1
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2024:1-14. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
2
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Raghul Kannan S, Latha Laxmi IP, Ahmad SF, Tamizhselvi R. Embryonic ethanol exposure induces oxidative stress and inflammation in zebrafish model: A dose-dependent study. Toxicology 2024; 506:153876. [PMID: 38945197 DOI: 10.1016/j.tox.2024.153876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Alcohol, or ethanol, is a major contributor to detrimental diseases and comorbidities worldwide. Alcohol use during pregnancy intervenes the developing embryos leading to morphological changes, neurocognitive defects, and behavioral changes known as fetal alcohol spectrum disorder (FASD). Zebrafish have been used as a model to study FASD; however, the mechanism and the impact of ethanol on oxidative stress and inflammation in the zebrafish FASD model remain unexplored. Hence, we exposed zebrafish embryos to different concentrations of ethanol (0 %, 0.5 %, 1.0 %, 1.25 %, and 1.5 % ethanol (v/v)) at 4-96 hours post-fertilization (hpf) to study and characterize the ethanol concentration for the FASD model to induce oxidative stress and inflammation. Here, we studied the survival rate and developmental toxicity parameters at different time points and measured oxidative stress, reactive oxygen species (ROS) generation, apoptosis, and pro-inflammatory gene expression in zebrafish larvae. Our findings indicate that ethanol causes various developmental abnormalities, including decreased survival rate, spontaneous tail coiling, hatching rate, heart rate, and body length, associated with increased malformation. Further, ethanol exposure induced oxidative stress by increasing lipid peroxidation and nitric oxide production and decreasing glutathione levels. Subsequently, ethanol increased ROS generation, apoptosis, and pro-inflammatory gene (TNF-α and IL-1β) expression in ethanol exposed larvae. 1.25 % and 1.5 % ethanol had significant impacts on zebrafish larvae in all studied parameters. However, 1.5 % ethanol showed decreased survival rate and increased malformations. Overall, 1.25 % ethanol is the ideal concentration to study the oxidative stress and inflammation in the zebrafish FASD model.
Collapse
Affiliation(s)
- Sampath Raghul Kannan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
4
|
El-Gohary RM, Abdeen A, Ibrahim HA, Taher ES, Ghabrial MM, Younis RL, Khattab H, Seleem MA, Alwutayed KM, Mihaela O, Ioan BD, El-Nablaway M, Aldarmahi AA, Ibrahim AM, Al-Serwi RH, Ghalwash AA. Empagliflozin impact on experimentally induced acetaminophen toxicity: Imprint of mitochondrial dynamics, biogenesis, and cGAS/STING signal in amending liver insult. FASEB J 2024; 38:e23816. [PMID: 39072779 DOI: 10.1096/fj.202400254rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Acetaminophen (APAP) is one of the most clinically relevant medications associated with acute liver damage. A prolific deal of research validated the hepatoprotective effect of empagliflozin (EMPA); however, its effect on APAP-induced hepatotoxicity has still not been investigated. In this study, the prospective hepatoprotective impact of EMPA against APAP-induced hepatotoxicity was investigated. Twenty-eight Balb-C mice were assigned to four groups: control, APAP, EMPA10/APAP, and EMPA25/APAP. At the end of the experiment, serum hepatotoxicity biomarkers, MDA level, and GSH content were estimated. Hepatic mitofusin-2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission 1 protein (FIS1) were immunoassayed. PGC-1α, cGAS, and STING mRNA expression were assessed by real-time PCR. Histopathological changes and immunohistochemistry of INF-β, p-NF-κB, and iNOS were evaluated. APAP treatment caused significant hepatic functional impairment and increased hepatic MDA levels, as well as a concomitant decrease in GSH content. Marked elevation in Drp1 and FIS1 levels, INF-ß, p-NF-κB, and iNOS immunoreactivity, and reduction in MFN2 and OPA1 levels in the APAP-injected group, PGC-1α downregulation, and high expression of cGAS and STING were also documented. EMPA effectively ameliorated APAP-generated structural and functional changes in the liver, restored redox homeostasis and mitochondrial dynamics balance, and enhanced mitochondrial biogenesis, remarkably diminished hepatic expression of cGAS and STING, and elicited a reduction in hepatic inflammation. Moreover, the computational modeling data support the interaction of APAP with antioxidant system-related proteins as well as the interactions of EMPA against Drp1, cGAS, IKKA, and iNOS proteins. Our findings demonstrated for the first time that EMPA has an ameliorative impact against APAP-induced hepatotoxicity in mice via modulation of mitochondrial dynamics, biogenesis, and cGAS/STING-dependent inflammation. Thus, this study concluded that EMPA could be a promising therapeutic modality for acute liver toxicity.
Collapse
Affiliation(s)
- Rehab M El-Gohary
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Maram M Ghabrial
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham L Younis
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Monira A Seleem
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Khairiah M Alwutayed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ostan Mihaela
- Department of Biology, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timisoara, Timisoara, Romania
| | - Banatean-Dunea Ioan
- Department of Biology, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timisoara, Timisoara, Romania
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- National Guard- Health Affairs, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Ateya M Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Rasha H Al-Serwi
- Department of Basic Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asmaa A Ghalwash
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Ali NAM, Abdelhamid AM, El-Sayed NM, Radwan A. Alpha-Asarone attenuates alcohol-induced hepatotoxicity in a murine model by ameliorating oxidative stress, inflammation, and modulating apoptotic-Autophagic cell death. Toxicol Appl Pharmacol 2024; 490:117041. [PMID: 39059505 DOI: 10.1016/j.taap.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver injury characterized by steatosis, inflammation, and fibrosis. This study explored the hepatoprotective mechanisms of alpha-asarone in a mouse model of chronic-binge alcohol feeding. Adult male mice were randomized into control, alcohol, and alcohol plus alpha-asarone groups. Serum aminotransferases and histopathology assessed liver injury. Oxidative stress was evaluated via malondialdehyde content, glutathione, superoxide dismutase, and catalase activities. Pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were quantified by ELISA. P53-mediated apoptosis was determined by immunohistochemistry. Key autophagy markers phospho-AMPK, AMPK, Beclin-1, LC3-I/LC3-II ratio, and LC3 were examined by immunoblotting. Alcohol administration increased serum ALT, AST and ALP, indicating hepatocellular damage. This liver dysfunction was associated with increased oxidative stress, inflammation, p53 expression and altered autophagy. Alpha-asarone treatment significantly decreased ALT, AST and ALP levels and improved histological architecture versus alcohol alone. Alpha-asarone also mitigated oxidative stress, reduced TNF-α, IL-1β and IL-6 levels, ameliorated p53 overexpression and favorably modulated autophagy markers. Our findings demonstrate that alpha-asarone confers protective effects against ALD by enhancing antioxidant defenses, suppressing hepatic inflammation, regulating apoptotic signaling, and restoring autophagic flux. This preclinical study provides compelling evidence for the therapeutic potential of alpha-asarone in attenuating alcohol-induced liver injury and warrants further evaluation as a pharmacotherapy for ALD.
