its potential antitumor properties; however, the precise mechanism underlying this activity remains unclear. Our previous in vivo and in vitro studies revealed MET's inhibitory effect on ovarian cancer, with the synergistic effects of MET and the MDM2 inhibitor RG7388 contributing to ovarian cancer treatment. This study further explores the mechanism underlying MET's inhibition of ovarian cancer. MATERIALS AND METHODS Following MET treatment, we analyzed the differentially expressed proteins in ovarian cancer cells using a tandem mass tag (TMT)-based proteomic approach coupled with bioinformatics. RESULTS Using A2780 and SKOV3 ovarian cancer cells, we identified six upregulated and two downregulated proteins after MET treatment. Bioinformatics analysis revealed that these proteins predominately affect ovarian cancer cells by regulating iron ion transport, iron ion homeostasis, and mitochondrial and ribosomal functions. Validation via western blot confirmed MET-induced elevation of hydroxybutyrate dehydrogenase type 2 (BDH2) protein expression levels in A2780 and SKOV3 cells. CONCLUSIONS Overall, our findings suggest that combining MET with other metabolic drugs, such as iron-chelating agents and mitochondrial inhibitors, may result in synergistic antitumor effects, thereby offering novel avenues for ovarian cancer treatment development.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingchen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
De la Cruz-López KG, Alvarado-Ortiz E, Valencia-González HA, Beltrán-Anaya FO, Zamora-Fuentes JM, Hidalgo-Miranda A, Ortiz-Sánchez E, Espinal-Enríquez J, García-Carrancá A. Metformin induces ZFP36 by mTORC1 inhibition in cervical cancer-derived cell lines. BMC Cancer 2024; 24:853. [PMID: 39026155 PMCID: PMC11256429 DOI: 10.1186/s12885-024-12555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Metformin, a widely prescribed antidiabetic drug, has shown several promising effects for cancer treatment. These effects have been shown to be mediated by dual modulation of the AMPK-mTORC1 axis, where AMPK acts upstream of mTORC1 to decrease its activity. Nevertheless, alternative pathways have been recently discovered suggesting that metformin can act through of different targets regulation. METHODS We performed a transcriptome screening analysis using HeLa xenograft tumors generated in NOD-SCID mice treated with or without metformin to examine genes regulated by metformin. Western Blot analysis, Immunohistochemical staining, and RT-qPCR were used to confirm alterations in gene expression. The TNMplot and GEPIA2 platform were used for in silico analysis of genes found up-regulated by metformin, in cervical cancer patients. We performed an AMPK knock-down using AMPK-targeted siRNAs and mTOR inhibition with rapamycin to investigate the molecular mechanisms underlying the effect of metformin in cervical cancer cell lines. RESULTS We shown that metformin decreases tumor growth and increased the expression of a group of antitumoral genes involved in DNA-binding transcription activator activity, hormonal response, and Dcp1-Dcp2 mRNA-decapping complex. We demonstrated that ZFP36 could act as a new molecular target increased by metformin. mTORC1 inhibition using rapamycin induces ZFP36 expression, which could suggest that metformin increases ZFP36 expression and requires mTORC1 inhibition for such effect. Surprisingly, in HeLa cells AMPK inhibition did not affect ZFP36 expression, suggesting that additional signal transducers related to suppressing mTORC1 activity, could be involved. CONCLUSIONS These results highlight the importance of ZFP36 activation in response to metformin treatment involving mTORC1 inhibition.
Collapse
Affiliation(s)
- Karen Griselda De la Cruz-López
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología., Av. San Fernando No. 22 Colonia Sección XVI, Tlalpan, Mexico City, 14080, Mexico
| | - Eduardo Alvarado-Ortiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Heriberto A Valencia-González
- Laboratorio de Células Troncales y Desarrollo Terapéutico Antineoplásico, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Diagnóstico e Investigación en Salud, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Gro, Mexico
| | - José María Zamora-Fuentes
- Laboratorio de Oncología Teórica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica de Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Laboratorio de Células Troncales y Desarrollo Terapéutico Antineoplásico, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Laboratorio de Oncología Teórica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología., Av. San Fernando No. 22 Colonia Sección XVI, Tlalpan, Mexico City, 14080, Mexico.
| |
Collapse
|
8
|
Shan M, Cheng Q, Parris AB, Kong L, Yang X, Shi Y. Metformin reduces basal subpopulation and attenuates mammary epithelial cell stemness in FVB/N mice. Front Cell Dev Biol 2024; 12:1427395. [PMID: 39055652 PMCID: PMC11269140 DOI: 10.3389/fcell.2024.1427395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Metformin shows promise in breast cancer prevention, but its underlying mechanisms remain unclear. This study investigated the impact of metformin on the repopulation dynamics of mammary epithelial cells (MECs) and the signaling pathways in non-tumorigenic FVB/N mice. This study aimed to enhance our understanding of the role of metformin in reducing the susceptibility of MECs in premalignant tissues to oncogenic factors. In this study, female mice were administered 200 mg/kg/day of metformin via intraperitoneal (i.p.) injection from 8 to 18 weeks of age. After this treatment period, morphogenesis, flow cytometry, analyses of MEC stemness, and RNA sequencing were performed. The study findings indicated that metformin treatment in adult mice reduced mammary gland proliferation, as demonstrated by decreased Ki67+ cells and lateral bud formation. Additionally, metformin significantly reduced both basal and mammary repopulating unit subpopulations, indicating an impact on mammary epithelial cell repopulation. Mammosphere, colony-forming cell, and 3D culture assays revealed that metformin adversely affected mammary epithelial cell stemness. Furthermore, metformin downregulated signaling in key pathways including AMPK/mTOR, MAPK/Erk, PI3K/Akt, and ER, which contribute to its inhibitory effects on mammary proliferation and stemness. Transcriptome analysis with RNA sequencing indicated that metformin induced significant downregulation of genes involved in multiple critical pathways. KEGG-based pathway analysis indicated that genes in PI3K/Akt, focal adhesion, ECM-receptor, small cell lung cancer and immune-modulation pathways were among the top groups of differentially regulated genes. In summary, our research demonstrates that metformin inhibits MEC proliferation and stemness, accompanied by the downregulation of intrinsic signaling. These insights suggest that the regulatory effects of metformin on premalignant mammary tissues could potentially delay or prevent the onset of breast cancer, offering a promising avenue for developing new preventive strategies.
Collapse
Affiliation(s)
- Minghui Shan
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Cheng
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Amanda B. Parris
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Lingfei Kong
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Yujie Shi
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
10
|
Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P, Jafarzadeh E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl Oncol 2024; 45:101946. [PMID: 38636389 PMCID: PMC11040171 DOI: 10.1016/j.tranon.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Doxorubicin (DOX) a chemotherapy drug often leads to the development of resistance, in cancer cells after prolonged treatment. Recent studies have suggested that using metformin plus doxorubicin could result in synergic effects. This study focuses on exploring the co-treat treatment of doxorubicin and metformin for various cancers. METHOD Following the PRISMA guidelines we conducted a literature search using different databases such as Embase, Scopus, Web of Sciences, PubMed, Science Direct and Google Scholar until July 2023. We selected search terms based on the objectives of this study. After screening a total of 30 articles were included. RESULTS The combination of doxorubicin and metformin demonstrated robust anticancer effects, surpassing the outcomes of monotherapy drug treatment. In vitro experiments consistently demonstrated inhibition of cancer cell growth and increased rates of cell death. Animal studies confirmed substantial reductions in tumor growth and improved survival rates, emphasizing the synergistic impact of the combined therapy. The research' discoveries collectively emphasize the capability of the co-treat doxorubicin-metformin as a compelling approach in cancer treatment, highlighting its potential to address medicate resistance and upgrade generally helpful results. CONCLUSION The findings of this study show that the combined treatment regimen including doxorubicin and metformin has significant promise in fighting cancer. The observed synergistic effects suggest that this combination therapy could be valuable, in a setting. This study highlights the need for clinical research to validate and enhance the application of the doxorubicin metformin regimen.
