1
|
Patil S, Gavandi T, Karuppayil SM, Jadhav A. Glucosinolate derivatives as antifungals: A review. Phytother Res 2024; 38:5052-5066. [PMID: 39101575 DOI: 10.1002/ptr.8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/15/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Fungal infections are becoming a severe threat to the security of global public health due to the extensive use of antibiotic medications and the rise in immune-deficient patients globally. Additionally, there is an increase in the development of fungus resistance to available antifungal medications. It is necessary to focus on the development of new antifungal medications in order to address these problems. The wide range of chemical structures, low cost, high availability, high antimicrobial action, and lack of adverse effects are the characteristics of plant secondary metabolites. In order to find and develop new antifungal medications, plant secondary metabolites like glucosinolate (GSL) derivatives are crucial sources of information. These natural compounds are enzymatically transformed into isothiocyanates (ITCs), nitriles, epithionitriles, oxazolidin-2-thion, and thiocyanate when they get mechanically damaged. The current review offers a thorough understanding of how isothiocyanates affect fungi with detailed mechanism. Along with this antifungal activity of nitriles, epithionitriles, oxazolidin-2-thion, and thiocyanate are mentioned. The review summarizes our present understanding of the following subjects: role of isothiocyanate by inhibiting aflatoxin biosynthesis, effect of isothiocyanate on transcriptomes, isothiocyanate targets cell membrane, role of isothiocyanate in efflux, and the role of isothiocyanate in synergistic activity. Antifungal activity of nitrile, epithionitrile, oxazolidine-2-thion, and thiocyanate is mentioned. Cytotoxicity study and clinical trials data were also added. More extensive studies will be needed in this field to assess safety concerns and clinical efficacies of GSL derivatives.
Collapse
Affiliation(s)
- Shivani Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Tanjila Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Ashwini Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, India
| |
Collapse
|
2
|
Hoch CC, Shoykhet M, Weiser T, Griesbaum L, Petry J, Hachani K, Multhoff G, Bashiri Dezfouli A, Wollenberg B. Isothiocyanates in medicine: A comprehensive review on phenylethyl-, allyl-, and benzyl-isothiocyanates. Pharmacol Res 2024; 201:107107. [PMID: 38354869 DOI: 10.1016/j.phrs.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maria Shoykhet
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
3
|
Barea-Ramos JD, Rodríguez MJ, Calvo P, Melendez F, Lozano J, Martín-Vertedor D. Inhibition of Botrytis cinerea in tomatoes by allyl-isothiocyanate release from black mustard (Brassica nigra) seeds and detection by E-nose. Food Chem 2024; 432:137222. [PMID: 37625300 DOI: 10.1016/j.foodchem.2023.137222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The aim of this work is to delayed the postharvest development of Botrytis cinerea in tomatoes by releasing allyl-isothiocyanate (AITC) from mustard seeds at room temperature, and to discriminate the aromatic profile by using an electronic device (E-nose). Olfactory sensory analysis showed that tomatoes inoculated in the presence of AITC did not develop the microorganisms until the eighth day of storage. The highest inhibitory concentration of AITC was found in Day 3 (175.18 ppb). However, tomatoes inoculated without the presence of AITC developed a moldy aroma on the third day of storage. The most prominent chemical groups were esters, ketones and alcohols. The compounds associated with a positive aroma were trimethyl orthoacetate, styrene, tridecan-7-amine and acetaldehyde, while compounds related to B. cinerea were hepten-2-one and butanoic acid. The E-nose was able to discriminate tomatoes based on their aromatic characteristics during the storage period. Moreover, it successfully quantified the mold defect aroma with the established Partial Least Squares (PLS) model.
