1
|
Li HD, Zheng JY, Tan KW, Su JX, Chen W, Pang RK, Wu GL, Qiu YH, Li XX, Cai YF, Zhang SJ. Salvianolic acid B (SalB) improves high-fat diet (HFD)-caused cognitive impairment in mice by modulating the Trem2/Dap12 pathway in vivo and in vitro. Int Immunopharmacol 2025; 153:114461. [PMID: 40101423 DOI: 10.1016/j.intimp.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Salvianolic acid B (SalB), which extracted from Salvia miltiorrhiza Bunge (Labiatae), is a traditional Chinese medicine. SalB is widely used in nervous system diseases. This study evaluated the protective effect of SalB on high-fat diet (HFD)-induced cognitive impairment and its mechanisms in vivo and in vitro. The behavior tests demonstrated that SalB alleviated motor skills and learning capacity in HFD mice. Animal experiments have confirmed that SalB reduced the mRNA expression of inflammatory markers and the Trem2/Dap12 pathway in HIP. Furthermore, SalB inhibited the microglia Trem2/Dap12 pathway in HIP. In vivo, palmitic acid (PA) was used to intervene in BV2 cells to construct an inflammatory. SalB reduced the mRNA expression of inflammatory markers and inhibited the Trem2/Dap12 pathway in BV2 cells. In conclusion, SalB treatment may serve as a possible therapy for cognitive impairment induced by HFD.
Collapse
Affiliation(s)
- Hong-Dan Li
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Kai-Wen Tan
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Jin-Xun Su
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Wei Chen
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| |
Collapse
|
2
|
Boyce AKJ, Fouad Y, Gom RC, Ashby DM, Martins-Silva C, Molina L, Füzesi T, Ens C, Nicola W, McGirr A, Teskey GC, Thompson RJ. Contralesional hippocampal spreading depolarization promotes functional recovery after stroke. Nat Commun 2025; 16:3428. [PMID: 40210646 PMCID: PMC11986063 DOI: 10.1038/s41467-025-57119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
Ischemic stroke, brain tissue infarction following obstructed cerebral blood flow, leads to long-term neurological deficits and death. While neocortex is a commonly affected region with established preclinical models, less is known about deeper brain strokes, despite having unique neurological outcomes. We induced focal ischemic stroke while simultaneously monitoring neuronal activity in awake behaving Thy1-GCaMP6f mice by delivering and collecting light through bilateral fiberoptic implants. Unilateral hippocampal stroke resulted in atypical wandering behavior coincident with ipsilesional terminal spreading depolarization (sustained increase in GCaMP6f fluorescence). Ischemia induced seizures that propagated to the contralesional hippocampus triggering a transient spreading depolarization, predominantly in females. Hippocampal stroke impaired contextual fear conditioning acquired pre-stroke. Yet, 7 days post-stroke, contextual fear conditioning was only improved in mice with contralesional spreading depolarization. Blunting peri-stroke contralesional spreading depolarization prevented recovery of hippocampus-dependent learning. Together, we show that regionally isolated deleterious and beneficial spreading depolarizations can occur concurrently in the murine brain during acute stroke.
Collapse
Affiliation(s)
- Andrew K J Boyce
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, USA.
| | - Yannick Fouad
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Renaud C Gom
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristina Martins-Silva
- Department of the Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Leonardo Molina
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamas Füzesi
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carina Ens
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Wilten Nicola
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roger J Thompson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Sanchez LM, Acosta G, Cushing SD, Johnson SA, Turner SM, Davies S, Savage DD, Burke SN, Clark BJ. The effects of moderate prenatal alcohol exposure on performance in object and spatial discrimination tasks by adult male rats. Behav Brain Res 2025; 478:115324. [PMID: 39521144 PMCID: PMC11606775 DOI: 10.1016/j.bbr.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Exposure to alcohol during pregnancy produces Fetal Alcohol Spectrum Disorders, which in its most severe form is characterized by physical dysmorphology and neurobehavioral alterations. Moderate prenatal alcohol exposure (mPAE) is known to produce deficits in discrimination of spatial locations in adulthood. However, the impact of mPAE on higher-order sensory representations, such as discrimination of perceptually similar stimuli, is currently unknown. In the present study, we tested the hypothesis that mPAE would disrupt performance on hippocampal-sensitive tasks that require discrimination between perceptually similar objects or discrimination between spatial locations in a radial arm maze. Here we report that male mPAE rats exhibited intact performance on three types of object discrimination tasks: one in which rats discriminated between distinct toy objects, a second in which discrimination was made between distinct and similar LEGO objects, and a mnemonic similarity task in which rats discriminated between randomly presented LEGO objects that varied in similarity with a learned object. Although adult male mPAE rats performed similarly to control rats on all three object discrimination tasks, they showed deficits when tested in a radial arm maze spatial discrimination task. Specifically, male mPAE rats expressed a significantly higher number of working memory errors (returns to previously visited arms) and were more likely to use non-spatial strategies during training. Together, the findings of the present study support the conclusion that mPAE produces specific deficits in the online processing of spatial information and executing spatial navigation strategies, but spares the ability to discriminate between perceptually similar stimuli.
Collapse
Affiliation(s)
- Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah D Cushing
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah A Johnson
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
4
|
Schaeffer EA, LaCour A, Donaldson TN, Linsenbardt DN, Davies S, Savage DD, Wallace DG, Clark BJ. Organization of spontaneous spatial behaviors under dark conditions is unaffected in adult male and female long-Evans rats after moderate prenatal alcohol exposure. Behav Neurosci 2025; 139:44-52. [PMID: 38635177 PMCID: PMC11858146 DOI: 10.1037/bne0000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | - Suzy Davies
- Department of Neurosciences, University of New Mexico
| | | | | | | |
Collapse
|
5
|
Udo MSB, Zaccarelli-Magalhães J, Clemons GA, Citadin CT, Langman J, Smith DJ, Matuguma LH, Tesic V, Lin HW. Blockade of A 2AR improved brain perfusion and cognitive function in a mouse model of Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01526-8. [PMID: 39843732 DOI: 10.1007/s11357-025-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 6.2 million Americans aged 65 and older, particularly women. Along with AD's main hallmarks (formation of β-amyloid plaques and tau neurofibrillary tangles), there are vascular alterations that occurs in AD pathology. Adenosine A2 receptor (A2AR) is one of the key factors of brain vascular autoregulation and is overexpressed in AD patients. Our previous findings suggest that protein arginine methyltransferase 4 (PRMT4) is overexpressed in AD, which leads to decrease in cerebral blood flow in aged female 3xTg mice. We aimed to investigate the mechanism behind A2AR signaling in the regulation of brain perfusion and blood-brain barrier integrity in age and sex-dependent 3xTg mice, and if it is related to PRMT4. Istradefylline, a highly selective A2AR antagonist, was used to modulate A2AR signaling. Aged female 3xTg and C57BL/6 J mice were evaluated for brain perfusion (via laser speckle) and cognitive function (via open field, T-maze and novel object recognition). Our results suggest that modulation of A2AR signaling in aged female 3xTg increased cerebral perfusion by decreasing PRMT4 expression, restored the levels of APP and tau, maintained blood-brain barrier integrity by maintaining the expression of tight junction proteins, and preserved functional learning/memory.
