1
|
Mansoor R, Barkat K, Anjum I, Aamir M, Badshah SF, Ullah R, Iqbal Z, Raza MA. Development of Timolol Maleate-Loaded Poloxamer-co-Poly (acrylic acid) based hydrogel for controlled drug delivery. PLoS One 2024; 19:e0309101. [PMID: 39705266 DOI: 10.1371/journal.pone.0309101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 12/22/2024] Open
Abstract
Free radical polymerization technique was used to formulate Poloxamer-188 based hydrogels for controlled delivery. A total of seven formulations were formulated with varying concentrations of polymer, monomer ad cross linker. In order to assess the structural properties of the formulated hydrogels, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM), and X-ray diffraction (XRD) were carried out. To assess the effect of pH on the release of the drug from the polymeric system, drug release studies were carried in pH 1.2 and 7.4 and it was found that release of the drug was significant in pH 7.4 as compared to that of pH 1.2 which confirmed the pH responsiveness of the system. Different kinetic models were also applied to the drug release to evaluate the mechanism of the drug release from the system. To determine the safety and biocompatibility of the system, toxicity study was also carried out for which healthy rabbits were selected and formulated hydrogels were orally administered to the rabbits. The results obtained suggested that the formulated poloxamer-188 hydrogels are biocompatible with biological system and have the potential to serve as controlled drug delivery vehicles.
Collapse
Affiliation(s)
- Raneem Mansoor
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Aamir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Ahmer Raza
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Chrysant SG. Better blood pressure control with the nanoformulation of antihypertensive drugs. Expert Rev Cardiovasc Ther 2024:1-9. [PMID: 39635781 DOI: 10.1080/14779072.2024.2438813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Hypertension is very common and a major risk factor for cardiovascular disease, heart failure, chronic kidney disease, strokes, and death. However, at present only 14% of patients of developing countries have their blood pressure (BP) well controlled. The causes for the failure to control the BP are multiple and one of them could be the formulation of antihypertensive drugs. AREAS COVERED The recent development of nanotechnology by incorporating the drugs into nanoparticles is a new promising field of nanomedicine and preliminary studies have shown this nanoformulation to be more effective in the treatment of hypertension than the existing drug formulations. Another recent development is the nanoformulation of genes used for the treatment of hypertension and cardiovascular diseases. For current information, a Medline search was conducted between 2017 and 2024 and 36 pertinent papers were selected. EXPERT OPINION The nanoformulations of drugs help achieve better drug concentrations, improve drug stability, low solubility, short half life, oral bioavailability, narrow therapeutic index, and poor pharmacokinetic and pharmacodynamic profiles, and decrease the adverse effects of antihypertensive drugs. Also, the nanoformulation of genes for the treatment of hypertension has been shown in preliminary studies to be effective, but more research is needed.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Liaqat H, Badshah SF, Minhas MU, Barkat K, Khan SA, Hussain MD, Kazi M. pH-Sensitive Hydrogels Fabricated with Hyaluronic Acid as a Polymer for Site-Specific Delivery of Mesalamine. ACS OMEGA 2024; 9:28827-28840. [PMID: 38973903 PMCID: PMC11223520 DOI: 10.1021/acsomega.4c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Hydrogels with the main objective of releasing mesalamine (5-aminosalicylic acid) in the colon in a modified manner were formulated in the present work using a free-radical polymerization approach. Different ratios of hyaluronic acid were cross-linked with methacrylic and acrylic acids using methylenebis(acrylamide). The development of a new polymeric network and the successful loading of drug were revealed by Fourier transform infrared spectroscopy. Thermogravimetric analysis demonstrated that the hydrogel was more thermally stable than the pure polymer and drug. Scanning electron microscopy (SEM) revealed a rough and hard surface which was relatively suitable for efficient loading of drug and significant penetration of dissolution medium inside the polymeric system. Studies on swelling and drug release were conducted at 37 °C in acidic and basic conditions (pH 1.2, 4.5, 6.8, and 7.4, respectively). Significant swelling and drug release occurred at pH 7.4. Swelling, drug loading, drug release, and gel fraction of the hydrogels increased with increasing hyaluronic acid, methacrylic acid, and acrylic acid concentrations, while the sol fraction decreased. Results obtained from the toxicity study proved the formulated system to be safe for biological systems. The pH-sensitive hydrogels have the potential to be beneficial for colon targeting due to their pH sensitivity and biodegradability. Inflammatory bowel disease may respond better to hydrogel treatment as compared to conventional dosage forms. Specific amount of drug is released from hydrogels at specific intervals to maintain its therapeutic concentration at the required level.
Collapse
Affiliation(s)
- Huma Liaqat
- Faculty
of Pharmacy, University of Lahore, Lahore 54590, Pakistan
| | - Syed Faisal Badshah
- Department
of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir 12350, Pakistan
| | | | - Kashif Barkat
- Faculty
of Pharmacy, University of Lahore, Lahore 54590, Pakistan
- Faculty
of Health Sciences, Equator University of
Science and Technology, Masaka 961105, Uganda
| | - Saeed Ahmad Khan
- Department
of Pharmacy, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Muhammad Delwar Hussain
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Mohsin Kazi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Jan N, Shah H, Khan S, Nasar F, Madni A, Badshah SF, Ali A, Bostanudin MF. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3565-3584. [PMID: 38015258 DOI: 10.1007/s00210-023-02865-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cytarabine, an antimetabolite antineoplastic agent, has been utilized to treat various cancers. However, because of its short half-life, low stability, and limited bioavailability, achieving an optimal plasma concentration requires continuous intravenous administration, which can lead to toxicity in normal cells and tissues. Addressing these limitations is crucial to optimize the therapeutic efficacy of cytarabine while minimizing its adverse effects. The use of novel drug delivery systems, such as polymer-based nanocarriers have emerged as promising vehicles for targeted drug delivery due to their unique properties, including high stability, biocompatibility, and tunable release kinetics. In this review, we examine the application of various polymer-based nanocarriers, including polymeric nanoparticles, polymeric micelles, dendrimers, polymer-drug conjugates, and nano-hydrogels, for the delivery of cytarabine. The article highlights the limitations of conventional cytarabine administration which often lead to suboptimal therapeutic outcomes and systemic toxicity. The rationale for using polymer-based nanocarriers is discussed, highlighting their ability to overcome challenges by providing controlled drug release, improved stability, and enhanced targeting capabilities. In summary, this review offers a valuable resource for drug delivery scientists by providing insights into the design principles, formulation strategies, and potential applications of polymer-based nanocarriers that can enhance the therapeutic efficacy of cytarabine.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan.
