1
|
Han Z, Cheng K, Pan Y, Chen F, Shao JH, Liu S, Sun Q, Wei S, Ji H. Influence of beeswax-based fish oil oleogels on the mechanism of water and oil retention in Pacific white shrimp (Litopenaeus vannamei) meat emulsion gels: Filling, emulsification and phase transition. Food Chem 2024; 458:140188. [PMID: 38964098 DOI: 10.1016/j.foodchem.2024.140188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Oleogels have been used in the gelled surimi products to replace animal fats due to its structure characteristics. The effect of structure characteristics in fish oil oleogels on the mechanism of oil/water retention was investigated in meat emulsions. Beeswax assembly improved the oil and water retention. The unsaturation degree of fatty acids lowered the mobility of bound water, immobilized water as well as bound fat in the fish oil oleogel, but enhanced the mobility of free water and protons of unsaturated fatty acids. Beeswax addition and oil phase characteristics could enhance β-sheets, disulfide bonds and hydrophobic force to improve the viscoelasticity, gel strength and oil/water retention. Beeswax assembly facilitated the tight micro-sol network and filling effect, and high unsaturation degree promoted the emulsification effect, thus reducing phase transition temperature and juice loss. The study could lay the foundation for development of gelled shrimp meat products with EPA and DHA.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Kaixing Cheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Fei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
2
|
Jiang Q, Chen K, Cai Z, Li Y, Zhang H. Phase inversion regulable bigels co-stabilized by Chlorella pyrenoidosa protein and beeswax: In-vitro digestion and food 3D printing. Int J Biol Macromol 2024; 277:134540. [PMID: 39111465 DOI: 10.1016/j.ijbiomac.2024.134540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Algal proteins are an emerging source of functional foods. Herein, Chlorella pyrenoidosa protein (CPP)/xanthan gum-based hydrogels (HG) and beeswax-gelled oleogels (OG) are adopted to fabricate bigels. The phase inversion of bigels can be regulated by the ratio of OG and HG: As the OG increased, bigels turn from OG-in-HG (OG/HG) to a semicontinuous state and then HG-in-OG (HG/OG). In OG/HG bigels (OG ≤ 50 %), hydrophilic CPP acts as the emulsifier at the interface of OG and HG, while beeswax emulsifies the system in HG/OG bigels (OG = 80 %). A semicontinuous bigel appears during the transition between HG/OG and OG/HG. The increase of OG can enhance the viscoelasticity, hardness, adhesiveness, chewiness, and thermal stability. OG/HG bigels exhibit stronger thixotropic recovery and oil-holding capacity than HG/OG bigels. In the in-vitro digestion and food 3D printing, the high specific surface area and the highest thixotropic recovery caused by the emulsion structure of the OG/HG bigel (OG = 50 %) are conducive to the release of free fatty acids and molding of 3D-printed objects, respectively. This study provides a new approach to structure the gelled water-oil system with CPP and helps to develop edible algal proteins-based multiphase systems in food engineering or pharmacy.
Collapse
Affiliation(s)
- Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kaini Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China
| | - Zhe Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
| |
Collapse
|
3
|
Wang X, Huang M, Yao Y, Yu J, Cui H, Hayat K, Zhang X, Ho CT. Crucial textural properties of braised pork to evaluate the oral mastication behavior and its water distribution to influence tenderness. J Food Sci 2024; 89:6174-6188. [PMID: 39175174 DOI: 10.1111/1750-3841.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
The complex composition of braised pork, including lean meat, pigskin, and fat, makes it difficult for sensory evaluation of its texture properties. This study investigated the correlation between sensory texture attributes and physicochemical properties to achieve an objective and comprehensive evaluation of the texture of braised pork. Sensory analysis demonstrated that the overall texture acceptability of braised pork was significantly and negatively influenced by sensory texture attributes (including sensory hardness, chewiness, and toughness), while it was positively impacted by sensory adhesiveness, softness, and juiciness. Shear force and texture profile analysis (TPA) variables, reflecting mastication behavior, were used to characterize the textural properties of braised pork. They were closely related to water distribution, with a higher proportion of immobilized water (P21), indicating a higher water holding capacity and a more tender texture. Correlation analysis between sensory texture attributes and physicochemical properties through partial least squares regression further revealed significant associations between shear force, TPA variables, and sensory texture attributes. Moreover, the proportion of immobilized water (P21) significantly and negatively affected sensory hardness and chewiness, whereas the proportion of free water (P22) significantly influenced sensory toughness. Sensory texture attributes could be well predicted by the physicochemical properties by projecting test samples onto calibration models established by known samples. Therefore, a combination of sensory and instrumental measures can reliably reflect the texture properties of braised pork. PRACTICAL APPLICATION: The combination of sensory and instrumental methods is an effective strategy to accurately and objectively evaluate the texture properties of braised pork, which overcomes the limitations caused by the complexity of the composition and texture traits of braised pork. The accurate evaluation and standardization of texture properties is an important premise for the repeatable and stable cooking of traditional braised pork. Furthermore, this research method and findings can also be applied to guide the procedural optimization of smart appliances (e.g., induction cookers) for cooking braised pork.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Zhu H, Gao L, Liang J, Erihemu, Li G, Song X, Qi W. Applications and characterization of anti-browning enzymatically modified potato starch (EPS) film associated with chitosan (CTS)/L-Cys/citric acid (CA) on fresh-cut potato slices. Food Chem 2024; 452:139424. [PMID: 38754167 DOI: 10.1016/j.foodchem.2024.139424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
This study explores the influence of incorporating L-cysteine (L-Cys), chitosan (CTS), and citric acid (CA) on the enzymatic modification of potato starch (EPS) films to enhance anti-browning properties. Four types of EPS composite films were evaluated for preserving fresh-cut potato slices at low temperatures to inhibit browning. Their thermal, physiochemical, mechanical, and digestibility properties were assessed. Results indicate that the addition of CTS, CA, and L-Cys improved the anti-browning activity of the EPS films by increasing film thickness and reducing water vapor permeability (WVP), oxygen transmission rate (OTR), ultraviolet (UV) transmittance, and tensile strength (TS). Furthermore, these additives improved the film's microstructure, resulting in reinforced intermolecular interactions, increased elongation at break, heightened crystallinity, enhanced thermal stability, and favorable gastrointestinal digestibility. Overall, EPS/CTS/L-Cys/CA composite films show promise as edible packaging materials with effective anti-browning properties.