Collapse
Affiliation(s)
- Nada A M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa Radwan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
6
|
Korkmaz Y, Dik B. The comparison of the antidiabetic effects of exenatide, empagliflozin, quercetin, and combination of the drugs in type 2 diabetic rats. Fundam Clin Pharmacol 2024; 38:511-522. [PMID: 38149676 DOI: 10.1111/fcp.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Type 2 diabetes, a metabolic disease that involves extended treatment, is rapidly increasing in humans and animals worldwide. OBJECTIVES This study aimed to compare monotherapy and combined therapy of exenatide, empagliflozin, and quercetin in 67 Wistar Albino male rats. METHODS The animals were divided into the following seven groups: healthy control, diabetes control, diabetes + sham, diabetes + exenatide (10 μg/kg), diabetes + empagliflozin (50 mg/kg), diabetes + quercetin (50 mg/kg), and diabetes + combination treatment. The treatments were continued for 8 weeks. RESULTS At the end of the experiment, glucose and HbA1c levels decreased with all monotherapy treatments and the combination treatments, while insulin levels increased with exenatide and combined treatments. Adiponectin levels increased with empagliflozin, quercetin, and combined treatments, while leptin levels decreased only with combined treatments. All monotherapies caused an increase in total antioxidant levels. Exenatide and quercetin treatments reduced low-density lipoprotein (LDL) levels; therewithal, exenatide and combined treatments increased high-density lipoprotein (HDL) levels. Triglyceride levels decreased in all treatment groups. The homeostatic model assessment for insulin resistance (HOMA-IR) level decreased with the combined treatment; on the contrary, the homeostatic model assessment for β-cell activity (HOMA-β) level increased with empagliflozin, exenatide, and combined treatments. CONCLUSION In conclusion, the antidiabetic effects of exenatide were more pronounced than empagliflozin and quercetin, however, the combined treatment had better antidiabetic and antihyperlipidemic effects than monotherapies. Quercetin could be a supportive or food supplement antidiabetic agent. The exenatide treatment can be recommended for monotherapy in type 2 patients, and the combination of empagliflozin, exenatide, and quercetin may be effective in diabetic patients who need combined therapy.
Collapse
Affiliation(s)
- Yasemin Korkmaz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
7
|
Rabelo ACS, Andrade AKDL, Costa DC. The Role of Oxidative Stress in Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2024; 16:1174. [PMID: 38674865 PMCID: PMC11055095 DOI: 10.3390/nu16081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1β, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
- Department of Biochemistry, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Daniela Caldeira Costa
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
| |
Collapse
|
8
|
Hu D, Cheng C, Bian Z, Xu Y. The role of echinacoside-based cross-linker nanoparticles in the treatment of osteoporosis. PeerJ 2024; 12:e17229. [PMID: 38618561 PMCID: PMC11011595 DOI: 10.7717/peerj.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Background Current drugs for treating osteoporosis may lead to toxic side effects. Echinacoside (ECH) is a natural small molecule drug. This study examined and compared the therapeutic effects of cross-linker (CL)-ECH and ECH-free nanoparticles on osteoporosis. Methods Echinocandin-based CL-ECH nanoparticles were prepared, and the nanoparticle size and drug loading were optimized and characterized by adjusting the ratio. The antioxidant effect of CL-ECH nanoparticles on bone marrow-derived macrophages (BMDMs) was analyzed using flow cytometry, immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR). Bone marrow stromal cells (BMSCs)-based detection of bone-producing effects was conducted using alkaline phosphatase (ALP), Alizarin Red S (ARS) and qRT-PCR. TRAP, phalloidin staining, and qRT-PCR was performed to detect osteogenesis-inhibiting effect on BMDMs. CL-ECH nanoparticles were applied to treat an ovariectomized (OVX) mouse model at low doses. Results Compared to ECH, CL-ECH nanoparticles suppressed oxidative stress in BMDMs by promoting NRF-2 nuclear translocation, which inhibited the production of both reactive oxygen species (ROS) and osteoclast production through downregulating NF-κB expression, with limited effect on the osteogenesis of BMSCs. In vivo studies showed that low-dose CL-ECH nanoparticles markedly improved bone trabecular loss compared to ECH administration in the treatment of osteoporosis. Conclusions The current discoveries provided a solid theoretical foundation for the development of a new generation of anti-bone resorption drugs and antiosteoporosis drugs.
Collapse
Affiliation(s)
- Dandan Hu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunan Cheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhen Bian
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Zandifar A, Panahi M, Badrfam R, Qorbani M. Efficacy of empagliflozin as adjunctive therapy to citalopram in major depressive disorder: a randomized double-blind, placebo-controlled clinical trial. BMC Psychiatry 2024; 24:163. [PMID: 38408937 PMCID: PMC10895773 DOI: 10.1186/s12888-024-05627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Major depressive disorder is one of the most common psychiatric disorders, which is associated with a high disease burden. Current treatments using antidepressants have limitations, so using medication with neuromodulating and anti-inflammatory properties alongside them could be helpful. In a clinical trial, we studied the effectiveness of empagliflozin, a blood sugar-lowering drug, as an adjunctive therapy to reduce the severity of depression symptoms. METHODS A number of outpatients with moderate to severe depression (Hamilton Depression Rating Scale (HDRS) > = 17) who were not under related medication or had not taken medication for at least the last two months, had an age range of 18-60 years and had written informed consent to enter the study (N = 90) were randomly divided into two groups receiving placebo or empagliflozin (10 mg daily) combined with citalopram (40 mg daily) based on permuted block randomization method in an 8-week randomized, double-blind, placebo-controlled clinical trial. They were evaluated using the HDRS in weeks 0, 4, and 8. RESULTS HDRS scores were equal to 28.42(± 3.83), 20.20(± 3.82), and 13.42(± 3.42) in the placebo group during weeks 0,4, and 8, respectively. These scores were 27.36(± 3.77), 13.76(± 1.40), and 7.00(± 1.13), respectively, for the group treated with empagliflozin. Compared to the control group, patients treated with empagliflozin using repeated-measures ANOVA showed greater improvement in reducing the severity of depression symptoms over time (p value = 0.0001). CONCLUSIONS Considering the promising findings in this clinical trial, further study of empagliflozin as adjunctive therapy in MDD with larger sample sizes and longer follow-ups is recommended.
Collapse
Affiliation(s)
- Atefeh Zandifar
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Psychiatry, Imam Hossein Hospital, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Maryam Panahi
- Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rahim Badrfam
- Department of Psychiatry, Imam Hossein Hospital, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Kalantari E, Zolbanin NM, Ghasemnejad-Berenji M. Protective effects of empagliflozin on methotrexate induced hepatotoxicity in rats. Biomed Pharmacother 2024; 170:115953. [PMID: 38064971 DOI: 10.1016/j.biopha.2023.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Methotrexate (MTX), a folic acid antagonist, is commonly prescribed as a cytotoxic drug to treat several conditions such as leukemia and inflammation-related diseases, including rheumatoid arthritis and psoriasis. However, its use in clinical practice has been limited due to its fatal side effects, especially hepatotoxicity. Empagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that has recently been reported to exhibit anti-inflammatory and anti-oxidative properties. This study was aimed to evaluate the effect of Empagliflozin on liver injury induced by MTX in rats. The rats were divided into five groups as control, MTX (20 mg/kg; i.p.), Empagliflozin (30 mg/kg/day; i.p.), MTX and Empagliflozin (10 and 30 mg/kg/day; i.p.). Histopathologic alterations were examined for assessment of the liver injury. Furthermore, the levels of tissue malondialdehyde (MDA) and activity of anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were evaluated. Our results revealed that treatment with Empagliflozin significantly improved histopathologic alterations, and elevated levels of AST and ALT induced by MTX administration. Additionally, altered activities of SOD, GPx, and catalase were significantly improved followed by Empagliflozin treatment. However, the higher dose of Empagliflozin was observed to have several benefits compared to the lower dose. Our data suggest that Empagliflozin might possess a protective role against MTX-induced hepatotoxicity by inhibiting oxidative stress in liver tissue.
