1
|
Yan Z, Qin G, Shi X, Jiang X, Cheng Z, Zhang Y, Nan N, Cao F, Qiu X, Sang N. Multilevel Screening Strategy to Identify the Hydrophobic Organic Components of Ambient PM 2.5 Associated with Hepatocellular Steatosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10458-10469. [PMID: 38836430 DOI: 10.1021/acs.est.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hepatic steatosis is the first step in a series of events that drives hepatic disease and has been considerably associated with exposure to fine particulate matter (PM2.5). Although the chemical constituents of particles matter in the negative health effects, the specific components of PM2.5 that trigger hepatic steatosis remain unclear. New strategies prioritizing the identification of the key components with the highest potential to cause adverse effects among the numerous components of PM2.5 are needed. Herein, we established a high-resolution mass spectrometry (MS) data set comprising the hydrophobic organic components corresponding to 67 PM2.5 samples in total from Taiyuan and Guangzhou, two representative cities in North and South China, respectively. The lipid accumulation bioeffect profiles of the above samples were also obtained. Considerable hepatocyte lipid accumulation was observed in most PM2.5 extracts. Subsequently, 40 of 695 components were initially screened through machine learning-assisted data filtering based on an integrated bioassay with MS data. Next, nine compounds were further selected as candidates contributing to hepatocellular steatosis based on absorption, distribution, metabolism, and excretion evaluation and molecular dockingin silico. Finally, seven components were confirmed in vitro. This study provided a multilevel screening strategy for key active components in PM2.5 and provided insight into the hydrophobic PM2.5 components that induce hepatocellular steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Zhen Cheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Fuyuan Cao
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Shanxi 030006, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
2
|
Verbunt J, Jocken J, Blaak E, Savelkoul P, Stassen F. Gut-bacteria derived membrane vesicles and host metabolic health: a narrative review. Gut Microbes 2024; 16:2359515. [PMID: 38808455 PMCID: PMC11141482 DOI: 10.1080/19490976.2024.2359515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The intestinal microbiota, consisting of an estimated 10^10-10^11 organisms, regulate physiological processes involved in digestion, metabolism, and immunity. Surprisingly, these intestinal microorganisms have been found to influence tissues that are not directly in contact with the gut, such as adipose tissue, the liver, skeletal muscle, and the brain. This interaction takes place even when intestinal barrier function is uncompromised. An increasing body of evidence suggests that bacterial membrane vesicles (bMVs), in addition to bacterial metabolites such as short-chain fatty acids, are able to mediate effects of the microbiota on these host tissues. The ability of bMVs to dissipate from the intestinal lumen into systemic circulation hereby facilitates the transport and presentation of bacterial components and metabolites to host organs. Importantly, there are indications that the interaction between bMVs and tissues or immune cells may play a role in the etiology of (chronic metabolic) disease. For example, the gut-derived bMV-mediated induction of insulin resistance in skeletal muscle cells and pro-inflammatory signaling by adipocytes possibly underlies diseases such as type 2 diabetes and obesity. Here, we review the current knowledge on bMVs in the microbiota's effects on host energy/substrate metabolism with a focus on etiological roles in the onset and progression of metabolic disease. We furthermore illustrate that vesicle production by bacterial microbiota could potentially be modulated through lifestyle intervention to improve host metabolism.