Collapse
Affiliation(s)
- Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fakhari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrah Sepehr
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Omidi Sarajar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Sarihi
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Salim EI, Alabasy MM, Nashar EME, Al-Zahrani NS, Alzahrani MA, Guo Z, Beltagy DM, Shahen M. Molecular interactions between metformin and D-limonene inhibit proliferation and promote apoptosis in breast and liver cancer cells. BMC Complement Med Ther 2024; 24:185. [PMID: 38711049 PMCID: PMC11071183 DOI: 10.1186/s12906-024-04453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/22/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cancer is a fatal disease that severely affects humans. Designing new anticancer strategies and understanding the mechanism of action of anticancer agents is imperative. HYPOTHESIS/PURPOSE In this study, we evaluated the utility of metformin and D-limonene, alone or in combination, as potential anticancer therapeutics using the human liver and breast cancer cell lines HepG2 and MCF-7. STUDY DESIGN An integrated systems pharmacology approach is presented for illustrating the molecular interactions between metformin and D-limonene. METHODS We applied a systems-based analysis to introduce a drug-target-pathway network that clarifies different mechanisms of treatment. The combination treatment of metformin and D-limonene induced apoptosis in both cell lines compared with single drug treatments, as indicated by flow cytometric and gene expression analysis. RESULTS The mRNA expression of Bax and P53 genes were significantly upregulated while Bcl-2, iNOS, and Cox-2 were significantly downregulated in all treatment groups compared with normal cells. The percentages of late apoptotic HepG2 and MCF-7 cells were higher in all treatment groups, particularly in the combination treatment group. Calculations for the combination index (CI) revealed a synergistic effect between both drugs for HepG2 cells (CI = 0.14) and MCF-7 cells (CI = 0.22). CONCLUSION Our data show that metformin, D-limonene, and their combinations exerted significant antitumor effects on the cancer cell lines by inducing apoptosis and modulating the expression of apoptotic genes.
Collapse
Affiliation(s)
- Elsayed I Salim
- Department of Zoology, Research Lab of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mona M Alabasy
- Department of Zoology, Research Lab of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman M El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | - Norah S Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed A Alzahrani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | - Zihu Guo
- College of Life Science, Center of Bioinformatics, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Doha M Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohamed Shahen
- Department of Zoology, Research Lab of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
12
|
Elmahboub Y, Albash R, Magdy William M, Rayan AH, Hamed NO, Ousman MS, Raslan NA, Mosallam S. Metformin Loaded Zein Polymeric Nanoparticles to Augment Antitumor Activity against Ehrlich Carcinoma via Activation of AMPK Pathway: D-Optimal Design Optimization, In Vitro Characterization, and In Vivo Study. Molecules 2024; 29:1614. [PMID: 38611893 PMCID: PMC11013883 DOI: 10.3390/molecules29071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.
Collapse
Affiliation(s)
- Yasmina Elmahboub
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amal H. Rayan
- Department of Medical Education, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Najat O. Hamed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Mona S. Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Nahed A Raslan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
- Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Medina 42541, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| |
Collapse
|
13
|
Villasenor M, Selzer AR. Preoperative Patient Evaluation: Newer Hypoglycemic Agents. Anesthesiol Clin 2024; 42:41-52. [PMID: 38278591 DOI: 10.1016/j.anclin.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
New medications in the treatment of diabetes are an active area of research and drug development. Although many hypoglycemic therapies have been in use for decades, new evidence continues to emerge highlighting benefits of these medications for other indications. In this article, the authors review the classes of newer hypoglycemic agents and summarize medications currently in phase 2 and 3 clinical trials. The literature to support specific recommendations for perioperative management is scant, however, where it exists, we have included it. In other instances, the authors have noted a reasonable approach based on pharmacokinetics and principles of perioperative medication management.
Collapse
Affiliation(s)
- Mario Villasenor
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Roberts Selzer
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Al-Kofahi T, Altrad B, Amawi H, Aljabali AA, Abul-Haija YM, Obeid MA. Paclitaxel-loaded niosomes in combination with metformin: development, characterization and anticancer potentials. Ther Deliv 2024; 15:109-118. [PMID: 38214106 DOI: 10.4155/tde-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Aim: This study aims to assess the efficacy of free and niosomes-loaded paclitaxel combined with the anti-diabetic drug metformin. Methods: Paclitaxel was successfully encapsulated in all niosome formulations, using microfluidic mixing, with a maximum encapsulation efficiency of 11.9%. Results: The half maximal inhibitory concentration (IC50) for free paclitaxel in T47D cells was significantly reduced from 0.2 to 0.048 mg/ml when combined with metformin 40 mg. The IC50 of paclitaxel was significantly reduced when loaded in niosomes to less than 0.06 mg/ml alone or with metformin. Conclusion: Paclitaxel combination (free or loaded into niosomes) with metformin significantly improved the anticancer efficacy of paclitaxel, which can serve as a method to reduce the paclitaxel dose and its associated side effects.
Collapse
Affiliation(s)
- Taqwa Al-Kofahi
- Department of Biological Science, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Bahaa Altrad
- Department of Biological Science, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousef M Abul-Haija
- School of Molecular Biosciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, UK
| |
Collapse
|
15
|
Sathiyaseelan A, Zhang X, Lin J, Wang MH. In situ, synthesis of chitosan fabricated tellurium nanoparticles for improved antimicrobial and anticancer applications. Int J Biol Macromol 2024; 258:128778. [PMID: 38103674 DOI: 10.1016/j.ijbiomac.2023.128778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The emergence of antibiotic resistance has had a severe impact on human health and economic burdens, drawing attention to the development of novel antimicrobial therapies. Polymer-metal composites have shown evidence of therapeutic applications by exerting antimicrobial effects and delivering these antimicrobials with biocompatibility. Therefore, this study prepared and characterized chitosan (CS)-fabricated tellurium nanoparticles (Te NPs) for enhanced antimicrobial, antioxidant, and cytotoxicity applications. The CS-Te NPs were spherical, polydisperse, and distributed within the CS matrix with an average size of 37.48 ± 14.56 nm, as confirmed by TEM analysis. CS-Te NPs exhibited positive zeta potential in neutral (pH 7.0: 7.90 ± 1.86 mV) and acidic environment. XRD analysis confirmed the crystalline nature of CS-Te NPs, and these nanoparticles exhibited good thermal and less porosity. A higher release of Te ions occurred from CS-Te NPs at an acidic pH. Further, CS-Te NPs displayed stronger antibacterial and antibiofilm activity against E. coli and S. enterica. Furthermore, CS-Te NPs exhibited significant free radical scavenging activity against ABTS and DPPH free radicals. Moreover, these nanoparticles demonstrated cytotoxicity against cancerous cells (A549 and PC3 cells) when compared to normal cells (NIH3T3 cells). Therefore, this study suggests that CS-Te NPs could serve as a substantial therapeutic agent.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jianxing Lin
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; College of Bioscience and Biotechnology, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
16
|
Kang BG, Shende M, Inci G, Park SH, Jung JS, Kim SB, Kim JH, Mo YW, Seo JH, Feng JH, Kim SC, Lim SS, Suh HW, Lee JY. Combination of metformin/efavirenz/fluoxetine exhibits profound anticancer activity via a cancer cell-specific ROS amplification. Cancer Biol Ther 2023; 24:20-32. [PMID: 36588385 PMCID: PMC9809943 DOI: 10.1080/15384047.2022.2161803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The possible anticancer activity of combination (M + E + F) of metformin (M), efavirenz (E), and fluoxetine (F) was investigated in normal HDF cells and HCT116 human colon cancer cells. Metformin increased cellular FOXO3a, p-FOXO3a, AMPK, p-AMPK, and MnSOD levels in HDFs but not in HCT116 cells. Cellular ATP level was decreased only in HDFs by metformin. Metformin increased ROS level only in HCT116 cells. Transfection of si-FOXO3a into HCT116 reversed the metformin-induced cellular ROS induction, indicating that FOXO3a/MnSOD is the key regulator for cellular ROS level. Viability readout with M, E, and F alone decreased slightly, but the combination of three drugs dramatically decreased cell survival in HCT116, A549, and SK-Hep-1 cancer cells but not in HDF cells. ROS levels in HCT116 cells were massively increased by M + E + F combination, but not in HDF cells. Cell cycle analysis showed that of M + E + F combination caused cell death only in HCT116 cells. The combination of M + E + F reduced synergistically mitochondrial membrane potential and mitochondrial electron transport chain complex I and III activities in HCT116 cells when compared with individual treatments. Western blot analysis indicated that DNA damage, apoptosis, autophagy, and necroptosis-realated factors increased in M + E + F-treated HCT116 cells. Oral administration with M + E + F combination for 3 weeks caused dramatic reductions in tumor volume and weight in HCT116 xenograft model of nude mice when compared with untreated ones. Our results suggest that M + E + F have profound anticancer activity both in vitro and in vivo via a cancer cell-specific ROS amplification (CASRA) through ROS-induced DNA damage, apoptosis, autophagy, and necroptosis.
