1
|
Yang J, Chen Y, Zhang L, Zhou S, You L, Song J. Application of edible insects to food products: A review on the functionality, bioactivity and digestibility of insect proteins under high-pressure/ultrasound processing. Food Chem 2025; 468:142469. [PMID: 39693885 DOI: 10.1016/j.foodchem.2024.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Edible insect products are recognized for their high-quality protein content and an array of essential nutrients, including minerals and fatty acids. As the demand for sustainable protein sources grows, insect-based foods are gaining attention as a viable solution to help address global food security. Emerging technologies including high-pressure processing (HPP) and ultrasound (US) have the potential to influence the key functional properties of insect proteins-such as solubility, gelling ability, foamability, and emulsifying capacity-making them more suitable for incorporation into various food products. Additionally, the physicochemical properties and functionality of these proteins can be altered by digestive processes. This review focuses on the physicochemical and functional properties, as well as the biological activities, of edible insects modified by HHP and US technologies. It also explores, for the first time, how digestion impacts the quality and biological activities of insect-based products.
Collapse
Affiliation(s)
- Jing Yang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China.
| | - Yan Chen
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Linqing Zhang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Shuling Zhou
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Linfeng You
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Cruz VA, Vicentini-Polette CM, Magalhaes DR, de Oliveira AL. Extraction, characterization, and use of edible insect oil - A review. Food Chem 2025; 463:141199. [PMID: 39307049 DOI: 10.1016/j.foodchem.2024.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/06/2024]
Abstract
Population growth is driving the search for new food sources, including entomophagy, i.e., a diet based on edible insects. Insect powder are rich in essential fatty acids, minerals, vitamins, and bioactive compounds such as antioxidant phenolics. The technologies for extracting oil from insects must be efficient to guarantee high yields. This oil due to its favorable nutritional profile, and lower cost, can be a viable alternative to vegetable and fish oils. Although common in some cultures, the consumption of insects faces resistance in others due to its association with dirt. Efforts are being made to scientifically demonstrate the safety and nutritional benefits of insects as well as their sustainability as a food source. This first review of insect oils focuses on presenting their different characteristics and encouraging the production and use of these products in the food, pharmaceutical, or cosmetics industries.
Collapse
Affiliation(s)
- Vanessa Aparecida Cruz
- High-Pressure Technology and Natural Products Laboratory (LAPPN), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900 Pirassununga, SP, Brazil
| | - Carolina M Vicentini-Polette
- High-Pressure Technology and Natural Products Laboratory (LAPPN), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900 Pirassununga, SP, Brazil
| | - Danielle Rodrigues Magalhaes
- Meat Product Quality and Stability Laboratory (LaQuECa), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900, Pirassununga, SP, Brazil
| | - Alessandra Lopes de Oliveira
- High-Pressure Technology and Natural Products Laboratory (LAPPN), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
3
|
Arp CG, Pasini G. Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications-A Critical Review. Foods 2024; 13:3587. [PMID: 39594003 PMCID: PMC11592989 DOI: 10.3390/foods13223587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Edible insects provide an alternative source of high-quality proteins, essential lipids, minerals, and vitamins. However, they lack the acceptability and consumption rates of more common staple foods. In contrast, pasta and noodles are globally appreciated foods that are consumed across various cultures. These products contribute greatly to the population's energy intake but generally lack essential nutrients. Recently, edible insects have gained in popularity due to their numerous benefits, both environmental and nutritional. Current research indicates that incorporating edible insect ingredients into pasta and noodle formulations enhances their nutritional quality by increasing protein and fiber content and reducing carbohydrates. However, adding new ingredients to enrich common foods often carries technological and sensory challenges, such as changes in processing parameters, texture, flavor, and appearance. Technology assessment, scientific research, information campaigns, and public policies can help overcome these issues. This review aims to summarize the benefits of entomophagy (the consumption of insects as food) for sustainability, nutrition, and health; highlight the potential of pasta and noodles as carriers of nutritious and bioactive ingredients, including insects; and critically address the advancements in insect-enriched pasta and noodle technology, identifying current challenges, knowledge gaps, and opportunities.
Collapse
Affiliation(s)
- Carlos Gabriel Arp
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas-Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 47 y 116, 1900 La Plata, Buenos Aires, Argentina
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale Dell’Università 16, 35020 Legnaro, Padova, Italy;
| | - Gabriella Pasini
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale Dell’Università 16, 35020 Legnaro, Padova, Italy;
| |
Collapse
|
4
|
Orkusz A, Dymińska L, Prescha A. Assessment of Changes in the Fat Profile of House Cricket Flour during 12 Months of Storage in Various Conditions. Foods 2024; 13:2566. [PMID: 39200492 PMCID: PMC11353570 DOI: 10.3390/foods13162566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Considering Acheta domecticus flour's growing importance and utilization as an ingredient in many food products, research on its storage is essential. The objective of this study was to determine the chemical and nutritional fat profile of house cricket (Acheta domesticus) flour during storage for 12 months under different storage temperatures (-18 °C, +4 °C, and +20 °C in two variants, with and without access to light). Insect flour was studied using Fourier-transform infrared spectroscopy (FTIR). The fatty acids content was determined, and dietary indicators were calculated. The acid value, peroxide value, and anisidine value were also determined, and differential scanning calorimetry was performed. The results obtained from spectroscopic analysis of Acheta domesticus flour were consistent with the biochemical data. During the 12-month period of flour storage, the storage temperature significantly influenced the percentage composition of identified groups of fatty acids and the values of all presented ratios and dietary indices. During storage at refrigerated temperatures (-18 °C and +4 °C), no changes were observed in the fatty acid content and dietary indices, indicating that refrigerated temperatures provide oxidative stability to flour during 12 months of storage. Samples stored at 20 °C had higher acid values (AV), peroxide values (PV), and anisidine values (p-AV) compared to samples stored at lower temperatures (4 °C and -18 °C). Simultaneously, an increase in SFA and MUFA, as well as a decrease in PUFA and UFA, was noted in samples stored at room temperature. Storing cricket flour at lower temperatures when the storage period will be more than 12 months is essential to restrict the occurrence of fat oxidation. Elevated temperatures and exposure to light have a notable effect in hastening oxidation mechanisms, reducing thermal resilience, and inducing more pronounced alterations in the quality of fats.
Collapse
Affiliation(s)
- Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
| | - Anna Prescha
- Department of Dietetics and Bromatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
Hua J, Ouyang W, Zhu X, Wang J, Yu Y, Chen M, Yang L, Yuan H, Jiang Y. Objective quantification technique and widely targeted metabolomic reveal the effect of drying temperature on sensory attributes and related non-volatile metabolites of black tea. Food Chem 2024; 439:138154. [PMID: 38071844 DOI: 10.1016/j.foodchem.2023.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.