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan.
| | - Hassan Shah
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- Cadson College of Pharmacy, Kharian, 50090, Punjab, Pakistan
| | - Faiza Nasar
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Suhail M, Chiu IH, Ullah A, Khan A, Ullah H, Al-Sowayan NS, Wu PC. Formulation and In Vitro Assessment of Polymeric pH-Responsive Nanogels of Chitosan for Sustained Delivery of Madecassoside. ACS OMEGA 2024; 9:19345-19352. [PMID: 38708249 PMCID: PMC11064187 DOI: 10.1021/acsomega.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Madecassoside, a triterpenoid saponin compound mainly isolated from the gotu kola herb (Centella asiatica), shows an extensive range of biological activities, including antiapoptotic, antioxidant, anti-inflammatory, moisturizing, neuroprotective, and wound healing effects. It has been highly used in the management of eczema, skin wounds, and other diseases. Due to poor oral bioavailability, membrane permeability, and intestinal absorption, the clinical application of the madecassoside is limited. Hence, a drug carrier system is needed that not only sustains the release of the madecassoside but also overcomes the drawbacks associated with its administration. Therefore, the authors prepared novel pH-responsive chitosan-based nanogels for the sustained release of madecassoside. Free radical polymerization technique was used for cross-linking of polymer chitosan and monomer methacrylic acid in the presence of cross-linker N',N'-methylene bis(acrylamide). The decrease in polymer crystallinity after polymerization and development of nanogels was demonstrated by XRD and FTIR analysis. The effects of nanogel contents on polymer volume, sol-gel analysis, swelling, drug loading, and release were investigated. Results indicated that high swelling and maximum release of the drug occurred at pH 7.4 compared to pH 1.2 and 4.6, indicating the excellent pH-sensitive nature of the engineered nanogels. High swelling and drug release were perceived with the integration of a high quantity of chitosan, while a decline was observed with the high integration of N',N'-methylene bis(acrylamide) and methacrylic acid contents. The same effects of nanogel contents were shown for drug loading too. Sol fraction was reduced, while gel fraction was enhanced by increasing the chitosan load, N',N'-methylene bis(acrylamide), and methacrylic acid. The Korsmeyer-Peppas model of kinetics was trailed by all nanogel formulations with non-Fickian diffusion. The results demonstrated that prepared nanogels can be employed for sustained release of the madecassoside.
Collapse
Affiliation(s)
- Muhammad Suhail
- School
of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Institute
of Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - I-Hui Chiu
- School
of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Arif Ullah
- Department
of Biotechnology, University of Science
and Technology Bannu, Bannu 28100, Pakistan
| | - Arshad Khan
- Department
of Pharmaceutics, Faculty of Pharmacy, The
Islamia University of Bahawalpur, Khawaja Fareed Campus (Railway Road), Bahawalpur 63100, Pakistan
| | - Hamid Ullah
- School
of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | | | - Pao-Chu Wu
- School
of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 80708, Taiwan
- Drug
Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Sulistiawati S, Kristina Enggi C, Wiyulanda Iskandar I, Rachmad Saputra R, Sartini S, Rifai Y, Rahman L, Aswad M, Dian Permana A. Bioavailability enhancement of sildenafil citrate via hydrogel-forming microneedle strategy in combination with cyclodextrin complexation. Int J Pharm 2024; 655:124053. [PMID: 38537922 DOI: 10.1016/j.ijpharm.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Sildenafil citrate (SIL) as a first-line treatment for erectile dysfunction is currently reported to have poor solubility and bioavailability. Moreover, SIL undergoes first-pass metabolism when taken orally and its injection can lead to discomfort. In this study, we introduce a novel transdermal delivery system that integrates hydrogel-forming microneedles with the inclusion complex tablet reservoir. The hydrogel-forming microneedle was prepared from a mixture of polymers and crosslinkers through a crosslinking process. Importantly, the formulations showed high swelling capacity (>400 %) and exhibited adequate mechanical and penetration properties (needle height reduction < 10 %), penetrating up to five layers of Parafilm® M (assessed to reach the dermis layer). Furthermore, to improve the solubility of SIL in the reservoir, the SIL was pre-complexed with β-cyclodextrin. Molecular docking analysis showed that SIL was successfully encapsulated into the β-cyclodextrin cavity and was the most suitable conformation compared to other CD derivatives. Moreover, to maximize SIL delivery, sodium starch glycolate was also added to the reservoir formulation. As a proof of concept, in vivo studies demonstrated the effectiveness of this concept, resulting in a significant increase in AUC (area under the curve) compared to that obtained after administration of pure SIL oral suspension, inclusion complex, and Viagra® with relative bioavailability > 100 %. Therefore, the approach developed in this study could potentially increase the efficacy of SIL in treating erectile dysfunction by being non-invasive, safe, avoiding first-pass metabolism, and increasing drug bioavailability.
Collapse
Affiliation(s)
| | | | | | - Rizki Rachmad Saputra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Central Kalimantan 73111, Indonesia
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
7
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
8
|
Jawaharlal S, Subramanian S, Palanivel V, Devarajan G, Veerasamy V. Cyclodextrin-based nanosponges as promising carriers for active pharmaceutical ingredient. J Biochem Mol Toxicol 2024; 38:e23597. [PMID: 38037252 DOI: 10.1002/jbt.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.
Collapse
Affiliation(s)
- Saranya Jawaharlal
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | - Venkatesan Palanivel
- Department of Pharmacy, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Geetha Devarajan
- Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
9
|
Story D, Aminoroaya A, Skelton Z, Kumari M, Zhang Y, Smith BR. Nanoparticle-Based Therapies in Hypertension. Hypertension 2023; 80:2506-2514. [PMID: 37767725 PMCID: PMC10651274 DOI: 10.1161/hypertensionaha.123.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nearly 1.4 billion people worldwide suffer from arterial hypertension, a significant risk factor for cardiovascular disease which is now the leading cause of death. Despite numerous drugs designed to treat hypertension, only ≈14% of hypertensive individuals have their blood pressure under control. A critical factor negatively impacting the efficacy of available treatments is their poor bioavailability. This leads to increased dosing requirements which can result in more side effects, resulting in patient noncompliance. A recent solution to improve dosing and bioavailability issues has been to incorporate drugs into nanoparticle carriers, with over 50 nanodrugs currently on the market across all diseases, and another 51 currently in clinical trials. Given their ability to improve solubility and bioavailability, nanoparticles may offer significant advantages in the formulation of antihypertensives to overcome pharmacokinetic shortcomings. To date, however, no antihypertensive nanoformulations have been clinically approved. This review assesses in vivo study data from preclinical antihypertensive nanoformulation development and testing. Combined, the results of these studies suggest nanoformulation of antihypertensive drugs may be a promising solution to overcome the poor efficacy of currently available antihypertensives, and with further advances has the potential to open paths for new substances that have heretofore been clinically unrealistic due to poor bioavailability.
Collapse
Affiliation(s)
- Darren Story
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Alireza Aminoroaya
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| | - Zak Skelton
- College of Osteopathic Medicine (Z.S.), Michigan State University, East Lansing, MI
| | - Manisha Kumari
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Yapei Zhang
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| |
Collapse
|
10
|
Mehmood Y, Shahid H, Abbas M, Farooq U, Ali S, Kazi M. Microsponge-derived mini tablets loaded with immunosuppressive agents: Pharmacokinetic investigation in human volunteers, cell viability and IVIVC correlation. Saudi Pharm J 2023; 31:101799. [PMID: 37868642 PMCID: PMC10585343 DOI: 10.1016/j.jsps.2023.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Sirolimus, a potent immunosuppressant, has been demonstrated to have remarkable activity in inhibiting allograft rejection in transplantation. The objective of the study was to fabricate microsponge mini tablets with enhanced solubility and bioavailability. β-Cyclodextrin and NEOCEL C91 were selected to prepare the microsponges (SLM-M) to improve the stability and solubility of sirolimus. The current study involved the quasi emulsion-solvent diffusion technique to design sirolimus-loaded microsponges that were further compressed into mini tablets 4 mm in diameter. Solid-state characterization, dissolution at different pH values, stability, and pharmacokinetic profiles with IVIVC data were analyzed in humans. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to characterize the formulations, and high-performance liquid chromatography (HPLC) was used to assess the drug stability of the compressed microsponge minitablets. The API changed from the crystalline state to an amorphous state, as shown by XRD and DSC. The compressed mini tablets showed a 4-fold enhancement in the drug dissolution profile. A toxicology investigation suggested that mini tablets were safe. In humans, the bioavailability of sirolimus compressed mini tablets from SLM-M was significantly improved. The results suggest that mini tablets prepared with β-cyclodextrin and NEOCEL C91 by a quasi emulsion-solvent diffusion process might be an alternative way to improve the bioavailability of sirolimus. In addition, the manufacturing process is easily scalable for the commercialization of drugs to market.