Collapse
Affiliation(s)
- Hongmei Zhu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Lan Gao
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jingyi Liang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Erihemu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Gongqin Li
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xiaoqing Song
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Wenliang Qi
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
5
|
Yan S, Du Z, Liu C, Yu D, Zhu Z, Xu J, Xia W, Xu Y. Uncovering quality changes of surimi-sol based products subjected to freeze-thaw process: The potential role of oxidative modification on salt-dissolved myofibrillar protein aggregation and gelling properties. Food Chem 2024; 451:139456. [PMID: 38670022 DOI: 10.1016/j.foodchem.2024.139456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.
Collapse
Affiliation(s)
- Sunjie Yan
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhiyin Du
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Cikun Liu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co., Ltd, Veun Kham Village, Don Khong, Champassak, Laos; Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen 518116, Guangdong, China
| | - Junmin Xu
- Mekong Fishery Industry Co., Ltd, Veun Kham Village, Don Khong, Champassak, Laos; Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen 518116, Guangdong, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Li J, Yue X, Zhang X, Chen B, Han Y, Zhao J, Bai Y. Effect of deacetylated konjac glucomannan on the 3D printing properties of minced pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5274-5283. [PMID: 38334358 DOI: 10.1002/jsfa.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The influences of deacetylated konjac glucomannan (DKGM) at different condition levels (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) on the 3D printing feasibility, printing properties, and the final gel characteristics of minced pork were investigated. RESULTS As the DKGM content increased, the printing accuracy and stability initially increased and then declined, and the printing stability and accuracy increased to their highest levels (98.16% and 98.85%) with a 1.5% addition of DKGM. Furthermore, the addition of DKGM significantly enhanced the texture of 3D-printed meat after heat treatments. When the DKGM content reached 1.5%, the hardness and springiness were 1.19 and 1.06 times higher than those of the control group. The results of low-field nuclear magnetic resonance and Raman spectra revealed that DKGM enhanced the amount of bound water in 3D-printed meat and encouraged changes in protein structure. After the addition of DKGM at 1.5%, the contents of bound water and β-sheets were 7.67% and 12.89% higher than those of the control group, respectively, facilitating the development of a better gel network of minced meat during heating. CONCLUSION The results indicate that a concentration of 1.5% DKGM is the ideal setting for obtaining the desired rheological properties and textural characteristics (printability) of 3D-printed minced meat products compared to other samples. In addition, the results showed that the addition of DKGM at 1.5% promotes the transition from α-helix to β-folding of proteins during heating, which facilitates the formation of gels. The results of the study contribute to the application potential of minced meat in the field of 3D food printing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Xuyue Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Ying Han
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Jiansheng Zhao
- Henan Shuanghui Investment & Development Co., Ltd, Luohe, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| |
Collapse
|
7
|
Yang J, Zhu S, Ren W, Liang H, Li B, Li J. Constructing gellan gum/konjac glucomannan/wheat fiber composite hydrogel to simulate edible cartilage by ionic cross-link and moisture regulation. Food Res Int 2024; 187:114329. [PMID: 38763632 DOI: 10.1016/j.foodres.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
The utilization of non-animal-derived materials to imitate cartilage is critical for the advancement of plant-based simulated meat. In this study, gellan gum (GG), konjac glucomannan (KGM), and wheat fiber (WF) were used to construct hydrogel, and the mechanical strength, water properties, and microstructure were regulated by constructing Ca2+ cross-links and moisture control. The hardness, chewiness, resilience, shear force, and shear energy of the Ca2+ cross-linked samples were significantly improved. Extrusion dehydration further changes the related mechanical properties of the hydrogel and results in a tighter microstructure. The findings suggest that the establishment of Ca2+ cross-links and water regulation are efficacious techniques for modifying the texture of the GG/KGM/WF composite hydrogel. Correlation analysis and sensory evaluation showed that the test indexes and sensory scores of the samples with Ca2+ crosslinking and 80 % moisture content were similar to chicken breast cartilage, and the samples with Ca2+ crosslinking and 70 % moisture content were similar to pig crescent bone. This study presents a framework for designing edible cartilage simulators using polysaccharide hydrogels, with implications for enhancing the resemblance of plant-based meat products to real meat and expanding the range of vegetarian offerings available.
Collapse
Affiliation(s)
- Jiyu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Sijia Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Weiwen Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
8
|
Ding Y, Feng R, Zhu Z, Xu J, Xu Y. Effects of different protein cross-linking degrees on physicochemical and subsequent thermal gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Food Chem X 2024; 22:101448. [PMID: 38764785 PMCID: PMC11101881 DOI: 10.1016/j.fochx.2024.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Knowledge regarding the denaturation process and control methods for depolymerized sol-state myofibrillar proteins (MPs) during freezing remains scant. This study investigated the effects of protein cross-linking treatment before freezing on physicochemical and subsequent gelation properties of MPs sol subjected to freeze-thaw (F-T) cycles. Results indicated that after five F-T cycles, cross-linked MPs sols showed increased high molecular weight polymers and bound water (T21a and T21b) mobility, suggesting enhanced protein-protein interactions at the expense of protein-water interactions. Upon heating after F-T cycles, gels formed from cross-linked sols exhibited significantly higher hardness, springiness, and cooking loss (P < 0.05), alongside more contracted gel networks. Correlation analysis revealed that the formation and properties of thermal gel after freezing closely relate to changes in molecular conformation and chemical bonds of cross-linked MPs sol during freezing. This study provides new insights into regulating the freezing stability and post-thawed thermal processing properties of sol-based surimi products.