Collapse
Affiliation(s)
- Jinjie Hua
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Wen Ouyang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Xizhe Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ming Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyue Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
6
|
Mikulec AT, Platta AM, Radzymińska M, Ruszkowska M, Mikulec K, Suwała G, Kowalski S, Kowalczewski PŁ, Nowicki M. Attitudes and purchase intentions of polish university students towards food made from insects-A modelling approach. PLoS One 2024; 19:e0300871. [PMID: 38551941 PMCID: PMC10980220 DOI: 10.1371/journal.pone.0300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/06/2024] [Indexed: 04/01/2024] Open
Abstract
The marketing of insect-derived protein has led to the development of respective legal regulations on such insects-based foods in the European Union. Despite the interest in the area of insect-based food, European researchers have paid relatively little attention to consumer attitudes and behaviors towards such products or the factors that may affect them. Attempts undertaken so far in this respect are insufficient; therefore, there is a need to continue and expand research in this field. The present study attempts to verify the following research hypotheses: H1. Attitudes towards food containing insects are related to the attributes/characteristics of these products, care for health and the natural environment, and attitudes towards novelty (neophilic/neophobic); H2. Intentions to purchase food containing insects can be predicted based on attitudes towards food from insects, product attributes, and attitudes towards environmental health and novelties. An empirical study was conducted among university students (N = 1063) by an indirect interview method using a specially designed questionnaire, via an online platform (Computer-Assisted Web Interview, CAWI) in November 2023. The questionnaire was validated by assessing the construction validity and estimating the reliability of the scales used. The study results demonstrated that the attributes of insect-based food products can influence the positive attitudes towards them and behavioral intentions to consume them, and that the strength of the impact of health quality traits is far greater than that of the organoleptic or functional traits. A negative, statistically significant value of the correlation coefficient between neophobic attitude and intention to purchase this type of food was observed. Thus, respondents without food neophobia were characterized by a positive attitude towards the purchase of foods containing edible insects in their composition.
Collapse
Affiliation(s)
- Anna T. Mikulec
- Faculty of Engineering Sciences, University of Applied Science in Nowy Sącz, Nowy Sącz, Poland
| | - Anna M. Platta
- Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | - Monika Radzymińska
- Faculty of Economic Sciences, Institute of Management Science and Quality, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Millena Ruszkowska
- Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | | | - Grzegorz Suwała
- Department of Food Product Quality, Krakow University of Economics, Kraków, Poland
| | - Stanisław Kowalski
- Faculty of Food Technology, Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow Poland, Krakow, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
7
|
Ribeiro JC, Pintado ME, Cunha LM. Consumption of edible insects and insect-based foods: A systematic review of sensory properties and evoked emotional response. Compr Rev Food Sci Food Saf 2024; 23:e13247. [PMID: 38284589 DOI: 10.1111/1541-4337.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 01/30/2024]
Abstract
Low consumer acceptance of edible insects and insect-based products is one of the main barriers to the successful implementation of entomophagy in Western countries. This rejection is mainly caused by consumers' negative emotional responses, psychological/personality traits, and attitudes toward food choices. However, as the role of intrinsic product characteristics on such food choices has not been adequately studied, a systematic review was conducted following the PRISMA method, to analyze studies that have assessed hedonic evaluations, sensory profiling, or emotional responses to edible insects or insect-based products. The majority of studies performed with whole insects and insect flour highlight that insect-based products are more negatively evaluated than control products. Although the sensory properties of insects are affected by species and processing conditions, they are generally negative across sensory dimensions. In particular, insects and insect-based products are generally associated with odor and flavor/taste attributes that are related to old/spoiled food. These negative attributes can be linked to the fat fraction of edible insects, with insect oils being very negatively evaluated by consumers. On the other hand, defatted fractions and deodorized oils are not associated with these negative attributes, further supporting the hypothesis that the fat fraction is responsible for the negative odor and flavor/taste attributes. However, there is still a lack of studies assessing the sensory profile of edible insects and insect-based products, as well as consumers' emotional responses to their consumption. Future studies should focus on the effects of different processing conditions, products incorporating insect fractions (namely protein concentrates/isolates and defatted fractions), and evaluation by target consumer groups.
Collapse
Affiliation(s)
- José Carlos Ribeiro
- GreenUPorto/INOV4Agro & DGAOT, Faculdade de Ciências da Universidade do Porto, Vairão, Portugal
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luís M Cunha
- GreenUPorto/INOV4Agro & DGAOT, Faculdade de Ciências da Universidade do Porto, Vairão, Portugal
| |
Collapse
|
8
|
Rocchetti G, Rebecchi A, Zhang L, Dallolio M, Del Buono D, Freschi G, Lucini L. The effect of common duckweed ( Lemna minor L.) extract on the shelf-life of beef burgers stored in modified atmosphere packs: A metabolomics approach. Food Chem X 2023; 20:101013. [PMID: 38144798 PMCID: PMC10740134 DOI: 10.1016/j.fochx.2023.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
The impact of duckweed extracts (DEs) on the shelf-life of packaged beef burgers was evaluated through classical assays and untargeted metabolomics. Beef burgers were formulated with an antioxidants-free control (CON), 1 g/kg sodium ascorbate (ASC), and increasing levels of a DEs, namely 1 (DE1), 5 (DE5), and 10 (DE10) g/kg, packaged under modified atmosphere and stored at 4 °C for 19 days. The DEs, abundant in phytochemicals, determined no issues with the hygienic status of the product. DEs modulated the redox status, being ineffective in preserving linolenic acid from peroxidation. However, the oxidation marker 2-nonenoic acid was down-accumulated in the DE10 sample following 19 days of storage, recording a lower glutathione:glutathione disulfide ratio. The accumulation of adipate semialdehyde revealed the inefficiency of DEs in coping with protein oxidation, while DEs prevented the accumulation of biogenic amines. Therefore, this work suggests a potential pro-oxidant role of the formulated DEs.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | | | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | | | - Lugi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
9
|
Zhu R, Chen Z, Lv H, Pan Y, Feng X, Chen G, Hu W, Xu T, Fan F, Gong S, Chen P, Chu Q. Another thread to uncover the aging mystery of white tea: Focusing on the natural nanoparticles in tea infusion. Food Chem 2023; 429:136838. [PMID: 37494755 DOI: 10.1016/j.foodchem.2023.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Aged white tea (WT) has promising medicinal potential, but how to accurately identify aged white tea is still a difficult problem. Inspired by tea cream, the relationship between the characteristics of nanoparticles in tea infusion and aging time was studied. The results showed that with the increase of aging time, the particle size of white tea nanoparticles (WTNs) decreased gradually. Microscopic images showed that the surface structure of WTNs was changed in three aspects: the waxy layer, the cuticle layer and the palisade tissue. Additional in vitro modeling demonstrated a strong correlation between nanoparticle size and protein and tea polyphenol content. The correlation between nanoparticle sizes and aging time was further verified in aged Pu'er raw tea. Starting with the tea infusion's nanoparticles, this study showed that the aging time of WT would impact the nanoparticles' properties, offering a unique way to determine the aging period of WT.