Collapse
Affiliation(s)
- Beom-Goo Kang
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Madhuri Shende
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Gozde Inci
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | - Sung-Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
| | - Hong-Won Suh
- FrontBio Inc, Gangwon-do, Republic of Korea,Department of Pharmacology, Institute of Natural Medicine, Hallym University, Chuncheon, Republic of Korea,Hong-Won Suh Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon24252, Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea,FrontBio Inc, Gangwon-do, Republic of Korea,CONTACT Jae-Yong Lee
| |
Collapse
|
17
|
Repas J, Peternel L, Sourij H, Pavlin M. Low glucose availability potentiates the effects of metformin on model T cell activation and exhaustion markers in vitro. Front Endocrinol (Lausanne) 2023; 14:1216193. [PMID: 38116319 PMCID: PMC10728603 DOI: 10.3389/fendo.2023.1216193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Modulation of immune cell metabolism is one of promising strategies to improve cancer immunotherapies. Metformin is an anti-diabetic drug with potential anti-cancer effects, ranging from normalization of blood glucose and insulin levels, direct anti-proliferative effects on cancer cells to emerging immunomodulatory effects on anti-tumor immunity. Metformin can reduce tumor hypoxia and PD-L1 expression, as well as normalize or improve T cell function and potentiate the effect of immune checkpoint inhibitors, making it a promising adjuvant to immunotherapy of tumors with poor response such as triple negative breast cancer (TNBC). However, although the effects of metformin on cancer cells are glucose-dependent, the role of glucose in modulating its effect on T cells has not been systematically studied. We thus investigated the effect of metformin as a function of glucose level on Jurkat cell and PBMC T cell models in vitro. While low metformin concentrations had little effect on T cell function, high concentration reduced proliferation and IFN-γ secretion in both models and induced a shift in T cell populations from memory to effector subsets. The PD-1/CD69 ratio was improved by high metformin in T cells from PBMC. Low glucose and metformin synergistically reduced PD-1 and CD69 expression and IFN-γ secretion in T cells from PBMC. Low glucose level itself suppressed Jurkat cell function due to their limited metabolic plasticity, but had limited effects on T cells from PBMC apart from reduced proliferation. Conversely, high glucose did not strongly affect either T cell model. Metformin in combination with glycolysis inhibitor 2-deoxy-D-glucose (2DG) reduced PD-1 in Jurkat cells, but also strongly suppressed their function. However, low, physiologically achievable 2DG concentration itself reduced PD-1 while mostly maintaining IL-2 secretion and, interestingly, even strongly increased IFN-γ secretion regardless of glucose level. Overall, glucose metabolism can importantly influence some of the effects of metformin on T cell functionality in the tumor microenvironment. Additionally, we show that 2DG could potentially improve the anti-tumor T cell response.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Peternel
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Medical University Graz, Graz, Austria
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Uematsu T, Masuki H, Nakamura M, Kawabata H, Kitamura Y, Watanabe T, Watanabe T, Mochizuki T, Ushiki T, Kawase T. Metformin-suppressed platelet's function in vitro: Possible relation to delayed or failure of platelet-rich fibrin preparation. Toxicol In Vitro 2023; 93:105692. [PMID: 37673314 DOI: 10.1016/j.tiv.2023.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Platelet-rich fibrin (PRF) is a popular autologous blood-derived biomaterial that is used in regenerative therapy. Owing to its simple preparation without additional factors, the PRF quality directly reflects the characteristics of individual blood samples. Antiplatelet or anticoagulant drugs can hamper the successful preparation of PRF. We recently observed similar phenomena in metformin-taking type-2 diabetics (T2DM). Thus, we hypothesized that metformin interferes with platelet function, thereby suppressing coagulation. For practical reasons, leukocyte- and platelet-rich plasma was prepared from healthy male donors (n = 9-15, age: 26-80 years) and treated with metformin (1-10 mM) for 24-72 h. Intrinsic and extrinsic coagulation activities were evaluated using prothrombin time (PT) and activated partial thromboplastin time (ATPP). Platelet adhesion and aggregation assays were performed using ADP stimulation. Among the parameters tested, APTT was the most sensitive and was significantly prolonged in the concentration range of 1-10 mM in a time- and concentration-dependent manner. Although obtained from healthy platelets and relatively higher concentrations of metformin, these findings suggest that metformin may induce further dysfunction of platelets to suppress intrinsic coagulation activity in T2DM patients, leading to failure of PRF preparation. This phenomenon may not have a severe impact on clinical diabetology or hematology. However, clinicians using PRF are recommended to be more sensitive to such information to avoid unexpected events in clinical settings.
Collapse
Affiliation(s)
| | - Hideo Masuki
- Tokyo Plastic Dental Society, Kita-Ku, Tokyo, Japan
| | | | | | | | | | | | - Tomoharu Mochizuki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Ushiki
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan; Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan; Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
19
|
Ruiz-Mitjana A, Vidal-Sabanés M, Navaridas R, Perramon-Güell A, Yeramian A, Nicholson-Sabaté N, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Metformin exhibits antineoplastic effects on Pten-deficient endometrial cancer by interfering with TGF-β and p38/ERK MAPK signalling. Biomed Pharmacother 2023; 168:115817. [PMID: 37925934 DOI: 10.1016/j.biopha.2023.115817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-β-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-β signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-β-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-β-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.
Collapse
Affiliation(s)
- Anna Ruiz-Mitjana
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Maria Vidal-Sabanés
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Nathan Nicholson-Sabaté
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, CIBERONC, Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
20
|
Gowda BHJ, Ahmed MG, Alshehri SA, Wahab S, Vora LK, Singh Thakur RR, Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. ENVIRONMENTAL RESEARCH 2023; 237:116894. [PMID: 37586450 DOI: 10.1016/j.envres.2023.116894] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Lyotropic liquid crystals are self-assembled, non-lamellar, and mesophase nanostructured materials that have garnered significant attention as drug carriers. Cubosomes, a subtype of lyotropic liquid crystalline nanoparticles, possess three-dimensional structures that display bicontinuous cubic liquid-crystalline patterns. These patterns are formed through the self-organization of unsaturated monoglycerides (amphphilic lipids such as glyceryl monooleate or phytantriol), followed by stabilization using steric polymers (poloxamers). Owing to their bicontinuous structure and steric polymer-based stabilization, cubosomes have been demonstrated to possess greater entrapment efficiency for hydrophobic drugs compared to liposomes, while also exhibiting high stability. In the past decade, there has been significant interest in cubosomes due to their ability to deliver therapeutic and contrast agents for cancer treatment and imaging with minimal side effects, establishing them as a safe and effective approach. Concerning these advantages, the present review elaborates on the general aspects, composition, and preparation techniques of cubosomes, followed by explanations of their mechanisms of drug loading and release patterns. Furthermore, the review provides meticulous discussions on the use of cubosomes in the treatment and imaging of various types of cancer, culminating in the enumeration of patents related to cubosome-based drug delivery systems.