Collapse
Affiliation(s)
- Yuxin Ding
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Ruonan Feng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Junmin Xu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Yanshun Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Luo X, Tan J, Yao Y, Wu N, Chen S, Xu L, Zhao Y, Tu Y. Effects of different temperatures on the physicochemical characteristics, microstructure and protein structure of preserved egg yolk. Food Chem X 2024; 22:101278. [PMID: 38524781 PMCID: PMC10957459 DOI: 10.1016/j.fochx.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
To clarify the mechanism of lower temperatures promoted the solidification of preserved egg yolk, the effects of temperature (4 °C, 10 °C and 25 °C) on the physicochemical properties, microstructure and protein structure of preserved egg yolk were studied. Results showed that the exterior egg yolk (EEY) exhibited higher pH, hardness and free sulfhydryl content at low-temperature pickling. The microstructure showed that the EEY gradually formed a denser gel network structure at lower temperatures. Electrophoresis results and Fourier transform infrared spectroscopy (FTIR) indicated that there were different degrees of protein degradation and cross-linking of proteins in the IEY (the interior egg yolk) and EEY and the decrease of β-sheets in the secondary structure was accompanied by an increase of β-turns during the formation of egg yolk gels. These results indicated that egg yolk solidification was faster and denser gel structure at 4 °C and 10 °C.
Collapse
Affiliation(s)
- Xianlong Luo
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Ji'en Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| |
Collapse
|
10
|
Ma F, Li Y, Zhang Y, Zhang Q, Li X, Cao Q, Ma H, Xie D, Zhang B, Yu J, Li X, Xie Q, Wan G, Guo M, Guo J, Yin J, Liu G. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res Int 2024; 185:114248. [PMID: 38658067 DOI: 10.1016/j.foodres.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.
Collapse
Affiliation(s)
- Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jia Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoling Wan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
11
|
Tan J, Qiu W, Wu N, Xu L, Chen S, Yao Y, Xu M, Zhao Y, Tu Y. Mechanism of ultrasonic enhancement of the gelling properties of salted ovalbumin-cooked soybean isolate hybrid gels. Food Chem X 2024; 21:101151. [PMID: 38312487 PMCID: PMC10835599 DOI: 10.1016/j.fochx.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
The influence of ultrasonic processing on the physicochemical characteristics, microstructure, and intermolecular forces of the hybrid gels obtained by heating the mixtures of different ratios of salted ovalbumin (SOVA)-cooked soybean protein isolate (CSPI) was investigated. With the growth of SOVA addition, ζ-potential in absolute value, cohesiveness, water-holding capacity (WHC), surface hydrophobicity, and the content of soluble protein of the hybrid gels decreased (P < 0.05), while the hardness, T2 relaxation time of the hybrid gels increased (P < 0.05). And the compactness of the network structure of the hybrid gel increased with the increase of SOVA addition. After being treated with ultrasound, significant increases (P < 0.05) of ζ-potential in absolute value, cohesiveness, WHC, and surface hydrophobicity of the hybrid gels were observed. In general, ultrasonic processing is one of the effective means to improve the gel properties of SOVA-CSPI hybrid gels.
Collapse
Affiliation(s)
- Ji'en Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Qiu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
12
|
Pan Y, Sun Q, Liu Y, Wei S, Han Z, Zheng O, Ji H, Zhang B, Liu S. Investigation on 3D Printing of Shrimp Surimi Adding Three Edible Oils. Foods 2024; 13:429. [PMID: 38338564 PMCID: PMC10855127 DOI: 10.3390/foods13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Three-dimensional (3D) printing provides a new method for innovative processing of shrimp surimi. However, there still exists a problem of uneven discharge during the 3D printing of surimi. The effects of different amounts of lard oil (LO), soybean oil (SO), and olive oil (OO) (0%, 2%, 4%, and 6%, respectively) added to shrimp surimi on the 3D printability of surimi were evaluated. The findings showed that with the increase in the added oil, the rheological properties, texture properties, water-holding capacity (WHC), and water distribution of surimi with the same kind of oil were significantly improved; the printing accuracy first increased and then decreased; and the printing stability showed an increasing trend (p < 0.05). The surimi with 4% oil had the highest printing adaptability (accuracy and stability). Different kinds of oil have different degrees of impact on the physical properties of surimi, thereby improving 3D-printing adaptability. Among all kinds of oil, LO had the best printing adaptability. In addition, according to various indicators and principal component analysis, adding 4% LO to shrimp surimi gave the best 3D-printing adaptability. But from the aspects of 3D printing properties and nutrition, adding 4% SO was more in line with the nutritional needs of contemporary people.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Xing M, Liu F, Lin J, Xu D, Zhong J, Xia F, Feng J, Shen G. Origin tracing and adulteration identification of bird's nest by high- and low-field NMR combined with pattern recognition. Food Res Int 2024; 175:113780. [PMID: 38129006 DOI: 10.1016/j.foodres.2023.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Edible bird's nest (EBN) is a high-value health food with various nutrients and bioactive components. With increasing demand for EBN, they are often adulterated with cheaper ingredients or falsely labeled by the origin information, thus harming consumer interests. In this study, high- and low-field nuclear magnetic resonance (HF/LF-NMR) technology combined with multivariate statistical analysis was used to identify the geographical marker of EBN from different origins and authenticate the adulterated EBN with various adulterants at different adulteration rates. Authentic EBN samples from Malaysia were used to simulate adulteration using gelatin (GL), agar (AG) and starch (ST) at 10 %, 20 %, 40 %, 60 %, 80 %, and 100 % w/w, respectively. The results showed significant differences in composition among EBN from different origins, with isocaproate and citric acid serving as geographical markers for Malaysia and Vietnam, respectively. Leucine, glutamic acid, and N-acetylglycoprotein serving as geographical markers for Indonesia. In addition, PLS model further verified the accuracy of origin identification of EBN. The LF-NMR results of adulteration EBN showed a linear correlation between the transverse relaxation (T2, S2) and the adulterated ratio. The OPLS-DA based on T2 spectra could accurately identify authentic EBN from adulterated with GL, AG and ST at 40 %, 20 %, and 20 %, respectively. Fisher discrimination model was able to differentiate at 20 %, 20 %, and 40 %, respectively. These results show that the 1H NMR combined with multivariate statistical analysis method could be a potential tool for the detection of origin and adulteration of EBN.