Collapse
Affiliation(s)
- Yasir Mehmood
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Faisalabad, P. O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, P.O. Box 38000, Pakistan
| | - Muhammad Abbas
- Imran Idress College of Pharmacy, Sialkot P.O. Box 51310, Pakistan
| | - Umar Farooq
- Faculty of Pharmacy, Grand Asian University, Sialkot, Punjab P.O. Box 51310, Pakistan
| | - Shaukat Ali
- Ascendia Pharma, Inc. North Brunswick, NJ 08902 USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Mehmood Y, Shahid H, ul Huq UI, Rafeeq H, Khalid HMB, Uddin MN, Kazi M. Microsponge-Based Gel Loaded with Immunosuppressant as a Simple and Valuable Strategy for Psoriasis Therapy: Determination of Pro-Inflammatory Response through Cytokine IL-2 mRNA Expression. Gels 2023; 9:871. [PMID: 37998961 PMCID: PMC10670748 DOI: 10.3390/gels9110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tacrolimus (TL) is a topical calcineurin inhibitor immunosuppressive drug widely used to manage various skin disorders. Herein, we report a TL-loaded microsphere gel formulation with severe atopic dermatitis effects that are required to manage skin disorders. The current study adopted a modified emulsion solvent evaporation technique to synthesize TL-loaded microspheres, which were further converted into gels for skin use. Characterization of the synthesized formulation was performed by differential dynamic light scattering, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography, Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry, and drug release. A Franz diffusion cell was used to study the diffusion of TL for up to 8 h at pH 6.8 and 5.5. Evaluation of cell viability was determined by MTT assay and showed higher IC50 values compared to the plain drug. RNA extraction, real-time polymerase chain reaction (RT-PCR), and reverse transcription were also performed to determine the expression levels of the anti-inflammatory cytokine IL-2. Particle size determination was performed by a zeta sizer, and the TL microsphere size was 1745 ± 70 nm with a good polydispersity (0.337 ± 0.12). The drug entrapment efficiency was also very good at 60% ± 10, and the drug release was 93.9% ± 3.5 within 8 h. An in vitro diffusion study of the formulation also showed improved permeability at both pH values (4.5 and 5.5). The findings of the hemolytic tests demonstrated that TL-MG at concentrations of 50, 100, and 200 mg/mL did not produce any hemolysis. A dose-dependent pattern of cytotoxicity was found during the cell viability assay, with an IC50 value of 787.55 ± 12.78 µg/mL. There was a significant decrease in the IL-2 level in the TL-MG group compared to the other groups. TL-MG microspheres were nontoxic carriers for tacrolimus delivery, with greater loading capacity, a significant release profile, and enhanced cellular uptake with improved permeability.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | | | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad P.O. Box 38000, Pakistan;
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hafiz Muhammad Bilal Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Suhail M, Fang CW, Chiu IH, Khan A, Wu YC, Lin IL, Tsai MJ, Wu PC. Synthesis and Evaluation of Alginate-Based Nanogels as Sustained Drug Carriers for Caffeine. ACS OMEGA 2023; 8:23991-24002. [PMID: 37426260 PMCID: PMC10324385 DOI: 10.1021/acsomega.3c02699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The objective of this study is to design a polymeric network of nanogels for sustained release of caffeine. Therefore, alginate-based nanogels were fabricated by a free-radical polymerization technique for the sustained delivery of caffeine. Polymer alginate was crosslinked with monomer 2-acrylamido-2-methylpropanesulfonic acid by crosslinker N',N'-methylene bisacrylamide. The prepared nanogels were subjected to sol-gel fraction, polymer volume fraction, swelling, drug loading, and drug release studies. A high gel fraction was seen with the increasing feed ratio of polymer, monomer, and crosslinker. Greater swelling and drug release were observed at pH 4.6 and 7.4 as compared to pH 1.2 due to the deprotonation and protonation of functional groups of alginate and 2-acrylamido-2-methylpropanesulfonic acid. An increase was observed in swelling, loading, and release of the drug with the incorporation of a high feed ratio of polymer and monomer, while a reduction was seen with the increase in crosslinker feed ratio. Similarly, an HET-CAM test was used to evaluate the safety of the prepared nanogels, which showed that the prepared nanogels have no toxic effect on the chorioallantoic membrane of fertilized chicken eggs. Similarly, different characterizations techniques such as FTIR, DSC, SEM, and particle size analysis were carried out to determine the development, thermal stability, surface morphology, and particle size of the synthesized nanogels, respectively. Thus, we can conclude that the prepared nanogels can be used as a suitable agent for the sustained release of caffeine.
Collapse
Affiliation(s)
- Muhammad Suhail
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Wun Fang
- Division
of Pharmacy, Zuoying Branch of Kaohsiung
Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - I-Hui Chiu
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Arshad Khan
- Department
of Pharmaceutics, Faculty of Pharmacy, The
Islamia University of Bahawalpur, Khawaja Fareed Campus (Railway Road), Bahawalpur 63100, Pakistan
| | - Yi-Chun Wu
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department
of Medicine Laboratory Science and Biotechnology, College of Health
Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Laboratory Medicine, Kaohsiung Medical
University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Jun Tsai
- School
of Medicine, College of Medicine, China
Medical University, Taichung 404, Taiwan
- Department
of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- Department
of Neurology, An-Nan Hospital, China Medical
University, Tainan 709, Taiwan
| | - Pao-Chu Wu
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 807, Taiwan
- Drug
Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Abdullah Z, Ashraf MU, Barkat K, Badshah SF, Rehman U, Razzaq A, Mahmood A, Ulhaq F, Chopra H, Rashid S, Valko M, Alomar S, Kuca K, Sharma R. Formulation of pH-responsive highly swellable hydrogel scaffolds for controlled release of tramadol HCl: characterization and biocompatibility evaluation. Front Bioeng Biotechnol 2023; 11:1190322. [PMID: 37304144 PMCID: PMC10250648 DOI: 10.3389/fbioe.2023.1190322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: The objective of current project was to formulate a system for controlled delivery of Tramadol HCl (TRD), an opioid analgesic used in the treatment of moderate to severe pain. Methods: For this purpose, a pH responsive AvT-co-poly hydrogel network was formulated through free radical polymerization by incorporating natural polymers i.e., aloe vera gel and tamarind gum, monomer and crosslinker. Formulated hydrogels were loaded with Tramadol HCl (TRD) and evaluated for percent drug loading, sol-gel fraction, dynamic and equilibrium swelling, morphological characteristics, structural features and in-vitro release of Tramadol HCl. Results and Discussions: Hydrogels were proved to be pH sensitive as remarkable dynamic swelling response ranging within 2.94g/g-10.81g/g was noticed at pH 7.4 as compared to pH 1.2. Percent drug loading was in the range of 70.28%-90.64% for all formulations. Thermal stability and compatibility of hydrogel components were validated by DSC analysis and FTIR spectroscopy. Controlled release pattern of Tramadol HCl from the polymeric network was confirmed as maximum release of 92.22% was observed for over a period of 24 hours at pH 7.4. Moreover, oral toxicity studies were also conducted in rabbits to investigate the safety of hydrogels. No evidence of any toxicity, lesions and degeneration was reported, confirming the biocompatibility and safety of grafted system.