Collapse
Affiliation(s)
- Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Garrett Alan Clemons
- Department of Biomedical Science, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Clark BJ, Acosta G, Sanchez L, Rico KT. The Neurobiology of Learning and Memory in Rodent Models of Fetal Alcohol Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:41-65. [PMID: 40128474 DOI: 10.1007/978-3-031-81908-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Exposure to ethanol during gestation can lead to the onset of Fetal Alcohol Spectrum Disorders, which describes a range of neurodevelopmental and behavioral dysfunctions that include impairments in learning and memory and can have serious repercussions for scholastic performance during adolescence. The neurobiological basis of learning and memory dysfunction in Fetal Alcohol Spectrum Disorders has been frequently linked to the hippocampal formation, which is due in part to the fact that some hippocampal neurons, called place cells, fire action potentials correlated with an animal's spatial location as well as other features of memory episodes. The goal of this chapter is to provide an overview of research investigating developmental alcohol exposure in rodent models and the impact on learning and memory, hippocampal circuitry, and neural representations of learning and memory. We conclude by highlighting areas in which more concentrated behavioral and neurobiological study is needed to expand and develop rodent models of memory dysfunction in Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, United States.
| | - Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, United States
| | - Lilliana Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, United States
| | - Kehiry Trejo Rico
- Department of Psychology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
7
|
Kunz Godói A, Canever L, Pacheco Rico E, Mastella G, Tonello M, Veadrigo N, de Bem Tomé B, da Silva Lemos I, Luiz Streck E, Zugno AL. The relationship between alcohol bingeing in the gestational period of wistar rats and the development of schizophrenia in the offspring adult life. Brain Res 2024; 1845:149270. [PMID: 39389527 DOI: 10.1016/j.brainres.2024.149270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The incidence of schizophrenia in young adulthood may be associated with intrauterine factors, such as gestational alcohol consumption. This study investigated the relationship between a single high dose of alcohol during pregnancy in Wistar rats and the development of schizophrenia in the adult life of the offspring. On the 11th day of gestation, pregnant rats received either water or alcohol via intragastric gavage. Male and female offspring were subjected to behavioral tests at 30 days of age according to the maternal group. At 60 days of age, offspring received intraperitoneal injections of ketamine (ket) or saline (SAL). After the final ketamine administration, the adult offspring underwent behavioral tests, and their brain structures were removed for biochemical analysis. Alcohol binge drinking during pregnancy induces hyperlocomotion in both young female and male offspring, with males of alcohol-exposed mothers showing reduced social interactions. In adult offspring, ketamine induced hyperlocomotion; however, only females in the alcohol + ket group exhibited increased locomotor activity, and a decrease in the time to first contact was observed in the alcohol group. Cognitive impairment was exclusively observed in male animals in the alcohol group. Increased serotonin and dopamine levels were observed in male rats in the alcohol + ket group. Biochemical alterations indicate the effects of intrauterine alcohol exposure associated with ketamine in adult animals. These behavioral and biochemical changes suggest that the impact of prenatal stressors such as alcohol persists throughout the animals' lives and may be exacerbated by a second stressor in adulthood, such as ketamine.
Collapse
Affiliation(s)
- Amanda Kunz Godói
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Gustavo Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Marina Tonello
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Natália Veadrigo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Beatriz de Bem Tomé
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Isabela da Silva Lemos
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emílio Luiz Streck
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Alexandra L Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Lofts A, Campea MA, Winterhelt E, Rigg N, Rivera NP, Macdonald C, Frey BN, Mishra RK, Hoare T. In situ-gelling hydrophobized starch nanoparticle-based nanoparticle network hydrogels for the effective delivery of intranasal olanzapine to treat brain disorders. Int J Biol Macromol 2024; 277:134385. [PMID: 39111489 DOI: 10.1016/j.ijbiomac.2024.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Intranasal (IN) delivery offers potential to deliver antipsychotic drugs with improved efficacy to the brain. However, the solubilization of such drugs and the frequency of required re-application both represent challenges to its practical implementation in treating various mental illnesses including schizophrenia. Herein, we report a sprayable nanoparticle network hydrogel (NNH) consisting of hydrophobically-modified starch nanoparticles (SNPs) and mucoadhesive chitosan oligosaccharide lactate (COL) that can gel in situ within the nasal cavity and release ultra-small penetrative SNPs over time. Hydrophobization of the SNPs enables enhanced uptake and prolonged release of poorly water soluble drugs such as olanzapine from the NNH depot through mucous and ultimately into the brain via the nose-to-brain (N2B) pathway. The hydrogel shows high in vitro cytocompatibility in mouse striatal neuron and human primary nasal cell lines and in vivo efficacy in an amphetamine-induced pre-clinical rat schizophrenia model, with IN-delivered NNH hydrogels maintaining successful attenuation of locomotor activity for up to 4 h while all other tested treatments (drug-only IN or conventional intraperitoneal delivery) failed to attenuate at any time point past 0.5 h. As such, in situ-gelling NNHs represent a safe excipient for the IN delivery of hydrophobic drugs directly to the brain using customized SNPs that exhibit high penetration and drug complexing properties to maximize effective drug delivery.
Collapse
Affiliation(s)
- Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Matthew A Campea
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Erica Winterhelt
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Nicolette Rigg
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Nahieli Preciado Rivera
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cameron Macdonald
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
9
|
Fink AJP, Hogan M, Schoonover CE. Olfactory investigation in the home cage. Neurobiol Learn Mem 2024; 213:107951. [PMID: 38844099 DOI: 10.1016/j.nlm.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
We have developed a behavioral paradigm to study volitional olfactory investigation in mice over several months. We placed odor ports in the wall of a standard cage that administer a neutral odorant stimulus when a mouse pokes its nose inside. Even though animals were fed and watered ad libitum, and sampling from the port elicited no outcome other than the delivery of an odor, mice readily sampled these stimuli hundreds of times per day. This self-paced olfactory investigation persisted for weeks with only modest habituation following the first day of exposure to a given set of odorants. If an unexpected odorant stimulus was administered at the port, the sampling rate increased transiently (in the first 20 min) by an order of magnitude and remained higher than baseline throughout the subsequent day, indicating learned implicit knowledge. Thus, this system may be used to study naturalistic olfactory learning over extended time scales outside of conventional task structures.
Collapse
Affiliation(s)
- Andrew J P Fink
- Present affiliation: Department of Neurobiology, Northwestern University, Evanston, IL, United States.
| | - Marcus Hogan
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, United States
| | - Carl E Schoonover
- Present affiliation: Allen Institute for Neural Dynamics, Seattle, WA, United States.
| |
Collapse
|
10
|
Saadat A, Pallera H, Lattanzio F, Owens D, Gaines A, Ravi SS, Shah T. Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2024; 47:112-126. [PMID: 38797164 PMCID: PMC11965858 DOI: 10.1159/000539506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury. INTRODUCTION The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Angela Saadat
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Specialty Group, Norfolk, VA, USA
| | - Haree Pallera
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Frank Lattanzio
- Neonatal Brain Institute, Norfolk, VA, USA
- Department Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Daley Owens
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Amy Gaines
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Sai Susmitha Ravi
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Tushar Shah
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Specialty Group, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| |
Collapse
|
11
|
Zhu Z, Kuchibhotla KV. Performance errors during rodent learning reflect a dynamic choice strategy. Curr Biol 2024; 34:2107-2117.e5. [PMID: 38677279 PMCID: PMC11488394 DOI: 10.1016/j.cub.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/10/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Humans, even as infants, use cognitive strategies, such as exploration and hypothesis testing, to learn about causal interactions in the environment. In animal learning studies, however, it is challenging to disentangle higher-order behavioral strategies from errors arising from imperfect task knowledge or inherent biases. Here, we trained head-fixed mice on a wheel-based auditory two-choice task and exploited the intra- and inter-animal variability to understand the drivers of errors during learning. During learning, performance errors are dominated by a choice bias, which, despite appearing maladaptive, reflects a dynamic strategy. Early in learning, mice develop an internal model of the task contingencies such that violating their expectation of reward on correct trials (by using short blocks of non-rewarded "probe" trials) leads to an abrupt shift in strategy. During the probe block, mice behave more accurately with less bias, thereby using their learned stimulus-action knowledge to test whether the outcome contingencies have changed. Despite having this knowledge, mice continued to exhibit a strong choice bias during reinforced trials. This choice bias operates on a timescale of tens to hundreds of trials with a dynamic structure, shifting between left, right, and unbiased epochs. Biased epochs also coincided with faster motor kinematics. Although bias decreased across learning, expert mice continued to exhibit short bouts of biased choices interspersed with longer bouts of unbiased choices and higher performance. These findings collectively suggest that during learning, rodents actively probe their environment in a structured manner to refine their decision-making and maintain long-term flexibility.