Collapse
Affiliation(s)
- Juan Diego Barea-Ramos
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Félix Melendez
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain.
| |
Collapse
|
4
|
Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK. Encapsulation of carvone in chitosan nanoemulsion as edible film for preservation of slice breads against Aspergillus flavus contamination and aflatoxin B 1 production. Food Chem 2024; 430:137038. [PMID: 37549622 DOI: 10.1016/j.foodchem.2023.137038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Aspergillus flavus is a common fungus causing bread spoilage by aflatoxin B1 (AFB1) production. Essential oil components are considered as effective antifungal agent; however, volatility and oxidative-instability limited their practical applications. The aim of this study was to fabricate novel chitosan nanoemulsion film incorporating carvone (carvone-Ne) for protection of bread slices against A. flavus and AFB1 contamination in storage conditions. The nanoemulsion was characterized by SEM, DLS, XRD, and FTIR analyses accompanying with sustained delivery of carvone. The carvone-Ne displayed better inhibition of A. flavus (0.5 µL/mL) and AFB1 production (0.4 µL/mL) over unencapsulated carvone along with promising antioxidant activity (p < 0.05). Destruction of ergosterol, mitochondrial-membrane-potential, ions leakage, deformities in methylglyoxal biosynthesis, and in-silico interaction of carvone with Afl-R protein emphasized the antifungal and antiaflatoxigenic mechanisms of action. Further, in-situ preservation potentiality of Carvone-Ne in bread slices with improved gas compositions, and acceptable sensory qualities strengthen its application as innovative packaging material for food preservation.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104 West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|
6
|
Jiang L, Li Y, Shi W, Chen W, Ma Z, Feng J, Hashem AS, Wu H. Cloning and expression of the mitochondrial cytochrome c oxidase subunit II gene in Sitophilus zeamais and interaction mechanism with allyl isothiocyanate. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105392. [PMID: 37105630 DOI: 10.1016/j.pestbp.2023.105392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In the United States, allyl isothiocyanate (AITC) has been registered as an insecticide, bactericide, and nematicide. And it has been confirmed that AITC has significant insecticidal activities against four stored product pests including Sitophilus zeamais Mostchulky (Coleoptera: Curculionidae). This study aimed to verify the mechanism of action of AITC on cytochrome c oxidase core subunits II in S. zeamais. Enzyme - catalyzed reactions and Fourier transform infrared spectrometer (FTIR) analysis revealed that the expressed COX II proteins could competitively bind and inhibit the activity of COX II. Furthermore, molecular docking results showed that a sulfur atom of AITC could form a 2.9 Å hydrogen bond with Ile-30, having a binding energy of -2.46 kcal/mol.
Collapse
Affiliation(s)
- Linlin Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Weilin Shi
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Wei Chen
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute Agricultural Research Center Sakha, Kafr El-Sheikh, Egypt
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
7
|
dos Reis Gasparetto B, Chelala Moreira R, Priscilla França de Melo R, de Souza Lopes A, de Oliveira Rocha L, Maria Pastore G, Lemos Bicas J, Martinez J, Joy Steel C. Effect of supercritical CO2 fractionation of Tahiti lemon (Citrus latifolia Tanaka) essential oil on its antifungal activity against predominant molds from pan bread. Food Res Int 2022; 162:111900. [DOI: 10.1016/j.foodres.2022.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
|
8
|
Hareyama Y, Tarao M, Toyota K, Furukawa T, Fujii Y, Kushiro M. Effects of Four Isothiocyanates in Dissolved and Gaseous States on the Growth and Aflatoxin Production of Aspergillus flavus In Vitro. Toxins (Basel) 2022; 14:toxins14110756. [PMID: 36356006 PMCID: PMC9697429 DOI: 10.3390/toxins14110756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Aflatoxins (AFs), a class of toxins produced by certain species of the genus Aspergillus, occasionally contaminate food and cause serious damage to human health and the economy. AFs contamination is a global problem, and there is a need to develop effective strategies to control aflatoxigenic fungi. In this study, we focused on isothiocyanates (ITCs) as potential chemical agents for the control of aflatoxigenic fungi. We quantitatively evaluated the effects of four ITCs (allyl ITC (AITC), benzyl ITC (BITC), and methyl and phenylethyl ITCs) in dissolved and gaseous states on the growth and aflatoxin B1 production of Aspergillus flavus. In experiments using dissolved ITCs, BITC was found to be the strongest inhibitor of growth and aflatoxin B1 production by A. flavus. Meanwhile, in the gaseous state, AITC strongly inhibited the A. flavus growth. When the concentration of ITCs in the liquid medium was quantified over time, AITC levels decreased to below the detection limit within 24 h, whereas BITC levels remained stable even after 48 h. These results suggested that when ITCs are utilized to control aflatoxigenic fungi, it is necessary to use them in a dissolved or gaseous state, depending on their volatility.