Collapse
Affiliation(s)
- Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Guicai Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weilian Hu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianhua Xu
- Zhejiang Esigma Biotechnology Co., Ltd, No.3, Chunchao Rd, Chang'an Town, Haining City 314422, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Galimberti S, Rocchetti G, Di Rico F, Rossetti C, Fontana A, Lucini L, Callegari ML. Untargeted metabolomics provide new insights into the implication of Lactobacillus helveticus strains isolated from natural whey starter in methylglyoxal-mediated browning. Food Res Int 2023; 174:113644. [PMID: 37986486 DOI: 10.1016/j.foodres.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Hard cheeses may occasionally show a brown discolouration during ripening due to multifactorial phenomena that involve bacteria and give rise to pyrazines arising from methylglyoxal. The present work aimed at developing a novel approach to investigate the role of natural starters in browning. To this object, 11 strains of L. helveticus were incubated in a medium containing 10 % rennet casein dissolved in whey, and then growth was monitored by measuring pH and number of genomes/mL. Browning was assessed through CIELab analysis, methylglyoxal production was determined by targeted mass spectrometry, and untargeted metabolomics was used to extrapolate marker compounds associated with browning discoloration. The medium allowed the growth of all the strains tested and differences in colour were observed, especially for strain A7 (ΔE* value 15.92 ± 0.27). Noteworthy, this strain was also the higher producer of methylglyoxal (2.44 µg/mL). Metabolomics highlighted pyrazines and β-carboline compounds as markers of browning at 42 °C and 16 °C, respectively. Moreover, multivariate statistics pointed out differences in free amino acids and oligopeptides linked to proteolysis, while 1,2-propanediol and S-Lactoylglutathione suggested specific detoxification route in methylglyoxal-producing strains. Our model allowed detecting differences in browning amid strains, paving the way towards the study of individual L. helveticus strains to identify the variables leading to discoloration or to study the interaction between different strains in natural whey starters.
Collapse
Affiliation(s)
- Sofia Galimberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Di Rico
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Chiara Rossetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy.
| |
Collapse
|
11
|
Choi YS, Lee JH, Kim TK, Shin DM. Edible insects in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:223-264. [PMID: 38461000 DOI: 10.1016/bs.afnr.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Edible insects, with their high protein and lipid content, offer a safe and cost-effective alternative to traditional protein sources. They are environmentally friendly, emitting fewer greenhouse gases and requiring less water than livestock farming. Their rapid reproduction, efficiency, and labor-saving qualities make them attractive for industry. However, the unappealing appearance of edible insects hinders consumer acceptance. To overcome this, materialization technologies should be developed, and negative perceptions addressed with objective data. Promoting the nutritional value, safe rearing, disease prevention, and cost-efficiency of edible insects can boost consumer interest. Commercializing various insect products is crucial to revitalize their integration into the food industry.
Collapse
Affiliation(s)
- Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea.
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Dong-Min Shin
- Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Siddiqui SA, Tettey E, Yunusa BM, Ngah N, Debrah SK, Yang X, Fernando I, Povetkin SN, Shah MA. Legal situation and consumer acceptance of insects being eaten as human food in different nations across the world-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4786-4830. [PMID: 37823805 DOI: 10.1111/1541-4337.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023]
Abstract
Insect consumption is a traditional practice in many countries. Currently, the urgent need for ensuring food sustainability and the high pressure from degrading environment are urging food scientists to rethink the possibility of introducing edible insects as a promising food type. However, due to the lack of the standardized legislative rules and the adequate scientific data that demonstrate the safety of edible insects, many countries still consider it a grey area to introduce edible insects into food supply chains. In this review, we comprehensively reviewed the legal situation, consumer willingness, acceptance, and the knowledge on edible insect harvesting, processing as well as their safety concerns. We found that, despite the great advantage of introducing edible insects in food supply chains, the legal situation and consumer acceptance for edible insects are still unsatisfactory and vary considerably in different countries, which mostly depend on geographical locations and cultural backgrounds involving psychological, social, religious, and anthropological factors. Besides, the safety concern of edible insect consumption is still a major issue hurdling the promotion of edible insects, which is particularly concerning for countries with no practice in consuming insects. Fortunately, the situation is improving. So far, some commercial insect products like energy bars, burgers, and snack foods have emerged in the market. Furthermore, the European Union has also recently issued a specific item for regulating new foods, which is believed to establish an authorized procedure to promote insect-based foods and should be an important step for marketizing edible insects in the near future.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Elizabeth Tettey
- Council for Scientific and Industrial Research - Oil Palm Research Institute, Sekondi, Takoradi W/R, Ghana
| | | | - Norhayati Ngah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Shadrack Kwaku Debrah
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Sunyani, Ghana
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
| | | | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Somali, Ethiopia
- School of Business, Woxsen University, Hyderabad, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Research Fellow, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
13
|
Piazza L, Ratti S, Girotto F, Cappellozza S. Silkworm pupae derivatives as source of high value protein intended for pasta fortification. J Food Sci 2023; 88:341-355. [PMID: 36524688 DOI: 10.1111/1750-3841.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Silkworm (Bombyx mori) pupae are recognized as novel nutritionally valuable food. Their use in pasta-making was considered with the intention of repositioning spaghetti shaped pasta supplemented with silkworm derivatives (10%db ) as a valuable product in sustainable diets besides upcycling a side stream from the silk industry. The principal objective of this study was to assess the cooking quality (i.e., imbibition kinetics, cooking loss) and texture of pasta supplemented with defatted silkworm powder or with its aqueous protein extract, which enabled to reduce the content of indigestible components supplying a similar protein intake. Pasta was produced on lab-scale, dried, and tested for chemical composition, mechanical properties before and during cooking, cooking behavior in terms of hydration kinetics, starch gelatinization, and cooking quality indexes. The structural roles on pasta protein network played by silkworm powder and proteins extract were investigated. The former behaves as a structural thickener while the second provides a steric hindrance effect with consequent different cooking performances. With regards to the fortified pasta perceived quality, a high level in total color difference (ΔE) was measured (ΔE > 6). However, after fortification agents' addition, pasta color became closer to that of the whole wheat pasta already known by consumers. Structure fragility increased. The energy at break of the "extract pasta" was about one-third of the control (0.849 N*mm). Silkworm powder addition led to the highest pasta optimal cooking time (376 s) and the slowest imbibition rate (0.0001 s-1 ). After fortification, pasta had an almost doubled cooking loss than control pasta (2.97 ± 0.18 g/100gdb ). PRACTICAL APPLICATION: Silkworm pupae flour can be easily applied for pasta fortification in order to increase the protein daily intake of people in an easy and practical way.
