1
|
Siyu Y, Shixiao Z, Congying S, Xinqin Z, Zhen H, Xiaoying W. Advances in cytokine-based herbal medicine against premature ovarian insufficiency: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118477. [PMID: 38909824 DOI: 10.1016/j.jep.2024.118477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premature ovarian insufficiency (POI) refers to a dramatic decrease in the number and/or quality of oocytes in the ovaries before the age of 40 years, and is a key cause of female infertility. The prevalence of POI has been increasing annually and tends to be younger. Researches on the etiology of POI and related pathogenesis are still very limited. Herbal medicine can treat many gynecological diseases. And herbal medicine is effective in reproductive health care such as infertility. In recent years, it has been found that immune modulation by cytokines (CK) can prevent or intervene in POI, and herbal medicine can treat POI by regulating CK to improve ovarian function and fertility. AIM OF THE STUDY This review presents an overview of the molecular mechanisms of regulation of POI related CK, and reports the therapeutic effect of herbal medicine on POI including herbal medicine formulas, single herbal medicine, herbal medicine active components and acupuncture. This review provides theoretical support for clinical prevention and treatment of POI, and provides new ideas for researches on herbal medicine treatment of POI. MATERIALS AND METHODS We performed a collection of relevant scientific articles from different scientific databases regarding the therapeutic effect of herbal medicine on POI by regulating CK, including PubMed, Web of Science, Wanfang Database, CNKI and other publication resources. The search terms used in this review include, 'premature ovarian insufficiency', 'premature ovarian failure (POF)', 'infertility', 'herbal medicine', 'acupuncture', 'cytokine', 'interleukin (IL)', 'tumor necrosis factor-α (TNF-α)', 'interferon-γ (IFN-γ)', 'transforming growth factor-β (TGF-β)', 'vascular endothelial growth factor (VEGF)', 'immune' and 'inflammation'. This review summarized and analyzed the therapeutic effect of herbal medicine according to the existing experimental and clinical researches. RESULTS The results showed that herbal medicine treats POI through CK (including ILs, TNF-α, INF-γ, VEGF, TGF-β and others) and related signaling pathways, which regulates reproductive hormones disorder, reduces ovarian inflammatory damage, oxidative stress, apoptosis and follicular atresia, improves ovarian pathological damage and ovarian reserve function. CONCLUSIONS This review enriches the theory of POI treatments based on herbal medicine by regulating CK. The specific mechanisms of action and clinical researches on the treatment of POI by herbal medicine should be strengthened in order to promote the application of herbal medicine in the clinic and provide new ideas and better choices for the treatment of POI.
Collapse
Affiliation(s)
- Yuan Siyu
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhu Shixiao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sun Congying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhong Xinqin
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hu Zhen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wang Xiaoying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Recchia Luciani G, Barilli A, Visigalli R, Dall’Asta V, Rotoli BM. Cytokines from SARS-CoV-2 Spike-Activated Macrophages Hinder Proliferation and Cause Cell Dysfunction in Endothelial Cells. Biomolecules 2024; 14:927. [PMID: 39199315 PMCID: PMC11353037 DOI: 10.3390/biom14080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.R.L.); (A.B.); (R.V.); (B.M.R.)