Collapse
Affiliation(s)
| | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | | | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Asma Razzaq
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Farid Ulhaq
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Marian Valko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Awais S, Farooq N, Muhammad SA, El-Serehy HA, Ishtiaq F, Afridi M, Ahsan H, Ullah A, Nadeem T, Sultana K. Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine. Molecules 2023; 28:molecules28093860. [PMID: 37175270 PMCID: PMC10179852 DOI: 10.3390/molecules28093860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The low water solubility of an active pharmaceutical ingredient (aripiprazole) is one of the most critical challenges in pharmaceutical research and development. This antipsychotic drug has an inadequate therapeutic impact because of its minimal and idiosyncratic oral bioavailability to treat schizophrenia. The main objective of this study was to improve the solubility and stability of the antipsychotic drug aripiprazole (ARP) via forming binary as well as ternary inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβCD) and L-Arginine (LA) as solubility enhancers. Physical mixing and lyophilization were used in different molar ratios. The developed formulations were analyzed by saturation solubility analysis, and dissolution studies were performed using the pedal method. The formulations were characterized by FTIR, XRD, DSC, SEM, and TGA. The results showcased that the addition of HPβCD and LA inclusion complexes enhanced the stability, in contrast to the binary formulations and ternary formulations prepared by physical mixing and solvent evaporation. Ternary formulation HLY47 improved dissolution rates by six times in simulated gastric fluid (SGF). However, the effect of LA on the solubility enhancement was concentration-dependent and showed optimal enhancement at the ratio of 1:1:0.27. FTIR spectra showed the bond shifting, which confirmed the formation of new complexes. The surface morphology of complexes in SEM studies showed the rough surface of lyophilization and solvent evaporation products, while physical mixing revealed a comparatively crystalline surface. The exothermic peaks in DSC diffractograms showed diminished peaks previously observed in the diffractogram of pure drug and LA. Lyophilized ternary complexes displayed significantly enhanced thermal stability, as observed from the thermograms of TGA. In conclusion, it was observed that the preparation method and a specific drug-to-polymer and amino acid ratio are critical for achieving high drug solubility and stability. These complexes seem to be promising candidates for novel drug delivery systems development.
Collapse
Affiliation(s)
- Sophia Awais
- Department of Pharmacy, Faculty of Pharmacy, University of Lahore, Lahore 54590, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, IBADAT International University, Islamabad 44000, Pakistan
| | - Nouman Farooq
- Department of Medicine, Nishtar Medical University, Multan 66000, Pakistan
| | | | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farrah Ishtiaq
- Cardiac Renal Institute (CaRe Institute), Chubbuck, ID 83202, USA
| | - Mehwish Afridi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, IBADAT International University, Islamabad 44000, Pakistan
| | - Hina Ahsan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Amin Ullah
- Department of Health and Biological Science, Abasyn University Peshawar, Peshawar 25000, Pakistan
- Institute of Pathology Lab, University of Cologne, 50923 Koln, Germany
| | - Tariq Nadeem
- National Center of Excellence in Molecular Biology, University of The Punjab, Lahore 54000, Pakistan
| | - Kishwar Sultana
- Department of Pharmacy, Iqra University, Islamabad 75500, Pakistan
| |
Collapse
|
15
|
Badshah SF, Minhas MU, Khan KU, Barkat K, Abdullah O, Munir A, Suhail M, Malik NS, Jan N, Chopra H. Structural and in-vitro characterization of highly swellable β-cyclodextrin polymeric nanogels fabricated by free radical polymerization for solubility enhancement of rosuvastatin. PARTICULATE SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1080/02726351.2023.2183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | | | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Abubakar Munir
- Faculty of Pharmacy, Superior University, Lahore, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology, Mirpur, AJK, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
16
|
Qaiser R, Pervaiz F, Shoukat H, Yasin H, Hanan H, Murtaza G. Mucoadhesive chitosan/polyvinylpyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) based hydrogels of captopril with adjustable properties as sustained release carrier: Formulation design and toxicological evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
17
|
Suhail M, Chiu IH, Liu JY, Ullah H, Lin IL, Minhas MU, Tsai MJ, Wu PC. Fabrication and In vitro Evaluation of Carbopol/Polyvinyl Alcohol-based pH-sensitive Hydrogels for Controlled Drug Delivery. Curr Pharm Des 2023; 29:2489-2500. [PMID: 37881070 DOI: 10.2174/0113816128268132231016061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jia-Yu Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | | | - Ming-Jun Tsai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Neurology, An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
18
|
Naeem S, Barkat K, Shabbir M, Khalid I, Anjum I, Shamshad N, Mehmood Y, Khan DH, Badshah SF, Syed MA, Afzal S, Abdullah Z. Fabrication of pH responsive hydrogel blends of chondroitin sulfate/pluronic F-127 for the controlled release of ketorolac: its characterization and acute oral toxicity study. Drug Dev Ind Pharm 2022; 48:611-622. [PMID: 36420771 DOI: 10.1080/03639045.2022.2150773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Ketorolac tromethamine (KT), selected as a model drug, is used in management of moderate to severe acute pain. It has a short half-life (∼5.5 h) and requires frequent dose administration when needed for longer period of time. In our current project, we designed pH responsive hydrogel blends of chondroitin sulfate/pluronic F-127 (CS/Pl) for the controlled release of ketorolac. METHODS Hydrogel blends were fabricated using free radical polymerization reaction technique utilizing different ratios of chondroitin sulfate (CS) (polymer) and pluronic F-127 (polymer), acrylic acid (monomer), N,N'-methyl-bisacrylamide (MBA) (cross-linker), initiator ammonium persulfate (APS) and tween-80 (surfactant). The fabricated hydrogel blends were studied and evaluated for pH responsiveness, swelling, water absorbency, in vitro drug release, and morphological characteristics such as SEM, XRD, FTIR, and TGA/DSC. Acute toxicity study was performed on rabbits. RESULTS Maximum swelling and water absorbency were shown by CS/Pl blends being significantly greater at 7.4 (basic pH) than in 1.2 (acidic pH). In vitro dissolution demonstrated pH responsive controlled KT release following zero order at higher pH (7.4) medium up to 36 h. FTIR studies confirmed the structures of our blends; SEM results showed porous framework; thermal studies revealed higher stability of hydrogels than the individual polymers; and XRD confirmed the nature of our blends. Toxicity study revealed the nontoxic nature of the hydrogel blends. CONCLUSION The prepared CS/Pl hydrogels demonstrated stimuli-controlled release with delivery of drug for prolonged period of time and thus can minimize dosing frequency, safe drug delivery, increased patient compliance and easiness.