Collapse
Affiliation(s)
- B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
21
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
22
|
Finisguerra V, Dvorakova T, Formenti M, Van Meerbeeck P, Mignion L, Gallez B, Van den Eynde BJ. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005719. [PMID: 37147018 PMCID: PMC10163559 DOI: 10.1136/jitc-2022-005719] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite their revolutionary success in cancer treatment over the last decades, immunotherapies encounter limitations in certain tumor types and patients. The efficacy of immunotherapies depends on tumor antigen-specific CD8 T-cell viability and functionality within the immunosuppressive tumor microenvironment, where oxygen levels are often low. Hypoxia can reduce CD8 T-cell fitness in several ways and CD8 T cells are mostly excluded from hypoxic tumor regions. Given the challenges to achieve durable reduction of hypoxia in the clinic, ameliorating CD8 T-cell survival and effector function in hypoxic condition could improve tumor response to immunotherapies. METHODS Activated CD8 T cells were exposed to hypoxia and metformin and analyzed by fluorescence-activated cell sorting for cell proliferation, apoptosis and phenotype. In vivo, metformin was administered to mice bearing hypoxic tumors and receiving either adoptive cell therapy with tumor-specific CD8 T cells, or immune checkpoint inhibitors; tumor growth was followed over time and CD8 T-cell infiltration, survival and localization in normoxic or hypoxic tumor regions were assessed by flow cytometry and immunofluorescence. Tumor oxygenation and hypoxia were measured by electron paramagnetic resonance and pimonidazole staining, respectively. RESULTS We found that the antidiabetic drug metformin directly improved CD8 T-cell fitness in hypoxia, both in vitro and in vivo. Metformin rescued murine and human CD8 T cells from hypoxia-induced apoptosis and increased their proliferation and cytokine production, while blunting the upregulation of programmed cell death protein 1 and lymphocyte-activation gene 3. This appeared to result from a reduced production of reactive oxygen species, due to the inhibition of mitochondrial complex I. Differently from what others reported, metformin did not reduce tumor hypoxia, but rather increased CD8 T-cell infiltration and survival in hypoxic tumor areas, and synergized with cyclophosphamide to enhance tumor response to adoptive cell therapy or immune checkpoint blockade in different tumor models. CONCLUSIONS This study describes a novel mechanism of action of metformin and presents a promising strategy to achieve immune rejection in hypoxic and immunosuppressive tumors, which would otherwise be resistant to immunotherapy.
Collapse
Affiliation(s)
- Veronica Finisguerra
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Tereza Dvorakova
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Matteo Formenti
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | | | - Lionel Mignion
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Tu W, Qin M, Li Y, Wu W, Tong X. Metformin regulates autophagy via LGMN to inhibit choriocarcinoma. Gene X 2023; 853:147090. [PMID: 36464174 DOI: 10.1016/j.gene.2022.147090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Choriocarcinoma has the problem of chemotherapy insensitivity and recurrence. Metformin may be a promising candidate to restrict choriocarcinoma progress because of its indirect and direct beneficial role on inhabitations of cancer cells without severe adverse side effects. In this study, metformin pressed the proliferation and invasion of choriocarcinoma JAR cells in vitro and the growth of the JAR subcutaneous xenografts in vivo. The high throughput sequencing and bioinformatics technology identified the low expression of legumain (LGMN) in lysosomal pathway caused by metformin, which was upregulated in human choriocarcinoma tissues compared with the early pregnancy tissues. As elevating metformin concentration and treatment time, the mRNA and protein expression of LGMN both depressed in two choriocarcinoma cell lines (JAR and JEG-3). LGMN was involved in metformin-mediated inhibition of cell proliferation and invasion. Furthermore, metformin induced autophagy via inhibiting LGMN through AKT/mTOR/LC3II signaling pathway of choriocarcinoma. Autophagy inhibitor could depress metformin-induced autophagy and improve cell proliferation and invasion ability dropped by metformin, while autophagy inducer could partially reverse the change of cell proliferation and invasion modulated by combination of metformin and LGMN overexpression. These results indicated that metformin inhibited cell proliferation and invasion ability by inducing autophagy in a LGMN-dependent manner so as to play a role in the treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Weiyan Tu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Menglu Qin
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Li
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weimin Wu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Lin YC, Zeng WT, Lee DY. H 2S- and Redox-State-Mediated PTP1B S-Sulfhydration in Insulin Signaling. Int J Mol Sci 2023; 24:ijms24032898. [PMID: 36769221 PMCID: PMC9917502 DOI: 10.3390/ijms24032898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Because hydrogen sulfide (H2S) is classified as a gaseous signaling molecule, protein S-sulfhydration is known to be one of the mechanisms by which H2S signals are conducted. PTP1B, a negative regulator in insulin signaling, has been found to be S-sulfhydrated at Cys215-SH to form Cys215-SSH in response to endoplasmic reticulum (ER) stress. Therefore, we aimed to understand the change in PTP1B S-sulfhydration and cellular redox homeostasis in response to insulin stimulation. We demonstrated a feasible PEG-switch method to determine the levels of PTP1B S-sulfhydration. According to the results obtained from HEK293T and MDA-MB-231 cells, insulin induced a change in PTP1B S-sulfhydration that was similar to the change in Insulin receptor substrate 1 (IRS1) phosphorylation in both cell lines. However, insulin-induced PTP1B S-sulfhydration and IRS1 phosphorylation were only significantly affected by metformin in HEK293T cells. Insulin also induced an increase in reactive oxygen species (ROS) in both cell lines. However, the level of H2S, GSH, and GSSG was only significantly affected by insulin and metformin in HEK293T cells. HEK293T cells maintained high levels of H2S and cysteine, but low levels of GSSG and GSH in general compared to MDA-MB-231 cells. From these findings, we suggest that PTP1B activity is modulated by H2S and redox-regulated S-sulfhydration during insulin signaling.
Collapse
Affiliation(s)
- Yu-Chin Lin
- Ph.D. Program for Health Science and Industry, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Wan-Ting Zeng
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
25
|
Teng PC, Huang DQ, Lin TY, Noureddin M, Yang JD. Diabetes and Risk of Hepatocellular Carcinoma in Cirrhosis Patients with Nonalcoholic Fatty Liver Disease. Gut Liver 2023; 17:24-33. [PMID: 36530125 PMCID: PMC9840929 DOI: 10.5009/gnl220357] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world. NAFLD is a hepatic manifestation of insulin resistance, the core pathophysiology of diabetes. Multiple clinical studies show that diabetes increases the risk of liver disease progression and cirrhosis development in patients with NAFLD. Diabetes has causal associations with many different cancers, including hepatocellular carcinoma (HCC). More recent studies demonstrate that diabetes increases the risk of HCC in patients with underlying NAFLD cirrhosis, confirming the direct hepatocarcinogenic effect of diabetes among cirrhosis patients. Diabetes promotes hepatocarcinogenesis via the activation of inflammatory cascades producing reactive oxygen species and proinflammatory cytokines, leading to genomic instability, cellular proliferation, and inhibition of apoptosis. Given the global increase in the burden of NAFLD and HCC, high-risk patients such as older diabetic individuals should be carefully monitored for HCC development. Future larger studies should explore whether the effect of diabetes on HCC risk in NAFLD cirrhosis is modifiable by the type of antidiabetic medication and the effectiveness of diabetes control.
Collapse
Affiliation(s)
- Pai-Chi Teng
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei, Taiwan,Department of Urology, National Taiwan University Hospital, Taipei, Taiwan,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Q. Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore,Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Ting-Yi Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Corresponding AuthorJu Dong Yang, ORCIDhttps://orcid.org/0000-0001-7834-9825, E-mail
| |
Collapse
|
26
|
El-attar AA, Ibrahim OM, Alhassanin SA, Essa ES, Mostafa TM. Effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women: a pilot study. Eur J Clin Pharmacol 2023; 79:299-309. [PMID: 36562831 PMCID: PMC9879830 DOI: 10.1007/s00228-022-03444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Metformin may provide a therapeutic benefit in different types of malignancy. PURPOSE We aimed at evaluating the effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women. METHODS Seventy-five postmenopausal stages II-III breast cancer female patients were assessed for eligibility in an open-labeled parallel pilot study. Forty-five patients met the inclusion criteria and were assigned into three arms: the lean arm (n = 15) women who received letrozole 2.5 mg/day, the control arm (n = 15) overweight/obese women who received letrozole 2.5 mg/day, and the metformin arm (n = 15) overweight/obese women who received letrozole 2.5 mg/day plus metformin (2000 ± 500 mg/day). The intervention duration was 6 months. Blood samples were obtained at baseline and 6 months after intervention for the measurement of serum estradiol, leptin, osteocalcin levels, fasting blood glucose concentration, and serum insulin. RESULTS After the intervention and as compared to the control arm, the metformin arm showed a significantly lower ratio to the baseline (significant reduction) for estradiol (p = 0.0433), leptin (p < 0.0001), fasting blood glucose (p = 0.0128), insulin (p = 0.0360), osteocalcin serum levels (p < 0.0001), and the homeostatic model assessment of insulin resistance "HOMA-IR" value (p = 0.0145). There was a non-significant variation in the lactate ratio to the baseline among the three study arms (p = 0.5298). CONCLUSION Metformin may exert anti-cancer activity by decreasing the circulating estradiol, leptin, and insulin. Metformin might represent a safe and promising adjuvant therapy to letrozole in overweight/obese postmenopausal women with breast cancer. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05053841/Registered September 23, 2021 - Retrospectively.