Collapse
Affiliation(s)
- Elham Kalantari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Avagimyan A, Fogacci F, Pogosova N, Kakrurskiy L, Kogan E, Urazova O, Kobalava Z, Mikhaleva L, Vandysheva R, Zarina G, Trofimenko A, Navasardyan G, Mkrtchyan L, Galli M, Jndoyan Z, Aznauryan A, Saahakyan K, Agati L, Shafie D, Cicero A, Salvo GD, Sarrafzadegan N. Diabetic Cardiomyopathy: 2023 Update by the International Multidisciplinary Board of Experts. Curr Probl Cardiol 2024; 49:102052. [PMID: 37640176 DOI: 10.1016/j.cpcardiol.2023.102052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Diabetes mellitus (DM) is considered by many the pandemic of the 21st century and is associated with multiple organ damages. Among these, cardiovascular complications are responsible for an incredible burden of mortality and morbidity in Western Countries. The study of the pathological mechanisms responsible for the cardiovascular complications in DM patients is key for the development of new therapeutic strategies. The metabolic disorders caused by hyperglycemia, insulin resistance, and dyslipidemia, results in a cascade of pathomorphological changes favoring the atherosclerotic process and leading to myocardial remodeling. Parallel to this, oxidative stress, calcium overload, mitochondrial dysfunction, activation of protein kinase C signaling pathways, myocardial lipomatosis, and low-grade inflammation of the myocardium - are the main pathways responsible for the diabetic cardiomyopathy development. This review aims to appraise and discuss the pathogenetic mechanisms behind the diabetic cardiomyopathy development.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University, Yerevan, Armenia.
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nana Pogosova
- Research and Preventive Cardiology, National Medical Research Centre of Cardiology, Moscow, Russia
| | - Lev Kakrurskiy
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Eugenia Kogan
- Pathology Department, Immunohistochemistry Reference Centre of Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Urazova
- Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Zhanna Kobalava
- Internal Disease and Cardiology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Gioeva Zarina
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Artem Trofimenko
- Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | | | - Lusine Mkrtchyan
- Cardiology Department, Yerevan State Medical University, Yerevan, Armenia
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Zinaida Jndoyan
- Internal Diseases Propaedeutic Department, Yerevan State Medical University, Yerevan, Armenia
| | - Anait Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Karmen Saahakyan
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Luciano Agati
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Arrigo Cicero
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Lu D, Yang Y, Du Y, Zhang L, Yang Y, Tibenda JJ, Nan Y, Yuan L. The Potential of Glycyrrhiza from "Medicine Food Homology" in the Fight against Digestive System Tumors. Molecules 2023; 28:7719. [PMID: 38067451 PMCID: PMC10708138 DOI: 10.3390/molecules28237719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Glycyrrhiza has a long history of applications and a wide range of pharmacological effects. It is known as the "king of all herbs". Glycyrrhiza is effective in clearing heat, detoxifying, relieving cough, and tonifying qi and has good bioactivity in multiple inflammatory, immune, and tumor diseases. This review aims to summarize the origin, distribution, and anti-digestive system tumor mechanism of glycyrrhiza and its homologous applications in medicine and food. The active compounds include triterpenoids, flavonoids, and coumarins, which are widely used in clinical treatments, disease prevention, and daily foods because of their "enhancement of efficacy" and "reduction of toxicity" against digestive system tumors. This paper reviews the use of glycyrrhiza in digestive system tumors and provides an outlook on future research and clinical applications.
Collapse
Affiliation(s)
- Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China;
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Joanna Japhet Tibenda
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| |
Collapse
|
14
|
Sur A, Iflazoglu Mutlu S, Tatli Seven P, Seven I, Aslan A, Kizil M, Kulaksiz R, Yaranoglu MH, Esen S. Effects of grape seed proanthocyanidin extract on side effects of high-dose methylprednisolone administration in male rats. Toxicol Res 2023; 39:749-759. [PMID: 37779581 PMCID: PMC10541365 DOI: 10.1007/s43188-023-00196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, we investigated the effects of grape seed proanthocyanidin extract (GSPE) against the side effects of high-dose administration of methylprednisolone (MP) in male rats. A total of 32 adult Wistar male albino rats were divided into four groups: (1) control (CON), received standard food only; (2) MP, received standard food + intraperitoneal injection of 60 mg/kg MP on day 7; (3) GSPE, received standard food + 200 mg/kg/day GSPE; and (4) MP + GSPE, received standard food + 200 mg/kg/day of GSPE + intraperitoneal injection of 60 mg/kg MP on day 7. All animals in the GSPE and GSPE + MP groups were treated once a day by oral gavage for 14 consecutive days. The feed intake of rats in the MP and MP + GSPE groups decreased significantly by 24.14% and 13.52%, respectively (p < 0.05). Administration of MP resulted in significant increases in serum concentrations of blood urea nitrogen (p < 0.001), glucose (p < 0.01), alkaline phosphatase, and adrenocorticotropic hormone (p < 0.05). High-dose MP administration significantly reduced catalase (p < 0.001) and glutathione peroxidase (p < 0.05) concentrations in the liver and kidney tissues of rats, while glutathione concentrations were only reduced in liver tissue (p < 0.05). The expression levels of Bcl-2 and TNF-α in liver, kidney, and testicular tissue were significantly increased, while the expression levels of caspase-3 were reduced (p < 0.001). Furthermore, sperm concentration was significantly affected by GSPE in rats induced by high-dose MP, and sperm loss was significantly reduced in MP + GSPE (p < 0.05). These findings suggest that GSPE could be useful as a supplement to alleviate MP-induced toxicity in rats.
Collapse
Affiliation(s)
- Aslihan Sur
- Department of Veterinary Medicine, Vocational School of Kepsut, Balikesir University, 10000 Balikesir, Turkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Ismail Seven
- Department of Plant and Animal Production, Vocational School of Sivrice, Firat University, 23119 Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | - Meltem Kizil
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Recai Kulaksiz
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Balikesir University, 10000 Balikesir, Turkey
| | | | - Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, 10470 Balikesir, Turkey
| |
Collapse
|
15
|
Nazari-Khanamiri F, Jafari A, Esmaeilzadeh Z, Ghasemnejad-Berenji M. Biochemical and histopathological evidence for beneficial effects of Empagliflozin pretreatment on acetic acid-induced colitis in rats. BMC Gastroenterol 2023; 23:332. [PMID: 37759154 PMCID: PMC10523708 DOI: 10.1186/s12876-023-02958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ulcerative Colitis (UC) is a disorder which oxidative stress plays a critical role in its pathogenesis. Empagliflozin (EMPA) is a sodium-glucose cotransporter-2 (SGLT2) inhibitor that has been shown to have anti-inflammatory and antioxidative effects. The aim of this study was to investigate the protective effects of EMPA on acetic acid (AA) induced colitis in rats. METHODS A total of twenty-four rats were divided into four groups (six animals in each group) as follows: (1) Control group; (2) acetic acid (AA)-induced colitis group (AA); (3) EMPA treatment group (AA + EMPA); (4) Dexamethasone (Dexa) treatment group (AA + Dexa). Animals in pre-treatment groups received EMPA (10 mg/kg, i.p.) or dexamethasone (4 mg/kg, i.p. as reference drug) for four consecutive days before induction of colitis by intra-rectal acetic acid (4% v/v) administration. Twenty-four hours after AA administration, rats were sacrificed and the colon tissues were removed for histopathological and biochemical evaluations. RESULTS Pretreatment with EMPA significantly decreased colon weight/length ratio (81.00 ± 5.28 mg/cm vs. 108.80 ± 5.51 mg/cm) as well as, macroscopic (2.50 ± 0.57 vs. 3.75 ± 0.25) and histological scores (3.3 ± 0.14 vs. 1.98 ± 0.14) compared to the AA-induced colitis group (p < 0.01). Pretreatment with EMPA significantly reduced malondialdehyde (MDA) (324.0 ± 15.93 vs. 476.7 ± 32.26 nmol/mg p < 0.001) and increased glutathione level (117.5 ± 4.48 vs. 94.38 ± 3.950 µmol/mg, p < 0.01) in comparison to the AA-induced colitis group. Furthermore, a significant increase in catalase (44.60 ± 4.02 vs.14.59 ± 2.03 U/mg, P < 0.01), superoxide dismutase (283.9 ± 18.11 vs. 156.4 ± 7.92 U/mg, p < 0.001), and glutathione peroxidase (10.38 ± 1.45 vs. 2.508 ± 0.37, p < 0.01) activities were observed by EMPA pretreatment when compared to the AA-induced colitis group. These results were in line with those of the reference drug. CONCLUSIONS It is concluded that EMPA could effectively reduce the severity of tissue injury in experimental colitis. This protective effect may be related to the antioxidative effects of EMPA drug.