Collapse
Affiliation(s)
- Saba Naeem
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Kashif Barkat
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Anjum
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nadia Shamshad
- Faculty of Pharmacy, CUST University, Islamabad, Pakistan
| | | | - Daulat Haleem Khan
- Department of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| | | | | | - Sana Afzal
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Zainab Abdullah
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
19
|
Suhail M, Shih CM, Liu JY, Hsieh WC, Lin YW, Wu PC. In-vitro and in-vivo evaluation of biocompatible polymeric microgels for pH- driven delivery of Ketorolac tromethamine. Int J Pharm 2022; 626:122194. [PMID: 36113744 DOI: 10.1016/j.ijpharm.2022.122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
The aim of the current study was to prepare glutamic acid crosslinked poly(itaconic acid/methacrylic acid) microgels for pH-responsive delivery of ketorolac tromethamine, using aqueous free radical polymerization technique. The polymerization of polymer with monomers was carried out by a crosslinking agent N', N'-methylene bisacrylamide in the presence of initiator ammonium persulfate. The prepared microgels were characterized for structure, surface morphology, thermal stability, and crystallinity. Similarly, studies such as sol-gel analysis, drug loading, and polymer volume fraction were performed for the fabricated microgels. The pH-sensitivity of the developed microgels was investigated at three different pH values i.e., pH 1.2, 4.6, and 7.4 by swelling and in-vitro drug release studies. Maximum swelling and drug release were found at pH 7.4 as compared to pH 1.2 and 4.6, which indicated the pH-sensitive nature of the prepared microgels. The toxicity of the prepared microgels was evaluated by cell line and HET-CAM test, which demonstrated no toxic effect of the prepared microgels. In-vivo study was carried out on rabbits and high plasma concentration was reported for the drug loaded microgels as compared to drug solution and commercial product Keten. Hence, the prepared microgel system could be employed as an excellent carrier for the controlled drug delivery system.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan.
| | - Chuan-Ming Shih
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan
| | - Jia-Yu Liu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan.
| | - Wan-Chu Hsieh
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan
| | - Yu-Wen Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan.
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
20
|
Suhail M, Ullah H, Vu QL, Khan A, Tsai MJ, Wu PC. Preparation of pH-Responsive Hydrogels Based on Chondroitin Sulfate/Alginate for Oral Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102110. [PMID: 36297545 PMCID: PMC9606947 DOI: 10.3390/pharmaceutics14102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
This study investigates pH-sensitive hydrogels based on biocompatible, biodegradable polysaccharides and natural polymers such as chondroitin sulfate and alginate in combination with synthetic monomer such as acrylic acid, as controlled drug carriers. Investigations were conducted for chondroitin sulfate/alginate-graft-poly(acrylic acid) hydrogel in various mixing ratios of chondroitin sulfate, alginate and acrylic acid in the presence of ammonium persulfate and N',N'-Methylene bisacrylamide. Crosslinking and loading of drug were confirmed by Fourier transform infrared spectroscopy. Thermal stability of both polymers was enhanced after crosslinking as indicated by thermogravimetric analysis and differential scanning calorimeter thermogram of developed hydrogel. Similarly, surface morphology was evaluated by scanning electron microscopy, whereas crystallinity of the polymers and developed hydrogel was investigated by powder X-ray diffraction. Furthermore, swelling and drug-release studies were investigated in acidic and basic medium of pH 1.2 and 7.4 at 37 °C, respectively. Maximum swelling and drug release were detected at pH 7.4 as compared to pH 1.2. Increased incorporation of hydrogel contents led to an increase in porosity, drug loading, and gel fraction while a reduction in sol fraction was seen. The polymer volume fraction was found to be low at pH 7.4 compared to pH 1.2, indicating a prominent and greater swelling of the prepared hydrogels at pH 7.4. Likewise, a biodegradation study revealed a slow degradation rate of the developed hydrogel. Hence, we can conclude from the results that a fabricated system of hydrogel could be used as a suitable carrier for the controlled delivery of ketorolac tromethamine.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Quoc Lam Vu
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Str., Thai Nguyen City 24000, Vietnam
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Khawaja Fareed Campus (Railway Road), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurology, An-Nan Hospital, China Medical University, Tainan 404, Taiwan
- Correspondence: (M.-J.T.); (P.-C.W.); Tel.: +886-4-2205-2121 (M.-J.T.); +886-7-3121-101 (P.-C.W.)
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-J.T.); (P.-C.W.); Tel.: +886-4-2205-2121 (M.-J.T.); +886-7-3121-101 (P.-C.W.)
| |
Collapse
|
21
|
Preparation, In Vitro Characterization, and Cytotoxicity Evaluation of Polymeric pH-Responsive Hydrogels for Controlled Drug Release. Pharmaceutics 2022; 14:pharmaceutics14091864. [PMID: 36145612 PMCID: PMC9506008 DOI: 10.3390/pharmaceutics14091864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of the current investigation was based on the development of pH-responsive hydrogels of chondroitin sulfate, carbopol, and polyvinyl alcohol polymerized with acrylic acid in the presence of ammonium persulfate and ethylene glycol dimethylacrylate for controlled drug delivery. A free radical polymerization technique was used for the preparation of these pH-responsive hydrogels. The gel fraction of the prepared hydrogels was increased with the increase in the chondroitin sulfate, carbopol, polyvinyl alcohol, and acrylic acid content, while the sol-fraction was decreased. Swelling and drug release studies were performed in various pH conditions. Greater swelling and drug release were observed at high pH values (pH 4.6 and 7.4) as compared to low pH value (pH 1.2), representing the pH-responsive nature of the synthesized hydrogels. Porosity and drug loading were increased with the incorporation of high concentrations of hydrogel contents except polyvinyl alcohol, which showed reverse effects. Similarly, biodegradation study reported a slow degradation rate of the prepared hydrogels with the increase in hydrogel constituents. Cytotoxicity study proved the safe use of developed hydrogels as no toxic effect was shown on T84 human colon cancer cells. Similarly, various characterizations, including Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy, were performed for prepared hydrogels. Hence, we could demonstrate that the prepared hydrogels can be used as a promising drug carrier for the controlled delivery of drugs.