Collapse
Affiliation(s)
- Aya Ahmed El-attar
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Osama Mohamed Ibrahim
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Suzan Ahmed Alhassanin
- grid.411775.10000 0004 0621 4712Department of Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Enas Said Essa
- grid.411775.10000 0004 0621 4712Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Tarek Mohamed Mostafa
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
27
|
Kim HM, Kang MJ, Song SO. Metformin and Cervical Cancer Risk in Patients with Newly Diagnosed Type 2 Diabetes: A Population-Based Study in Korea. Endocrinol Metab (Seoul) 2022; 37:929-937. [PMID: 36604960 PMCID: PMC9816509 DOI: 10.3803/enm.2022.1613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGRUOUND Cervical cancer is a prevalent malignancy that is a major health problem for women worldwide. The cancer-preventive properties of metformin are well-known, but insufficient data have been reported regarding its relationship to cervical cancer. Therefore, in a nationwide population-based study, we investigated the association between metformin use and cervical cancer incidence in patients with newly diagnosed type 2 diabetes. METHODS This retrospective cohort study used the Korean National Health Insurance claims database. Individuals newly diagnosed with type 2 diabetes between January 2005 and December 2009 were included. The occurrence of cervical cancer was explored by matching for age, economic status, region of residence, and use of anti-diabetic medication. RESULTS In total, 66,013 metformin users and 64,756 non-users were analyzed. Cervical cancer occurred in 219 metformin users (0.33%) and 274 metformin non-users (0.42%) (hazard ratio [HR], 0.783; 95% confidence interval [CI], 0.655 to 0.036; P=0.007). Moreover, cervical cancer risk was considerably reduced in those treated with a high dose (>1,200,000 mg) or for an extended period (≥2,000 days) compared to non-users (HR, 0.151; 95% CI, 0.093 to 0.243; P<0.001; and HR, 0.141; 95% CI, 0.077 to 0.258; P<0.001). The incidence was also significantly lower in metformin users among those over 50 years old (HR, 0.791; 95% CI, 0.650 to 0.961; P<0.001). CONCLUSION Metformin use in patients with newly diagnosed diabetes was associated with a lower risk of cervical cancer in Korea. Furthermore, a significant association was found between the use of metformin and cervical cancer in a dose- and duration-dependent manner and among those over 50 years old.
Collapse
Affiliation(s)
- Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Min Jin Kang
- Research Institute of National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Sun Ok Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
- Corresponding author: Sun Ok Song. Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea Tel: +82-31-900-3470, Fax: +82-31-900-0519, E-mail:
| |
Collapse
|
28
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Peng H, Hou M, Wu Z, Wang J, Zhou M, Zhuang X, Xing J, Tao Q, Huang L, Zhou F, Zhang S, Feng Q, Hou Y, Yu Q. Plasma exosomal miR-122 regulates the efficacy of metformin via AMPK in type 2 diabetes and hepatocellular carcinoma. Heliyon 2022; 8:e11503. [DOI: 10.1016/j.heliyon.2022.e11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
|
30
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body’s response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5′ AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review’s objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin’s efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| |
Collapse
|
31
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
32
|
Essa NM, Salem HF, Elgendy MO, Gabr A, Omran MM, Hassan NA, Tashkandi HM, Harakeh S, Boshra MS. Efficacy of Metformin as Adjuvant Therapy in Metastatic Breast Cancer Treatment. J Clin Med 2022; 11:jcm11195505. [PMID: 36233373 PMCID: PMC9572354 DOI: 10.3390/jcm11195505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metformin has been reported to have an anti-tumorigenic impact against metastatic breast cancer (MBC) cells through several mechanisms. Its effect can be evaluated by using many variables such as the response rate (RR) as well as the progression-free survival (PFS). Materials and methods: A prospective study was conducted to investigate and estimate the metformin effect on MBC. About 107 subjects were included in the study and were divided into two groups: Group A included non-diabetic MBC patients treated with metformin in conjunction with chemotherapy and group B included those treated with chemotherapy alone. Both PFS and RR were used as a criteria to evaluate the treatment outcome. Associated adverse effects of metformin were also assessed. Results: The average age of the participants in group A and group B was 50 vs. 47.5, respectively. No significant differences were detected between both cohorts concerning RR levels (regression disease (RD) 27.8% vs. 12.5%, stationary disease (SD) 44.4% vs. 41.7%, progression disease (PD) 27.8% vs. 45.8%, respectively, p = 0.074). Moreover, PFS showed no significant difference between both groups (p = 0.753). There was no significant correlation between metformin concentration and their adverse effects on the study participants. Conclusion: Metformin as an adjuvant therapy to MBC undergoing chemotherapy showed no significant survival benefit as determined by RR and PFS.
Collapse
Affiliation(s)
- Nourhan M. Essa
- Clinical Pharmacy Department, Faculty of Pharmacy, New Valley University, El-Kharja 72511, Egypt
| | - Heba F. Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Marwa O. Elgendy
- Department of Clinical Pharmacy, Teaching Hospital of Faculty of Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62764, Egypt
| | - A. Gabr
- Medical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut 71111, Egypt
| | - Mervat M. Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Giza 11796, Egypt
| | - Nivin A. Hassan
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, South Egypt Cancer Institute, Assuit University, Assiut 71515, Egypt
| | - Hanaa M. Tashkandi
- Department of General Surgery, School of Medicine, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Correspondence: (S.H.); (M.S.B.); Tel.: +966-00966559392266 (S.H.); +20-1280571448 (M.S.B.); Fax: +966-126952076 (S.H.); +20-822317953 (M.S.B.)
| | - Marian S. Boshra
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Correspondence: (S.H.); (M.S.B.); Tel.: +966-00966559392266 (S.H.); +20-1280571448 (M.S.B.); Fax: +966-126952076 (S.H.); +20-822317953 (M.S.B.)
| |
Collapse
|
33
|
From Diabetes to Atherosclerosis: Potential of Metformin for Management of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23179738. [PMID: 36077136 PMCID: PMC9456496 DOI: 10.3390/ijms23179738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a common cause of cardiovascular disease, which, in turn, is often fatal. Today, we know a lot about the pathogenesis of atherosclerosis. However, the main knowledge is that the disease is extremely complicated. The development of atherosclerosis is associated with more than one molecular mechanism, each making a significant contribution. These mechanisms include endothelial dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, and lipid metabolism disorders. This complexity inevitably leads to difficulties in treatment and prevention. One of the possible therapeutic options for atherosclerosis and its consequences may be metformin, which has already proven itself in the treatment of diabetes. Both diabetes and atherosclerosis are complex metabolic diseases, the pathogenesis of which involves many different mechanisms, including those common to both diseases. This makes metformin a suitable candidate for investigating its efficacy in cardiovascular disease. In this review, we highlight aspects such as the mechanisms of action and targets of metformin, in addition to summarizing the available data from clinical trials on the effective reduction of cardiovascular risks.