Collapse
Affiliation(s)
| | - Abbas Jafari
- Cellular and Molecular Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
16
|
Chen J, Wu S, Wu R, Ai H, Lu X, Wang J, Luo Y, Li L, Cao J. Essential oil from Artemisia argyi alleviated liver disease in zebrafish (Danio rerio) via the gut-liver axis. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108962. [PMID: 37488037 DOI: 10.1016/j.fsi.2023.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
The popularity of intensive fish farming has led to the emergence of fish diseases characterized by hepatobiliary syndrome. Artemisia argyi (A. argyi) essential oils have anti-inflammatory and anti-oxidant effects. However, their alleviating effects and mechanism on liver disease in fish are still unclear. Thus, adult zebrafish were used to construct an animal model to observe histopathological damages, determine biochemical parameters and expression of inflammatory cytokines and mRNAs in the PPAR-γ/NF-κB pathway, and conduct 16 S sequencing of intestinal microbiota. The results found that after treatment with A. argyi essential oil, the histopathological damage caused by ethanol was relieved; the CAT, SOD, and GSH levels were remarkably elevated, while the MDA level was obviously lowered (P < 0.05); the expression levels of IL-10 and IFN-γ mRNAs were enhanced, but the levels of IL-1β, IL-6, PPAR-γ, NF-κB, and TNF-α mRNAs were reduced (P < 0.05) relative to the EtOH group. A. argyi essential oil remarkably attenuated the damage to intestinal tissue structure, and elevated the levels of Muc2, ZO-1, Claudin-1, and Occludin mRNA (P < 0.05). Sequencing of the gut flora showed that A. argyi essential oil significantly altered the composition of gut microbes compared with the EtOH group. In addition, KEGG and COG analyses also showed significant (P < 0.05) changes in acetate cycling metabolism in the EtOH group, catechol 2, 3-dioxygenase and nitroreductase were significantly increased (P < 0.001), and lipid metabolism and terpenoid synthesis were significantly elevated (P < 0.001) in A. argyi essential oil group. The results indicate that A. argyi essential oil could effectively relieve ethanol-caused histopathological damage of livers by modulating the composition of gut microbiota, thus inhibiting the level of IL-1β and mRNAs in the PPAR-γ/NF-κB pathway, increasing the IL-10 level, reducing the oxidative stress. This may offer a rationale for further research on the rationality of A. argyi as a substitute for feed antibiotics in aquaculture.
Collapse
Affiliation(s)
- Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shanshan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Honghu Ai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xingru Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiaqi Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
17
|
El-Horany HES, Atef MM, Abdel Ghafar MT, Fouda MH, Nasef NA, Hegab II, Helal DS, Elseady W, Hafez YM, Hagag RY, Seleem MA, Saleh MM, Radwan DA, Abd El-Lateef AE, Abd-Ellatif RN. Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. Int J Mol Sci 2023; 24:ijms24119481. [PMID: 37298433 DOI: 10.3390/ijms24119481] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms underlying these effects require further elucidation. Therefore, this study aimed to evaluate the ameliorative effect of EMPA against bleomycin (BLM)-induced PF and the potential mechanisms. Twenty-four male Wister rats were randomly divided into four groups: control, BLM treated, EMPA treated, and EMPA+BLM treated. EMPA significantly improved the histopathological injuries illustrated by both hematoxylin and eosin and Masson's trichrome-stained lung tissue sections, as confirmed by electron microscopic examination. It significantly reduced the lung index, hydroxyproline content, and transforming growth factor β1 levels in the BLM rat model. It had an anti-inflammatory effect, as evidenced by a decrease in the inflammatory cytokines' tumor necrosis factor alpha and high mobility group box 1, inflammatory cell infiltration into the bronchoalveolar lavage fluid, and the CD68 immunoreaction. Furthermore, EMPA mitigated oxidative stress, DNA fragmentation, ferroptosis, and endoplasmic reticulum stress, as evidenced by the up-regulation of nuclear factor erythroid 2-related factor expression, heme oxygenase-1 activity, glutathione peroxidase 4 levels, and a decrease in C/EBP homologous protein levels. This protective potential could be explained on the basis of autophagy induction via up-regulating lung sestrin2 expression and the LC3 II immunoreaction observed in this study. Our findings indicated that EMPA protected against BLM-induced PF-associated cellular stress by enhancing autophagy and modulating sestrin2/adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling.
Collapse
Affiliation(s)
- Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Biochemistry, College of Medicine, Ha'il University, Hail 81411, Saudi Arabia
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Mohamed H Fouda
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| | - Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Rasha Youssef Hagag
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Mai Mahmoud Saleh
- Chest Diseases Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
18
|
Combined carvacrol and cilostazol ameliorate ethanol-induced liver fibrosis in rats: Possible role of SIRT1/Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 116:109750. [PMID: 36709594 DOI: 10.1016/j.intimp.2023.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
Carvacrol is a natural phenolic monoterpenoid, and cilostazol is a selective phosphodiesterase-3 inhibitor with antioxidant, anti-inflammatory and antiapoptotic effects. This experiment aimed to explore the hepatoprotective effects of carvacrol and cilostazol alone and in combination against alcoholic liver fibrosis (ALF), and the underlying mechanisms, using silymarin as a reference anti-fibrotic product. ALF was induced by oral administration of ethanol (1 ml/100 g/day) thrice per week. Silymarin (100 mg/kg), carvacrol (70 mg/kg), cilostazol (50 mg/kg), or carvacrol + cilostazol combination were administered daily and concurrently with ethanol for six weeks. Hepatic changes were evaluated by quantifying serum biomarkers of liver injury, hepatic MDA, GSH and NOx as oxidative stress markers, interleukin (IL)-10 as an anti-inflammatory cytokine, 4-hydroxyproline (4-HYP) as a collagen synthesis indicator, transforming growth factor (TGF)-β1 as a profibrogenic cytokine, α-smooth muscle actin (α-SMA) as a marker of hepatic stellate cells (HSCs) activation, histopathological (necroinflammation and fibrosis) scores and hepatic sirtuin-1 (SIRT1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1) mRNA levels. Our results showed that carvacrol, cilostazol, and their combination significantly ameliorated ethanol-induced hepatic fibrosis manifested as improving hepatic functions and histopathological features, attenuating α-SMA immunostaining, reducing TGF-β1 and 4-HYP levels, suppressing oxidativeinjury and elevating IL-10 contents. Such effects were accompanied by upregulating SIRT1, Nrf2 and HO-1 genes. This work disclosed for the first time the hepatoprotective effect of carvacrol against ALF and, to a greater extent, with carvacrol + cilostazol combination that could be partially accredited to SIRT1/Nrf2/HO-1 pathway with consequent antioxidant, anti-inflammatory, and anti-fibrotic features.