Collapse
Affiliation(s)
- Ziyi Zhu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Dhume SH, Balogun K, Sarkar A, Acosta S, Mount HTJ, Cahill LS, Sled JG, Serghides L. Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone. Front Mol Neurosci 2024; 17:1376681. [PMID: 38646101 PMCID: PMC11027900 DOI: 10.3389/fnmol.2024.1376681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of in utero ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed in utero to ART. Methods Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR. Findings Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner. Interpretation In our model, in utero ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Collapse
Affiliation(s)
- Shreya H. Dhume
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kayode Balogun
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sebastian Acosta
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard T. J. Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
| | - John G. Sled
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women’s College Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Nikolic B, Trnski-Levak S, Kosic K, Drlje M, Banovac I, Hranilovic D, Jovanov-Milosevic N. Lasting mesothalamic dopamine imbalance and altered exploratory behavior in rats after a mild neonatal hypoxic event. Front Integr Neurosci 2024; 17:1304338. [PMID: 38304737 PMCID: PMC10832065 DOI: 10.3389/fnint.2023.1304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Adversities during the perinatal period can decrease oxygen supply to the fetal brain, leading to various hypoxic brain injuries, which can compromise the regularity of brain development in different aspects. To examine the catecholaminergic contribution to the link between an early-life hypoxic insult and adolescent behavioral aberrations, we used a previously established rat model of perinatal hypoxia but altered the hypobaric to normobaric conditions. Methods Exploratory and social behavior and learning abilities were tested in 70 rats of both sexes at adolescent age. Inherent vertical locomotion, sensory-motor functions and spatial learning abilities were explored in a subset of animals to clarify the background of altered exploratory behavior. Finally, the concentrations of dopamine (DA) and noradrenaline in midbrain and pons, and the relative expression of genes for DA receptors D1 and D2, and their down-stream targets (DA- and cAMP-regulated phosphoprotein, Mr 32 kDa, the regulatory subunit of protein kinase A, and inhibitor-5 of protein phosphatase 1) in the hippocampus and thalamus were investigated in 31 rats. Results A lesser extent of alterations in exploratory and cognitive aspects of behavior in the present study suggests that normobaric conditions mitigate the hypoxic injury compared to the one obtained under hypobaric conditions. Increased exploratory rearing was the most prominent consequence, with impaired spatial learning in the background. In affected rats, increased midbrain/pons DA content, as well as mRNA levels for DA receptors and their down-stream elements in the thalamus, but not the hippocampus, were found. Conclusion We can conclude that a mild hypoxic event induced long-lasting disbalances in mesothalamic DA signaling, contributing to the observed behavioral alterations. The thalamus was thereby indicated as another structure, besides the well-established striatum, involved in mediating hypoxic effects on behavior through DA signaling.
Collapse
Affiliation(s)
- Barbara Nikolic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Sara Trnski-Levak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Kristina Kosic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Matea Drlje
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
14
|
Iwasaki S, Taniuchi T. Rats did not show evidence of prospective information-seeking: a pilot study. Front Behav Neurosci 2023; 17:1253780. [PMID: 38111475 PMCID: PMC10725935 DOI: 10.3389/fnbeh.2023.1253780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Information-seeking behavior often features in research on metacognition in non-human animals; some species seek more information when they do not know the location of a food reward. Rats are known to do this in situations of uncertainty, but it is still unclear if they seek information prospectively for solving a later problem. In this study, we investigated rats' information-seeking responses in two areas that presented different cognitive challenges (N = 4). In one area, a memory task was presented in which rats could access a cue for a food reward during the information-seeking phase of a trial, but the cue was removed before the subsequent test phase. In the other area, a discrimination task presented a cue that was available in both the information-seeking and the test phases, so that it was not necessary to seek information prospectively. The memory and discrimination test trials were given in quasi-random order (Experiment 1). Rats explored in the memory task area no more than in the discrimination task area during the information-seeking phase, even after extensive training. When they were exposed exclusively to the memory task over multiple sessions (Experiment 2), they developed a strategy of exploring the available object cues. In Experiment 3, rats were found to stay longer in an area, which had an object than in other, less potentially informative areas; they were sensitive to the presence of information. Although these results did not support the existence of prospective information-seeking in rats, they do not necessarily imply that rats lack related abilities. This consideration is due to the constraints of the small sample size and the limited scope of the testing environment. Accumulating not only positive but also negative evidence would further understanding of the factors influencing metacognitive responses in non-human animals.
Collapse
Affiliation(s)
- Sumie Iwasaki
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Tohru Taniuchi
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
16
|
Resmim CM, Borba JV, Pretzel CW, Santos LW, Rubin MA, Rosemberg DB. Assessing the exploratory profile of two zebrafish populations: influence of anxiety-like phenotypes and independent trials on homebase-related parameters and exploration. Behav Processes 2023:104912. [PMID: 37406867 DOI: 10.1016/j.beproc.2023.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Anxiety is a protective behavior when animals face aversive conditions. The open field test (OFT) is used to assess the spatio-temporal dynamics of exploration, in which both homebase formation and recognition of environmental cues may reflect habituation to unfamiliar conditions. Because emotional- and affective-like states influence exploration patterns and mnemonic aspects, we aimed to verify whether the exploratory behaviors of two zebrafish populations showing distinct baselines of anxiety differ in two OFT sessions. Firstly, we assessed the baseline anxiety-like responses of short fin (SF) and leopard (LEO) populations using the novel tank test (NTT) and light-dark test (LDT) in 6-min trials. Fish were later tested in two consecutive days in the OFT, in which the spatial occupancy and exploratory profile were analyzed for 30min. In general, LEO showed pronounced diving behavior and scototaxis in the NTT and LDT, respectively, in which an "anxiety index" corroborated their exacerbated anxiety-like behavior. In the OFT, the SF population spent less time to establish the homebase in the 1st trial, while only LEO showed a markedly reduction in the latency to homebase formation in the 2nd trial. Both locomotion and homebase-related activities were decreased in the 2nd trial, in which animals also revealed increased occupancy in the center area of the apparatus. Moreover, we verified a significant percentage of homebase conservation for both populations, while only SF showed reduced the number of trips and increased the average length of trips. Principal component analyses revealed that distinct factors accounted for total variances between trials for each population tested. While homebase exploration was reduced in the 2nd trial for SF, an increased occupancy in the center area and hypolocomotion were the main factors that contribute to the effects observed in LEO during re-exposure to the OFT. In conclusion, our novel data support the homebase conservation in zebrafish subjected to independent OFT sessions, as well as corroborate a population-dependent effect on specific behavioral parameters related to exploration.
Collapse
Affiliation(s)
- Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maribel A Rubin
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
17
|
Hagbi Z, Gielman S, Dorfman A, Eilam D. A small step for rats alters spatial behavior: rats on a bi-level arena explore each level separately. Anim Cogn 2023; 26:655-666. [PMID: 36318351 DOI: 10.1007/s10071-022-01710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 02/24/2023]
Abstract
We tested rats on a 'bi-level open-field' whose two halves were separated vertically by an 8-cm step that the rats could easily ascend/descend. We sought to determine what might be the factors that shape traveling in three-dimensional environments; what makes an environment perceived as multileveled; and how are multileveled environments explored compared to two-dimensional environments? We found that rats on the bi-level open-field traveled a greater distance on the lower level compared to the upper one. They also spent a long time at the foot of the step before ascending to the upper level. They established a home-base on one level and a local base on the other one, and explored each level separately. We could not find a particular factor that accounted for the preference for the lower level. We suggest that the momentary egocentric sensation of moving vertically, together with an overall area large enough for exploration, result in perceiving an environment as multilevel. Exploration of such environments is fragmented, and each level is explored relatively independently, as has also been shown in other studies. Regarding the unanswered question of earlier studies concerning what integrates fragmented representations, this is the first study that suggests that in rats, and perhaps also in other rodent species, such integration is achieved by means of home-base behavior, resulting in the establishment of a single comprehensive representation of the multilevel environment.