Collapse
|
34
|
Ando S, Kojima N, Moyama C, Fujita M, Ohta K, Ii H, Nakata S. JCI‑20679 suppresses the proliferation of glioblastoma stem cells by activating AMPK and decreasing NFATc2 expression levels. Mol Med Rep 2022; 26:238. [PMID: 35621135 DOI: 10.3892/mmr.2022.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
The prognosis of glioblastoma, which is the most frequent type of adult‑onset malignant brain tumor, is extremely poor. Therefore, novel therapeutic strategies are needed. Previous studies report that JCI‑20679, which is synthesized based on the structure of naturally occurring acetogenin, inhibits mitochondrial complex I and suppresses the growth of various types of cancer cells. However, the efficacy of JCI‑20679 on glioblastoma stem cells (GSCs) is unknown. The present study demonstrated that JCI‑20679 inhibited the growth of GSCs derived from a transposon system‑mediated murine glioblastoma model more efficiently compared with the growth of differentiation‑induced adherent cells, as determined by a trypan blue staining dye exclusion test. The inhibition of proliferation was accompanied by the blockade of cell‑cycle entry into the S‑phase, as assessed by a BrdU incorporation assay. JCI‑20679 decreased the mitochondrial membrane potential, suppressed the oxygen consumption rate and increased mitochondrial reactive oxygen species generation, indicating that JCI‑20679 inhibited mitochondrial activity. The mitochondrial inhibition was revealed to increase phosphorylated (phospho)‑AMPKα levels and decrease nuclear factor of activated T‑cells 2 (NFATc2) expression, and was accompanied by a decrease in calcineurin phosphatase activity. Depletion of phospho‑AMPKα by knockdown of AMPKβ recovered the JCI‑20679‑mediated decrease in NFATc2 expression levels, as determined by western blotting and reverse transcription‑quantitative PCR analysis. Overexpression of NFATc2 recovered the JCI‑20679‑mediated suppression of proliferation, as determined by a trypan blue staining dye exclusion test. These results suggest that JCI‑20679 inhibited mitochondrial oxidative phosphorylation, which activated AMPK and reduced NFATc2 expression levels. Moreover, systemic administration of JCI‑20679 extended the event‑free survival rate in a mouse model transplanted with GSCs. Overall, these results suggested that JCI‑20679 is a potential novel therapeutic agent against glioblastoma.
Collapse
Affiliation(s)
- Shota Ando
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Naoto Kojima
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Chiami Moyama
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, Osaka‑Sayama, Osaka 589‑8511, Japan
| | - Kaito Ohta
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Hiromi Ii
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| |
Collapse
|
35
|
Ibrahim A, Khalil IA, El-Sherbiny IM. Development and evaluation of core-shell nanocarrier system for enhancing the cytotoxicity of doxorubicin/ metformin combination against breast cancer cell line. J Pharm Sci 2022; 111:2581-2591. [PMID: 35613685 DOI: 10.1016/j.xphs.2022.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most invasive and life-threatening cancer in women. The treatment options are usually a combination of mastectomy, radiation therapy, hormonal therapy and chemotherapy. As a standard practice, doxorubicin (DOX) is one of the commonly used drugs for breast cancer treatment. However, DOX is known to have many harmful adverse effects including its cardiotoxicity. Hence, recent reports used metformin (MET), an anti-diabetic drug, as an adjuvant therapy to decrease the severity of DOX's adverse effects and to improve its ultimate therapeutic outcome. The current study is aimed at co-loading and enhancing the encapsulation efficiency of the hydrophilic DOX and MET in poly(lactic-co-glycolic acid) (PLGA) nanocapsules (NCs) with oil core for breast cancer treatment. The NCs were developed by single emulsification-solvent diffusion technique, and were optimized through using two types of oils, pluronics and PLGA (50:50) of different molecular weights followed by various physicochemical characterizations. The obtained DOX/MET-loaded NCs showed the size and polydispersity index (PDI) of 203.0 ± 3.4 nm and 0.081 ± 0.03, respectively with a surface charge of -2.15 ± 0.2 mV. The entrapment efficiency of DOX and MET were about 93.7% ± 2.9 and 70% ± 1.6, respectively. The developed PLGA core-shell NCs successfully sustained the DOX/MET release for more than 30 days. The in-vitro results showed a significant enhancement in DOX cytotoxic effect as well as a duplication in its apoptotic effect upon addition of MET for both free DOX/MET combination and DOX/MET-loaded PLGA NCs against MCF-7. Besides, flow cytometry demonstrated that the DOX/MET-loaded NCs possess their antitumor effect by preventing DNA replication and cell division. This study provides a promising facile, rapid and reproducible single emulsification-solvent diffusion technique for improving the encapsulation and release of hydrophilic drugs in nanocapsules for biomedical applications.
Collapse
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
36
|
Ralli GP, Carter RD, McGowan DR, Cheng WC, Liu D, Teoh EJ, Patel N, Gleeson F, Harris AL, Lord SR, Buffa FM, Fenwick JD. Radiogenomic analysis of primary breast cancer reveals [18F]-fluorodeoxglucose dynamic flux-constants are positively associated with immune pathways and outperform static uptake measures in associating with glucose metabolism. Breast Cancer Res 2022; 24:34. [PMID: 35581637 PMCID: PMC9115966 DOI: 10.1186/s13058-022-01529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND PET imaging of 18F-fluorodeoxygucose (FDG) is used widely for tumour staging and assessment of treatment response, but the biology associated with FDG uptake is still not fully elucidated. We therefore carried out gene set enrichment analyses (GSEA) of RNA sequencing data to find KEGG pathways associated with FDG uptake in primary breast cancers. METHODS Pre-treatment data were analysed from a window-of-opportunity study in which 30 patients underwent static and dynamic FDG-PET and tumour biopsy. Kinetic models were fitted to dynamic images, and GSEA was performed for enrichment scores reflecting Pearson and Spearman coefficients of correlations between gene expression and imaging. RESULTS A total of 38 pathways were associated with kinetic model flux-constants or static measures of FDG uptake, all positively. The associated pathways included glycolysis/gluconeogenesis ('GLYC-GLUC') which mediates FDG uptake and was associated with model flux-constants but not with static uptake measures, and 28 pathways related to immune-response or inflammation. More pathways, 32, were associated with the flux-constant K of the simple Patlak model than with any other imaging index. Numbers of pathways categorised as being associated with individual micro-parameters of the kinetic models were substantially fewer than numbers associated with flux-constants, and lay around levels expected by chance. CONCLUSIONS In pre-treatment images GLYC-GLUC was associated with FDG kinetic flux-constants including Patlak K, but not with static uptake measures. Immune-related pathways were associated with flux-constants and static uptake. Patlak K was associated with more pathways than were the flux-constants of more complex kinetic models. On the basis of these results Patlak analysis of dynamic FDG-PET scans is advantageous, compared to other kinetic analyses or static imaging, in studies seeking to infer tumour-to-tumour differences in biology from differences in imaging. Trial registration NCT01266486, December 24th 2010.
Collapse
Affiliation(s)
- G P Ralli
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - R D Carter
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Doctoral Training Centre, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Road, Oxford, OX1 3PT, UK
| | - D R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK.
| | - W-C Cheng
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - D Liu
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - E J Teoh
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - N Patel
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
| | - F Gleeson
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
| | - A L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - S R Lord
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - F M Buffa
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - J D Fenwick
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| |
Collapse
|
37
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Rosales-Pérez KE, Orozco-Hernández JM, García-Medina S, Islas-Flores H, Galar-Martínez M. Chronic exposure to environmentally relevant concentrations of guanylurea induces neurotoxicity of Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153095. [PMID: 35038519 DOI: 10.1016/j.scitotenv.2022.153095] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 μg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| |
Collapse
|
38
|
Sun H, Zhou Y, Ma R, Zhang J, Shan J, Chen Y, Li X, Shan E. Metformin protects 5-Fu-induced chemotherapy oral mucositis by reducing endoplasmic reticulum stress in mice. Eur J Pharm Sci 2022; 173:106182. [PMID: 35405270 DOI: 10.1016/j.ejps.2022.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
Metformin (Met) is a first-line and essential treatment for type 2 diabetes, with anti-inflammatory effects. It has been reported Met could inhibit NF-κB activity and down-regulate the release of inflammatory factors. However, whether Met has a protective effect on chemotherapy-induced oral mucositis(CIOM) is unknown. The purpose of this study was to evaluate the protective effect of Metformin(Met) on chemotherapy-induced oral mucositis(CIOM) and further explore its possible mechanism. 5-Fu was used in the C57BL/6 mice to establish the model of CIOM. Our results showed Met could significantly improve 5-Fu-induced mucosal damage, apoptosis, ROS and releasing of inflammatory factors in the tongue tissue. In addition, Met could inhibit 5-Fu-induced high expression of endoplasmic reticulum stress(ERS)-related proteins GRP78 and CHOP. Further studies showed that the protective effect of ERS inhibitor 4-PBA on CIOM was similar to Met. Moreover, Met inhibited the phosphorylation of NF-κB in tongue tissue, independent of AMPK phosphorylation. The protective effect of PDTC, an inhibitor of NF-κB, on tongue tissue was similar to that of Met. This study confirmed the protective effect of Met on 5-Fu-induced CIOM, which was achieved by inhibiting ERS and reducing the activity of NF-κB.