Collapse
Affiliation(s)
- Meijun Xing
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Fengji Liu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianzhong Lin
- Technology Center of Xiamen Customs, Xiamen 361012, China
| | - Dunming Xu
- Technology Center of Xiamen Customs, Xiamen 361012, China
| | - Jinshui Zhong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
14
|
Zhu W, Wang Q, Xu Y, Hui Z, Liu J, Zhou X. Effects of fat-to-lean ratio and cooking time on the water distribution, nutritional quality and fatty acid composition of traditional Chinese pork meatballs. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2157423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenzheng Zhu
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, College of Tourism and Culinary Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Qiuyu Wang
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, College of Tourism and Culinary Yangzhou University, Yangzhou, China
| | - Yan Xu
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, College of Tourism and Culinary Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Zengyu Hui
- Shandong HuiFa Foodstuff Co Ltd, Zhucheng, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaoyan Zhou
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, College of Tourism and Culinary Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Li X, Huang Q, Zhang Y, Huang X, Wu Y, Geng F, Huang M, Luo P, Li X. Study on the Mechanism of Modified Cellulose Improve the Properties of Egg Yolk gel. Food Chem X 2023; 20:100877. [PMID: 38144820 PMCID: PMC10740026 DOI: 10.1016/j.fochx.2023.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023] Open
Abstract
Natural fiber is not suitable for modifying yolk gel as a modifier because of its large size and high compactness. In this study, two kinds of modified cellulose were selected to improve the thermal gel properties of yolk. The results showed that the two kinds of cellulose promoted the formation of ordered structure in yolk gel. The ordered gel network not only improved the texture properties and rheological properties, but also improved the water retention of yolk gel significantly. CMC and CNFC at the same concentration, the modification effect of CMC on yolk gel was better than CNFC because of its excellent dispersion. However, high concentration of CNFC (1.20-1.60%) disrupted the cross-linking and ordered structure formation of yolk protein, and the quality of gel was significantly reduced.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yufeng Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongyan Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Peng Luo
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
16
|
Jeżowski P, Menzel J, Baranowska HM, Kowalczewski PŁ. Microwaved-Assisted Synthesis of Starch-Based Biopolymer Membranes for Novel Green Electrochemical Energy Storage Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7111. [PMID: 38005041 PMCID: PMC10672333 DOI: 10.3390/ma16227111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
The investigated starch biopolymer membrane was found to be a sustainable alternative to currently reported and used separators due to its properties, which were evaluated using physicochemical characterization. The molecular dynamics of the biomembrane were analyzed using low-field nuclear magnetic resonance (LF NMR) as well as Raman and infrared spectroscopy, which proved that the chemical composition of the obtained membrane did not degrade during microwave-assisted polymerization. Easily and cheaply prepared through microwave-assisted polymerization, the starch membrane was successfully used as a biodegradable membrane separating the positive and negative electrodes in electric double-layer capacitors (EDLCs). The obtained results for the electrochemical characterization via cyclic voltammetry (CV), galvanostatic charge with potential limitation (GCPL), and electrochemical impedance spectroscopy (EIS) show a capacitance of 30 F g-1 and a resistance of 2 Ohms; moreover, the longevity of the EDLC during electrochemical floating exceeded more than 200 h or a cyclic ability of 50,000 cycles. Furthermore, due to the flexibility of the membrane, it can be easily used in novel, flexible energy storage systems. This proves that this novel biomembrane can be a significant step toward ecologically friendly energy storage devices and could be considered a cheaper alternative to currently used materials, which cannot easily biodegrade over time in comparison to biopolymers.
Collapse
Affiliation(s)
- Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo Str., 60-965 Poznań, Poland;
| | - Jakub Menzel
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo Str., 60-965 Poznań, Poland;
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Poznań University of Life Sciences, 38/42 Wojska Polskiego Str., 60-637 Poznań, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego Str., 60-624 Poznań, Poland
| |
Collapse
|
17
|
Wang Y, Zhang H, Li K, Luo R, Wang S, Chen F, Sun Y. Dynamic changes in the water distribution and key aroma compounds of roasted chicken during roasting. Food Res Int 2023; 172:113146. [PMID: 37689908 DOI: 10.1016/j.foodres.2023.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The effects of roasting times (0, 2, 4, 6, 8, 10, 12, and 14 min) on the dynamic changes of the water distribution and key aroma compounds in roasted chicken during the electric roasting process were studied. In total, 36 volatile compounds were further determined by GC-MS and 11 compounds, including 1-octen-3-ol, 1-heptanol, hexanal, decanal, (E)-2-octenal, acetic acid hexyl ester, nonanal, 2-pentylfuran, heptanal, (E, E)-2,4-decadienal and octanal, were confirmed as key aroma compounds. The relaxation time of T22 and T23 was increased first and then decreased, while the M22 and M23 in roasted chicken were decreased and increased with increasing roasting time, respectively. The fluidity of the water in the chicken during the roasting process was decreased, and the water with a high degree of freedom migrated to the water with a low degree of freedom. In addition, the L*, a*, b*, M23 and all amino acids were positively correlated with all the key aroma compounds, while T22, M22 and moisture content were negatively correlated with all the key aroma compounds.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - KenKen Li
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Ruiming Luo
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Songlei Wang
- College of Food and Wine, Ningxia University, Yinchuan 750021, China.