Collapse
|
22
|
Development of β-cyclodextrin/chitosan-co-poly (2-acrylamide-2-methylpropane sulphonic acid) cross-linked hybrid IPN-nanogels to enhance the solubility of rosuvastatin: An in vitro and in vivo attributes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Minhas MU, Khan KU, Sarfraz M, Badshah SF, Munir A, Barkat K, Basit A, Arafat M. Polyvinylpyrrolidone K-30-Based Crosslinked Fast Swelling Nanogels: An Impeccable Approach for Drug's Solubility Improvement. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5883239. [PMID: 36060130 PMCID: PMC9439932 DOI: 10.1155/2022/5883239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Poor solubility is a global issue of copious pharmaceutical industries as large number of drugs in development stage as well as already marketed products are poorly soluble which results in low dissolution and ultimately dosage increase. Current study is aimed at developing a polyvinylpyrrolidone- (PVP-K30-) based nanogel delivery system for solubility enhancement of poorly soluble drug olanzapine (OLP), as solubilization enhancement is the most noteworthy application of nanosystems. Crosslinking polymerization with subsequent condensation technique was used for the synthesis of nanogels, a highly responsive polymeric networks in drug's solubility. Developed nanogels were characterized by percent entrapment efficiency, sol-gel, percent swelling, percent drug loaded content (%DLC), percent porosity, stability, solubility, in vitro dissolution studies, FTIR, XRD, and SEM analysis. Furthermore, cytotoxicity study was conducted on rabbits to check the biocompatibility of the system. Particle size of nanogels was found with 178.99 ± 15.32 nm, and in vitro dissolution study exhibited that drug release properties were considerably enhanced as compared to the marketed formulation OLANZIA. The solubility studies indicated that solubility of OLP was noticeably improved up to 36.7-fold in phosphate buffer of pH 6.8. In vivo cytotoxicity study indicated that prepared PVP-K30-based formulation was biocompatible. On the basis of results obtained, the developed PVP-K30-co-poly (AMPS) nanogel delivery system is expected to be safe, effective, and cost-effective for solubility improvement of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| | | | - Abubakar Munir
- Faculty of Pharmacy, Superior University Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Abdul Basit
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| |
Collapse
|
24
|
Ahmad A, Ahmad M, Minhas MU, Sarfraz M, Sohail M, Khan KU, Tanveer S, Ijaz S. Synthesis and Evaluation of Finasteride-Loaded HPMC-Based Nanogels for Transdermal Delivery: A Versatile Nanoscopic Platform. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2426960. [PMID: 35909483 PMCID: PMC9325624 DOI: 10.1155/2022/2426960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.
Collapse
Affiliation(s)
- Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy Al Ain University, Al Ain Campus, Al Ain, UAE
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 KPK, Pakistan
| | | | - Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
25
|
Suhail M, Chiu IH, Hung MC, Vu QL, Lin IL, Wu PC. In Vitro Evaluation of Smart and pH-Sensitive Chondroitin Sulfate/Sodium Polystyrene Sulfonate Hydrogels for Controlled Drug Delivery. Gels 2022; 8:gels8070406. [PMID: 35877491 PMCID: PMC9323728 DOI: 10.3390/gels8070406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ibuprofen is an antipyretic and analgesic drug used for the management of different inflammatory diseases, such as rheumatoid arthritis and osteoarthritis. Due to a short half-life and rapid elimination, multiple doses of ibuprofen are required in a day to maintain pharmacological action for a long duration of time. Due to multiple intakes of ibuprofen, certain severe adverse effects, such as gastric irritation, bleeding, ulcers, and abdominal pain are produced. Therefore, a system is needed which not only prolongs the release of ibuprofen but also overcomes the drug’s adverse effects. Hence, the authors have synthesized chondroitin sulfate/sodium polystyrene sulfonate–co-poly(acrylic acid) hydrogels by the free radical polymerization technique for the controlled release of ibuprofen. Sol-gel, porosity, swelling, and drug release studies were performed on the fabricated hydrogel. The pH-responsive behavior of the fabricated hydrogel was determined by both swelling and drug release studies in three different pH values, i.e., pH 1.2, 4.6, and 7.4. Maximum swelling and drug release were observed at pH 7.4, as compared to pH 4.6 and 1.2. Similarly, the structural arrangement and crosslinking of the hydrogel contents were confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) evaluated the hard and irregular surface with a few macrospores of the developed hydrogel, which may be correlated with the strong crosslinking of polymers with monomer content. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the high thermal stability of the formulated hydrogel, as compared to pure polymers. A decrease in the crystallinity of chondroitin sulfate and sodium polystyrene sulfonate after crosslinking was revealed by powder X-ray diffraction (PXRD). Thus, considering the results, we can demonstrate that a developed polymeric network of hydrogel could be used as a safe, stable, and efficient carrier for the controlled release of ibuprofen.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - Ming-Chia Hung
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - Quoc Lam Vu
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Str., Thai Nguyen City 24000, Vietnam;
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
26
|
Minhas MU, Abdullah O, Sohail M, Khalid I, Ahmad S, Khan KU, Badshah SF. Synthesis of novel combinatorial drug delivery system (nCDDS) for co-delivery of 5-Fluorouracil and Leucovorin calcium for colon targeting and controlled drug release. Drug Dev Ind Pharm 2022; 47:1952-1965. [PMID: 35502653 DOI: 10.1080/03639045.2022.2072514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective: Purpose of the current study was to improve the oral effectiveness of 5-Fluorouracil (5-FU) by developing novel controlled, combinatorial drug delivery system (nCDDS) for co-delivery of 5-FU and Leucovorin (LC) for colon targeting.Significance: on the basis of results obtained, novel controlled, combinatorial drug delivery system (nCDDS) could be an effective strategy for the colon targeting of 5-FU and LC.Methods: Free radical polymerization method was tuned and used to fabricate this nCDDS. The nCDDS is synthesized in two steps, firstly synthesis of 5-fluoruracil/leucovorin calcium loaded nanogels and secondly, pre-synthesized 5-FU & LC loaded nanogels were dispersed in pectin based polymerized matrix hard gel. The nanogels and nCDD gels were characterized for network structure, thermal stability and surface morphology. Swelling and in-vitro release studies were carried out at different pH 1.2 and 7.4 both for naive nanogels and combined matrix gels. In-vivo study of combinatorial gel was performed on rabbits by using HPLC method to estimate plasma drug concentration and pharmacokinetics parameters.Results: Structure and thermal analysis confirmed the formation of stable polymeric network. SEM of nanogels and combinatorial gels showed that the spongy and rough edges particles and uniformly distributed in the combinatorial gel. The prepared nCDDS showed excellent water loving capacity and pH responsiveness. Combinatorial gel showed excellent characteristic for colonic delivery of drugs, which were confirmed by various in-vitro and in-vivo characterization. Acute oral toxicity study of combinatorial gel confirmed the biocompatible and non-toxic characteristics of developed formulation.Conclusion: Conclusively it can be found that nCDDS showed excellent properties regarding drug targeting in a controllable manner as compared to naive PEGylated nanogels.
Collapse
Affiliation(s)
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad Campus, Islamabad-Pakistan.,Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab-Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Abbottabad, KPK-Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Punjab-Pakistan
| | - Sarfraz Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab-Pakistan
| | | | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab-Pakistan
| |
Collapse
|
27
|
Formulation, Characterization, and In Vitro Drug Release Study of β-Cyclodextrin-Based Smart Hydrogels. Gels 2022; 8:gels8040207. [PMID: 35448108 PMCID: PMC9031272 DOI: 10.3390/gels8040207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, novel pH-responsive polymeric β-cyclodextrin-graft-poly(acrylic acid/itaconic acid) hydrogels were fabricated by the free radical polymerization technique. Various concentrations of β-cyclodextrin, acrylic acid, and itaconic acid were crosslinked by ethylene glycol dimethacrylate in the presence of ammonium persulfate. The crosslinked hydrogels were used for the controlled delivery of theophylline. Loading of theophylline was conducted by the absorption and diffusion method. The fabricated network of hydrogel was evaluated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The crosslinking among hydrogel contents and drug loading by the fabricated hydrogel were confirmed by FTIR analysis, while TGA indicated a high thermal stability of the prepared hydrogel as compared to pure β-cyclodextrin and itaconic acid. The high thermal stability of the developed hydrogel indicated an increase in the thermal stability of β-cyclodextrin and itaconic acid after crosslinking. Similarly, a decrease in crystallinity of β-cyclodextrin and itaconic acid was observed after crosslinking, as evaluated by XRD analysis. SEM revealed an irregular and hard surface of the prepared hydrogel, which may be correlated with strong crosslinking among hydrogel contents. Crosslinked insoluble and uncrosslinked soluble fractions of hydrogel were evaluated by sol–gel analysis. An increase in gel fraction was seen with the increase in compositions of hydrogel contents, while a decrease in sol fraction was observed. Dynamic swelling and dissolution studies were performed in three various buffer solutions of pH 1.2, 4.6, and 7.4, respectively. Maximum swelling and drug release were observed at higher pH values as compared to the lower pH value due to the deprotonation and protonation of functional groups of the hydrogel contents; thus, the pH-sensitive nature of the fabricated hydrogel was demonstrated. Likewise, water penetration capability and polymer volume were evaluated by porosity and polymer volume studies. Increased incorporation of β-cyclodextrin, acrylic acid, and itaconic acid led to an increase in swelling, drug release, drug loading, and porosity of the fabricated hydrogel, whereas a decrease was detected with the increasing concentration of ethylene glycol dimethacrylate. Conclusively, the prepared hydrogel could be employed as a suitable and promising carrier for the controlled release of theophylline.