Collapse
Affiliation(s)
- Jari Verbunt
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Johan Jocken
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen Blaak
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul Savelkoul
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frank Stassen
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
3
|
Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:764-783. [PMID: 37582985 DOI: 10.1038/s41575-023-00822-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease worldwide. NAFLD and ALD share pathophysiological, histological and genetic features and both alcohol and metabolic dysfunction coexist as aetiological factors in many patients with hepatic steatosis. A diagnosis of NAFLD requires the exclusion of significant alcohol consumption and other causes of liver disease. However, data suggest that significant alcohol consumption is often under-reported in patients classified as having NAFLD and that alcohol and metabolic factors interact to exacerbate the progression of liver disease. In this Review, we analyse existing data on the interaction between alcohol consumption and metabolic syndrome as well as the overlapping features and differences in the pathogenesis of ALD and NAFLD. We also discuss the clinical implications of the coexistence of alcohol consumption, of any degree, in patients with evidence of metabolic derangement as well as the use of alcohol biomarkers to detect alcohol intake. Finally, we summarize the evolving nomenclature of fatty liver disease and describe a recent proposal to classify patients at the intersection of NAFLD and ALD. We propose that, regardless of the presumed aetiology, patients with fatty liver disease should be evaluated for both metabolic syndrome and alcohol consumption to enable better prognostication and a personalized medicine approach.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Alexandre Louvet
- Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM INFINITE 1286, Lille, France
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Zaiou M. Peroxisome Proliferator-Activated Receptor-γ as a Target and Regulator of Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Cells 2023; 12:cells12081205. [PMID: 37190114 DOI: 10.3390/cells12081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) belongs to the superfamily of nuclear receptors that control the transcription of multiple genes. Although it is found in many cells and tissues, PPARγ is mostly expressed in the liver and adipose tissue. Preclinical and clinical studies show that PPARγ targets several genes implicated in various forms of chronic liver disease, including nonalcoholic fatty liver disease (NAFLD). Clinical trials are currently underway to investigate the beneficial effects of PPARγ agonists on NAFLD/nonalcoholic steatohepatitis. Understanding PPARγ regulators may therefore aid in unraveling the mechanisms governing the development and progression of NAFLD. Recent advances in high-throughput biology and genome sequencing have greatly facilitated the identification of epigenetic modifiers, including DNA methylation, histone modifiers, and non-coding RNAs as key factors that regulate PPARγ in NAFLD. In contrast, little is still known about the particular molecular mechanisms underlying the intricate relationships between these events. The paper that follows outlines our current understanding of the crosstalk between PPARγ and epigenetic regulators in NAFLD. Advances in this field are likely to aid in the development of early noninvasive diagnostics and future NAFLD treatment strategies based on PPARγ epigenetic circuit modification.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean-Lamour, Université de Lorraine, UMR 7198 CNRS, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
5
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Katturajan R, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prince SE. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells 2022; 11:3959. [PMID: 36552725 PMCID: PMC9777112 DOI: 10.3390/cells11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Welch RD, Billon C, Losby M, Bedia-Diaz G, Fang Y, Avdagic A, Elgendy B, Burris TP, Griffett K. Emerging Role of Nuclear Receptors for the Treatment of NAFLD and NASH. Metabolites 2022; 12:238. [PMID: 35323681 PMCID: PMC8953348 DOI: 10.3390/metabo12030238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of these nuclear receptors and their biology has promoted the development of synthetic ligands. The possibility of targeting these receptors to treat NAFLD is promising, as several compounds including Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how they may be utilized to treat NAFLD and subsequent comorbidities.
Collapse
Affiliation(s)
- Ryan D. Welch
- Biology and Chemistry Department, Blackburn College, Carlinville, IL 62626, USA;
| | - Cyrielle Billon