Collapse
|
19
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
20
|
El-Kashef DH, Sewilam HM. Empagliflozin mitigates methotrexate-induced hepatotoxicity: Targeting ASK-1/JNK/Caspase-3 pathway. Int Immunopharmacol 2023; 114:109494. [PMID: 36462340 DOI: 10.1016/j.intimp.2022.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Methotrexate (MTX) administration causes hepatotoxicity, a serious side effect limiting its clinical use. Therefore, this study was performed to investigate the beneficial effect of empagliflozin (Empa) against MTX-induced hepatotoxicity. Adult male albino mice were pre-treated with Empa (at 10 or 25 mg/kg/d, orally) for 6 days and then received a single MTX injection (at 20 mg/kg, intraperitoneally). Empa effectively ameliorated MTX-induced structural and functional alterations. It significantly decreased transaminase, alkaline phosphatase, and gamma-glutamyl transferase levels and increased albumin levels in the serum. Moreover, Empa restored the oxidant/antioxidant balance as indicated by reduced malondialdehyde and total nitrite/nitrate contents and elevated reduced glutathione level and superoxide dismutase activity. Additionally, Empa (10 and 25 mg/kg) markedly suppressed the elevated levels of tumor necrosis factor-alpha, interleukin-6, apoptosis signal-regulating kinase1, c-Jun N-terminal kinase, BCL2 associated X protein, and Caspase-3 in hepatic tissues and increased the hepatic interleukin-10 levels. Furthermore, Empa substantially decreased nuclear factor kappa B expression in hepatic tissues. These biochemical findings were further confirmed by histopathological and transmission electron microscopy observations. Therefore, Empa might be used as an adjuvant to ameliorate MTX-induced hepatotoxicity after further clinical evaluation.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Haitham M Sewilam
- Department of Histology, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
21
|
Shakerinasab N, Azizi M, Mansourian M, Sadeghi H, Salaminia S, Abbasi R, Shahaboddin ME, Doustimotlagh AH. Empagliflozin Exhibits Hepatoprotective Effects Against Bile Duct Ligation-induced Liver Injury in Rats: A Combined Molecular Docking Approach to In Vivo Studies. Curr Pharm Des 2022; 28:3313-3323. [PMID: 36305136 DOI: 10.2174/1381612829666221027112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cholestatic liver damage is a chronic disease caused by dysfunction of the hepaticbiliary system. Oxidative stress and inflammation are essential factors in the pathogenesis of cholestasis. Thus, the current study was designed to examine the effect of empagliflozin on bile duct ligation-induced liver damage in rats. METHODS This study was done on male Wistar rats, which were randomly assigned to the four experimental groups: sham control (SC), bile duct ligation (BDL), SC plus empagliflozin (SC+EMPA) (receiving 10 mg of EMPA orally for 7 days), BDL plus empagliflozin 10 mg/kg (BDL+ EMPA). At the end of the study, the rats were sacrificed, and serum and tissue samples were collected to analyze biochemical parameters, biomarkers of oxidative stress, inflammatory markers, and histopathological changes. The molecular docking technique was performed to elucidate the interaction of EMPA and Cu/Zn-superoxide dismutase (SOD1). RESULTS The results showed that BDL elevated the serum activity of ALT, AST, ALP, and levels of TBIL and TPro. BDL also intensifies the oxidative stress state in rats, which was confirmed by augmenting lipid peroxidation (MDA), protein oxidation (PCO), and altering antioxidant defense parameters through decreased SOD, catalase (CAT), and glutathione peroxidase (GPX) levels. Furthermore, the histopathological changes in the liver demonstrated the aggravation of inflammation and oxidative stress. In contrast, treatment with EMPA has shown anti-inflammatory and anti-oxidant effects by reducing TNF-α and IL-6 pro-inflammatory marker proteins, restoring the antioxidant status (increased SOD and GPX), reducing ALT, AST, ALP, TBIL levels, and protein oxidation, and improving the histopathological alterations through reducing bile duct proliferation, fibrosis, focal and portal inflammation. According to the attained findings, the SOD1 activity can be regulated by the EMPA. Our documentation presents direct evidence at the molecular level related to the ability of EMPA to exert its antioxidant performance through certain measures in a particular molecular route. CONCLUSION The results showed EMPA to have hepatic protective effects in rats against cholestatic liver injury, an effect mediated by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Nasrin Shakerinasab
- Department of Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahboubeh Mansourian
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sadeghi
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shirvan Salaminia
- Department of Cardiac Surgery, Yasuj University of Medical Science, Yasuj, Iran
| | - Reza Abbasi
- Department of Pediatrics, Yasuj University of Medical Science, Yasuj, Iran
| | | | - Amir Hossein Doustimotlagh
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
22
|
Nakhal MM, Aburuz S, Sadek B, Akour A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022; 27:7174. [PMID: 36364000 PMCID: PMC9653623 DOI: 10.3390/molecules27217174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
23
|
Liao YF, Luo FL, Tang SS, Huang JW, Yang Y, Wang S, Jiang TY, Man Q, Liu S, Wu YY. Network analysis and experimental pharmacology study explore the protective effects of Isoliquiritigenin on 5-fluorouracil-Induced intestinal mucositis. Front Pharmacol 2022; 13:1014160. [PMID: 36278232 PMCID: PMC9582754 DOI: 10.3389/fphar.2022.1014160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
5-fluorouracil (5-FU) is one of the most widely used chemotherapy drugs for malignant tumors. However, intestinal mucositis caused by 5-FU is a severe dose-limiting toxic effect and even leads to treatment interruption. Isoliquiritigenin (ISL) is one of the main active compounds of licorice, which is a traditional Chinese herbal medicine commonly used in inflammation and gastrointestinal diseases. It is speculated that ISL have protective effects on intestinal mucositis. However, no such studies have been reported. Therefore, to investigate the impact of ISL on 5-Fu-induced intestinal mucositis, a strategy based on network prediction and pharmacological experimental validation was proposed in this study. Firstly, the targets and mechanism of ISL in alleviating 5-Fu-induced gastrointestinal toxicity were predicted by network analysis. And the results were further confirmed by molecular docking. Then, a mouse model of intestinal mucositis was established by intraperitoneal injection of 5-FU (384 μmol/kg) to verify the prediction of network analysis. The network analysis results suggested that PTGS2 (Prostaglandin G/H synthase 2) and NOS2 (Nitric oxide synthase, inducible) might be the critical targets of ISL for reducing the intestinal toxicity of 5-FU. In addition, KEGG and GO enrichment analysis revealed that the HIF-1, TNF, MAPK, IL-17, PI3K-Akt, Ras, NF-kappa B signaling pathway, and biological processes of the inflammatory response, apoptosis regulation, NO production and NF-kappa B transcription factor activity might be involved in the mechanism of ISL against intestinal mucositis. Subsequent animal experiments showed that ISL could reduce the weight loss, leukopenia and mucosal damage caused by 5-FU. Compared with the intestinal mucositis model, the protein expressions of PTGS2, NOS2, TNFα (Tumor necrosis factor-alpha) and NF-κB p65 (nuclear factor kappa-B P65) were decreased after ISL treatment. In conclusion, this study is the fist time to find that ISL can attenuate 5-FU-induced intestinal mucositis in mice. Its anti-mucositis effect may be through regulating TNF/NF-κB pathway and inhibiting inflammatory mediators PTGS2 and NOS2. It will provide a potential candidate for the prevention and treatment of chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Yi-fan Liao
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng-lin Luo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shan-shan Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jing-wei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
| | - Ying Yang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shuang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| | - Tang-yu Jiang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiong Man
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
- *Correspondence: Yi-ying Wu, ; Qiong Man, ; Sha Liu,
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
- *Correspondence: Yi-ying Wu, ; Qiong Man, ; Sha Liu,
| | - Yi-ying Wu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
- *Correspondence: Yi-ying Wu, ; Qiong Man, ; Sha Liu,
| |
Collapse
|
24
|
Heimke M, Lenz F, Rickert U, Lucius R, Cossais F. Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells 2022; 11:cells11193107. [PMID: 36231069 PMCID: PMC9563452 DOI: 10.3390/cells11193107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, including empagliflozin, are routinely used as antidiabetic drugs. Recent studies indicate that beside its beneficial effects on blood glucose level, empagliflozin may also exert vascular anti-inflammatory and neuroprotective properties. In the brain, microglia are crucial mediators of inflammation, and neuroinflammation plays a key role in neurodegenerative disorders. Dampening microglia-mediated inflammation may slow down disease progression. In this context, we investigated the immunomodulatory effect of empagliflozin on activated primary microglia. As a validated experimental model, rat primary microglial cells were activated into a pro-inflammatory state by stimulation with LPS. The influence of empagliflozin on the expression of pro-inflammatory mediators (NO, Nos2, IL6, TNF, IL1B) and on the anti-inflammatory mediator IL10 was assessed using quantitative PCR and ELISA. Further, we investigated changes in the activation of the ERK1/2 cascade by Western blot and NFkB translocation by immunostaining. We observed that empagliflozin reduces the expression of pro- and anti-inflammatory mediators in LPS-activated primary microglia. These effects might be mediated by NHE-1, rather than by SGLT2, and by the further inhibition of the ERK1/2 and NFkB pathways. Our results support putative anti-inflammatory effects of empagliflozin on microglia and suggest that SGLT2 inhibitors may exert beneficial effects in neurodegenerative disorders.