Collapse
Affiliation(s)
- Laura Piazza
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Simona Ratti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Francesca Girotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Laboratory of Sericulture, Padova, Italy
| |
Collapse
|
14
|
The Crick-Eatery: A Novel Approach to Evaluate Cricket ( Acheta domesticus) Powder Replacement in Food Products through Product Eating Experience and Emotional Response. Foods 2022; 11:foods11244115. [PMID: 36553857 PMCID: PMC9778095 DOI: 10.3390/foods11244115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
This study was conducted to evaluate three different food products containing cricket powder for consumer acceptability, emotional response, satiety, and plate waste. US untrained consumers (n = 108), from the San Luis Obispo, CA area, were recruited to evaluate three food products (sausage, pasta, and brownies) as components in a three-course meal that either contain cricket powder (CP) or not (Control). The CP sausage was found to have lower liking scores than the Control for the attributes tested (p < 0.05). The CP pasta was found to be higher in overall liking than the Control (p < 0.05). The CP Brownies were rated highly across the attributes, except for texture and aftertaste (p < 0.05). Though the CP products were found to be as acceptable as the Controls, the use of cricket powder may have affected the texture and flavor profile of both the CP sausage and brownies. The participants selected more positive emotions terms for both the CP and Control products than negative emotions. Negative terms selected, such as worried, decreased once the products were consumed (p < 0.05). Plate waste and subjective satiety may also be indicators of consumer acceptability. Significant correlations were found between appearance liking and satiety as well as taste liking and plate waste for both the Control and CP products/dishes (p < 0.05). Based on this work, future acceptance of insect-based products may be encouraged by evaluating the products throughout an eating experience.
Collapse
|
15
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
16
|
Ho I, Peterson A, Madden J, Huang E, Amin S, Lammert A. Will It Cricket? Product Development and Evaluation of Cricket ( Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods 2022; 11:3128. [PMID: 36230206 PMCID: PMC9563609 DOI: 10.3390/foods11193128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
Insect powders used in food products may lower the overall quality when compared to conventional counterparts. This preliminary study was used to develop and evaluate insect-based food products and to utilize them in a future consumer test. Pork sausage, dried pasta, and chocolate brownie formulations were developed to either contain NO cricket powder (Control) or have cricket powder (CP). The products were evaluated for proximate composition and product-dependent parameters. The protein content increased in the CP pasta and brownies (p < 0.05) while no changes were found in the sausage (p > 0.05). Fat content increased in both the CP pasta and brownies while it decreased in the CP sausage (p < 0.05). The CP sausage had a higher carbohydrate content than the Control (p < 0.05). Overall, this may be attributed to cricket powder being high in protein and fat while also containing dietary fiber. Cricket powder replacement may lead to noticeable color differences by increasing green and blue coloring in sausage and pasta (p < 0.05). Changes in textural properties (p < 0.05) may be attributed to cricket powder affecting protein solubility and emulsion stability in sausage while gluten formation may be interfered with in the brownies. Overall, cricket powder replacement had improved nutritional content with minor changes in quality parameters.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Lammert
- FSN Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
17
|
The flavour of edible insects: A comprehensive review on volatile compounds and their analytical assessment. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Bresciani A, Cardone G, Jucker C, Savoldelli S, Marti A. Technological Performance of Cricket Powder ( Acheta domesticus L.) in Wheat-Based Formulations. INSECTS 2022; 13:546. [PMID: 35735883 PMCID: PMC9224782 DOI: 10.3390/insects13060546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023]
Abstract
The recent socio-economic situation requires producers to change the composition of basic foods. The aim of this study was to assess the technological properties of wheat flour enriched with cricket powder (CP) (at 5%, 10%, and 20% levels) for the development of bread and pasta. The hydration (i.e., water absorption capacity, oil absorption capacity, water absorption index, water solubility index, and swelling power), foaming (i.e., foaming capacity and stability),emulsifying (emulsifying activity and emulsion stability), and rheological (during gluten aggregation, mixing, extension, and leavening) properties were investigated. Finally, bread and fresh pasta were prepared and characterized. Emulsifying activity, stability, and foaming capacity decreased in the presence of CP, whereas foaming stability and water solubility increased. The results on dough rheology highlighted the need to increase the amount of water, and to decrease the mixing and leavening time, to keep an acceptable bread volume. Indeed, 10% CP enrichment led to a product characterized by a similar volume and crumb hardness to the control (wheat flour). Despite the decrease in extensibility caused by CP, it was possible to produce fresh pasta enriched with CP, with the best cooking behavior obtained at a 5% replacement level.
Collapse
Affiliation(s)
| | | | | | | | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.B.); (G.C.); (C.J.); (S.S.)
| |
Collapse
|
19
|
Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Nutrients 2022; 14:nu14102147. [PMID: 35631288 PMCID: PMC9144672 DOI: 10.3390/nu14102147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Among the many aspects determining the nutritional potential of insect-based foods, research into the satiating potential of foods is an important starting point in the design of new functional foods, including those based on edible insects. The aim of this study was to assess the satiating value of products with the addition of freeze-dried insect flour. The test material included wheat pancakes in which corresponding proportions of wheat flour were substituted with 10% Mw, 0% Mw, and 30% Mw of flour from freeze-dried Tenebrio molitor, 10% Bw, 20% Bw, and 30% Bw of flour from Alphitobius diaperinus, and 10% Cr, 20% Cr, and 30% Cr of flour from Acheta domesticus. The study included the characterisation of physico-chemical properties and their effect on the satiating potential of the analysed pancakes. A total of 71 healthy volunteers (n = 39 women, n = 32 men) with no food phobias were qualified for the study. Each subject rated the level of hunger and satiety before and after ingestion at 30 min intervals over the subsequent 180 min on two separate graphical scales. The rating was done on an unstructured 100 mm visual analogue scale (VAS). A portion intended for testing had a value of 240 kcal. The highest average satiety values were noted for the pancakes with an addition of 30% Alphitobius diaperinus (Bw) and with the addition of 20% and 30% addition of Acheta domesticus flour (Cr). The Tenebrio molitor-based products were the least satiating. However, the largest addition of 30% of an insect flour for each variant considerably increased the satiating potential as compared to the control sample. Satiety was influenced the most by the protein content in the test wheat pancakes. The results support the idea of a possible usage of insect-based food products in the composition of obesity treatment diets, carbohydrate-limiting diets, and as alternative sources of protein.
Collapse
|
20
|
Bchir B, Karoui R, Danthine S, Blecker C, Besbes S, Attia H. Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties. Foods 2022; 11:foods11101393. [PMID: 35626963 PMCID: PMC9140202 DOI: 10.3390/foods11101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023] Open
Abstract
This study aims to evaluate the impact of incorporating pear, date, and apple by-products on pasta properties. Pasta properties including cooking quality, texture, color, rheology, thermal gelling, and microstructural characteristics were evaluated. Common wheat flour was substituted by 0, 2.5, 5, 7, and 10 g/100 g of by-products. To choose the best-suited substitute of flour for the preparation of pasta, the sensorial properties of pasta were investigated. Interrelationships between all the physicochemical parameters were investigated using multiple factor analysis. We also studied the impact of storage (7, 15, and 30 days) on the physicochemical proprieties of pasta. The results revealed that the chemical composition of pasta elaborated with by-products was characterized by higher energy (~386 Kcal) and fiber content (~13%) than the control pasta. Generally, materials added to the durum wheat pasta reduce optimum cooking time, adhesiveness, and extensibility, and enhance the swelling index, cooking loss, cooking water absorption, water activity, firmness, and tenacity of pasta. Cooked pasta samples were significantly (p < 0.05) darker (L*) and greener (-a*) than the control pasta. Increasing the rate of by-products from 2.5% to 10% principally altered the texture and structure of pasta. Scanning electron microscopy analysis showed that the inclusion of by-products into pasta leads to a disruption of the protein matrix. A practical formulation (2.5% of by-products) can be selected, since a significant difference was detected between overall acceptability scores. Grouping the variables in the principal component analysis plot showed that pasta samples can be divided into three groups. Each group was correlated by a specific variable. A significant modification of the physical parameters of pasta was observed after 30 days of storage.