Collapse
Affiliation(s)
- Zohar Hagbi
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat-Aviv, Israel
| | - Simona Gielman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat-Aviv, Israel
| | - Alex Dorfman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat-Aviv, Israel
| | - David Eilam
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat-Aviv, Israel.
| |
Collapse
|
18
|
Latina V, De Introna M, Caligiuri C, Loviglio A, Florio R, La Regina F, Pignataro A, Ammassari-Teule M, Calissano P, Amadoro G. Immunotherapy with Cleavage-Specific 12A12mAb Reduces the Tau Cleavage in Visual Cortex and Improves Visuo-Spatial Recognition Memory in Tg2576 AD Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15020509. [PMID: 36839831 PMCID: PMC9965010 DOI: 10.3390/pharmaceutics15020509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tau-targeted immunotherapy is a promising approach for treatment of Alzheimer's disease (AD). Beyond cognitive decline, AD features visual deficits consistent with the manifestation of Amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) in the eyes and higher visual centers, both in animal models and affected subjects. We reported that 12A12-a monoclonal cleavage-specific antibody (mAb) which in vivo neutralizes the neurotoxic, N-terminal 20-22 kDa tau fragment(s)-significantly reduces the retinal accumulation in Tg(HuAPP695Swe)2576 mice of both tau and APP/Aβ pathologies correlated with local inflammation and synaptic deterioration. Here, we report the occurrence of N-terminal tau cleavage in the primary visual cortex (V1 area) and the beneficial effect of 12A12mAb treatment on phenotype-associated visuo-spatial deficits in this AD animal model. We found out that non-invasive administration of 12 A12mAb markedly reduced the pathological accumulation of both truncated tau and Aβ in the V1 area, correlated to significant improvement in visual recognition memory performance along with local increase in two direct readouts of cortical synaptic plasticity, including the dendritic spine density and the expression level of activity-regulated cytoskeleton protein Arc/Arg3.1. Translation of these findings to clinical therapeutic interventions could offer an innovative tau-directed opportunity to delay or halt the visual impairments occurring during AD progression.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Margherita De Introna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Chiara Caligiuri
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Alessia Loviglio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Ercole Ramarini 32, 00015 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-49255252
| |
Collapse
|
19
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Campos-Cardoso R, Godoy LD, Lazarini-Lopes W, Novaes LS, Dos Santos NB, Perfetti JG, Garcia-Cairasco N, Munhoz CD, Padovan CM. Exploring the light/dark box test: Protocols and implications for neuroscience research. J Neurosci Methods 2023; 384:109748. [PMID: 36410541 DOI: 10.1016/j.jneumeth.2022.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Knowledge on the neurobiological systems underlying psychiatric disorders has considerably evolved due to findings on basic research using animal models. Anxiety-like behaviors in rodents are widely explored in neuroethological apparatuses, such as the light-dark box (LDB) test through different protocols, which have been shown to influence the behavioral outcomes and probably the activation of the hypothalamic-pituitary-adrenal (HPA) axis. NEW METHOD Adult male Wistar rats were submitted to LDB in different room illumination conditions (25/0, 65/0 and/or 330/0 lux), initial positioning in the LDB compartments and previous stressful experience in the Elevated Plus Maze (EPM) or restraint stress (RS). Rats' behavior (exploratory and risk assessment) was registered during a 15 min period, divided into blocks of 5 min RESULTS: Exploration of the lit compartment decreased in higher luminosity condition, as after positioning rats in the dark compartment or previous exposure to the EPM, while low luminosity increased exploration of the LDB. No differences were observed on serum corticosterone in all groups and experimental conditions. COMPARISON WITH EXISTING METHODS Light intensity and test duration influenced exploration of the LDB jeopardizing the anxiolytic/anxiogenic effects. Low light intensity increased exploration, while high intensity decreased it. These results suggest that 65/0 lux is a neutral condition to investigate possible anxiolytic/anxiogenic effects of drugs and/or exposure to previous aversive stimuli as the EPM. CONCLUSIONS Different factors impact on exploratory and risk assessment behaviors which may be related to safety maximization behavior. Unraveling how different factors affect behavior may be a crucial step towards understanding its expression and the contributions on advances in the physiopathology 1 and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Rodrigo Campos-Cardoso
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento (INeC), Avenida Bandeirantes, 3900, Ribeirão Preto, SP 14049-901, Brazil
| | - Lívea Dornela Godoy
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil
| | - Willian Lazarini-Lopes
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento (INeC), Avenida Bandeirantes, 3900, Ribeirão Preto, SP 14049-901, Brazil
| | - Leonardo Santana Novaes
- Departamento de Farmacologia, Instituto de Ciencias Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, Prédio ICB 1 - Butantã, São Paulo, SP 05508-000, Brazil
| | - Nilton Barreto Dos Santos
- Departamento de Farmacologia, Instituto de Ciencias Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, Prédio ICB 1 - Butantã, São Paulo, SP 05508-000, Brazil
| | - Juliano Genaro Perfetti
- Departamento de Farmacologia, Instituto de Ciencias Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, Prédio ICB 1 - Butantã, São Paulo, SP 05508-000, Brazil
| | - Norberto Garcia-Cairasco
- Instituto de Neurociências e Comportamento (INeC), Avenida Bandeirantes, 3900, Ribeirão Preto, SP 14049-901, Brazil; Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carolina Demarchi Munhoz
- Departamento de Farmacologia, Instituto de Ciencias Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, Prédio ICB 1 - Butantã, São Paulo, SP 05508-000, Brazil
| | - Cláudia Maria Padovan
- Instituto de Neurociências e Comportamento (INeC), Avenida Bandeirantes, 3900, Ribeirão Preto, SP 14049-901, Brazil; Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Cidade Universitária, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Mather J. The Case for Octopus Consciousness: Valence. NEUROSCI 2022; 3:656-666. [PMID: 39483764 PMCID: PMC11523718 DOI: 10.3390/neurosci3040047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 11/03/2024] Open
Abstract
Octopuses may demonstrate perceptual richness, neural unity, temporality, and finally, valence or affective evaluation, as the neural basis for consciousness. Octopuses attach a positive valence to food as 'specializing generalists' with long-term learning and flexible choices. They value shelter, yet modify, adapt and even transport it where necessary. They attach a negative valence to what may be described as pain, monitoring and protecting the damaged area and learning to associate locations with pain relief. Finally and surprisingly, octopuses attach a negative value to uncertainty so that they explore their environment before exploiting certain aspects of it and even exhibit motor play. This series of four papers, culminating in the present one, demonstrates in detail why the Cambridge Declaration of Consciousness has suggested octopuses might have the substrate for consciousness, although it is likely not similar to or as complex as that shown by 'higher' vertebrate lineages.
Collapse
Affiliation(s)
- Jennifer Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
22
|
Hu C, Wang Z, Liu B, Huang H, Zhang N, Xu Y. Validation of a system for automatic quantitative analysis of laboratory mice behavior based on locomotor pose. Comput Biol Med 2022; 150:105960. [PMID: 36122441 DOI: 10.1016/j.compbiomed.2022.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Automatic recognition and accurate quantitative analysis of rodent behavior play an important role in brain neuroscience, pharmacological and toxicological. Currently, most behavior recognition systems used in experiments mainly focus on the indirect measurements of animal movement trajectories, while neglecting the changes of animal body pose that can indicate more psychological factors. Thus, this paper developed and validated an hourglass network-based behavioral quantification system (HNBQ), which uses a combination of body pose and movement parameters to quantify the activity of mice in an enclosed experimental chamber. In addition, The HNBQ was employed to record behavioral abnormalities of head scanning in the presence of food gradients in open field test (OFT). The results proved that the HNBQ in the new object recognition (NOR) experiment was highly correlated with the scores of manual observers during the latent exploration period and the cumulative exploration time. Moreover, in the OFT, HNBQ was able to capture the subtle differences in head scanning behavior of mice in the gradient experimental groups. Satisfactory results support that the combination of body pose and motor parameters can regard as a new alternative approach for quantification of animal behavior in laboratory.
Collapse
Affiliation(s)
- Chunhai Hu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| | - Zhongjian Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| | - Bin Liu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China.
| | - Hong Huang
- Centre for Pharmacological and Toxicological Research, Institute of Medicinal Plants, Beijing, 100193, China
| | - Ning Zhang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| | - Yanguang Xu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| |
Collapse
|
23
|
Polykretis I, Michmizos KP. The role of astrocytes in place cell formation: A computational modeling study. J Comput Neurosci 2022; 50:505-518. [PMID: 35840871 PMCID: PMC9671849 DOI: 10.1007/s10827-022-00828-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Place cells develop spatially-tuned receptive fields during the early stages of novel environment exploration. The generative mechanism underlying these spatially-selective responses remains largely elusive, but has been associated with theta rhythmicity. An important factor implicating the transformation of silent cells to place cells is a spatially-uniform depolarization that is mediated by a persistent sodium current. This neuronal current is modulated by extracellular calcium concentration, which, in turn, is actively controlled by astrocytes. However, there is no established relationship between the neuronal depolarization and astrocytic activity. To consider this link, we designed a bioplausible computational model of a neuronal-astrocytic network, where astrocytes induced the transient emergence of place fields in silent cells, and accelerated the plasticity-induced consolidation of place cells. Interestingly, theta oscillations emerged naturally at the network level, resulting from the astrocytic modulation of subcellular neuronal properties. Our results suggest that astrocytes participate in spatial mapping and exploration, and further highlight the computational roles of these cells in the brain.