| | - Fang Chen
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Ye Sun
- Quality Control Office, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
18
|
Xu Y, Zhang D, Xie F, Li X, Schroyen M, Chen L, Hou C. Changes in water holding capacity of chilled fresh pork in controlled freezing-point storage assisted by different modes of electrostatic field action. Meat Sci 2023; 204:109269. [PMID: 37394351 DOI: 10.1016/j.meatsci.2023.109269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Electrostatic field-assisted low-temperature preservation is considered a novel technology, which provides an effective means of extending the shelf-life of meat. This study aimed to investigate the effects of different output time modes of a high voltage electrostatic field (HVEF) on the water holding capacity (WHC) of chilled fresh pork during controlled freezing-point storage. Under a direct current HVEF generator, chilled fresh pork samples were treated by the single, interval, or continuous HVEF treatment, with a control check group receiving no HVEF treatment. It was determined that the WHC of the continuous HVEF treatment higher than the control check group. This difference was proven by analyzing the moisture content, storage loss, centrifugal loss, cooking loss, and nuclear magnetic resonance imaging. Furthermore, the mechanism behind HVEF-assisted controlled freezing-point storage reduced the moisture loss was conducted by examining the changes in the hydration characteristics of myofibrillar protein. The study revealed that myofibrillar proteins exhibit high solubility and low surface hydrophobicity under continuous HVEF. Additionally, continuous HVEF has been demonstrated to effectively maintain the higher WHC and lower hardness of myofibrillar protein gel by inhibiting the water molecule migration. The demonstration of these results showcases the effectiveness of electrostatic fields for the future physical preservation of meat.
Collapse
Affiliation(s)
- Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Feifei Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
19
|
Tian Y, Lin S, Bao Z. Characterization and Mechanism of Gel Deterioration of Egg Yolk Powder during Storage. Foods 2023; 12:2477. [PMID: 37444215 DOI: 10.3390/foods12132477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Egg yolk forms have several health and industrial applications, but their storage characteristics and gel mechanisms have not been thoroughly studied. In order to investigate the relationship between the changes in structure and properties of egg yolk gel and egg yolk powder during storage, in this paper, egg yolk powder was stored at 37 °C for 0, 1, 3, and 6 months in an accelerated storage experiment, and the influence of storage time on the gel properties of egg yolk powder was analyzed. The results showed that the contents of protein carbonylation and sulfhydryl in the yolk decreased gradually with the extension of storage time. Circular dichroism and fluorescence spectra showed that the ordered structure and structural stability of egg yolk proteins decreased gradually. Oxidation led to the formation of intermolecular crosslinking in the egg yolk proteins and oxidized aggregates, resulting in a decrease in surface hydrophobicity, which affected the gel properties of the egg yolk powder after rehydration, resulting in the phenomenon of lipid migration and gel degradation. The results provide a theoretical basis for improving egg yolk powder's overall quality and storage stability.
Collapse
Affiliation(s)
- Yang Tian
- National Engineering Research Center of Seafood, Liaoning Engineering Research Center of Special Dietary Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, Liaoning Engineering Research Center of Special Dietary Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, Liaoning Engineering Research Center of Special Dietary Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
20
|
Hu L, Shi L, Liu S, Xiao Z, Sun J, Shao JH. Regulation mechanism of curcumin-loaded oil on the emulsification and gelation properties of myofibrillar protein: Emphasizing the dose-response of curcumin. Food Chem 2023; 428:136687. [PMID: 37418875 DOI: 10.1016/j.foodchem.2023.136687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
The regulation mechanism of curcumin (CUR) in the oil phase on the emulsification and gelation properties of myofibrillar protein (MP) was investigated. CUR enhanced the emulsifying activity index (EAI) of MP but decreased its turbiscan stability index (TSI) and surface hydrophobicity, which exacerbated oil droplet aggregation. Medium amounts (200 mg/L) of CUR changed the 3D network architectures of emulsion gels from lamellar to reticular, improving the gels' water-holding capacity (WHC), storage modulus, springiness, and cohesiveness. Besides, the LF-NMR revealed that CUR had limited effects on the mobility of immobilized and free water. The α-helix of MP in gels with medium amounts of CUR decreased from 51% to 45%, but the β-sheet increased from 23% to 27% compared to those without CUR. Overall, CUR has the potential to become a novel structural modifier in emulsified meat products due to its dose-response.
Collapse
Affiliation(s)
- Li Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Lishuang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China.
| |
Collapse
|
21
|
Xu T, Sun X, Yan Q, Li Z, Cai W, Ding J, Fan F, Li P, Drawbridge P, Fang Y. Characterization of the physiochemical properties, microstructure, and molecular interactions of a novel rice-pea protein gel. Food Chem 2023; 424:136360. [PMID: 37207604 DOI: 10.1016/j.foodchem.2023.136360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
The application of rice and pea proteins in food production is limited due to their undesirable processing performance. The objective of this research was to develop a novel rice-pea protein gel using alkali-heat treatment. This gel had a higher solubility, stronger gel strength, better water retention capacity, and denser bilayer network. This is due to the alkali-heat induced modifications for the secondary structures of proteins (i.e., a decrease in the α-helix, and an increase in the β-sheets) and the interactions between protein molecules. The network structure of gel was more compact by adding 2% and 4% alkali-heat rice protein (AH-RP). This resulted in a stable double-layer network structure of gel. Adding 4% AH-RP significantly improved the hardness and elasticity of gel. This gel will have a good potential use for being the ingredient to produce the functional foods and meat analogs.