Collapse
Affiliation(s)
- Hang Sun
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Yufeng Zhou
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Rui Ma
- School of Health Policy & Management, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Jia Zhang
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Jinhua Shan
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China
| | - Enfang Shan
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
39
|
Patient-derived tumor models are attractive tools to repurpose drugs for ovarian cancer treatment: Pre-clinical updates. Oncotarget 2022; 13:553-575. [PMID: 35359749 PMCID: PMC8959092 DOI: 10.18632/oncotarget.28220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in understanding of ovarian cancer biology, the progress in translation of research findings into new therapies is still slow. It is associated in part with limitations of commonly used cancer models such as cell lines and genetically engineered mouse models that lack proper representation of diversity and complexity of actual human tumors. In addition, the development of de novo anticancer drugs is a lengthy and expensive process. A promising alternative to new drug development is repurposing existing FDA-approved drugs without primary oncological purpose. These approved agents have known pharmacokinetics, pharmacodynamics, and toxicology and could be approved as anticancer drugs quicker and at lower cost. To successfully translate repurposed drugs to clinical application, an intermediate step of pre-clinical animal studies is required. To address challenges associated with reliability of tumor models for pre-clinical studies, there has been an increase in development of patient-derived xenografts (PDXs), which retain key characteristics of the original patient’s tumor, including histologic, biologic, and genetic features. The expansion and utilization of clinically and molecularly annotated PDX models derived from different ovarian cancer subtypes could substantially aid development of new therapies or rapid approval of repurposed drugs to improve treatment options for ovarian cancer patients.
Collapse
|
40
|
Alhourani A, Førde JL, Nasrollahzadeh M, Eichacker LA, Herfindal L, Hagland HR. Graphene-based phenformin carriers for cancer cell treatment: a comparative study between oxidized and pegylated pristine graphene in human cells and zebrafish. NANOSCALE ADVANCES 2022; 4:1668-1680. [PMID: 36134366 PMCID: PMC9417205 DOI: 10.1039/d1na00778e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 06/16/2023]
Abstract
Graphene is an attractive choice for the development of an effective drug carrier in cancer treatment due to its high adsorption area and pH-responsive drug affinity. In combination with the highly potent metabolic drug phenformin, increased doses could be efficiently delivered to cancer cells. This study compares the use of graphene oxide (GO) and polyethylene glycol stabilized (PEGylated) pristine graphene nanosheets (PGNSs) for drug delivery applications with phenformin. The cytotoxicity and mitotoxicity of the graphene-based systems were assessed in human cells and zebrafish larvae. Targeted drug release from GO and PGNSs was evaluated at different pH levels known to arise in proliferating tumor microenvironments. PGNSs were less cytotoxic and mitotoxic than GO, and showed an increased release of phenformin at lower pH in cells, compared to GO. In addition, the systemic phenformin effect was mitigated in zebrafish larvae when bound to GO and PGNSs compared to free phenformin, as measured by flavin metabolic lifetime imaging. These results pave the way for improved phenformin-based cancer therapy using graphene nano-sheets, where PGNSs were superior to GO.
Collapse
Affiliation(s)
- Abdelnour Alhourani
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Bergen Norway
- Department of Internal Medicine, Haukeland University Hospital Bergen Norway
| | - Mojdeh Nasrollahzadeh
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| | - Lutz Andreas Eichacker
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Bergen Norway
| | - Hanne Røland Hagland
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| |
Collapse
|
41
|
Repas J, Zupin M, Vodlan M, Veranič P, Gole B, Potočnik U, Pavlin M. Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1343. [PMID: 35267651 PMCID: PMC8909901 DOI: 10.3390/cancers14051343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Metformin and 2-deoxy-D-glucose (2DG) exhibit multiple metabolic and immunomodulatory anti-cancer effects, such as suppressed proliferation or PD-L1 expression. Their combination or 2DG alone induce triple-negative breast cancer (TNBC) cell detachment, but their effects on mitochondria, crucial for anchorage-independent growth and metastasis formation, have not yet been evaluated. In the present study, we explored the effects of metformin, 2DG and their combination (metformin + 2DG) on TNBC cell mitochondria in vitro. Metformin + 2DG increased mitochondrial mass in TNBC cells. This was associated with an increased size but not number of morphologically normal mitochondria and driven by the induction of mitochondrial biogenesis rather than suppressed mitophagy. 2DG and metformin + 2DG strongly induced the unfolded protein response by inhibiting protein N-glycosylation. Together with adequate energy stress, this was one of the possible triggers of mitochondrial enlargement. Suppressed N-glycosylation by 2DG or metformin + 2DG also caused PD-L1 deglycosylation and reduced surface expression in MDA-MB-231 cells. PD-L1 was increased in low glucose and normalized by both drugs. 2DG and metformin + 2DG reduced PD-1 expression in Jurkat cells beyond the effects on activation, while cytokine secretion was mostly preserved. Despite increasing mitochondrial mass in TNBC cells, metformin and 2DG could therefore potentially be used as an adjunct therapy to improve anti-tumor immunity in TNBC.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Mateja Zupin
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Maja Vodlan
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, University of Maribor, SI-2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
43
|
Allocco AL, Bertino F, Petrillo S, Chiabrando D, Riganti C, Bardelli A, Altruda F, Fiorito V, Tolosano E. Inhibition of Heme Export and/or Heme Synthesis Potentiates Metformin Anti-Proliferative Effect on Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14051230. [PMID: 35267538 PMCID: PMC8908972 DOI: 10.3390/cancers14051230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumor initiation and progression are sustained by the ability of the cancer cell to reshape its metabolism in a way that favors cell proliferation and survival. Recently, it was shown that heme metabolism contributes to metabolic adaptation of tumor cell and that interfering with heme homeostasis reduces tumor cell growth. Here, we show that the alteration of heme metabolism, either by RNA-interference or pharmacological approaches, increases the sensitivity of tumor cell lines to the antitumor agent metformin. These findings strengthen the concept of targeting heme metabolism to counteract tumor progression. Abstract Cancer is one of the leading causes of mortality worldwide. Beyond standard therapeutic options, whose effectiveness is often reduced by drug resistance, repurposing of the antidiabetic drug metformin appears promising. Heme metabolism plays a pivotal role in the control of metabolic adaptations that sustain cancer cell proliferation. Recently, we demonstrated the existence of a functional axis between the heme synthetic enzyme ALAS1 and the heme exporter FLVCR1a exploited by cancer cells to down-modulate oxidative metabolism. In colorectal cancer cell lines, the inhibition of heme synthesis-export system was associated with reduced proliferation and survival. Here, we aim to assess whether the inhibition of the heme synthesis-export system affects the sensitivity of colorectal cancer cells to metformin. Our data demonstrate that the inhibition of this system, either by blocking heme efflux with a FLVCR1a specific shRNA or by inhibiting heme synthesis with 5-aminolevulinic acid, improves metformin anti-proliferative effect on colorectal cancer cell lines. In addition, we demonstrated that the same effect can be obtained in other kinds of cancer cell lines. Our study provides an in vitro proof of concept of the possibility to target heme metabolism in association with metformin to counteract cancer cell growth.