Collapse
Affiliation(s)
- Yohei Hareyama
- Department of Food Energy System Science, Graduate School of Bio-Application and System Engineering Sciences, Tokyo University of Agriculture and Technology, 2-24-16, Tokyo 184-8588, Japan
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Mitsunori Tarao
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8506, Japan
| | - Koki Toyota
- Department of Food Energy System Science, Graduate School of Bio-Application and System Engineering Sciences, Tokyo University of Agriculture and Technology, 2-24-16, Tokyo 184-8588, Japan
| | - Tomohiro Furukawa
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Yoshiharu Fujii
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8506, Japan
| | - Masayo Kushiro
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba 305-8642, Japan
- Correspondence: ; Tel.: +81-29-838-8037
| |
Collapse
|
9
|
DENARDI-SOUZA T, LUZ C, MAÑES J, BADIALE-FURLONG E, MECA G. Action of phenolic extract obtained from rice bran fermented with Rhizopus oryzae in the synthesis of trichothecenes and emerging mycotoxins in sweet corn. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu J, Zhang K, Song J, Wu H, Hao H, Bi J, Hou H, Zhang G. Bacteriostatic effects of benzyl isothiocyanate on Vibrio parahaemolyticus: Transcriptomic analysis and morphological verification. BMC Biotechnol 2021; 21:56. [PMID: 34587926 PMCID: PMC8479925 DOI: 10.1186/s12896-021-00716-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foodborne illness caused by Vibrio parahaemolyticus (V. parahaemolyticus) is generally associated with the consumption of seafood. Fish and other seafood can be contaminated with V. parahaemolyticus, natural inhabitants of the marine, estuarine, and freshwater environment. In this study, the antibacterial activities of benzyl isothiocyanate (BITC) against V. parahaemolyticus were investigated by both transcriptomic analysis and morphological verification. RESULTS Treatment with 1/8 minimum inhibitory concentration (1/8 MIC) BITC resulted in 234 upregulated genes and 273 downregulated genes. The results validated by quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the relative expression levels of the six genes VP0820, VP0548, VP2233, VPA2362, fliA and fliG were only 31.0%, 31.1%, 55.8%, 57.0%, 75.3%, and 79.9% of the control group, respectively. Among them, genes VP2233, fliA and fliG are related to flagella and VP2362 can regulate a protein relevant to biofilm formation. Morphologically, we verified that the swimming diffusion diameter of V. parahaemolyticus was significantly reduced by 14.9% by bacterial swimming ability, and biofilm formation was significantly inhibited by treatment with 1/8 MIC BITC by crystal violet quantification assay. CONCLUSIONS These results indicated that 1/8 MIC BITC had antibacterial effect on V. parahaemolyticus by inhibiting virulence gene expression related to flagella and biofilm.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Ke Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Jie Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China. .,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
11
|
Evangelista AG, Bocate KCP, Meca G, Luciano FB. Combination of allyl isothiocyanate and cinnamaldehyde against the growth of mycotoxigenic fungi and aflatoxin production in corn. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology Faculty of Pharmacy University of Valencia Burjassot Spain
| | | |
Collapse
|
12
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|
13
|