| | | |
Collapse
|
3
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Mei SQ, Liu JQ, Huang ZJ, Luo WC, Peng YL, Chen ZH, Deng Y, Xu CR, Zhou Q. Identification of a risk score model based on tertiary lymphoid structure-related genes for predicting immunotherapy efficacy in non-small cell lung cancer. Thorac Cancer 2024; 15:1119-1131. [PMID: 38558529 DOI: 10.1111/1759-7714.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) affect the prognosis and efficacy of immunotherapy in patients with non-small cell lung cancer (NSCLC), but the underlying mechanisms are not well understood. METHODS TLSs were identified and categorized online from the Cancer Digital Slide Archive (CDSA). Overall survival (OS) and disease-free survival (DFS) were analyzed. GSE111414 and GSE136961 datasets were downloaded from the GEO database. GSVA, GO and KEGG were used to explore the signaling pathways. Immune cell infiltration was analyzed by xCell, ssGSEA and MCP-counter. The analysis of WGCNA, Lasso and multivariate cox regression were conducted to develop a gene risk score model based on the SU2C-MARK cohort. RESULTS TLS-positive was a protective factor for OS according to multivariate cox regression analysis (p = 0.029). Both the TLS-positive and TLS-mature groups exhibited genes enrichment in immune activation pathways. The TLS-mature group showed more activated dendritic cell infiltration than the TLS-immature group. We screened TLS-related genes using WGCNA. Lasso and multivariate cox regression analysis were used to construct a five-genes (RGS8, RUF4, HLA-DQB2, THEMIS, and TRBV12-5) risk score model, the progression free survival (PFS) and OS of patients in the low-risk group were markedly superior to those in the high-risk group (p < 0.0001; p = 0.0015, respectively). Calibration and ROC curves indicated that the combined model with gene risk score and clinical features could predict the PFS of patients who have received immunotherapy more accurately than a single clinical factor. CONCLUSIONS Our data suggested a pivotal role of TLSs formation in survival outcome and immunotherapy response of NSCLC patients. Tumors with mature TLS formation showed more activated immune microenvironment. In addition, the model constructed by TLS-related genes could predict the response to immunotherapy and is meaningful for clinical decision-making.
Collapse
Affiliation(s)
- Shi-Qi Mei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jia-Qi Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zi-Jian Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei-Chi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying-Long Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine South China University of Technology, Guangzhou, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhou J, Tang CK. Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights. Curr Vasc Pharmacol 2024; 22:95-105. [PMID: 38284693 DOI: 10.2174/0115701611258090231221082502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The ribonucleic acid (RNA)-binding protein Cytoplasmic Polyadenylation Element Binding Protein 1 (CPEB1), a key member of the CPEB family, is essential in controlling gene expression involved in both healthy physiological and pathological processes. CPEB1 can bind to the 3'- untranslated regions (UTR) of substrate messenger ribonucleic acid (mRNA) and regulate its translation. There is increasing evidence that CPEB1 is closely related to the pathological basis of atherosclerosis. According to recent investigations, many pathological processes, including inflammation, lipid metabolism, endothelial dysfunction, angiogenesis, oxidative stress, cellular senescence, apoptosis, and insulin resistance, are regulated by CPEB1. This review considers the prevention and treatment of atherosclerotic heart disease in relation to the evolution of the physiological function of CPEB1, recent research breakthroughs, and the potential participation of CPEB1 in atherosclerosis.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
6
|
Shang D, Liu H, Tu Z. Pro-inflammatory cytokines mediating senescence of vascular endothelial cells in atherosclerosis. Fundam Clin Pharmacol 2023; 37:928-936. [PMID: 37154136 DOI: 10.1111/fcp.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease, and aging is a major risk factor. The accumulation of senescent vascular endothelial cells (VECs) often leads to chronic inflammation and oxidative stress and induces endothelial dysfunction, contributing to the occurrence and development of AS. Senescent cells can secrete a variety of pro-inflammatory cytokines to induce the senescence of adjacent cells in a paracrine manner, leading to the transmission of signaling of cellular senescence to neighboring cells and the accumulation of senescent cells. Recent studies have demonstrated that several pro-inflammatory cytokines, including IL-17, TNF-α, and IFN-γ, can induce the senescence of VECs. This review summarizes and focuses on the pro-inflammatory cytokines that often induce the senescence of VECs and the molecular mechanisms of these pro-inflammatory cytokines inducing senescence of VECs. Targeting the senescence of VECs induced by pro-inflammatory cytokines may provide a potential and novel strategy for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