Collapse
Affiliation(s)
- Ioannis Polykretis
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
24
|
Rojas GR, Curry-Pochy LS, Chen CS, Heller AT, Grissom NM. Sequential delay and probability discounting tasks in mice reveal anchoring effects partially attributable to decision noise. Behav Brain Res 2022; 431:113951. [PMID: 35661751 PMCID: PMC9844124 DOI: 10.1016/j.bbr.2022.113951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 01/19/2023]
Abstract
Delay discounting and probability discounting decision making tasks in rodent models have high translational potential. However, it is unclear whether the discounted value of the large reward option is the main contributor to variability in animals' choices in either task, which may limit translation to humans. Male and female mice underwent sessions of delay and probability discounting in sequence to assess how choice behavior adapts over experience with each task. To control for "anchoring" (persistent choices based on the initial delay or probability), mice experienced "Worsening" schedules where the large reward was offered under initially favorable conditions that became less favorable during testing, followed by "Improving" schedules where the large reward was offered under initially unfavorable conditions that improved over a session. During delay discounting, both male and female mice showed elimination of anchoring effects over training. In probability discounting, both sexes of mice continued to show some anchoring even after months of training. One possibility is that "noisy", exploratory choices could contribute to these persistent anchoring effects, rather than constant fluctuations in value discounting. We fit choice behavior in individual animals using models that included both a value-based discounting parameter and a decision noise parameter that captured variability in choices deviating from value maximization. Changes in anchoring behavior over time were tracked by changes in both the value and decision noise parameters in delay discounting, but by the decision noise parameter in probability discounting. Exploratory decision making was also reflected in choice response times that tracked the degree of conflict caused by both uncertainty and temporal cost, but was not linked with differences in locomotor activity reflecting chamber exploration. Thus, variable discounting behavior in mice can result from changes in exploration of the decision options rather than changes in reward valuation.
Collapse
|
25
|
Hagbi Z, Segev E, Eilam D. Keep a level head to know the way ahead: How rodents travel on inclined surfaces? iScience 2022; 25:104424. [PMID: 35663016 PMCID: PMC9157226 DOI: 10.1016/j.isci.2022.104424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Animals traveling on a horizontal surface stabilize their head in relation to the substrate in order to gather spatial information and orient. What, however, do they do when traveling on an incline? We examined how three rodent species differing in motor abilities and habitats explore a platform tilted at 0–90°, hypothesizing that they would attempt to maintain bilateral vestibular cues. We found that traveling up or down was mainly straight vertically rather than diagonally, which results in identical bilateral vestibular cues. This was also achieved when traveling horizontally through rotating the head to parallel the horizontal plane. Traveling diagonally up or down was avoided, perhaps due to different bilateral vestibular cues that could hinder orientation. Accordingly, we suggest that maintaining identical bilateral cues is an orientational necessity that overrides differences in motor abilities and habitats, and that this necessity is a general characteristic of animals in motion. Three rodent species were tested on a platform inclined at 0°–90° Increased inclination results in traveling straight vertically or horizontally Both these shapes of trajectories feature a horizontal leveled head We suggest that such posture is required for spatial orientation when in motion
Collapse
Affiliation(s)
- Zohar Hagbi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - David Eilam
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|
26
|
Tang J, Xue R, Wang Y, Li M, Jia H, Pakan JMP, Li L, Chen X, Li X. Optical Fiber-Based Recording of Climbing Fiber Ca 2+ Signals in Freely Behaving Mice. BIOLOGY 2022; 11:907. [PMID: 35741428 PMCID: PMC9220032 DOI: 10.3390/biology11060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
The olivocerebellar circuitry is important to convey both motor and non-motor information from the inferior olive (IO) to the cerebellar cortex. Several methods are currently established to observe the dynamics of the olivocerebellar circuitry, largely by recording the complex spike activity of cerebellar Purkinje cells; however, these techniques can be technically challenging to apply in vivo and are not always possible in freely behaving animals. Here, we developed a method for the direct, accessible, and robust recording of climbing fiber (CF) Ca2+ signals based on optical fiber photometry. We first verified the IO stereotactic coordinates and the organization of contralateral CF projections using tracing techniques and then injected Ca2+ indicators optimized for axonal labeling, followed by optical fiber-based recordings. We demonstrated this method by recording CF Ca2+ signals in lobule IV/V of the cerebellar vermis, comparing the resulting signals in freely moving mice. We found various movement-evoked CF Ca2+ signals, but the onset of exploratory-like behaviors, including rearing and tiptoe standing, was highly synchronous with recorded CF activity. Thus, we have successfully established a robust and accessible method to record the CF Ca2+ signals in freely behaving mice, which will extend the toolbox for studying cerebellar function and related disorders.
Collapse
Affiliation(s)
- Jiechang Tang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rou Xue
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| | - Yan Wang
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
| | - Min Li
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Janelle M. P. Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Longhui Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| |
Collapse
|
27
|
Bermudez Contreras E, Sutherland RJ, Mohajerani MH, Whishaw IQ. Challenges of a small world analysis for the continuous monitoring of behavior in mice. Neurosci Biobehav Rev 2022; 136:104621. [PMID: 35307475 DOI: 10.1016/j.neubiorev.2022.104621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
Documenting a mouse's "real world" behavior in the "small world" of a laboratory cage with continuous video recordings offers insights into phenotypical expression of mouse genotypes, development and aging, and neurological disease. Nevertheless, there are challenges in the design of a small world, the behavior selected for analysis, and the form of the analysis used. Here we offer insights into small world analyses by describing how acute behavioral procedures can guide continuous behavioral methodology. We show how algorithms can identify behavioral acts including walking and rearing, circadian patterns of action including sleep duration and waking activity, and the organization of patterns of movement into home base activity and excursions, and how they are altered with aging. We additionally describe how specific tests can be incorporated within a mouse's living arrangement. We emphasize how machine learning can condense and organize continuous activity that extends over extended periods of time.
Collapse
Affiliation(s)
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| |
Collapse
|
28
|
Osterlund Oltmanns JR, Schaeffer EA, Goncalves Garcia M, Donaldson TN, Acosta G, Sanchez LM, Davies S, Savage DD, Wallace DG, Clark BJ. Sexually dimorphic organization of open field behavior following moderate prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:861-875. [PMID: 35315075 PMCID: PMC9117438 DOI: 10.1111/acer.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce deficits in a wide range of cognitive functions but is especially detrimental to behaviors requiring accurate spatial information processing. In open field environments, spatial behavior is organized such that animals establish "home bases" marked by long stops focused around one location. Progressions away from the home base are circuitous and slow, while progressions directed toward the home base are non-circuitous and fast. The impact of PAE on the organization of open field behavior has not been experimentally investigated. METHODS In the present study, adult female and male rats with moderate PAE or saccharin exposure locomoted a circular high walled open field for 30 minutes under lighted conditions. RESULTS The findings indicate that PAE and sex influence the organization of open field behavior. Consistent with previous literature, PAE rats exhibited greater locomotion in the open field. Novel findings from the current study indicate that PAE and sex also impact open field measures specific to spatial orientation. While all rats established a home base on the periphery of the open field, PAE rats, particularly males, exhibited significantly less clustered home base stopping with smaller changes in heading between stops. PAE also impaired progression measures specific to distance estimation, while sex alone impacted progression measures specific to direction estimation. CONCLUSIONS These findings support the conclusion that adult male rats have an increased susceptibility to the effects of PAE on the organization of open field behavior.
Collapse
Affiliation(s)
| | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Tia N Donaldson
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gabriela Acosta
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Lilliana M Sanchez
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Suzy Davies
- Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Hagbi Z, Eilam D. On heights and plains: How rodents from different habitats cope with three-dimensional environments? PLoS One 2022; 17:e0265176. [PMID: 35271680 PMCID: PMC8912188 DOI: 10.1371/journal.pone.0265176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022] Open
Abstract
Dwelling in a specific habitat requires adaptation to the habitat physical and biological properties in order to maximize fitness. Adaptations that are manifested in the organization of behavior in time and space reflect how the environment is perceived and utilized. Testing species from different habitats in the same laboratory environment can uncover the differences in their behavior and their adaptations to specific habitats. The question posed in this study is that of how two rodent species, one occupying flatlands (Tristram’s jird; Meriones tristrami) and the other occupying structured rocky habitats (common spiny mouse; Acomys dimidiatus), differ in the way that they explore the same three-dimensional laboratory environment. Individuals of these two species were introduced into an arena with a five-level ziggurat in the center, and their behavior was followed for 60 min. We found that both species preserved the typical spatiotemporal rodents’ behavior of establishing a home-base—a location that is a terminal from which they set out to explore the environment. However, the jirds, which live in flatlands, mainly travelled on the arena floor and the lower levels of the ziggurat; while, in contrast, the spiny mice, which live in rocky habitats and are used to climbing, mostly remained and travelled on the ziggurat, with some of them hardly descending to the arena floor. We suggest that the distinction in spatial behavior between the two species reflects their different motor abilities, different depth perception, and different umvelt (perceived world), in accordance with their different natural habitats.