Colussi R, Ferreira da Silva WM, Biduski B, Mello El Halal SL, da Rosa Zavareze E, Guerra Dias AR. Postharvest quality and antioxidant activity extension of strawberry fruit using allyl isothiocyanate encapsulated by electrospun zein ultrafine fibers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Effect of benzyl isothiocyanate encapsulated biocompatible nanoemulsion prepared via ultrasonication on microbial strains and breast cancer cell line MDA MB 231. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Li Y, Liu Y, Zhang Z, Cao Y, Li J, Luo L. Allyl Isothiocyanate (AITC) Triggered Toxicity and FsYvc1 (a STRPC Family Member) Responded Sense in Fusarium solani. Front Microbiol 2020; 11:870. [PMID: 32477298 PMCID: PMC7235336 DOI: 10.3389/fmicb.2020.00870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Allyl isothiocyanate (AITC) is a natural product used as a food additive. Due to its strong volatility and broad biological activity, AITC is considered as a bio-fumigant to control soil-borne fungal diseases in agriculture, creating an urgent need for evaluation of the antifungal activity of AITC. Here we study the effect of AITC on Fusarium solani growth and explore the molecular mechanisms. The results indicated that AITC causes rapid inhibition of F. solani after 5 min, hyphal deformity, and electrolyte leakage. A yeast-like vacuolar transient receptor potential channel regulator (FsYvc1, a STRPC family member) was identified in F. solani that seems to play a role in this fungi AITC sensitivity. Genetic evidence suggests the gene FsYvc1 is involved in F. solani growth, development, and pathogenicity. Loss of FsYvc1 resulted in hypersensitivity of F. solani to AITC and induced reactive oxygen species (ROS) accumulation ∼ 1.3 to 1.45- folds that of the wild type (WT), and no difference responses to CaCl2, NaCl, KCl, SDS, and Congo red when compared with WT. In addition, ΔFsYvc1-17 showed significantly reduced (∼ 1-fold) glutathione-S-transferase (GST) expression compared with the WT without AITC induction. Upon exposure to 4.8 μg/mL AITC for 3 h, the relative expression levels were ∼ 12–30 fold higher in both the WT and ΔFsYvc1-17. Nevertheless, no difference in GST expression level was observed between the WT and ΔFsYvc1-17. The current study provides novel insights into the toxicity mechanisms of AITC. Considering our results that show the key role of FsYvc1, we propose that it could act as a new molecular target for future fungicide development.
Collapse
Affiliation(s)
- Yingbin Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Yixiang Liu
- Department of Plant Pathology, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Zhiping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Yongsong Cao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Jianqiang Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| |
Collapse
|
17
|
Nazareth TDM, Quiles JM, Torrijos R, Luciano FB, Mañes J, Meca G. Antifungal and antimycotoxigenic activity of allyl isothiocyanate on barley under different storage conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Development of a Bioactive Sauce Based on Oriental Mustard Flour with Antifungal Properties for Pita Bread Shelf Life Improvement. Molecules 2019; 24:molecules24061019. [PMID: 30875724 PMCID: PMC6471135 DOI: 10.3390/molecules24061019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced in the secondary metabolism of fungus belonging to the genus Aspergillus and Penicillium. In this study, the employment of oriental mustard flour (OMF) as an ingredient in a packaged sauce was evaluated for the generation in situ of the antimicrobial compound allyl isothiocyanate (AITC) in order to preserve pita bread contaminated with Penicillium verrucosum VTT D-01847, an OTA producer, in an active packaging system. Four different concentrations (8, 16, 33 and 50 mg/g) were tested. Mycelium formation, mycotoxin production, AITC absorbed by the food matrix, and volatilization kinetics were studied for each concentration. The results obtained were compared with bread treated with the commercial additive calcium propionate (E-282). The results showed a shelf life increase of two and three days with the employment of 33 and 50 mg/g of OMF, with a significant reduction of the fungal population (3.1 and 5.7 logs, respectively) in comparison with the control experiment. The use of 16 and 33 mg/g of OMF in the sauce formulation decreased the concentration of OTA in the bread samples while no OTA production was detected employing 50 mg/g of OMF.