Collapse
Affiliation(s)
- Brahim Bchir
- Laboratory of Analysis Valorization and Food Safety, National Engineering School of Sfax, University of Sfax, Sfax BP W-3038, Tunisia; (S.B.); (H.A.)
- Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
- Correspondence: ; Tel.: +216-53-440-380
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte D’Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France;
| | - Sabine Danthine
- Laboratory of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2 B, B-5030 Gembloux, Belgium; (S.D.); (C.B.)
| | - Christophe Blecker
- Laboratory of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2 B, B-5030 Gembloux, Belgium; (S.D.); (C.B.)
| | - Souhail Besbes
- Laboratory of Analysis Valorization and Food Safety, National Engineering School of Sfax, University of Sfax, Sfax BP W-3038, Tunisia; (S.B.); (H.A.)
| | - Hamadi Attia
- Laboratory of Analysis Valorization and Food Safety, National Engineering School of Sfax, University of Sfax, Sfax BP W-3038, Tunisia; (S.B.); (H.A.)
| |
Collapse
|
21
|
Mei S, Yu Z, Chen J, Zheng P, Sun B, Guo J, Liu S. The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis. Molecules 2022; 27:molecules27051708. [PMID: 35268809 PMCID: PMC8911848 DOI: 10.3390/molecules27051708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proper postharvest storage preserves horticultural products, including tea, until they can be processed. However, few studies have focused on the physiology of ripening and senescence during postharvest storage, which affects the flavor and quality of tea. In this study, physiological and biochemical indexes of the leaves of tea cultivar ‘Yinghong 9′ preserved at a low temperature and high relative humidity (15–18 °C and 85–95%, PTL) were compared to those of leaves stored at ambient conditions (24 ± 2 °C and relative humidity of 65% ± 5%, UTL). Water content, chromatism, chlorophyll fluorescence, and key metabolites (caffeine, theanine, and catechins) were analyzed over a period of 24 h, and volatilized compounds were determined after 24 h. In addition, the expression of key biosynthesis genes for catechin, caffeine, theanine, and terpene were quantified. The results showed that water content, chromatism, and chlorophyll fluorescence of preserved leaves were more similar to fresh tea leaves than unpreserved tea leaves. After 24 h, the content of aroma volatiles and caffeine significantly increased, while theanine decreased in both groups. Multiple catechin monomers showed distinct changes within 24 h, and EGCG was significantly higher in preserved tea. The expression levels of CsFAS and CsTSI were consistent with the content of farnesene and theanine, respectively, but TCS1 and TCS2 expression did not correlate with caffeine content. Principal component analysis considered results from multiple indexes and suggested that the freshness of PTL was superior to that of UTL. Taken together, preservation conditions in postharvest storage caused a series of physiological and metabolic variations of tea leaves, which were different from those of unpreserved tea leaves. Comprehensive evaluation showed that the preservation conditions used in this study were effective at maintaining the freshness of tea leaves for 2–6 h. This study illustrates the metabolic changes that occur in postharvest tea leaves, which will provide a foundation for improvements to postharvest practices for tea leaves.
Collapse
Affiliation(s)
- Shuang Mei
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zizi Yu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiaming Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
- Correspondence: (J.G.); (S.L.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
- Correspondence: (J.G.); (S.L.)
| |
Collapse
|
22
|
Kim TK, Cha JY, Yong HI, Jang HW, Jung S, Choi YS. Application of edible insects as novel protein sources and strategies
for improving their processing. Food Sci Anim Resour 2022; 42:372-388. [PMID: 35611082 PMCID: PMC9108959 DOI: 10.5851/kosfa.2022.e10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Insects have long been consumed by humans as a supplemental protein source, and
interest in entomophagy has rapidly increased in recent years as a potential
sustainable resource in the face of environmental challenges and global food
shortages. However, food neophobia inhibits the widespread consumption of edible
insects, despite their high nutritional and functional value. The own
characteristics of edible insect protein such as foaming properties, emulsifying
properties, gelling properties and essential amino acid ratio can be improved by
drying, defatting, and extraction. Although nutritional value of some
protein-enriched bread, pasta, and meat products, especially essential amino
acid components was increased, replacement of conventional food with edible
insects as a novel food source has been hindered owing to the poor cross-linking
properties of edible insect protein. This deterioration in physicochemical
properties may further limit the applicability of edible insects as food.
Therefore, strategies must be developed to improve the quality of edible insect
enriched food with physical, chemical, and biological methods. It was presented
that an overview of the recent advancements in these approaches and highlight
the challenges and prospects for this field. Applying these strategies to
develop insect food in a more familiar form can help to make insect-enriched
foods more appealing to consumers, facilitating their widespread consumption as
a sustainable and nutritious protein source.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae Won Jang
- Department of Food Science and
Biotechnology, Sungshin Women's University, Seoul 01133,
Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang
Choi, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9387, Fax: +82-63-219-9076, E-mail:
| |
Collapse
|
23
|
Kröger T, Dupont J, Büsing L, Fiebelkorn F. Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Front Nutr 2022; 8:759885. [PMID: 35265649 PMCID: PMC8901202 DOI: 10.3389/fnut.2021.759885] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Consuming insects is a possible alternative to meat consumption that has few detrimental impacts on the environment and human health. Whether novel foods made from insects will become established in Western societies in the coming years depends largely on their acceptance by the respective populations. Numerous studies on the acceptance of insects as a novel food have already been conducted. In this systematic review, the main findings of quantitative, experimental, and tasting studies on the acceptance of insects as a novel food are summarized. The present paper is designed to serve as an orientation for practitioners in the food industry and provides information useful for the design of marketing strategies and target group-oriented product development. In addition, we highlight in which fields future studies could be conducted to further improve the understanding of the acceptance of insects as food in Western societies.