Collapse
Affiliation(s)
- Zohar Hagbi
- George S. Wise Faculty of Life-Sciences, School of Zoology, Tel-Aviv University, Ramat-Aviv, Israel
| | - David Eilam
- George S. Wise Faculty of Life-Sciences, School of Zoology, Tel-Aviv University, Ramat-Aviv, Israel
- * E-mail:
| |
Collapse
|
30
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
31
|
Imaginary worlds are attractive because they simulate multiple adaptive problems and encode real-world information. Behav Brain Sci 2022; 45:e301. [DOI: 10.1017/s0140525x21002399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Organisms don't explore for exploration's sake: exploratory psychology is regulated by inputs from multiple adaptations dedicated to processing information from different domains of ancestral adaptive relevance. As holistic representations of environments, imaginary worlds simulate multiple adaptive problems, solutions, and outcomes, thereby engaging numerous emotional systems and providing potentially useful information. Their popularity is thus best understood in terms of the full spectrum of information domains they comprise.
Collapse
|
32
|
Kim EC, Zhang J, Tang AY, Bolton EC, Rhodes JS, Christian-Hinman CA, Chung HJ. Spontaneous seizure and memory loss in mice expressing an epileptic encephalopathy variant in the calmodulin-binding domain of K v7.2. Proc Natl Acad Sci U S A 2021; 118:e2021265118. [PMID: 34911751 PMCID: PMC8713762 DOI: 10.1073/pnas.2021265118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Epileptic encephalopathy (EE) is characterized by seizures that respond poorly to antiseizure drugs, psychomotor delay, and cognitive and behavioral impairments. One of the frequently mutated genes in EE is KCNQ2, which encodes the Kv7.2 subunit of voltage-gated Kv7 potassium channels. Kv7 channels composed of Kv7.2 and Kv7.3 are enriched at the axonal surface, where they potently suppress neuronal excitability. Previously, we reported that the de novo dominant EE mutation M546V in human Kv7.2 blocks calmodulin binding to Kv7.2 and axonal surface expression of Kv7 channels via their intracellular retention. However, whether these pathogenic mechanisms underlie epileptic seizures and behavioral comorbidities remains unknown. Here, we report conditional transgenic cKcnq2+/M547V mice, in which expression of mouse Kv7.2-M547V (equivalent to human Kv7.2-M546V) is induced in forebrain excitatory pyramidal neurons and astrocytes. These mice display early mortality, spontaneous seizures, enhanced seizure susceptibility, memory impairment, and repetitive behaviors. Furthermore, hippocampal pathology shows widespread neurodegeneration and reactive astrocytes. This study demonstrates that the impairment in axonal surface expression of Kv7 channels is associated with epileptic seizures, cognitive and behavioral deficits, and neuronal loss in KCNQ2-related EE.
Collapse
Affiliation(s)
- Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andy Y Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
33
|
Vallianatou CA, Alonso A, Aleman AZ, Genzel L, Stella F. Learning-Induced Shifts in Mice Navigational Strategies Are Unveiled by a Minimal Behavioral Model of Spatial Exploration. eNeuro 2021; 8:ENEURO.0553-20.2021. [PMID: 34330819 PMCID: PMC8489025 DOI: 10.1523/eneuro.0553-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Shifts in spatial patterns produced during the execution of a navigational task can be used to track the effects of the accumulation of knowledge and the acquisition of structured information about the environment. Here, we provide a quantitative analysis of mice behavior while performing a novel goal localization task in a large, modular arena, the HexMaze. To demonstrate the effects of different forms of previous knowledge we first obtain a precise statistical characterization of animals' paths with sub-trial resolution and over different phases of learning. The emergence of a flexible representation of the task is accompanied by a progressive improvement of performance, mediated by multiple, multiplexed time scales. We then use a generative mathematical model of the animal behavior to isolate the specific contributions to the final navigational strategy. We find that animal behavior can be accurately reproduced by the combined effect of a goal-oriented component, becoming stronger with the progression of learning, and of a random walk component, producing choices unrelated to the task and only partially weakened in time.
Collapse
Affiliation(s)
| | - Alejandra Alonso
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| | | | - Lisa Genzel
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| | - Federico Stella
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| |
Collapse
|
34
|
Rodrigues NC, Silva-Cruz A, Caulino-Rocha A, Bento-Oliveira A, Alexandre Ribeiro J, Cunha-Reis D. Hippocampal CA1 theta burst-induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. Eur J Neurosci 2021; 54:5272-5292. [PMID: 34251729 DOI: 10.1111/ejn.15390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
Long-term potentiation (LTP) is a highly studied cellular process, yet determining the transduction and gamma aminobutyric acid (GABAergic) pathways that are the essential versus modulatory for LTP elicited by theta burst stimulation (TBS) in the hippocampal Cornu Ammonis 1 (CA1) area is still elusive, due to the use of different TBS intensities, patterns or different rodent/cellular models. We now characterised the developmental maturation and the transduction and GABAergic pathways required for mild TBS-induced LTP in hippocampal CA1 area in male rats. LTP induced by TBS (5x4) (five bursts of four pulses delivered at 100 Hz) lasted for up to 3 h and was increasingly larger from weaning to adulthood. Stronger TBS patterns - TBS (15x4) or three TBS (15x4) separated by 6 min induced nearly maximal LTP not being the best choice to study the value of LTP-enhancing drugs. LTP induced by TBS (5x4) in young adults was fully dependent on N-methyl D-aspartate (NMDA) receptor and calmodulin-dependent protein kinase II (CaMKII) activity but independent of protein kinase A (PKA) or protein kinase C (PKC) activity. Furthermore, it was partially dependent on GABAB receptor activation and was potentiated by GABAA receptor blockade and less by GAT-1 transporter blockade. AMPA GluA1 phosphorylation on Ser831 (CaMKII target) but not GluA1 Ser845 (PKA target) was essential for LTP expression. The phosphorylation of the Kv4.2 channel was observed at Ser438 (CaMKII target) but not at Thr602 or Thr607 (ERK/MAPK pathway target). This suggests that cellular kinases like PKA, PKC, or kinases of the ERK/MAPK family although important modulators of TBS (5x4)-induced LTP may not be essential for its expression in the CA1 area of the hippocampus.
Collapse
Affiliation(s)
| | - Armando Silva-Cruz
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal
| | - Ana Caulino-Rocha
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Cunha-Reis
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Osterlund Oltmanns JR, Lipton MH, Adamczyk N, Lake RI, Blackwell AA, Schaeffer EA, Tsai SY, Kartje GL, Wallace DG. Organization of exploratory behavior under dark conditions in female and male rats. Behav Processes 2021; 189:104437. [PMID: 34089779 DOI: 10.1016/j.beproc.2021.104437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Sexually dimorphic performance has been observed across humans and rodents in many spatial tasks. In general, these spatial tasks do not dissociate the use of environmental and self-movement cues. Previous work has demonstrated a role for self-movement cue processing in organizing open field behavior; however, these studies have not directly compared female and male movement characteristics. The current study examined the organization of open field behavior under dark conditions in female and male rats. Significant differences between female and male rats were observed in the location of stopping behavior relative to a cue and the topography exhibited during lateral movements. In contrast, no sex differences were observed on measures used to detect self-movement cue processing deficits. These results provide evidence that female and male rats are similar in their use of self-movement cues to organize open field behavior; however, other factors may be contributing to differences in performance.