Collapse
|
19
|
Quiles JM, Nazareth TDM, Luz C, Luciano FB, Mañes J, Meca G. Development of an Antifungal and Antimycotoxigenic Device Containing Allyl Isothiocyanate for Silo Fumigation. Toxins (Basel) 2019; 11:E137. [PMID: 30823642 PMCID: PMC6468390 DOI: 10.3390/toxins11030137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 01/23/2023] Open
Abstract
The aims of this study were to evaluate the antifungal activity of the bioactive compound allyl isothiocyanate (AITC) against Aspergillus flavus (8111 ISPA) aflatoxins (AFs) producer and Penicillium verrucosum (D-01847 VTT) ochratoxin A (OTA) producer on corn, barley, and wheat. The experiments were carried out initially in a simulated silo system for laboratory scale composed of glass jars (1 L). Barley and wheat were contaminated with P. verrucosum and corn with A. flavus. The cereals were treated with a hydroxyethylcellulose gel disk to which 500 µL/L of AITC were added; the silo system was closed and incubated for 30 days at 21 °C. After that, simulated silos of 100 L capacity were used. Barley, wheat, and corn were contaminated under the same conditions as the previous trial and treated with disks with 5 mL of AITC, closed and incubated for 90 days at 21 °C. In both cases, the control test did not receive any antifungal treatment. The growth of the inoculated fungi and the reduction in the formation of AFs and OTA were determined. In the lab scale silo system, complete inhibition of fungal growth at 30 days has been observed. In corn, the reduction of aflatoxin B1 (AFB₁) was 98.5%. In the 100 L plastic drums, a significant reduction in the growth of A. flavus was observed, as well as the OTA formation in wheat (99.5%) and barley (92.0%).
Collapse
Affiliation(s)
- Juan Manuel Quiles
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, Brazil.
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Fernando Bittencourt Luciano
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, Brazil.
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| |
Collapse
|
20
|
Upasen S, Wattanachai P. Packaging to prolong shelf life of preservative-free white bread. Heliyon 2018; 4:e00802. [PMID: 30238066 PMCID: PMC6143692 DOI: 10.1016/j.heliyon.2018.e00802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
This research studied various types of packaging to prolong the shelf life of non-preservative white bread. Three types of blown film packages were used, i.e. a single LDPE layer incorporated with an oxygen scavenger, a single LDPE layer containing an oxygen absorber sachet, and three layers of LDPE laminated with O-nylon. The effects of modified packaging atmosphere, i.e. 5, 10, and 21 vol. % of oxygen in nitrogen balance, on the shelf life was also included. Characterization of the packaging films was carried out using several techniques, such as Oxygen Transmission Rate (OTR) and an optical microscopy. Headspace gases, microbial count, as well as physical appearance were used to evaluate the shelf life. The optical microscopic images showed that incorporating the oxygen scavenger into the plastic film produced small pores, contributing to a passive function of the films as their OTRs were significantly enhanced. However, the microbial growth on bread stored in those packages was suppressed, implying that the intermediate generated from scavenging reaction might act as a fungistatic. Even though the scavenging capability of the oxygen absorber sachet lasted only for 4 days, the fungi and mould development thereafter was still lower compared to the package without the sachet. The prolonging white bread shelf life was found to be primarily dependent on two factors. The package with a high oxygen barrier such three-layer films defeated microorganisms. With a low initial oxygen level of around 5% by volume, the bread shelf life could be prolonged up to 5–7 days.
Collapse
Affiliation(s)
- Settakorn Upasen
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Saen Sook, Mueang, Chonburi 20131 Thailand
| | - Piyachat Wattanachai
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Saen Sook, Mueang, Chonburi 20131 Thailand
| |
Collapse
|
21
|
Debonne E, Van Bockstaele F, Samapundo S, Eeckhout M, Devlieghere F. The use of essential oils as natural antifungal preservatives in bread products. JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2018.1486239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Els Debonne
- Faculty of Bioscience Engineering, Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
| | - Filip Van Bockstaele
- Faculty of Bioscience Engineering, Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
| | - Simbarashe Samapundo
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Food2Know, Ghent University , Gent, Belgium
| | - Mia Eeckhout
- Faculty of Bioscience Engineering, Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Food2Know, Ghent University , Gent, Belgium
| |
Collapse
|
22
|
Debonne E, Van Bockstaele F, De Leyn I, Devlieghere F, Eeckhout M. Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and Penicillium paneum through application in par-baked wheat and sourdough bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|