Collapse
Affiliation(s)
- Tong Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Qu Yan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Zhihai Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Wei Cai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China
| | - Pamela Drawbridge
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, PR China.
| |
Collapse
|
22
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
23
|
Li R, Wu N, Xue H, Gao B, Liu H, Han T, Hu X, Tu Y, Zhao Y. Influence and effect mechanism of disulfide bonds linkages between protein-coated lipid droplets and the protein matrix on the physicochemical properties, microstructure, and protein structure of ovalbumin emulsion gels. Colloids Surf B Biointerfaces 2023; 223:113182. [PMID: 36736177 DOI: 10.1016/j.colsurfb.2023.113182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In this study, disulfide bonds between the interfacial protein film formed on the lipid particles and the protein in ovalbumin emulsion gels were blocked with 0, 1, 3, 5 and 10 mM of the N-ethylmaleimide (NEM) to explore the influence and effect mechanism of disulfide bonds between the interfacial proteins on the physicochemical properties, microstructure, and protein structure of sunflower oil-ovalbumin emulsion gels. Ovalbumin emulsion gels with NEM-treated ovalbumin emulsion (N-OE) had lower hardness, free sulfhydryl content, water holding capacity (WHC), and surface hydrophobicity, but higher spin-spin relaxation time (T2) than ovalbumin emulsion gels with NEM-treated ovalbumin substrate solution (N-OSS). In addition, N-OE and N-OSS had lower hardness, free sulfhydryl content, WHC and surface hydrophobicity, as well as a more coarse and disordered microstructure than non-NEM treated ovalbumin emulsion gel (control group). The free sulfhydryl content, hardness, WHC, and surface hydrophobicity of the ovalbumin emulsion gels all decreased as the NEM concentration rose (p < 0.05), whereas the amide A band changed to higher wave numbers. These results collectively indicated that the reduction of disulfide between the interfacial layer and the proteins inhibited the hydrophobic effect, the formation of hydrogen bonds, and prevented the formation of larger aggregates. Thus the disulfide bonds between the interfacial proteins contribute to the hardness enhancement and water stabilization of the ovalbumin gel.
Collapse
Affiliation(s)
- Ruiling Li
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Binghong Gao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Huilan Liu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Tianfeng Han
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaobo Hu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
24
|
Xu J, Fan Y, Chen Q, Sun F, Li M, Kong B, Xia X. Effects of κ-carrageenan gum on 3D printability and rheological properties of pork pastes. Meat Sci 2023; 197:109078. [PMID: 36549078 DOI: 10.1016/j.meatsci.2022.109078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The effects of κ-carrageenan gum (KG) on the 3D printability and rheological properties of pork pastes were investigated in this study. There were five groups with different levels of KG (0, 2, 4, 6, and 8 g/kg) named as KG-0, KG-2, KG-4, KG-6, and KG-8, respectively. The addition of KG increased the yield stress, viscosity, shear stress, recovery percentage, storage modulus, loss modulus, and initial and average flow forces (P < 0.05). The results of low-field nuclear magnetic resonance analysis revealed that addition of KG reduced T21 and T22 (P < 0.05). The best printing parameters were obtained by accuracy and stability results: printing filling percent, 90%; printing speed, 35 mm⋅s-1; layer height, 2 mm; nozzle diameter, 1.55 mm, and KG addition level, 6 g/kg. KG addition improved the hardness, springiness, chewiness, cohesiveness, adhesiveness, and density, respectively (P < 0.05). The results suggested that KG addition improved the rheological properties and 3D printability of the pork pastes.
Collapse
Affiliation(s)
- Jianhang Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Min Li
- Delisi Group Co. LTD, Weifang 262200, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
25
|
Zhang R, Zhang Y, Yu J, Gao Y, Mao L. Enhanced freeze-thawing stability of water-in-oil pickering emulsions stabilized by ethylcellulose nanoparticles and oleogels. Carbohydr Polym 2023; 312:120814. [PMID: 37059542 DOI: 10.1016/j.carbpol.2023.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
This study developed water-in-oil (W/O) Pickering emulsions stabilized by ethylcellulose (EC) nanoparticles and EC oleogels, which presented significantly improved freeze-thawing (F/T) stability. Microstructural observation suggested EC nanoparticles were distributed at the interface and within the water droplets, and the EC oleogel trapped oil in the continuous phase. Freezing and melting temperatures of water in the emulsions with more EC nanoparticles were lowered and the corresponding enthalpy values were reduced. F/T led to lower water binding capacity but higher oil binding capacity of the emulsions, compared to the initial emulsions. Low field-nuclear magnetic resonance confirmed the increased mobility of water but decreased mobility of oil in the emulsions after F/T. Both linear and nonlinear rheological properties proved that emulsions exhibited higher strength and higher viscosity after F/T. The widened area of the elastic and viscous Lissajous plots with more nanoparticles suggested the viscosity and elasticity of emulsions were increased.