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - McKenna Losby
- Biochemistry, Biophysics and Structural Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Gonzalo Bedia-Diaz
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Yuanying Fang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Amer Avdagic
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
- Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Thomas P. Burris
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Raftar SKA, Ashrafian F, Abdollahiyan S, Yadegar A, Moradi HR, Masoumi M, Vaziri F, Moshiri A, Siadat SD, Zali MR. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury. Sci Rep 2022; 12:2453. [PMID: 35165344 PMCID: PMC8844054 DOI: 10.1038/s41598-022-06414-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation plays a critical role in the promotion of hepatocyte damage and liver fibrosis. In recent years the protective role of Akkermansia muciniphila, a next-generation beneficial microbe, has been suggested for metabolic and inflammatory disorders. In this study, we aimed to evaluate the effects of live and pasteurized A. muciniphila and its extra cellular vesicles (EVs) on inflammatory markers involved in liver fibrosis in a mouse model of a high-fat diet (HFD)/carbon tetrachloride (CCl4)-induced liver injury. Firstly, the responses of hepatic stellate cells (HSCs) to live and pasteurized A. muciniphila and its EVs were examined in the quiescent and LPS-activated LX-2 cells. Next, the anti-inflammatory effects of different forms of A. muciniphila were examined in the mouse model of HFD/CCl4-induced liver injury. The gene expression of various inflammatory markers was evaluated in liver, colon, and white adipose tissues. The cytokine secretion in the liver and white adipose tissues was also measured by ELISA. The results showed that administration of live and pasteurized A. muciniphila and its EVs leads to amelioration in HSCs activation. Based on data obtained from the histopathological analysis, an improvement in gut health was observed through enhancing the epithelium and mucosal layer thickness and strengthening the intestinal integrity in all treatments. Moreover, live A. muciniphila and its EVs had inhibitory effects on liver inflammation and hepatocytes damage. In addition, the tissue cytokine production and inflammatory gene expression levels revealed that live A. muciniphila and its EVs had more pronounced anti-inflammatory effects on liver and adipose tissues. Furthermore, EVs had better effects on the modulation of gene expression related to TLRs, PPARs, and immune response in the liver. In conclusion, the present results showed that oral administration of A. muciniphila and its derivatives for four weeks could enhance the intestinal integrity and anti-inflammatory responses of the colon, adipose, and liver tissues and subsequently prevent liver injury in HFD/CCL4 mice.
Collapse
|
8
|
Zhao P, Fan S, Gao Y, Bi H. Nuclear receptor-mediated hepatomegaly and liver regeneration: an update. Drug Metab Dispos 2022; 50:636-645. [DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
|
9
|
Fan S, Gao Y, Qu A, Jiang Y, Li H, Xie G, Yao X, Yang X, Zhu S, Yagai T, Tian J, Wang R, Gonzalez FJ, Huang M, Bi H. YAP-TEAD mediates PPAR α-induced hepatomegaly and liver regeneration in mice. Hepatology 2022; 75:74-88. [PMID: 34387904 DOI: 10.1002/hep.32105] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.
Collapse
Affiliation(s)
- Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinpeng Yao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuguang Zhu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ruimin Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Negi CK, Bajard L, Kohoutek J, Blaha L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117855. [PMID: 34340181 DOI: 10.1016/j.envpol.2021.117855] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Chander K Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Jiri Kohoutek
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Ludek Blaha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic.
| |
Collapse
|
11
|
Kwon J, Lee C, Heo S, Kim B, Hyun CK. DSS-induced colitis is associated with adipose tissue dysfunction and disrupted hepatic lipid metabolism leading to hepatosteatosis and dyslipidemia in mice. Sci Rep 2021; 11:5283. [PMID: 33674694 PMCID: PMC7935975 DOI: 10.1038/s41598-021-84761-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Considering high prevalence of non-alcoholic fatty liver diseases (NAFLD) in patients with inflammatory bowel disease (IBD), this study aimed to elucidate molecular mechanisms for how intestinal inflammatory conditions are causally linked to hepatic steatosis and dyslipidemia. Both younger and older mice treated with acute or chronic dextran sodium sulfate (DSS) developed colitis, which was evidenced by weight loss, colon length shortening, and