Collapse
|
28
|
Saleem A, Akhtar N, Minhas MU, Mahmood A, Khan KU, Abdullah O. Highly Responsive Chitosan-Co-Poly (MAA) Nanomatrices through Cross-Linking Polymerization for Solubility Improvement. Gels 2022; 8:gels8030196. [PMID: 35323309 PMCID: PMC8950559 DOI: 10.3390/gels8030196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, we report the highly responsive chitosan-based chemically cross-linked nanomatrices, a nano-version of hydrogels developed through modified polymerization reaction for solubility improvement of poorly soluble drug simvastatin. The developed nanomatrices were characterized for solubilization efficiency, swelling studies, sol-gel analysis, in vitro drug release studies, DSC, FTIR, XRD, SEM, particle size analysis, and stability studies. An in vivo acute toxicity study was conducted on female Winstor rats, the result of which endorsed the safety and biocompatibility of the system. A porous and fluffy structure was observed under SEM analysis, which supports the great swelling tendency of the system that further governs the in vitro drug release. Zeta sizer analyzed the particle size in the range of 227.8 ± 17.8 nm. Nano sizing and grafting of hydrophilic excipients to the nanomatrices system explains this shift of trend towards the enhancement of solubilization efficiency, and, furthermore, the XRD results confirmed the amorphous nature of the system. FTIR and DSC analysis confirmed the successful grafting and stability to the system. The developed nanomatrices enhanced the release characteristics and solubility of simvastatin significantly and could be an effective technique for solubility and bioavailability enhancement of other BCS class-II drugs. Due to enhanced solubility, efficient method of preparation, excellent physico-chemical features, and rapid and high dissolution and bio-compatibility, the developed nanomatrices may be a promising approach for oral delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Anam Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.S.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.S.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: or ; Tel.: +92-331-9750053
| | - Arshad Mahmood
- College of Pharmacy, Abu Dhabi Campus, Al Ain University, Abu Dhabi 51133, United Arab Emirates;
| | | | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Science, Hamdard University Islamabad, Islamabad 45600, Pakistan;
| |
Collapse
|
29
|
Designing of pH-Sensitive Hydrogels for Colon Targeted Drug Delivery; Characterization and In Vitro Evaluation. Gels 2022; 8:gels8030155. [PMID: 35323268 PMCID: PMC8951511 DOI: 10.3390/gels8030155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
In the current research work, pH-sensitive hydrogels were prepared via a free radical polymerization technique for the targeted delivery of 5-aminosalicylic acid to the colon. Various proportions of chitosan, β-Cyclodextrin, and acrylic acid were cross-linked by ethylene glycol dimethacrylate. Ammonium persulfate was employed as an initiator. The development of a new polymeric network and the successful encapsulation of the drug were confirmed by Fourier transform infrared spectroscopy. Thermogravimetric analysis indicated high thermal stability of the hydrogel compared to pure chitosan and β-Cyclodextrin. A rough and hard surface was revealed by scanning electron microscopy. Similarly, the crystallinity of the chitosan, β-Cyclodextrin, and fabricated hydrogel was evaluated using powder X-ray diffraction. The swelling and drug release studies were performed in both acidic and basic medium (pH 1.2 and 7.4, respectively) at 37 °C. High swelling and drug release was observed at pH 7.4 as compared to pH 1.2. The increased incorporation of chitosan, β-Cyclodextrin, and acrylic acid led to an increase in porosity, swelling, loading, drug release, and gel fraction of the hydrogel, whereas a decrease in sol fraction was observed. Thus, we can conclude from the results that a developed pH-sensitive network of hydrogel could be employed as a promising carrier for targeted drug delivery systems.
Collapse
|
30
|
Suhail M, Liu JY, Hsieh WC, Lin YW, Usman Minhas M, Wu PC. Designing of pH-responsive ketorolac tromethamine loaded hydrogels of alginic acid: Characterization, in-vitro and in-vivo evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Shoukat H, Pervaiz F, Khan M, Rehman S, Akram F, Abid U, Noreen S, Nadeem M, Qaiser R, Ahmad R, Farooq I. Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of Rosuvastatin: An in vitro and in vivo evaluation. PLoS One 2022; 17:e0263026. [PMID: 35061861 PMCID: PMC8782392 DOI: 10.1371/journal.pone.0263026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
The present study is aimed at enhancing the solubility of rosuvastatin (RST) by designing betacyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) crosslinked hydrophilic nanogels in the presence of crosslinker methylene bisacrylamide through free-radical polymerization method. Various formulations were fabricated by blending different amounts of betacyclodextrin, polyvinylpyrrolidone, 2-acrylamide-2-methylpropane sulphonic acid, and methylene bisacrylamide. The developed chemically crosslinked nanogels were characterized by FTIR, SEM, PXRD, TGA, DSC, sol-gel analysis, zeta size, micromeritics properties, drug loading percentage, swelling, solubility, and release studies. The FTIR spectrum depicts the leading peaks of resultant functional groups of blended constituents while a fluffy and porous structure was observed through SEM images. Remarkable reduction in crystallinity of RST in developed nanogels revealed by PXRD. TGA and DSC demonstrate the good thermal stability of nanogels. The size analysis depicts the particle size of the developed nanogels in the range of 178.5 ±3.14 nm. Drug loading percentage, swelling, solubility, and release studies revealed high drug loading, solubilization, swelling, and drug release patterns at 6.8 pH paralleled to 1.2 pH. In vivo experiments on developed nanogels in comparison to marketed brands were examined and better results regarding pharmacokinetic parameters were observed. The compatibility and non-toxicity of fabricated nanogels to biological systems was supported by a toxicity study that was conducted on rabbits. Efficient fabrication, excellent physicochemical properties, improved dissolution, high solubilization, and nontoxic nanogels might be a capable approach for the oral administration of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Hina Shoukat
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Pervaiz
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mehran Khan
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sadia Rehman
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faizan Akram
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Abid
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sobia Noreen
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Rubina Qaiser
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rizwan Ahmad
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irshad Farooq
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
32
|