Collapse
Affiliation(s)
- Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Xin X, Zhang G, Xue H, Qiu W, Hu H, Tu Y, Zhao Y. Effects of ethanol treatment on the physicochemical properties, microstructure and protein structures of egg yolk gels. Food Chem 2023; 405:135041. [DOI: 10.1016/j.foodchem.2022.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/26/2022]
|
27
|
Effects of ultrasound-assisted slightly acidic electrolyzed water thawing on myofibrillar protein conformation and gel properties of chicken breasts. Food Chem 2023; 404:134738. [DOI: 10.1016/j.foodchem.2022.134738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/15/2022]
|
28
|
Effects of conjugates of ε-polylysine-dextran created through Maillard reaction on quality and storage stability of the chicken gel. Food Res Int 2023; 164:112360. [PMID: 36737948 DOI: 10.1016/j.foodres.2022.112360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The present study mainly focused on the effects of the conjugates of PL-dextran produced through the Maillard reaction on the quality and storage stability of chicken gel for 5 days at 4 ℃. According to the results of the texture profile, water retention capacity (WRC), low-field nuclear magnetic resonance (LF NMR), aerobic plate count (APC), and total volatile basic nitrogen (TVBN), ε-polylysine (PL) could improve chicken gel storage stability while decreasing the quality of protein gels (p < 0.05). Additionally, adding dextran with high or low molecular weight could significantly increase the quality of gel during storage (p < 0.05), whereas decreased storage stability could be obtained (p < 0.05). In general, conjugates formed by PL and dextran with high molecular weight were beneficial for quality maintenance. In comparison, the polymers produced from the low molecular weight of dextran could modify the storage stability of gels. Adding conjugates of dextran and PL benefited the structure formation of protein gel, while PL would retain part of antibacterial activity when crosslinked with dextran. Therefore, it could be concluded that the quality improvement effect of PL-dextran addition on gel quality was greater than its antibacterial effect, which would impact the formulation design of novel emulsion-type meat products.
Collapse
|
29
|
Zhang G, Lin L, Zheng X, Yang J, Ma Z, Chen X, Wang L, Huang Y, Zhang C, Yang X, Dai J. Effect of storage period on the quality characteristics of frozen beef and mechanisms of change from the corresponding physical and microstructural perspectives. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Characterization of four thermogelled egg yolk varieties based on moisture and protein content. Poult Sci 2023; 102:102499. [PMID: 36805146 PMCID: PMC9984682 DOI: 10.1016/j.psj.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
There are obvious differences between egg yolks of different varieties. Additionally, boiled eggs, which are widely liked and consumed globally, are nutrient rich. However, they absorb water in the esophagus during swallowing, and this result in an uncomfortable sensation. Here, we determined the moisture content and distribution as well as the protein contents and properties of 4 varieties of thermogelled egg yolks. Among the varieties, Green Shelled thermogelled egg yolk showed the highest protein content and solubility. Additionally, the ionic, hydrogen, and disulfide bonds corresponding to Rhode Island Red thermogelled egg yolk samples were the weakest, while the hydrophobic interaction force corresponding to the Hetian Dahei (HD) egg yolk samples was the weakest. Further, the distribution of the moisture contents of the 4 varieties was significantly different (P < 0.05). HD egg yolk showed the highest moisture content, and its bound and immobile moisture contents were significantly higher than those of the other 3 varieties. Egg yolk moisture content also affected free amino acid content, which was the highest for HD egg yolk. Therefore, owing to its high moisture content, HD egg yolk was conducive for chewing and swallowing and given its high free amino acid content, it also had a more suitable taste and flavor. The results of this study provide a theoretical basis for the application of egg yolks in food processing.
Collapse
|
31
|
Shu X, Wei Y, Luo X, Liu J, Mao L, Yuan F, Gao Y. κ-Carrageenan/konjac glucomannan composite hydrogel filled with rhamnolipid-stabilized nanostructured lipid carrier: Improvement of structure and properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Xu J, Fan Y, Liu H, Liu Q, Zhamsaranova S, Kong B, Chen Q. Improvement of rheological properties and 3D printability of pork pastes by the addition of xanthan gum. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Wu Q, Zang M, Zhao B, Wang S, Zhang S, Zhu N, Liu M, Li S, Lv G, Liu B, Zhao Y, Qiao X. Effect of citrus fiber on the phosphate-mediated gel properties of myofibrillar protein and partial replacement of phosphate. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Effects of actomyosin dissociation on the physicochemical and gelling properties of silver carp myofibrillar protein sol during freeze–thaw cycles. Food Res Int 2022; 162:112075. [DOI: 10.1016/j.foodres.2022.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
35
|
Nasrollahzadeh F, Roman L, Skov K, Jakobsen LM, Trinh BM, Tsochatzis ED, Mekonnen T, Corredig M, Dutcher JR, Martinez MM. A comparative investigation of seed storage protein fractions: The synergistic impact of molecular properties and composition on anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Understanding the Effect of Anthocyanin-rich Extract on the Gel and Digestive Properties of Soy Protein Cold-set Gels. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Zhao C, Wang F, Yang X, Mao Y, Qi Q, Zheng M, Xu X, Cao Y, Wu Y, Liu J. Synergistic influence of ultrasound and dietary fiber addition on transglutaminase-induced peanut protein gel and its application for encapsulation of lutein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
38
|
Yu P, Zhang Z, Tang X, Yu D, Jiang Q, Gao P, Yang F. Effects of acidification and sterilization on the quality of channel catfish (
Ietalurus punetaus
) fillets. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Zhiyun Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Xiaohang Tang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| |
Collapse
|
39
|
Change in rapid salting kinetics and characteristics of hen egg yolks. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Stangierski J, Baranowska HM, Rezler R, Kawecki K. The Effect of Packaging Methods, Storage Time and the Fortification of Poultry Sausages with Fish Oil and Microencapsulated Fish Oil on Their Rheological and Water-Binding Properties. Molecules 2022; 27:5235. [PMID: 36014468 PMCID: PMC9416377 DOI: 10.3390/molecules27165235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to investigate how liquid fish oil and microencapsulated oil additives influenced the rheological characteristics and the dynamics of water binding in vacuum-packed (VP) and modified-atmosphere-packed (MAP) poultry sausages during 21-day storage. In contrast to the control sample, the sausages enriched with microencapsulated fish oil (MC) were characterised by the greatest ability to accumulate deformation energy. The elastic properties of all sausage variants increased significantly in the subsequent storage periods, whereas the dynamic viscosity of the samples tended to decrease. This phenomenon was confirmed by the gradual reduction of water activity (Aw) in all sausages in the subsequent storage periods. The packaging method influenced the dynamics of water binding in an oil-additive-form-dependent manner. During the storage of the VP and MAP sausages, in samples with the fish oil additive the T1 value tended to increase while the Aw decreased. The T1 value in the MAP MC sample was similar. The FO additive resulted in greater mobility of both proton fractions in the MAP samples than in the VP samples. There were inverse relationships observed in the MC samples. The NMR tests showed that the VP samples with the MC additive were slightly better quality than the other samples.