Collapse
|
25
|
Huang Y, Jiang J, Wang W, Guo J, Yang N, Zhang J, Liu Q, Chen Y, Hu T, Rao C. Zanthoxylum armatum DC. extract induces liver injury via autophagy suppression and oxidative damage by activation of mTOR/ULK1 pathway. Toxicon 2022; 217:162-172. [PMID: 35977614 DOI: 10.1016/j.toxicon.2022.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Zanthoxylum armatum DC. (ZADC) has anti-inflammatory, antioxidative, and antibacterial effects. The cytotoxicity of methanol extract of Zanthoxylum armatum DC. (MZADC) has been reported for BRL 3 A cell lines. However, whether MZADC can induce liver damage in vivo remains unclear. Therefore, it is essential to explore whether ZADC causes liver injury and, if the results confirm hepatotoxicity, to further study the potential mechanisms for the in-vitro cytotoxicity of the BRL 3 A cell lines. In vivo, different doses (0.346, 0.519, and 1.038 g/kg/day) of MZADC treatment were given by intragastric administration among male Sprague Dawley rats for 28 days. Levels of serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in the high dose group increased. Steatosis and focal necrosis were found in liver cells in rats in the high dose group. In vitro, BRL 3 A cells were cultivated with MZADC at different concentrations (30, 50, and 70 μg/mL) for 24 h. The cell viability, the number of autophagosomes, and the expression levels of LC3 and Beclin-1 were on a decreasing trend. Besides, proportions of p-mTOR/mTOR and p-ULK1/ULK1 increased. Meanwhile, reactive oxygen species (ROS) accumulation and the content of malondialdehyde (MDA) were on the rise while the activity of superoxide dismutase (SOD) and the content of glutathione (GSH) was on the decline. This research suggests that MZADC may cause rats liver injury and inhibit autophagy in BRL 3 A cells by the mTOR/ULK1 pathway, and further induce intracellular oxidative damage.
Collapse
Affiliation(s)
- Yan Huang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jialuo Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wenlin Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
26
|
Amer RM, Eltokhy AK, Elesawy RO, Barakat AN, Basha E, Eldeeb OS, Aboalsoud A, Elgharabawy NM, Ismail R. The Ameliorative Effect of Empagliflozin in Vigabatrin-Induced Cerebellar/Neurobehavioral Deficits: Targeting mTOR/AMPK/SIRT-1 Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123659. [PMID: 35744783 PMCID: PMC9229258 DOI: 10.3390/molecules27123659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Introduction. Vigabatrin (VGB) is an antiepileptic drug that acts to irreversibly inhibit the γ-aminobutyric acid (GABA) transaminase enzyme, elevating GABA levels. Broad studies have established that long-term treatment and/or high doses of VGB lead to variable visual defects. However, little attention has been paid to its other side effects, especially those demonstrating cerebellar involvement. Sodium glucose-linked co-transporter 2 (SGLT2) inhibitors are antidiabetic agents with protective effects far greater than expected based on their anti-hyperglycemic effect. Method. Our study herein was designed to investigate the possible ameliorative effect of empagliflozin, the SGLT2 inhibitors, in VGB-induced cerebellar toxicity. A total of 40 male Wistar rats were allocated equally into 4 groups: Group I: control group; Group II: VGB group; Group III empagliflozin treated VGB group; and Group IV: empagliflozin treated group. All groups were subjected to the detection of cerebellar messenger RNA gene expression of silent mating type information regulation 2 homolog 1 (SIRT1) and Nucleoporin p62 (P62). Mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), and beclin1 levels were assessed by the ELISA technique while malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected spectrophotometrically. Immuno-histochemical studies, focusing on glial fibrillary acidic protein (GFAP) and S100 were performed, and the optical color density and the mean area percentage of GFAP positive astrocytes and the number of S 100 positive cells were also counted. Results. Following empagliflozin treatment, we documented significant upregulation of both SIRT1 and P62 mRNA gene expression. Additionally, AMPK, Beclin1 levels, and SOD activity were significantly improved, while both mTOR and MDA levels were significantly reduced. Conclusions. We concluded for the first time that empagliflozin efficiently ameliorated the VGB-induced disrupted mTOR/AMPK/SIRT-1 signaling axis with subsequent improvement of the autophagy machinery and mitigation of the oxidative and inflammatory cellular environment, paving the way for an innovative therapeutic potential in managing VGB-induced neurotoxicity.
Collapse
Affiliation(s)
- Rabab M. Amer
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.M.A.); (R.I.)
| | - Amira Kamel Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
- Correspondence: or
| | - Rasha Osama Elesawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.O.E.); (A.A.)
| | - Amany Nagy Barakat
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.N.B.); (N.M.E.)
| | - Eman Basha
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Omnia Safwat Eldeeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.O.E.); (A.A.)
| | | | - Radwa Ismail
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.M.A.); (R.I.)
| |
Collapse
|
27
|
Li Q, Cao Q, Yuan Z, Wang M, Chen P, Wu X. A novel self-nanomicellizing system of empagliflozin for oral treatment of acute pancreatitis: An experimental study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102534. [PMID: 35150903 DOI: 10.1016/j.nano.2022.102534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Acute pancreatitis (AP) is a severe inflammatory disorder hampered by a lack of effective drugs in its clinical practice. Empagliflozin (EMP) exhibits potential effects against AP but is limited by poor water-solubility and low bioavailability. Herein, a novel self-nanomicellizing formulation of EMP with phytochemical rebaudioside A (RA) as the nanocarrier (RA-EMP) was fabricated to address these issues. RA-EMP powder could be simply prepared and exhibited excellent storage stability, dramatically improved EMP's apparent solubility, and instantly self-assembled into micelles with high EMP encapsulation efficiency in water. In vivo experimental studies showed that RA-EMP exhibited significantly enhanced oral bioavailability of EMP and dramatically improved therapeutic efficacy against AP. The mechanisms through suppressing the effects of oxidative stress and proinflammatory cytokines were involved in this therapeutic effect. The results demonstrated that RA-EMP could serve as a promising way to enhance the oral bioavailability and strengthen the potential therapeutic efficacy of EMP against AP.
Collapse
Affiliation(s)
- Qiqi Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China.
| | - Zhixin Yuan
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Meiqi Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
28
|
Li J, Lu J, Lv S, Sun S, Liu C, Xu F, Sun H, Yang J, Wang X, Zhong X, Lu J. Linoleic acid pathway disturbance contributing to potential cancerization of intrahepatic bile duct stones into intrahepatic cholangiocarcinoma. BMC Gastroenterol 2022; 22:269. [PMID: 35637430 PMCID: PMC9153149 DOI: 10.1186/s12876-022-02354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy with poor prognosis. Intrahepatic bile duct stone (IBDS) is one of the key causes to ICC occurrence and can increase morbidity rate of ICC about forty times. However, the specific carcinogenesis of IBDS is still far from clarified. Insight into the metabolic phenotype difference between IBDS and ICC can provide potential mechanisms and therapeutic targets, which is expected to inhibit the carcinogenesis of IBDS and improve the prognosis of ICC.