elevated disease activity index and inflammation score. They also showed decreased expression of intestinal barrier function-related proteins and elevated plasma lipopolysaccharide level, indicating DSS-induced barrier dysfunction and thereby increased permeability. Interestingly, they displayed phenotypes of hepatic fat accumulation and abnormal blood lipid profiles. This DSS-induced colitis-associated lipid metabolic dysfunction was due to overall disruption of metabolic processes including fatty acid oxidation, lipogenesis, lipolysis, reverse cholesterol transport, bile acid synthesis, and white adipose tissue browning and brown adipose tissue thermogenesis, most of which are mediated by key regulators of energy homeostasis such as FGF21, adiponectin, and irisin, via SIRT1/PGC-1α- and LXRα-dependent pathways. Our study suggests a potential molecular mechanism underlying the comorbidity of NAFLD and IBD, which could provide a key to understanding how the two diseases are pathogenically linked and discovering critical therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Jeonghyeon Kwon
- grid.411957.f0000 0004 0647 2543School of Life Science, Handong Global University, Pohang, Gyungbuk 37554 South Korea
| | - Chungho Lee
- grid.411957.f0000 0004 0647 2543School of Life Science, Handong Global University, Pohang, Gyungbuk 37554 South Korea
| | - Sungbaek Heo
- grid.411957.f0000 0004 0647 2543School of Life Science, Handong Global University, Pohang, Gyungbuk 37554 South Korea
| | - Bobae Kim
- grid.411957.f0000 0004 0647 2543School of Life Science, Handong Global University, Pohang, Gyungbuk 37554 South Korea
| | - Chang-Kee Hyun
- grid.411957.f0000 0004 0647 2543School of Life Science, Handong Global University, Pohang, Gyungbuk 37554 South Korea
| |
Collapse
|
12
|
Urtasun R, Díaz-Gómez J, Araña M, Pajares MJ, Oneca M, Torre P, Jiménez M, Munilla G, Barajas M, Encío I. A Combination of Apple Vinegar Drink with Bacillus coagulans Ameliorates High Fat Diet-Induced Body Weight Gain, Insulin Resistance and Hepatic Steatosis. Nutrients 2020; 12:nu12092504. [PMID: 32825073 PMCID: PMC7551919 DOI: 10.3390/nu12092504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a worldwide epidemic characterized by excessive fat accumulation, associated with multiple comorbidities and complications. Emerging evidence points to gut microbiome as a driving force in the pathogenesis of obesity. Vinegar intake, a traditional remedy source of exogenous acetate, has been shown to improve glycemic control and to have anti-obesity effects. New functional foods may be developed by supplementing traditional food with probiotics. B. coagulans is a suitable choice because of its resistance to high temperatures. To analyze the possible synergic effect of Vinegar and B. coagulans against the metabolic alterations induced by a high fat diet (HFD), we fed twelve-week-old C57BL/6 mice with HFD for 5 weeks after 2 weeks of acclimation on a normal diet. Then, food intake, body weight, blood biochemical parameters, histology and liver inflammatory markers were analyzed. Although vinegar drink, either alone or supplemented with B. coagulans, reduced food intake, attenuated body weight gain and enhanced glucose tolerance, only the supplemented drink improved the lipid serum profile and prevented hepatic HFD-induced overexpression of CD36, IL-1β, IL-6, LXR and SREBP, thus reducing lipid deposition in the liver. The beneficial properties of the B. coagulans-supplemented vinegar appear to be mediated by a reduction in insulin and leptin circulating levels.
Collapse
Affiliation(s)
- Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.A.); (M.J.P.); (M.O.)
| | - Joana Díaz-Gómez
- Ecovinal S.L., Pol. Ind Gobella, 1, 31589 Sartaguda, Spain; (J.D.-G.); (G.M.)
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.A.); (M.J.P.); (M.O.)
| | - María José Pajares
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.A.); (M.J.P.); (M.O.)
- Navarre’s Health Research Institute (IdiSNA), 31008 Pamplona, Spain
| | - María Oneca
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.A.); (M.J.P.); (M.O.)
| | - Paloma Torre
- Nutrition and Bromatology area, Department of Natural Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - Maddalen Jiménez
- Division of Hematological-Oncology, CIMA, University of Navarre, 31006 Pamplona, Spain;
| | - Germán Munilla
- Ecovinal S.L., Pol. Ind Gobella, 1, 31589 Sartaguda, Spain; (J.D.-G.); (G.M.)
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.A.); (M.J.P.); (M.O.)
- Correspondence: (M.B.); (I.E.); Tel.: +34-948-169-000 (M.B. & I.E.)
| | - Ignacio Encío
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.A.); (M.J.P.); (M.O.)
- Navarre’s Health Research Institute (IdiSNA), 31008 Pamplona, Spain
- Correspondence: (M.B.); (I.E.); Tel.: +34-948-169-000 (M.B. & I.E.)
| |
Collapse
|
13
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|