Collapse
Affiliation(s)
| | - Megan H Lipton
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Natalie Adamczyk
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Rami I Lake
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Ashley A Blackwell
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Ericka A Schaeffer
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| | - Shih-Yen Tsai
- Loyola University Health Sciences Division, Maywood, IL, United States; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, United States
| | - Gwendolyn L Kartje
- Loyola University Health Sciences Division, Maywood, IL, United States; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, United States
| | - Douglas G Wallace
- Psychology Department, Northern Illinois University, DeKalb Illinois, United States
| |
Collapse
|
36
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
37
|
Smith AE, Wood ER, Dudchenko PA. The stimulus control of local enclosures and barriers over head direction and place cell spatial firing. Brain Behav 2021; 11:e02070. [PMID: 33606361 PMCID: PMC8119864 DOI: 10.1002/brb3.2070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Head direction cell and place cell spatially tuned firing is often anchored to salient visual landmarks on the periphery of a recording environment. What is less well understood is whether structural features of an environment, such as orientation of a maze sub-compartment or a polarizing barrier, can likewise control spatial firing. METHOD We recorded from 54 head direction cells in the medial entorhinal cortex and subicular region of male Lister Hooded rats while they explored an apparatus with four parallel or four radially arranged compartments (Experiment 1). In Experiment 2, we recorded from 130 place cells (in Lister- and Long-Evans Hooded rats) and 30 head direction cells with 90° rotations of a cue card and a barrier in a single environment (Experiment 2). RESULTS We found that head direction cells maintained a similar preferred firing direction across four separate maze compartments even when these faced different directions (Experiment 1). However, in an environment with a single compartment, we observed that both a barrier and a cue card exerted comparable amounts of stimulus control over head direction cells and place cells (Experiment 2). CONCLUSION The maintenance of a stable directional orientation across maze compartments suggests that the head direction cell system has the capacity to provide a global directional reference that allows the animal to distinguish otherwise similar maze compartments based on the compartment's orientation. A barrier is, however, capable of controlling spatially tuned firing in an environment in which it is the sole polarizing feature.
Collapse
Affiliation(s)
- Anna E Smith
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Division of Psychology, University of Stirling, Stirling, UK.,University of St. Andrews, St. Andrews, UK
| | - Emma R Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
38
|
Banovetz MT, I Lake R, Blackwell AA, Oltmanns JRO, Schaeffer EA, M Yoder R, Wallace DG. Effects of acquired vestibular pathology on the organization of mouse exploratory behavior. Exp Brain Res 2021; 239:1125-1139. [PMID: 33555382 DOI: 10.1007/s00221-020-06032-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022]
Abstract
Rodent open field behavior is highly organized and occurs spontaneously in novel environments. This organization is disrupted in mice with vestibular pathology, suggesting vestibular signals provide important contributions to this behavior. A caveat to this interpretation is that previous studies have investigated open field behavior in adult mice with congenital vestibular dysfunction, and the observed deficits may have resulted from developmental changes instead of the lack of vestibular signals. To determine which aspects of open field behavior depend specifically on vestibular signals, mouse movement organization was examined under dark and light conditions at two time points, 1 and 2 months, after bilateral chemical labyrinthectomy. Our results show that acquired vestibular damage selectively disrupted the organization of open field behavior. Access to visual environmental cues attenuated, but did not eliminate, these significant group differences. Improvement in movement organization from the first to the second testing session was limited to progression path circuity. These observations provide evidence for the role of the vestibular system in maintaining spatial orientation and establishes a foundation to investigate neuroplasticity in brain systems that process self-movement information.
Collapse
Affiliation(s)
- Mark T Banovetz
- Department of Psychology, Northern Illinois University, DeKalb, 60115, USA
| | - Rami I Lake
- Department of Psychology, Northern Illinois University, DeKalb, 60115, USA
| | - Ashley A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, 60115, USA
| | | | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, 60115, USA
| | - Ryan M Yoder
- Department of Psychology, Coastal Carolina University, Conway, 29528, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, 60115, USA.
| |
Collapse
|
39
|
Donnarumma F, Prevete R, Maisto D, Fuscone S, Irvine EM, van der Meer MAA, Kemere C, Pezzulo G. A framework to identify structured behavioral patterns within rodent spatial trajectories. Sci Rep 2021; 11:468. [PMID: 33432100 PMCID: PMC7801653 DOI: 10.1038/s41598-020-79744-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022] Open
Abstract
Animal behavior is highly structured. Yet, structured behavioral patterns-or "statistical ethograms"-are not immediately apparent from the full spatiotemporal data that behavioral scientists usually collect. Here, we introduce a framework to quantitatively characterize rodent behavior during spatial (e.g., maze) navigation, in terms of movement building blocks or motor primitives. The hypothesis that we pursue is that rodent behavior is characterized by a small number of motor primitives, which are combined over time to produce open-ended movements. We assume motor primitives to be organized in terms of two sparsity principles: each movement is controlled using a limited subset of motor primitives (sparse superposition) and each primitive is active only for time-limited, time-contiguous portions of movements (sparse activity). We formalize this hypothesis using a sparse dictionary learning method, which we use to extract motor primitives from rodent position and velocity data collected during spatial navigation, and successively to reconstruct past trajectories and predict novel ones. Three main results validate our approach. First, rodent behavioral trajectories are robustly reconstructed from incomplete data, performing better than approaches based on standard dimensionality reduction methods, such as principal component analysis, or single sparsity. Second, the motor primitives extracted during one experimental session generalize and afford the accurate reconstruction of rodent behavior across successive experimental sessions in the same or in modified mazes. Third, in our approach the number of motor primitives associated with each maze correlates with independent measures of maze complexity, hence showing that our formalism is sensitive to essential aspects of task structure. The framework introduced here can be used by behavioral scientists and neuroscientists as an aid for behavioral and neural data analysis. Indeed, the extracted motor primitives enable the quantitative characterization of the complexity and similarity between different mazes and behavioral patterns across multiple trials (i.e., habit formation). We provide example uses of this computational framework, showing how it can be used to identify behavioural effects of maze complexity, analyze stereotyped behavior, classify behavioral choices and predict place and grid cell displacement in novel environments.
Collapse
Affiliation(s)
- Francesco Donnarumma
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy
| | - Roberto Prevete
- Department of Electric Engineering and Information Technologies (DIETI), Università degli Studi di Napoli Federico II, Naples, Italy
| | - Domenico Maisto
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | | | - Emily M Irvine
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | | | - Caleb Kemere
- Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy.
| |
Collapse
|
40
|
Dorfman A, Weiss O, Hagbi Z, Levi A, Eilam D. Social spatial cognition. Neurosci Biobehav Rev 2020; 121:277-290. [PMID: 33373664 DOI: 10.1016/j.neubiorev.2020.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Social spatial cognition refers to the interaction between self, place, and partners, with emphasis on the impact of the social environment on spatial behavior and on how individual spatial representations converge to form collective spatial behavior - i.e., common places and routes. Recent studies suggest that in addition to their mental representation (cognitive map) of the physical environment, humans and other animals also have a social cognitive map. We suggest that while social spatial cognition relies on knowledge of both the physical and the social environments, it is the latter hat predominates. This dominance is illustrated here in the modulation of spatial behavior according to dynamic social interactions, ranging from group formation to an attenuation of drug-induced stereotypy through the mere presence of a normal subject. Consequently we suggest that the numerous studies on the biobehavioral controlling mechanisms of spatial behavior (i.e. - the hippocampal formation, animal models for mental disorders) should also consider the social environment rather than solely focusing on the spatial behavior of lone animals.
Collapse
Affiliation(s)
- Alex Dorfman
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - Omri Weiss
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - Zohar Hagbi
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - Anat Levi
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - David Eilam
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel.
| |
Collapse
|
41
|
Midbrain circuits of novelty processing. Neurobiol Learn Mem 2020; 176:107323. [PMID: 33053429 DOI: 10.1016/j.nlm.2020.107323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.