8
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
9
|
Khalil R, Diab-Assaf M, Lemaitre JM. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells 2023; 12:915. [PMID: 36980256 PMCID: PMC10047596 DOI: 10.3390/cells12060915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Life expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity. One of the most important aging hallmarks is cellular senescence, which is a stable state of cell cycle arrest that occurs in response to cumulated cell stresses and damages. Cellular senescence is a physiological mechanism that has both beneficial and detrimental consequences. Senescence limits tumorigenesis, lifelong tissue damage, and is involved in different biological processes, such as morphogenesis, regeneration, and wound healing. However, in the elderly, senescent cells increasingly accumulate in several organs and secrete a combination of senescence associated factors, contributing to the development of various age-related diseases, including cancer. Several studies have revealed major molecular pathways controlling the senescent phenotype, as well as the ones regulating its interactions with the immune system. Attenuating the senescence-associated secretory phenotype (SASP) or eliminating senescent cells have emerged as attractive strategies aiming to reverse or delay the onset of aging diseases. Here, we review current senotherapies designed to suppress the deleterious effect of SASP by senomorphics or to selectively kill senescent cells by "senolytics" or by immune system-based approaches. These recent investigations are promising as radical new controls of aging pathologies and associated multimorbidities.
Collapse
Affiliation(s)
- Roula Khalil
- IRMB, University Montpellier, INSERM, 34090 Montpellier, France;
| | - Mona Diab-Assaf
- Fanar Faculty of Sciences II, Lebanese University, Beirut P.O. Box 90656, Lebanon;
| | | |
Collapse
|
10
|
Manna S, Mc Elwain CJ, Maher GM, Giralt Martín M, Musumeci A, McCarthy FP, McCarthy C. Heterogenous Differences in Cellular Senescent Phenotypes in Pre-Eclampsia and IUGR following Quantitative Assessment of Multiple Biomarkers of Senescence. Int J Mol Sci 2023; 24:ijms24043101. [PMID: 36834513 PMCID: PMC9963163 DOI: 10.3390/ijms24043101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Premature ageing of the placenta in pregnancy outcomes is associated with the persistent presence of oxidative stress and placental insufficiency reducing its functional capacity. In this study, we investigated cellular senescence phenotypes of pre-eclampsia and IUGR pregnancies by simultaneously measuring several biomarkers of senescence. Maternal plasma and placental samples were collected at term gestation from nulliparous women undergoing pre-labour elective caesarean section with pre-eclampsia without intrauterine growth restriction (PE; n = 5), pre-eclampsia associated with intrauterine growth restriction (n = 8), intrauterine growth restriction (IUGR < 10th centile; n = 6), and age-matched controls (n = 20). Placental absolute telomere length and senescence gene analysis was performed by RTqPCR. The expression of cyclin-dependent kinase inhibitors (p21 and p16) was determined by Western blot. Senescence-associated secretory phenotypes (SASPs) were evaluated in maternal plasma by multiplex ELISA assay. Placental expression of senescence-associated genes showed significant increases in CHEK1, PCNA, PTEN, CDKN2A, and CCNB-1 (p < 0.05) in pre-eclampsia, while TBX-2, PCNA, ATM, and CCNB-1 expression were evident (p < 0.05) and were significantly decreased in IUGR compared with controls. Placental p16 protein expression was significantly decreased in pre-eclampsia only compared with controls (p = 0.028). IL-6 was significantly increased in pre-eclampsia (0.54 pg/mL ± 0.271 vs. 0.3 pg/mL ± 0.102; p = 0.017) while IFN-γ was significantly increased in IUGR (4.6 pg/mL ± 2.2 vs. 2.17 pg/mL ± 0.8; p = 0.002) compared with controls. These results provide evidence of premature senescence in IUGR pregnancies, and while cell cycle checkpoint regulators are activated in pre-eclampsia, the cellular phenotype is one of cell repair and subsequent proliferation rather than progression to senescence. The heterogeneity of these cellular phenotypes highlights the complexity of characterising cellular senescence and may equally be indicative of the differing pathophysiological insults unique to each obstetric complication.