Methods A total of 34 participants including 25 ICC patients and 9 IBDS patients were recruited. Baseline information inclusive of liver function indicators, tumor biomarkers, surgery condition and constitution parameters etc. from patients were recorded. ICC and IBDS pathological tissues, as well as ICC para-carcinoma tissues, were collected for GC–MS based metabolomics experiments. Multivariate analysis was performed to find differentially expressed metabolites and differentially enriched metabolic pathways. Spearman correlation analysis was then used to construct correlation network between key metabolite and baseline information of patients. Results The IBDS tissue and para-carcinoma tissue have blurred metabolic phenotypic differences, but both of them essentially distinguished from carcinoma tissue of ICC. Metabolic differences between IBDS and ICC were enriched in linoleic acid metabolism pathway, and the level of 9,12-octadecadienoic acid in IBDS tissues was almost two times higher than in ICC pathological tissues. The correlation between 9,12-octadecadienoic acid level and baseline information of patients demonstrated that 9,12-octadecadienoic acid level in pathological tissue was negative correlation with gamma-glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) level in peripheral blood. These two indicators were all cancerization marker for hepatic carcinoma and disease characteristic of IBDS.
Conclusion Long-term monitoring of metabolites from linoleic acid metabolism pathway and protein indicators of liver function in IBDS patients has important guiding significance for the monitoring of IBDS carcinogenesis. Meanwhile, further insight into the causal relationship between linoleic acid pathway disturbance and changes in liver function can provide important therapeutic targets for both IBDS and ICC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02354-2.
Collapse
Affiliation(s)
- Jun Li
- The 1st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jiongjiong Lu
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shaodong Lv
- The 5st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shujun Sun
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Caifeng Liu
- The 1st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Xu
- The 1st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haiying Sun
- The 1st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jiamei Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xinjun Wang
- Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Xingyang Zhong
- The 1st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Junhua Lu
- The 5st Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
29
|
Zaghloul MS, Elshal M, Abdelmageed ME. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103833. [PMID: 35218923 DOI: 10.1016/j.etap.2022.103833] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic colon inflammation that is linked to exposure to environmental factors leading to improper immune responses to enteric microbes in genetically susceptible individuals. This study was designed to explore the possible protective impact of Empagliflozin (EMPA), an anti-diabetic sodium-glucose cotransporter-2 (SGLT2) inhibitor, on acetic acid (AA)-induced UC in rats. METHOD Intrarectal instillation of AA (2 ml, 3% v/v) was used to induce UC. EMPA (10 & 30 mg/kg) was administered orally for 11 days. RESULTS EMPA successfully counteracted AA-induced UC that was manifested by improving colonic histopathological architecture concomitant with a marked decrease in disease activity index (DAI), colon weight, weight/length ratio, serum lactate dehydrogenase (LDH) activity, and C-reactive protein (CRP) level. Additionally, EMPA successfully restored the disrupted oxidant/antioxidants balance induced by AA. Moreover, EMPA significantly induced silent information regulator-1(SIRT-1) expression along with a significant reduction in phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT), nuclear factor kappa B (NF-κB), tumor necrosis factor (TNF)-α and interleukins (IL-1β and IL-6) expression in colonic tissues. Furthermore, EMPA successfully improved the colonic barrier that was appeared from the marked induction of tight junction proteins level (occludin and claudin-1). CONCLUSION EMPA successfully counteracted AA-induced UC in rats via the modulation of SIRT1/PI3K/AKT/NF-κB inflammatory pathway, normalizing oxidant/antioxidants balance, and improving the integrity of colon barrier.
Collapse
Affiliation(s)
- Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
30
|
Dong D, Zhang Y, He H, Zhu Y, Ou H. Alpinetin inhibits macrophage infiltration and atherosclerosis by improving the thiol redox state: Requirement of GSk3β/Fyn-dependent Nrf2 activation. FASEB J 2022; 36:e22261. [PMID: 35332570 DOI: 10.1096/fj.202101567r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Alpinetin is a plant flavonoid isolated from Alpinia katsumadai Hayata with antioxidant and anti-inflammatory properties. Monocyte infiltration into the intima promotes atherosclerotic development and causes plaque instability at the later stage, which is profoundly influenced by various oxidants. In this study, we investigated whether alpinetin restores the redox state to inhibit monocyte infiltration and ameliorates atherosclerosis. ApoE-deficient (ApoE-/- ) mice were fed a high-fat diet and treated with alpinetin. We found that alpinetin significantly attenuated atherosclerotic lesions and reduced necrotic core size associated with the reduction in infiltrated macrophages within the plaques. Alpinetin inhibited macrophage adhesion and migration, and the expression of chemokines and adhesion molecules, such as MCP-1, VCAM-1, and ICAM-1. Intraplaque MMP2 and MMP9 were reduced, while collagen contents were increased and elastin fiber was prevented from degradation in the alpinetin-treated mice. Data further showed that alpinetin reduced reactive oxygen species generation and promoted thiol-dependent glutathione and thioredoxin antioxidant systems in macrophages. Alpinetin activated Nfr2, an upstream activator of the thiol-dependent redox signaling by increasing the nuclear translocation. The nuclear accumulation of Nrf2 was enhanced by reducing nuclear export, which was achieved through the regulation of the GSk3β/Fyn pathway. Finally, inhibition of Nrf2 in HFD-apoE-/- mice blockaded the effect of alpinetin, which increased aortic macrophage recruitment and aggravated atherosclerosis concurrently with elevating the expression of MCP-1, VCAM-1, and ICAM-1. Altogether, these findings indicated that alpinetin improved Nrf2-mediated redox homeostasis, which consequently inhibited macrophage infiltration and atherosclerosis, suggesting a useful compound for treating atherosclerosis.