Collapse
Affiliation(s)
- Jerzy Stangierski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Ryszard Rezler
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Krzysztof Kawecki
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| |
Collapse
|
41
|
Comparison of radio frequency and conventional tempering methods effects on quality of frozen tilapia fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Wang H, Wang Y, Wu D, Gao S, Jiang S, Tang H, Lv G, Xiaobo Z, Meng X. Changes in physicochemical quality and protein properties of porcine
longissimus lumborum
during dry ageing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hengpeng Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Yinlan Wang
- School of Food Science, Jiangsu College of Tourism Yangzhou 225000 China
| | - Danxuan Wu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Sumin Gao
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Songsong Jiang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Hailian Tang
- Suzhou Tourism and Finance Institute, Jiangsu Union Technical Institue Suzhou 215000 China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Zou Xiaobo
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| |
Collapse
|
43
|
Cen K, Yu X, Gao C, Yang Y, Tang X, Feng X. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel. Food Chem 2022; 394:133456. [PMID: 35717909 DOI: 10.1016/j.foodchem.2022.133456] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
The effects of quinoa protein Pickering emulsion (QPE) on the gel properties, protein structure and intermolecular interactions of myofibrillar protein (MP) gels were studied. Compared with the MP gels without QPE, the MP gels with 5.0%-7.5% added QPE showed significant increasing trends in storage modulus (G'), whiteness, gel strength and water holding capacity (WHC). The content of disulfide bonds in the gel increased with the addition of QPE and the disulfide bond conformation changed from gauche-gauche-gauche to gauche-gauche-trans. Moreover, the increase of hydrogen bonds after QPE addition confirmed the transformation from α-helix to β-sheet, as β-sheet structure was stabilized by interchain hydrogen bonds. The added QPE also enhanced the hydrophobic interaction and electrostatic interaction of MP gels. To conclude, the addition of 5.0%-7.5% QPE improved the intermolecular interactions and the structure stability of MP gels, and enhanced the gelation and WHC of MP gels.
Collapse
Affiliation(s)
- Kaiyue Cen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, 999078, Macau
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
44
|
Wang H, Zhang L, Pawel Czaja T, Bakalis S, Zhang W, Lametsch R. Structural characteristics of high-moisture extrudates with oil-in-water emulsions. Food Res Int 2022; 158:111554. [DOI: 10.1016/j.foodres.2022.111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
|
45
|
Wang B, Bai X, Du X, Pan N, Shi S, Xia X. Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods 2022; 11:1368. [PMID: 35564090 PMCID: PMC9099600 DOI: 10.3390/foods11091368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of vacuum thawing (VT), ultrasound thawing (UT) and microwave thawing (MT) on the quality, protein and lipid oxidation, internal temperature distribution and microstructure of porcine longissimus lumborum were compared. The results showed that a significant decrease (p < 0.05) in quality compared with those of fresh meat (FM) occurred for all of the thawing samples, especially for the MT samples. Changes in quality of the VT and UT samples were less significant than those of the MT samples. The increases in carbonyl content and TBARS value indicated that proteins and lipids in the thawing samples were oxidized. The decreases in uniform degrees of internal temperature distributions of muscles from the thawing samples were analysed by infrared thermography. Scanning electron microscopy images showed that the myofibril arrangements of thawing samples were looser than those of the FM samples with compact and ordered structure, which was proven by the obvious increase in the myofibril gap value of the thawing samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.W.); (X.B.); (X.D.); (N.P.); (S.S.)
| |
Collapse
|
46
|
Xue H, Tu Y, Zhang G, Xu M, Xin X, Zhao Y. Mechanism of the amelioration of the protein digestibility of whole marinated eggs by strong alkali pickling: Physicochemical properties, gel structure, and proteomics. Food Res Int 2022; 156:111348. [DOI: 10.1016/j.foodres.2022.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
|
47
|
Study on the enhancement effect and mechanism of heat-induced gel strength of duck egg white by emulsified lipids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Fan L, Ruan D, Shen J, Hu Z, Liu C, Chen X, Xia W, Xu Y. The role of water and oil migration in juiciness loss of stuffed fish ball with the fillings of pig fat/meat as affected by freeze-thaw cycles and cooking process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Zhao S, Liu Y, Yuan X, Zhao Y, Kang Z, Zhu M, Ma H. Effect of low-frequency alternating magnetic field on the rheological properties, water distribution and microstructure of low-salt pork batters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Li R, Xue H, Gao B, Liu H, Han T, Hu X, Tu Y, Zhao Y. Physicochemical properties and digestibility of thermally induced ovalbumin–oil emulsion gels: Effect of interfacial film type and oil droplets size. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|