Collapse
Affiliation(s)
- Anna Lucia Allocco
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Francesca Bertino
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Sara Petrillo
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Deborah Chiabrando
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, TO, Italy;
| | - Alberto Bardelli
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Veronica Fiorito
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
- Correspondence: ; Tel.: +39-011-6706-423
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| |
Collapse
|
44
|
Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol 2022; 206:435-452. [PMID: 35202639 DOI: 10.1016/j.ijbiomac.2022.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a member of a family of secreted cytokines with vital biological functions in cells. The abnormal expression of TGF-β signaling is a common finding in pathological conditions, particularly cancer. Prostate cancer (PCa) is one of the leading causes of death among men. Several genetic and epigenetic alterations can result in PCa development, and govern its progression. The present review attempts to shed some light on the role of TGF-β signaling in PCa. TGF-β signaling can either stimulate or inhibit proliferation and viability of PCa cells, depending on the context. The metastasis of PCa cells is increased by TGF-β signaling via induction of EMT and MMPs. Furthermore, TGF-β signaling can induce drug resistance of PCa cells, and can lead to immune evasion via reducing the anti-tumor activity of cytotoxic T cells and stimulating regulatory T cells. Upstream mediators such as microRNAs and lncRNAs, can regulate TGF-β signaling in PCa. Furthermore, some pharmacological compounds such as thymoquinone and valproic acid can suppress TGF-β signaling for PCa therapy. TGF-β over-expression is associated with poor prognosis in PCa patients. Furthermore, TGF-β up-regulation before prostatectomy is associated with recurrence of PCa. Overall, current review discusses role of TGF-β signaling in proliferation, metastasis and therapy response of PCa cells and in order to improve knowledge towards its regulation, upstream mediators of TGF-β such as non-coding RNAs are described. Finally, TGF-β regulation and its clinical application are discussed.
Collapse
|
45
|
Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells. Cancer Lett 2022; 532:215582. [PMID: 35122876 DOI: 10.1016/j.canlet.2022.215582] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Interaction between stromal cells and acute myeloid leukemia (AML) cells in bone marrow (BM) is known to contribute importantly to chemoresistance and disease recurrence. Therefore, disruption of a crosstalk between AML cells and BM microenvironment may offer a promising therapeutic strategy for AML treatment. Here, we demonstrate that in a niche-like co-culture system, AML cells took up functional mitochondria from bone marrow stromal cells (BMSCs) and inhibition of such mitochondrial transfer by metformin, the most commonly prescribed drug for type 2 diabetes mellitus, significantly enhanced the chemosensitivity of AML cells co-cultured with BMSCs. The chemo-sensitizing effect of metformin was acted through reducing the mitochondrial transfer and mitochondrial oxidative phosphorylation (OXPHOS) in the recipient AML cells. In addition, metformin potentiated the antitumor efficacy of cytarabine (Ara-C) in vivo in an NCG immunodeficient mouse xenograft model by inhibiting the mitochondrial transfer and OXPHOS activity in the engrafted human AML cells. Altogether, this study identifies a potential application of metformin in sensitizing AML cells to chemotherapy and unveils a novel mechanism by which metformin executes such effect via blocking the mitochondrial transfer from stromal cells to AML cells.
Collapse
|
46
|
Guo M, Shang X, Guo D. Metformin Use and Mortality in Women with Ovarian Cancer: An Updated Meta-Analysis. Int J Clin Pract 2022; 2022:9592969. [PMID: 35685604 PMCID: PMC9159224 DOI: 10.1155/2022/9592969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previous observational studies and meta-analysis suggested a possible association between metformin use and reduced mortality in women with ovarian cancer (OC). However, clinical factors that may influence the relationship remain poorly evaluated. We performed an updated meta-analysis to systematically evaluate the above association and to observe the potential influences of study characteristics on the association. METHODS Relevant studies reporting the association between metformin use and mortality in women with OC in the multivariate adjusted model were identified by search of electronic databases that included PubMed, Embase, and Web of Science. The random-effects model was adopted to combine the results. RESULTS Nine studies including 10030 women with OC were included. Overall, metformin use was independently associated with reduced overall mortality (hazard ratio (HR): 0.72, 95% confidence interval (CI): 0.55-0.93, P=0.01; I 2 = 62%). Consistent results were observed for studies comparing metformin users with nondiabetic women and studies comparing metformin users with diabetic women who did not use metformin (P for subgroup analysis = 0.70). Further subgroup analyses showed consistent results in studies with metformin use before or after the diagnosis of OC, with or without adjustment of body mass index (BMI) and with or without adjustment of concurrent medications (P for subgroup analyses all >0.10). CONCLUSION Metformin use is associated with reduced mortality in women with OC, which may be independent of the diabetic status of the controls, timing of metformin use, or adjustment of BMI and concurrent medications. Clinical trials are needed to validate the potential benefits of metformin on survival of OC.
Collapse
Affiliation(s)
- Mingchuan Guo
- Department of Gynecology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiaofei Shang
- Department of Physical Examination, Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518116, China
| | - Duanying Guo
- Department of Gynecology, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
47
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
48
|
Bu F, Zhang J, Shuai W, Liu J, Sun Q, Ouyang L. Repurposing drugs in autophagy for the treatment of cancer: From bench to bedside. Drug Discov Today 2021; 27:1815-1831. [PMID: 34808390 DOI: 10.1016/j.drudis.2021.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a multistep degradation pathway involving the lysosome, which supports nutrient reuse and metabolic balance, and has been implicated as a process that regulates cancer genesis and development. Targeting tumors by regulating autophagy has become a therapeutic strategy of interest. Drugs with other indications can have antitumor activity by modulating autophagy, providing a shortcut to developing novel antitumor drugs (i.e., drug repurposing/repositioning), as successfully performed for chloroquine (CQ); an increasing number of repurposed drugs have since advanced into clinical trials. In this review, we describe the application of different drug-repurposing approaches in autophagy for the treatment of cancer and focus on repurposing drugs that target autophagy to treat malignant neoplasms.
Collapse
Affiliation(s)
- Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Repas J, Zügner E, Gole B, Bizjak M, Potočnik U, Magnes C, Pavlin M. Metabolic profiling of attached and detached metformin and 2-deoxy-D-glucose treated breast cancer cells reveals adaptive changes in metabolome of detached cells. Sci Rep 2021; 11:21354. [PMID: 34725457 PMCID: PMC8560930 DOI: 10.1038/s41598-021-98642-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Anchorage-independent growth of cancer cells in vitro is correlated to metastasis formation in vivo. Metformin use is associated with decreased breast cancer incidence and currently evaluated in cancer clinical trials. The combined treatment with metformin and 2-deoxy-D-glucose (2DG) in vitro induces detachment of viable MDA-MB-231 breast cancer cells that retain their proliferation capacity. This might be important for cell detachment from primary tumors, but the metabolic changes involved are unknown. We performed LC/MS metabolic profiling on separated attached and detached MDA-MB-231 cells treated with metformin and/or 2DG. High 2DG and metformin plus 2DG altered the metabolic profile similarly to metformin, inferring that metabolic changes are necessary but not sufficient while the specific effects of 2DG are crucial for detachment. Detached cells had higher NADPH levels and lower fatty acids and glutamine levels compared to attached cells, supporting the role of AMPK activation and reductive carboxylation in supporting anchorage-independent survival. Surprisingly, the metabolic profile of detached cells was closer to untreated control cells than attached treated cells, suggesting detachment might help cells adapt to energy stress. Metformin treated cells had higher fatty and amino acid levels with lower purine nucleotide levels, which is relevant for understanding the anticancer mechanisms of metformin.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Elmar Zügner
- Joanneum Research Health - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Maruša Bizjak
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Christoph Magnes
- Joanneum Research Health - Institute for Biomedicine and Health Sciences, Graz, Austria.
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
50
|
Abstract
Rates of obesity and diabetes have increased significantly over the past decades and the prevalence is expected to continue to rise further in the coming years. Many observations suggest that obesity and diabetes are associated with an increased risk of developing several types of cancers, including liver, pancreatic, endometrial, colorectal, and post-menopausal breast cancer. The path towards developing obesity and diabetes is affected by multiple factors, including adipokines, inflammatory cytokines, growth hormones, insulin resistance, and hyperlipidemia. The metabolic abnormalities associated with changes in the levels of these factors in obesity and diabetes have the potential to significantly contribute to the development and progression of cancer through the regulation of distinct signaling pathways. Here, we highlight the cellular and molecular pathways that constitute the links between obesity, diabetes, cancer risk and mortality. This includes a description of the existing evidence supporting the obesity-driven morphological and functional alternations of cancer cells and adipocytes through complex interactions within the tumor microenvironment.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Corresponding author: Philipp E. Scherer https://orcid.org/0000-0003-0680-3392 Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA E-mail:
| |
Collapse
|