Collapse
|
42
|
Ferroni NM, Berardino BG, Belluscio LM, Fernández MS, Fesser EA, Sonzogni SV, Cánepa ET. Perinatal protein malnutrition induces the emergence of enduring effects and age-related impairment behaviors, increasing the death risk in a mouse model. Nutr Neurosci 2020; 25:976-989. [PMID: 33034271 DOI: 10.1080/1028415x.2020.1829343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early-life adversity impacts on the offspring's brain development and is associated with a higher risk of developing age-associated diseases. In particular, perinatal protein malnutrition appears to be one of the most critical nutritional deficiencies affecting the individual's health and survival, but little is known about its effects on the persistence of behavioral alterations throughout life. Thus, the aim of the present study was to investigate how perinatal protein malnutrition impacts on age-related changes in the neuromuscular, cognitive and behavioral functions throughout life in a mouse model. METHODS One group of CF-1 dams received a normal-protein diet (NP: 20% casein) during gestation and lactation, whereas another group received a low-protein diet (LP: 10% casein). The offspring of both groups were analyzed by means of several behavioral tests at four different ages (young: 6-10 weeks old, mature: 22-26 weeks old, middle age: 39-43 weeks old, and old: 55-59 weeks old). RESULTS Regarding neuromuscular functions, LP mice showed an early deterioration in muscular strength and a reduction in the body weight throughout life. Regarding behavior, while NP mice showed an age-related reduction of exploratory behavior, LP mice showed a constantly low level of this behavior, as well as high anxiety-like behavior, which remained at high levels throughout life. Regarding cognitive functions, LP mice showed deteriorated working memory at middle age. Finally, LP mice died 3.4 times earlier than NP mice. Analysis of the sex-related vulnerability showed that females and males were equally affected by perinatal protein malnutrition throughout life. CONCLUSION Our results demonstrate that perinatal protein malnutrition induces enduring and age-related impairment behaviors, which culminate in higher death risk, affecting males and females equally.
Collapse
Affiliation(s)
- Nadina M Ferroni
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Laura M Belluscio
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María S Fernández
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad de Buenos Aires, Argentina
| | - Estefanía A Fesser
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Silvina V Sonzogni
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
43
|
Botta P, Fushiki A, Vicente AM, Hammond LA, Mosberger AC, Gerfen CR, Peterka D, Costa RM. An Amygdala Circuit Mediates Experience-Dependent Momentary Arrests during Exploration. Cell 2020; 183:605-619.e22. [PMID: 33031743 DOI: 10.1016/j.cell.2020.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 05/31/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we uncovered an experience-dependent increase in momentary arrests in locations where animals arrested previously. Calcium imaging in freely exploring mice revealed a genetically and projection-defined neuronal ensemble in the basolateral amygdala that is active during self-paced behavioral arrests. This ensemble was recruited in an experience-dependent manner, and closed-loop optogenetic manipulation of these neurons revealed that they are sufficient and necessary to drive experience-dependent arrests during exploration. Projection-specific imaging and optogenetic experiments revealed that these arrests are effected by basolateral amygdala neurons projecting to the central amygdala, uncovering an amygdala circuit that mediates momentary arrests in familiar places but not avoidance or anxiety/fear-like behaviors.
Collapse
Affiliation(s)
- Paolo Botta
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Akira Fushiki
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ana Mafalda Vicente
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Luke A Hammond
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | | | - Darcy Peterka
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Champalimaud Neuroscience Program, Champalimaud Foundation, Lisbon 1400-038, Portugal.
| |
Collapse
|
44
|
Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation. Anim Cogn 2020; 24:133-163. [PMID: 32959344 PMCID: PMC7829245 DOI: 10.1007/s10071-020-01432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
We investigated how access to the vertical dimension influences the natural exploratory and foraging behaviour of rats. Using high-accuracy three-dimensional tracking of position in two- and three-dimensional environments, we sought to determine (i) how rats navigated through the environments with respect to gravity, (ii) where rats chose to form their home bases in volumetric space, and (iii) how they navigated to and from these home bases. To evaluate how horizontal biases may affect these behaviours, we compared a 3D maze where animals preferred to move horizontally to a different 3D configuration where all axes were equally energetically costly to traverse. Additionally, we compared home base formation in two-dimensional arenas with and without walls to the three-dimensional climbing mazes. We report that many behaviours exhibited by rats in horizontal spaces naturally extend to fully volumetric ones, such as home base formation and foraging excursions. We also provide further evidence for the strong differentiation of the horizontal and vertical axes: rats showed a horizontal movement bias, they formed home bases mainly in the bottom layers of both mazes and they generally solved the vertical component of return trajectories before and faster than the horizontal component. We explain the bias towards horizontal movements in terms of energy conservation, while the locations of home bases are explained from an information gathering view as a method for correcting self-localisation.
Collapse
|
45
|
Gielman S, Hagbi Z, Dulitzky Y, Blumenfeld-Lieberthal E, Eilam D. How do rodents explore a three-dimensional environment? Habitat-dependent and direction-dependent differences. Behav Processes 2020; 178:104183. [DOI: 10.1016/j.beproc.2020.104183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
46
|
Teixeira AE, Rocha-Gomes A, Pereira dos Santos T, Amaral BLS, da Silva AA, Malagutti AR, Leite FRF, Stuckert-Seixas SR, Riul TR. Cafeteria diet administered from lactation to adulthood promotes a change in risperidone sensitivity on anxiety, locomotion, memory, and social interaction of Wistar rats. Physiol Behav 2020; 220:112874. [DOI: 10.1016/j.physbeh.2020.112874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
|
47
|
Burke CJ, Whishaw IQ. Sniff, look and loop excursions as the unit of “exploration” in the horse (Equus ferus caballis) when free or under saddle in an equestrian arena. Behav Processes 2020; 173:104065. [DOI: 10.1016/j.beproc.2020.104065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
|
48
|
Fukawa A, Aizawa T, Yamakawa H, Eguchi Yairi I. Identifying Core Regions for Path Integration on Medial Entorhinal Cortex of Hippocampal Formation. Brain Sci 2020; 10:brainsci10010028. [PMID: 31948100 PMCID: PMC7016820 DOI: 10.3390/brainsci10010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
Path integration is one of the functions that support the self-localization ability of animals. Path integration outputs position information after an animal’s movement when initial-position and movement information is input. The core region responsible for this function has been identified as the medial entorhinal cortex (MEC), which is part of the hippocampal formation that constitutes the limbic system. However, a more specific core region has not yet been identified. This research aims to clarify the detailed structure at the cell-firing level in the core region responsible for path integration from fragmentarily accumulated experimental and theoretical findings by reviewing 77 papers. This research draws a novel diagram that describes the MEC, the hippocampus, and their surrounding regions by focusing on the MEC’s input/output (I/O) information. The diagram was created by summarizing the results of exhaustively scrutinizing the papers that are relative to the I/O relationship, the connection relationship, and cell position and firing pattern. From additional investigations, we show function information related to path integration, such as I/O information and the relationship between multiple functions. Furthermore, we constructed an algorithmic hypothesis on I/O information and path-integration calculation method from the diagram and the information of functions related to path integration. The algorithmic hypothesis is composed of regions related to path integration, the I/O relations between them, the calculation performed there, and the information representations (cell-firing pattern) in them. Results of examining the hypothesis confirmed that the core region responsible for path integration was either stellate cells in layer II or pyramidal cells in layer III of the MEC.
Collapse
Affiliation(s)
- Ayako Fukawa
- Graduate School of Science and Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan;
- Correspondence: ; Tel.: +81-3-3238-3300
| | - Takahiro Aizawa
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Hiroshi Yamakawa
- The Whole Brain Architecture Initiative, a Specified Nonprofit Organization, Nishikoiwa 2-19-21, Edogawa-ku, Tokyo 133-0057, Japan;
- Dwango Co., Ltd., KABUKIZA TOWER, 4-12-15 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan;
| |
Collapse
|
49
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
50
|
Abstract
Mammals have evolved specialized brain systems to support efficient navigation within diverse habitats and over varied distances, but while navigational strategies and sensory mechanisms vary across species, core spatial components appear to be widely shared. This review presents common elements found in mammalian spatial mapping systems, focusing on the cells in the hippocampal formation representing orientational and locational spatial information, and 'core' mammalian hippocampal circuitry. Mammalian spatial mapping systems make use of both allothetic cues (space-defining cues in the external environment) and idiothetic cues (cues derived from self-motion). As examples of each cue type, we discuss: environmental boundaries, which control both orientational and locational neuronal activity and behaviour; and 'path integration', a process that allows the estimation of linear translation from velocity signals, thought to depend upon grid cells in the entorhinal cortex. Building cognitive maps entails sampling environments: we consider how the mapping system controls exploration to acquire spatial information, and how exploratory strategies may integrate idiothetic with allothetic information. We discuss how 'replay' may act to consolidate spatial maps, and simulate trajectories to aid navigational planning. Finally, we discuss grid cell models of vector navigation.
Collapse
Affiliation(s)
| | - Tom Hartley
- Department of Psychology, University of York, YO10 5DD, UK
| | - Colin Lever
- Psychology Department, Durham University, DH1 3LE, UK.
| |
Collapse
|