Collapse
Affiliation(s)
| | - Jacqueline Dupont
- Department of Biology Didactics, Osnabrück University, Osnabrück, Germany
| | | | | |
Collapse
|
24
|
Kim TK, Yong HI, Kang MC, Cha JY, Choi YS. Effect of hydrocolloids on functionality of Protaetia brevitarsis proteins. Food Sci Biotechnol 2022; 31:243-251. [PMID: 35186354 PMCID: PMC8817955 DOI: 10.1007/s10068-021-01021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 01/24/2023] Open
Abstract
In this study, the effects of various hydrocolloids on the functionality of extracted proteins from Protaetia brevitarsis were investigated. Gel solubility, apparent viscosity, thermal properties, microstructure, textural properties, foaming properties, and emulsion properties were estimated and compared among treatments. Although all hydrocolloids enhanced the protein gelling properties compared with those of the control protein, the protein-polysaccharide complex in samples treated with a hydrocolloid with a lower solubility of hydrophobic bonds and disulfide bonds showed a more compact microstructure with high textural properties, apparent viscosity, and emulsion stability. By contrast, hydrocolloids with a high solubility of hydrophobic bonds increased the foaming properties and showed high thermal stability of the insect proteins. These results indicate that hydrocolloids should be carefully selected when in complex with edible insect proteins according to their purpose as gelling or foaming agents.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| |
Collapse
|
25
|
New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Kamali Rousta L, Pouya Ghandehari Yazdi A, Khorasani S, Tavakoli M, Ahmadi Z, Amini M. Optimization of novel multigrain pasta and evaluation of physicochemical properties: using D-optimal mixture design. Food Sci Nutr 2021; 9:5546-5556. [PMID: 34646524 PMCID: PMC8498078 DOI: 10.1002/fsn3.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
D-optimal mixture design looked to be a priceless tool for optimizing the influences of semolina flour (SF), defatted soy flour (DSF), whole quinoa flour (WQF), whole rye flour (WRF), whole oat flour (WOF), whole barley flour (WBF), and rice flour (RF) on the quality attributes of multigrain pasta (MP). Multigrain flours were considered as the independent variables evaluated with respect to three response variables containing hardness and the amount of protein and fiber. Quadratic, linear, and linear models were chosen to explain the hardness and the amount of protein and fiber of the MPs, respectively. In optimal formulation of MP, that is, SF (57.34%,), DSF (14%), WQF (11%), WRF (7.54%), WOF (5.61%), WBF (2.51%), and RF (2%), the content of fiber and protein enhanced more than 4.12 and 1.34 times compared with SP, respectively. Therefore, according to the European Union law, it can be claimed that this pasta is a source of fiber. As the amount of protein and fiber increased, the hardness and optimal cooking time decreased, while the cooking loss increased. After cooking, MP was murkier and less yellow in color. The 2, 2- diphenyl- 1- picrylhydrazyl (DPPH) inhibition activity of the MP was about 2.5 times higher than the SP. Analysis of the antioxidant properties of the samples after cooking showed that the DPPH inhibition activity of the SP and MP reduced. The results indicated that the overall acceptability of MP was higher than SP. Based on our findings, these multigrain flours are probable to be applied as nutritious complements in the pasta industry to improve the functional characteristics.
Collapse
Affiliation(s)
- Leila Kamali Rousta
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | | | - Sepideh Khorasani
- Department of Food Science and TechnologyFaculty of Agriculture, Research and Technology Institute of Plant Production (RTIPP)Shahid Bahonar University of KermanKermanIran
| | - Mohammad Tavakoli
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | - Zahra Ahmadi
- Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran
| | - Mahdi Amini
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| |
Collapse
|
27
|
Lee JH, Kim TK, Jeong CH, Yong HI, Cha JY, Kim BK, Choi YS. Biological activity and processing technologies of edible insects: a review. Food Sci Biotechnol 2021; 30:1003-1023. [PMID: 34471556 DOI: 10.1007/s10068-021-00942-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
The burgeoning global population growth has raised concerns regarding the expected increase in the demand for food, which could be partially tackled by identifying novel food sources. To this end, edible insects have recently attracted research interest. Several technologies for utilizing edible insect-derived proteins have been introduced; however, research into their functional utilization is insufficient. Herein, we reviewed the relevant literature on the importance of insects as food sources, extraction of edible insects, the nutritional value of insects, biological activities of components, and their applications in food industries. We summarized the studies primarily focused on the functional utilization of edible insects, suggesting that for successful incorporation and growth of edible insects in food and pharmaceutical industries, strategies to improve the extraction methods are required to explore the biological activity of edible insects. Furthermore, the awareness of edible insects with a focus on their allergens warrants consideration.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Chang Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| |
Collapse
|
28
|
van Huis A, Rumpold B, Maya C, Roos N. Nutritional Qualities and Enhancement of Edible Insects. Annu Rev Nutr 2021; 41:551-576. [PMID: 34186013 DOI: 10.1146/annurev-nutr-041520-010856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last decade, the urgency to find alternative and sustainable protein sources has prompted an exponential increase in the interest in insects as a human food source. Edible insects contribute suitable amounts of energy and protein, fatty acids, and micronutrients to the human diet. Nutritional values of insects can be manipulated to meet specific needs. Edible insects in food-insecure countries can contribute to improving diets and preventing undernutrition. Bioactive compounds in insects may reduce health risks. Food safety risks are low and mainly relate to those of allergenicity. Strategies to overcome barriers to the consumption of insect products include emphasizing their sustainability, increasing their tastiness, and developing the ability to disguise insects in familiar products. A new sector of insects as food and feed is emerging. Major challenges include legislation, lowering prices by automation and cheap substrates, developing insect products that appeal to consumers, and exploring the health benefits. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Birgit Rumpold
- Department of Education for Sustainable Nutrition and Food Science, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Cassandra Maya
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; ,
| | - Nanna Roos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; ,
| |
Collapse
|
29
|
Ardoin R, Prinyawiwatkul W. Consumer perceptions of insect consumption: a review of western research since 2015. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ryan Ardoin
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA 70803 USA
- Food Processing and Sensory Quality Research USDA‐ARS‐SRRC New Orleans LA 70124 USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
30
|
Fan FY, Huang CS, Tong YL, Guo HW, Zhou SJ, Ye JH, Gong SY. Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes. Food Chem 2021; 362:130257. [PMID: 34118510 DOI: 10.1016/j.foodchem.2021.130257] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
The sensory features of white peony teas (WPTs) significantly change with storage age; however, their comprehensive associations with composition are still unclear. This study aimed to clarify the sensory quality-related chemical changes in WPTs during storage. Liquid chromatography-tandem mass spectrometry based on widely targeted metabolomics analysis was performed on WPTs of 1-13 years storage ages. Weighted gene co-expression network analysis (WGCNA) was used to correlate metabolites with sensory traits including color difference values and taste attributes. 323 sensory trait-related metabolites were obtained from six key modules via WGCNA, verified by multiple factor analysis. The decline and transformation of abundant flavonoids, tannins and amino acids were related to the reduced astringency, umami and increased browning of tea infusions. In contrast, the total contents of phenolic acids and organic acids increased with storage. This study provides a high-throughput method for the association of chemical compounds with various sensory traits of foods.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chuang-Sheng Huang
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi-Lin Tong
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hao-Wei Guo
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Sen-Jie Zhou
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Shu-Ying Gong
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
31
|
Çabuk B. Influence of grasshopper (Locusta Migratoria) and mealworm (Tenebrio Molitor) powders on the quality characteristics of protein rich muffins: nutritional, physicochemical, textural and sensory aspects. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00967-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Fortification of wheat flour with black soldier fly prepupae. Evaluation of technological and nutritional parameters of the intermediate doughs and final baked products. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Ardoin R, Marx BD, Boeneke C, Prinyawiwatkul W. Effects of cricket powder on selected physical properties and US consumer perceptions of whole‐wheat snack crackers. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ryan Ardoin
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA70803USA
| | - Brian D. Marx
- Department of Experimental Statistics Louisiana State University Baton Rouge LA70803USA
| | - Charles Boeneke
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA70803USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA70803USA
| |
Collapse
|
34
|
Skotnicka M, Karwowska K, Kłobukowski F, Borkowska A, Pieszko M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021; 10:766. [PMID: 33916741 PMCID: PMC8065412 DOI: 10.3390/foods10040766] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/07/2023] Open
Abstract
All over the world, a large proportion of the population consume insects as part of their diet. In Western countries, however, the consumption of insects is perceived as a negative phenomenon. The consumption of insects worldwide can be considered in two ways: on the one hand, as a source of protein in countries affected by hunger, while, on the other, as an alternative protein in highly-developed regions, in response to the need for implementing policies of sustainable development. This review focused on both the regulations concerning the production and marketing of insects in Europe and the characteristics of edible insects that are most likely to establish a presence on the European market. The paper indicates numerous advantages of the consumption of insects, not only as a valuable source of protein but also as a raw material rich in valuable fatty acids, vitamins, and mineral salts. Attention was paid to the functional properties of proteins derived from insects, and to the possibility for using them in the production of functional food. The study also addresses the hazards which undoubtedly contribute to the mistrust and lowered acceptance of European consumers and points to the potential gaps in the knowledge concerning the breeding conditions, raw material processing and health safety. This set of analyzed data allows us to look optimistically at the possibilities for the development of edible insect-based foods, particularly in Europe.