Collapse
Affiliation(s)
- Doudou Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Yun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Hui He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Yuan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Hailong Ou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
31
|
Ahmed S, El-Sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates Neurodegeneration through Antioxidant, Anti-inflammatory, and Modulation of α-synuclein and Parkin Levels in Rotenone-Induced Parkinson’s Disease in Rats. Saudi Pharm J 2022; 30:863-873. [PMID: 35812142 PMCID: PMC9257853 DOI: 10.1016/j.jsps.2022.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/10/2022] [Indexed: 10/26/2022] Open
|
32
|
Abd El-Fattah EE, Saber S, Youssef ME, Eissa H, El-Ahwany E, Amin NA, Alqarni M, Batiha GES, Obaidullah AJ, Kaddah MMY, Ahmed Gaafar AG, Mourad AAE, Mostafa-Hedeab G, Abdelhamid AM. AKT-AMPKα-mTOR-dependent HIF-1α Activation is a New Therapeutic Target for Cancer Treatment: A Novel Approach to Repositioning the Antidiabetic Drug Sitagliptin for the Management of Hepatocellular Carcinoma. Front Pharmacol 2022; 12:720173. [PMID: 35095479 PMCID: PMC8790251 DOI: 10.3389/fphar.2021.720173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
HIF-1α is a key factor promoting the development of hepatocellular carcinoma (HCC). As well, AKT-AMPKα-mTOR signaling is a promising target for cancer therapy. Yet, the AKT-AMPKα-mTOR-dependent activation of HIF-1α has not been studied in livers with HCC. In addition, the mechanisms underlying the potential antineoplastic effects of sitagliptin (STGPT), an antidiabetic agent, have not yet been elucidated. For that purpose, the N-nitrosodiethylamine (NDEA)-induced HCC mouse model was used in the present study using a dose of 100 mg/kg/week, i.p., for 8 weeks. NDEA-induced HCC mice received STGPT 20, 40, or 80 mg/kg starting on day 61 up to day 120. The present study revealed that STGPT inhibited HIF-1α activation via the interference with the AKT-AMPKα-mTOR axis and the interruption of IKKβ, P38α, and ERK1/2 signals as well. Accordingly, STGPT prolonged the survival, restored the histological features and improved liver function. Additionally, STGPT inhibited angiogenesis, as revealed by a significant downregulation in the VEGF and mRNA expression of CD309 with concomitant inhibition of tissue invasion was evident by an increased ratio of TIMP-1/MMP-2. STGPT exhibited apoptotic stimulatory effect as indicated upon calculating the BCL-2/Bax ratio and by the gene expression of p53. The decrease in AFP and liver index calculation, gene expression of Ki-67 confirmed the antiproliferative activity of STGPT. The anti-inflammatory potential was revealed by the decreased TNF-α level and the downregulation of MCP-1 gene expression. Moreover, an antifibrotic potential was supported by lower levels of TGF-β. These effects appear to be GLP1R-independent. The present study provides a potential basis for repurposing STGPT for the inhibition of HCC progression. Since STGPT is unlikely to cause hypoglycemia, it may be promising as monotherapy or adjuvant therapy to treat diabetic or even normoglycemic patients with HCC.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
33
|
O-alkyl and o-benzyl hesperetin derivative-1L attenuates inflammation and protects against alcoholic liver injury via inhibition of BRD2-NF-κB signaling pathway. Toxicology 2022; 466:153087. [PMID: 34974135 DOI: 10.1016/j.tox.2021.153087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023]
Abstract
Alcoholic liver injury (ALI) is a major risk factor for alcoholic liver disease, characterized by excessive inflammatory response and abnormal liver dysfunction. Previous studies have indicated that O-alkyl and o-benzyl hesperetin derivative-1 L (HD-1 L) has anti-inflammatory and hepato-protective effects in CCl4-induced liver injury. However, its effect on ALI and underlying mechanism has not been elucidated. This study was designed to evaluate the protective effects of HD-1 L on alcoholic liver injury and reveal the underlying mechanisms. ALI model was established in male C57BL/6 J mice (aged 6-8 weeks) by Gao-Binge protocol. The mice were received different doses of HD-1 L (25 mg/kg, 50 mg/kg, 100 mg/kg) by daily intragastric administration, respectively. Liver function and inflammation were measured. Mechanism underlying the anti-inflammatory and hepato-protective effect of HD-1 L were studied in RAW264.7 cells. In alcoholic liver injury mice, HD-1 L effectively improved the liver pathology, and remarkably reduced the levels of alanine transaminase (ALT), aspartate transaminase (AST), triglyceride (TG) and total cholesterol (T-CHO) in serum. Moreover, HD-1 L markedly suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Our results showed that HD-1 L decreased the activity of Bromodomain-containing Protein 2 (BRD2) and inhibited expression of BRD2 in vivo and in vitro. Furthermore, HD-1 L further alleviated alcohol-induced inflammation after blocking BRD2 with inhibitor (JQ1) or BRD2 small interfering (si)-RNA in RAW264.7 cells. Besides, HD-1 L failed to effectively exert its anti-inflammatory effects after over expression of BRD2. In addition, HD-1 L significantly inhibited the phosphorylation and activation of NF-κB-P65 mediated by BRD2. In conclusion, HD-1 L alleviated liver injury and inflammation mainly by inhibiting BRD2-NF-κB signaling pathway, and HD-1 L may be a potential anti-inflammatory compound in treatment of alcoholic liver disease.
Collapse
|
34
|
Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride. Life Sci 2021; 286:120070. [PMID: 34688695 DOI: 10.1016/j.lfs.2021.120070] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
AIM Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. MATERIALS AND METHODS Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&E and Masson's trichrome stain were performed for determination of histopathological changes. KEY FINDINGS Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. SIGNIFICANCE As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients.
Collapse
|
35
|
Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Haluzik M, Vaněčkova I, Malinska H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci 2021; 22:ijms222111513. [PMID: 34768942 PMCID: PMC8584090 DOI: 10.3390/ijms222111513] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that treatment with SGLT-2 inhibitors can reduce hepatic lipid storage and ameliorate non-alcoholic fatty liver disease (NAFLD) development beyond their glycemic benefits. However, the exact mechanism involved is still unclear. We investigated the hepatic metabolic effect of empagliflozin (10 mg/kg/day for eight weeks) on the development of NAFLD and its complications using HHTg rats as a non-obese prediabetic rat model. Empagliflozin treatment reduced neutral triacylglycerols and lipotoxic diacylglycerols in the liver and was accompanied by significant changes in relative mRNA expression of lipogenic enzymes (Scd-1, Fas) and transcription factors (Srebp1, Pparγ). In addition, alterations in the gene expression of cytochrome P450 proteins, particularly Cyp2e1 and Cyp4a, together with increased Nrf2, contributed to the improvement of hepatic lipid metabolism after empagliflozin administration. Decreased circulating levels of fetuin-A improved lipid metabolism and attenuated insulin resistance in the liver and in peripheral tissues. Our results highlight the beneficial effect of empagliflozin on hepatic lipid metabolism and lipid accumulation independent of obesity, with the mechanisms understood to involve decreased lipogenesis, alterations in cytochrome P450 proteins, and decreased fetuin-A. These changes help to alleviate NAFLD symptoms in the early phase of the disease and before the onset of diabetes.
Collapse
Affiliation(s)
- Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic;
| | - Ivana Vaněčkova
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| |
Collapse
|
36
|
Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. Int J Mol Sci 2021; 22:10822. [PMID: 34639160 PMCID: PMC8509708 DOI: 10.3390/ijms221910822] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) agonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R agonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.
Collapse
Affiliation(s)
- Agata Winiarska
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| | - Monika Knysak
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (K.N.); (J.G.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (K.N.); (J.G.)
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| |
Collapse
|
37
|
Qiu L, Liu X, Li W, Liu Z, Xu C, Xia H. Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. J Cell Mol Med 2021; 25:10224-10235. [PMID: 34601814 PMCID: PMC8572777 DOI: 10.1111/jcmm.16959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
38
|
Abdelhamid AM, Elsheakh AR, Suddek GM, Abdelaziz RR. Telmisartan alleviates alcohol-induced liver injury by activation of PPAR-γ/ Nrf-2 crosstalk in mice. Int Immunopharmacol 2021; 99:107963. [PMID: 34273638 DOI: 10.1016/j.intimp.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Excessive consumption of alcohol may induce severe liver damage, in part via oxidative stress and inflammatory responses, which implicates these processes as potential therapeutic approaches. Prior literature has shown that Telmisartan (TEL) may provide protective effects, presumably mediated by its anti-oxidant and anti-inflammatory activities. The purpose of this study was to determine TEL's hepatoprotective effects and to identify its possible curative mechanisms in alcoholic liver disease. A mouse chronic alcohol plus binge feedings model was used in the current study for induction of alcoholic liver disease (ALD). Our results showed that TEL (10 mg/kg/day) has the ability to reduce serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). TEL also increased the activity of superoxide dismutase (SOD) and glutathione (GSH) with concomitant reduction of nitric oxide (NO) malonaldehyde (MDA) in the liver homogenate. Moreover, TEL downregulated nuclear factor kappa B (NF-κB) expression and decreased liver content of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). These anti-inflammatory and anti-oxidant activities were associated with a significant increase in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-activated receptors -γ (PPAR-γ), and heme oxygenase-1 (Hmox-1). In conclusion, TEL's hepatoprotective effects against ALD may be attributable to its anti-inflammatory and anti-oxidant activities which may be in part via the modulation of PPAR-γ/ Nrf-2/ NF-κB crosstalk.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Ahmed Ramadan Elsheakh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ghada Mohamed Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | |
Collapse
|