Rizvi SSB, Akhtar N, Minhas MU, Mahmood A, Khan KU. Synthesis and Characterization of Carboxymethyl Chitosan Nanosponges with Cyclodextrin Blends for Drug Solubility Improvement. Gels 2022; 8:55. [PMID: 35049590 PMCID: PMC8775084 DOI: 10.3390/gels8010055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to enhance the solubility and release characteristics of docetaxel by synthesizing highly porous and stimuli responsive nanosponges, a nano-version of hydrogels with the additional qualities of both hydrogels and nano-systems. Nanosponges were prepared by the free radical polymerization technique and characterized by their solubilization efficiency, swelling studies, sol-gel studies, percentage entrapment efficiency, drug loading, FTIR, PXRD, TGA, DSC, SEM, zeta sizer and in vitro dissolution studies. In vivo toxicity study was conducted to assess the safety of the oral administration of prepared nanosponges. FTIR, TGA and DSC studies confirmed the successful grafting of components into the stable nano-polymeric network. A porous and sponge-like structure was visualized through SEM images. The particle size of the optimized formulation was observed in the range of 195 ± 3 nm. The fabricated nanosponges noticeably enhanced the drug loading and solubilization efficiency of docetaxel in aqueous media. The drug release of fabricated nanosponges was significantly higher at pH 6.8 as compared to pH 1.2 and 4.5. An acute oral toxicity study endorsed the safety of the system. Due to an efficient preparation technique, as well as its enhanced solubility, excellent physicochemical properties, improved dissolution and non-toxic nature, nanosponges could be an efficient and a promising approach for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Syeda Sadia Batool Rizvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi 112612, United Arab Emirates;
| | | |
Collapse
|
33
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
34
|
β-cyclodextrin modification by cross-linking polymerization as highly porous nanomatrices for olanzapine solubility improvement; synthesis, characterization and bio-compatibility evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Synthesis, Characterization, In-Vitro and In-Vivo Evaluation of Ketorolac Tromethamine-Loaded Hydrogels of Glutamic Acid as Controlled Release Carrier. Polymers (Basel) 2021; 13:polym13203541. [PMID: 34685304 PMCID: PMC8541255 DOI: 10.3390/polym13203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamic acid-co-poly(acrylic acid) (GAcPAAc) hydrogels were prepared by the free radical polymerization technique using glutamic acid (GA) as a polymer, acrylic acid (AAc) as a monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and ammonium persulfate (APS) as an initiator. Increase in gel fraction was observed with the increasing concentration of glutamic acid, acrylic acid, and ethylene glycol dimethylacrylate. High percent porosity was indicated by developed hydrogels with the increase in the concentration of glutamic acid and acrylic acid, while a decrease was seen with the increasing concentration of EGDMA, respectively. Maximum swelling and drug release was exhibited at high pH 7.4 compared to low pH 1.2 by the newly synthesized hydrogels. Similarly, both swelling and drug release increased with the increasing concentration of glutamic acid and acrylic acid and decreased with the increase in ethylene glycol dimethylacrylate concentration. The drug release was considered as non-Fickian transport and partially controlled by viscoelastic relaxation of hydrogel. In-vivo study revealed that the AUC0–∞ of fabricated hydrogels significantly increased compared to the drug solution and commercial product Keten. Hence, the results indicated that the developed hydrogels could be used as a suitable carrier for controlled drug delivery.
Collapse
|
36
|
Formulation and In-Vitro Characterization of pH-Responsive Semi-Interpenetrating Polymer Network Hydrogels for Controlled Release of Ketorolac Tromethamine. Gels 2021; 7:gels7040167. [PMID: 34698162 PMCID: PMC8544598 DOI: 10.3390/gels7040167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ketorolac tromethamine is a non-steroidal anti-inflammatory drug used in the management of severe pain. The half-life of Ketorolac tromethamine is within the range of 2.5–4 h. Hence, repeated doses of Ketorolac tromethamine are needed in a day to maintain the therapeutic level. However, taking several doses of Ketorolac tromethamine in a day generates certain complications, such as acute renal failure and gastrointestinal ulceration. Therefore, a polymeric-controlled drug delivery system is needed that could prolong the release of Ketorolac tromethamine. Therefore, in the current study, pH-responsive carbopol 934/sodium polystyrene sulfonate-co-poly(acrylic acid) (CP/SpScPAA) hydrogels were developed by the free radical polymerization technique for the controlled release of Ketorolac tromethamine. Monomer acrylic acid was crosslinked with the polymers carbopol 934 and sodium polystyrene sulfonate by the cross-linker N’,N’-methylene bisacrylamide. Various studies were conducted to evaluate and assess the various parameters of the fabricated hydrogels. The compatibility of the constituents used in the preparation of hydrogels was confirmed by FTIR analysis, whereas the thermal stability of the unreacted polymers and developed hydrogels was analyzed by TGA and DSC, respectively. A smooth and porous surface was indicated by SEM. The crystallinity of carbopol 934, sodium polystyrene sulfonate, and the prepared hydrogels was evaluated by PXRD, which revealed a reduction in the crystallinity of reactants for the developed hydrogels. The pH sensitivity of the polymeric hydrogel networks was confirmed by dynamic swelling and in vitro release studies with two different pH media i.e., pH 1.2 and 7.4, respectively. Maximum swelling was exhibited at pH 7.4 compared to pH 1.2 and, likewise, a greater percent drug release was perceived at pH 7.4. Conclusively, we can demonstrate that the developed pH-sensitive hydrogel network could be employed as a suitable carrier for the controlled delivery of Ketorolac tromethamine.
Collapse
|
37
|
Asghar S, Akhtar N, Minhas MU, Khan KU. Bi-polymeric Spongy Matrices Through Cross-linking Polymerization: Synthesized and Evaluated for Solubility Enhancement of Acyclovir. AAPS PharmSciTech 2021; 22:181. [PMID: 34129154 DOI: 10.1208/s12249-021-02054-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, two hydrophilic polymers hydroxypropyl methyl cellulose and beta-cyclodextrin (β-CD) are used to synthesize highly responsive and spongy polymeric matrices. Porous and stimulus-responsive polymeric network was developed to improve the solubility of acyclovir (ACV) at significant level. Grafting was successfully carried out by free radical polymerization technique. Spongy matrices were characterized by percentage entrapment efficiency, drug loading, solubility studies, FTIR, powder X-ray diffraction, TGA, DSC, XRD, SEM, swelling studies, and in vitro studies. Acute oral toxicity studies were conducted to determine the safety of oral administration of prepared HPMC-βCD-g-poly(AMPS) formulation. Porous and spongy structures were depicted in SEM images. Complex formation and thermal stability of constituents and drug (ACV) were analyzed by FTIR, TGA, and DSC spectra. XRD analysis revealed reduction in acyclovir crystallinity in spongy matrices. Particle size of optimized formulation was found in the range of 197 ± 2.55 nm. The momentous difference with reference product committed that drug solubility and release characteristics were markedly enhanced by the developed spongy matrices. Toxicity studies endorsed that developed spongy matrices were non-toxic and compatible to biological system. The efficient method of preparation, enhanced solubility, excellent physico-chemical characteristics, high dissolution, and non-toxic HPMC-βCD-g-poly(AMPS) spongy matrices may be a promising approach for oral delivery of poorly soluble drugs.
Collapse
|