Collapse
Affiliation(s)
- Magdalena Skotnicka
- Departament of Commodity Science, Faculty of Health Sciences, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (F.K.); (A.B.)
| | - Kaja Karwowska
- Departament of Commodity Science, Faculty of Health Sciences, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (F.K.); (A.B.)
| | - Filip Kłobukowski
- Departament of Commodity Science, Faculty of Health Sciences, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (F.K.); (A.B.)
| | - Aleksandra Borkowska
- Departament of Commodity Science, Faculty of Health Sciences, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (F.K.); (A.B.)
| | - Magdalena Pieszko
- Departament of Clinical Nutrition and Dietetics, Faculty of Health Sciences, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
35
|
Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods 2020; 9:foods9111561. [PMID: 33126518 PMCID: PMC7692980 DOI: 10.3390/foods9111561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Insect-containing products are gaining more space in the market. Bakery products are one of the most promising since the added ground insects can enhance not only the nutritional quality of the dough, but technological parameters and sensory properties of the final products. In the present research, different amounts of ground Acheta domesticus (house cricket) were used to produce oat biscuits. Colour, hardness, and total titratable acidity (TTA) values were measured as well as a consumer sensory test was completed using the check-all-that-apply (CATA) method. An estimation of nutrient composition of the samples revealed that, according to the European Union’s Regulation No. 1924/2006, the products with 10 and 15 g/100 g cricket enrichment (CP10 and CP15, respectively) can be labelled as protein sources. Results of the colour, TTA, and texture measurements showed that even small amounts of the cricket powder darkened the colour of the samples and increased their acidity, but did not influence the texture significantly. Among product-related check all that apply (CATA) attributes, fatty and cheesy flavour showed a significant positive effect on overall liking (OAL). On the other hand, burnt flavour and brown colour significantly decreased OAL. OAL values showed that consumers preferred the control product (CP0) and the product with 5 g/100 g cricket enrichment (CP5) samples over CP10 and rejected CP15.
Collapse
|
36
|
Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2020; 9:foods9091298. [PMID: 32942562 PMCID: PMC7555912 DOI: 10.3390/foods9091298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022] Open
Abstract
Edible insects have always been consumed by humans and nowadays they are looked at with interest by the research community as a means to produce food at low environmental cost for a growing and increasingly demanding population. A large number of different species are edible, and they can contribute fats, protein, fibre, vitamins, and minerals to the human diet. The absence of specific legislation on the use of insects as food, coupled with the general population’s disgust at the idea of eating insects, are among the limiting factors for the development of insect farming in developed countries. Several consumer studies have concluded that hiding insects in traditional foods can increase people’s willingness to eat insect-based foods. Cereal-based foods such as bread, bakery products, pasta, etc., being so popular worldwide and so widely accepted by the population, have been used by researchers as a carrier for the introduction of different percentages of insect flours to improve their nutritional qualities. The research by Duda et al. on “Quality and Nutritional/Textural Properties of Durum Wheat Pasta enriched with Cricket Powder” is the first recent scientific contribution to the understanding of the nutritional quality and technological effects of the introduction of insect flour in a popular food such as durum wheat pasta.
Collapse
|
37
|
Kamali Rousta L, Ghandehari Yazdi AP, Amini M. Optimization of athletic pasta formulation by D-optimal mixture design. Food Sci Nutr 2020; 8:4546-4554. [PMID: 32884734 PMCID: PMC7455935 DOI: 10.1002/fsn3.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to produce an athletic pasta by the addition of various sources of protein. For this purpose, D-optimal mixture design used for optimization of formulation of athletic pasta and protein with considering the hardness as main parameter. Various properties of the optimized formulation were evaluated. The optimal formulation contained 45.41% of semolina, 24% of pea protein isolate (PPI), 18% of oat flour (OF), 5% of soy protein isolate (SPI), 5% whey protein isolate (WPI), and 2% of gluten (G). In optimized formulation, the protein content increased by more than 2.9 times compared to control with the hardness in the range (569 g). Hardness, optimal cooking time, and cooking loss of products increased as the level of protein increased. The optimal formulation had a higher sensory acceptance than the control, which is probably related to color changes. Due to the amount and biological value of the proteins used and the high acceptance obtained, this formulation can be suggested for athletes. The obtained results indicated that production of athletic pasta with high biological value by using mixture of SPI, PPI, WPI, OF, and G is possible.
Collapse
Affiliation(s)
- Leila Kamali Rousta
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | | | - Mahdi Amini
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| |
Collapse
|
38
|
Anuduang A, Loo YY, Jomduang S, Lim SJ, Wan Mustapha WA. Effect of Thermal Processing on Physico-Chemical and Antioxidant Properties in Mulberry Silkworm ( Bombyx mori L.) Powder. Foods 2020; 9:foods9070871. [PMID: 32635164 PMCID: PMC7404714 DOI: 10.3390/foods9070871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/27/2023] Open
Abstract
The mulberry silkworm (Bombyx mori L.) is a common edible insect in many countries. However, the impact of thermal processing, especially regarding Thai silkworm powder, is poorly known. We, therefore, determined the optimum time for treatment in hot water and subsequent drying temperatures in the production of silkworm powder. The silkworms exposed to 90 °C water for 0, 5, 10, 15, and 20 min showed values of Total Phenolic Compounds (TPCs), 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging (DPPH) assay, 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, and Ferric Reducing Antioxidant Power (FRAP) assay that were significantly (p < 0.05) higher at the 5 min exposure time compared with the other times. The reduction of microorganisms based on log CFU/g counts was ≥3 log CFU/g (99%) at the 5 min treatment. To determine the optimum drying temperature, the silkworms exposed to 90 °C water for 5 min were subjected to a hot-air dryer at 80, 100, 120, and 140 °C. The TPC value was the highest (p < 0.05) at 80 °C. The silkworm powder possessed significantly (p < 0.05) higher DPPH, ABTS radical scavenging ability, and ferric ion reducing capability (FRAP assay) at 80 °C compared with other drying temperatures. This study indicates that shorter exposure times to hot water and a low drying temperature preserve the antioxidant activities. High antioxidant activities (in addition to its known protein and fat content) suggest that silkworms and silkworm powder can make a valuable contribution to human health.
Collapse
Affiliation(s)
- Artorn Anuduang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (A.A.); (S.J.L.)
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Yuet Ying Loo
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (A.A.); (S.J.L.)
- Correspondence: (W.A.W.M.); (Y.Y.L.); Tel.: +603-8921-3870 (ext. 5963) (W.A.W.M.)
| | - Somchai Jomduang
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Biosafe Holding Partnership Limited, 353 Moo 9, Tambol Sanklang, Sanpatong District, Chiang Mai 50120, Thailand
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (A.A.); (S.J.L.)
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (A.A.); (S.J.L.)
- Correspondence: (W.A.W.M.); (Y.Y.L.); Tel.: +603-8921-3870 (ext. 5963) (W.A.W.M.)
| |
Collapse
|
39
|
Abstract
In the past few decades, several negative aspects of excess meat consumption have been identified, ranging broadly from health to environment to consumer rejections of meat analogs. At the same time, however, several new meat alternatives have emerged such as algae, insects, and cultured meat, which all present a sustainable option to reduce meat consumption. The paper assesses the psychology of the “everyday” for meat-free products, focusing on how consumers in two specific markets in the USA (California, New York) respond to messages about four specific topics involving meat-free products. These four are sensory characteristics, possible usage in products, health aspects, and environmental aspects, respectively. Each study with 100 or more respondents used experimental design of messages (Mind Genomics) to understand the degree to which the respondents reacted positively or negatively to the 16 messages in each of the four studies. The data suggest that focusing on the Total Panel or on geography, gender, or age will not reveal the dramatically different mind-sets existing in each of the four topics. We introduce the notion of the PVI, personal viewpoint identifier, to help the researcher uncover these mind-sets, and help communicate effectively with each mind-set about meat analogs or help recruit these individuals to participate in further studies.
Collapse
|
40
|
Güngörmüşler M, Başınhan İ, Üçtuğ FG. Optimum formulation determination and carbon footprint analysis of a novel gluten‐free pasta recipe using buckwheat, teff, and chickpea flours. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mine Güngörmüşler
- Department of Food Engineering Izmir University of Economics Izmir Turkey
| | - İrem Başınhan
- Department of Food Engineering Izmir University of Economics Izmir Turkey
| | - Fehmi Görkem Üçtuğ
- Department of Food Engineering Izmir University of Economics Izmir Turkey
| |
Collapse
|
41
|
Insects as Novel Food: A Consumer Attitude Analysis through the Dominance-Based Rough Set Approach. Foods 2020; 9:foods9040387. [PMID: 32230781 PMCID: PMC7230380 DOI: 10.3390/foods9040387] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
In Western societies, the unfamiliarity with insect-based food is a hindrance for consumption and market development. This may depend on neophobia and reactions of disgust, individual characteristics and socio-cultural background, and risk-perceptions for health and production technologies. In addition, in many European countries, the sale of insects for human consumption is still illegal, although European Union (EU) and the European Food Safety Authority (EFSA) are developing regulatory frameworks and environmental and quality standards. This research aims to advance the knowledge on entomophagy, providing insights to improve consumer acceptance in Italy. This is done by carrying out the characterization of a sample of consumers according to their willingness to taste several types of insect-based food and taking into account the connections among the consumers’ features. Thus, the dominance-based rough set approach is applied using the data collected from 310 Italian consumers. This approach provided 206 certain decision rules characterizing the consumers into five groups, showing the consumers’ features determining their specific classification. Although many Italian consumers are willing to accept only insects in the form of feed stuffs or supplements, this choice is a first step towards entomophagy. Conversely, young Italian people are a niche market, but they can play a role in changing trends.
Collapse
|
42
|
Roncolini A, Milanović V, Aquilanti L, Cardinali F, Garofalo C, Sabbatini R, Clementi F, Belleggia L, Pasquini M, Mozzon M, Foligni R, Federica Trombetta M, Haouet MN, Serena Altissimi M, Di Bella S, Piersanti A, Griffoni F, Reale A, Niro S, Osimani A. Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Res Int 2020; 131:109031. [PMID: 32247483 DOI: 10.1016/j.foodres.2020.109031] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Increasing interest in consuming foods that are high in protein, vitamin, amino acid, and mineral contents is steering growth in the market for fortified snacks. The aim of the present study was to evaluate the use of lesser mealworm (Alphitobius diaperinus) powder (LP) (at 10 or 30% substitution for wheat flour) for the protein and mineral fortification of crunchy snacks (rusks). Hence, the technological, microbiological, nutritional, and sensory characteristics of the fortified rusks were evaluated. The protein content was enriched up to 99.3% in rusks with 30% substitution; moreover, a notable increase in the essential amino acids content was observed, with histidine fortification reaching up to 129.1% in rusks with 30% substitution. The incorporation of LP has led to an enrichment of almost all the minerals considered here, and especially Fe, P and Zn, with Zn showing fortification percentages of up to 300% in rusks with 30% substitution for LP. The experimental rusks showed pleasant sensory traits and low aw values. In view of the potential industrial manufacturing of insect-based rusks, the proposed product can be assigned to level 4 (validation in a laboratory environment) of the Technology Readiness Level (TRL) scale, and it is thus ready to be tested in a simulated production environment.
Collapse
Affiliation(s)
- Andrea Roncolini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Riccardo Sabbatini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Massimo Mozzon
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Federica Trombetta
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - M Naceur Haouet
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini, Perugia, Italy
| | - M Serena Altissimi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini, Perugia, Italy
| | - Sara Di Bella
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Salvemini, Perugia, Italy
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via Cupa di Posatora 3, 60131 Ancona, Italy
| | - Francesco Griffoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via Cupa di Posatora 3, 60131 Ancona, Italy
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Serena Niro
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|