Collapse
Affiliation(s)
- Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
| | - Colm J. Mc Elwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Gillian M. Maher
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
- School of Public Health, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Marta Giralt Martín
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
11
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells 2022; 12:cells12010036. [PMID: 36611829 PMCID: PMC9818234 DOI: 10.3390/cells12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to human corneal endothelial cells (hCECs) leads to bullous keratopathy because these cells cannot be regenerated in vivo. In this study, we investigated the protective role of microRNA (miR)-302a against interferon-γ (IFN-γ)-induced senescence and cell death of hCECs. Cultured hCECs were transfected with miR-302a and treated with IFN-γ (20 ng/mL) to evaluate the protective effect of miR-302a on IFN-γ-induced cell death. Senescence was evaluated by the senescence-associated β-galactosidase (SA-β-gal) assay, and the secretion of senescence-associated secretory phenotype (SASP) factors was analyzed. Mitochondrial function and endoplasmic reticulum (ER) stress were assessed. We revealed that miR-302a enhanced the cell viability and proliferation of hCECs and that IFN-γ increased the cell size, the number of SA-β-gal-positive cells, and SASP factors, and arrested the cell cycle, which was eliminated by miR-302a. miR-302a ameliorated mitochondrial oxidative stress and ER stress levels which were induced by IFN-γ. IFN-γ decreased the mitochondrial membrane potential and promoted autophagy, which was eliminated by miR-302a. The in vivo study showed that regeneration of rat CECs was promoted in the miR-302a group by inhibiting IFN-γ and enhancing mitochondrial function. In conclusion, miR-302a eliminated IFN-γ-induced senescence and cellular damage by regulating the oxidative and ER stress, and promoting the proliferation of CECs. Therefore, miR-302a may be a therapeutic option to protect hCECs against IFN-γ-induced stress.
Collapse
|
13
|
Choubey D. Cytosolic DNA sensor IFI16 proteins: Potential molecular integrators of interactions among the aging hallmarks. Ageing Res Rev 2022; 82:101765. [PMID: 36270606 DOI: 10.1016/j.arr.2022.101765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Cellular changes that are linked to aging in humans include genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, cellular senescence, and altered intercellular communications. The extent of the changes in these aging hallmarks and their interactions with each other are part of the human aging. However, the molecular mechanisms through which the aging hallmarks interact with each other remain unclear. Studies have indicated a potential role for the type I interferon (IFN) and p53-inducible IFI16 proteins in interactions with the aging hallmarks. The IFI16 proteins are members of the PYHIN protein family. Proteins in the family share a DNA-binding domain (the HIN domain) and a protein-protein interaction pyrin domain (PYD). IFI16 proteins are needed for cytosolic DNA-induced activation of the cGAS-STING pathway for type I IFN (IFN-β) expression. The pathway plays an important role in aging-related inflammation (inflammaging). Further, increased levels of the IFI16 proteins potentiate the cell growth inhibitory functions of the p53 and pRb tumor suppressors proteins. Moreover, IFI16 proteins are needed for most aging hallmarks. Therefore, here we discuss how an improved understanding of the role of the IFI16 proteins in integration of the aging hallmarks has potential to improve the human health and lifespan.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental & Public Health Sciences University of Cincinnati, 160 Panzeca Way, P.O. Box 670056, Cincinnati, OH 45267, USA.
| |
Collapse
|
14
|
Landry DA, Yakubovich E, Cook DP, Fasih S, Upham J, Vanderhyden BC. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. SCIENCE ADVANCES 2022; 8:eabq1475. [PMID: 36054356 PMCID: PMC10848964 DOI: 10.1126/sciadv.abq1475] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
Ovarian fibrosis is a pathological condition associated with aging and is responsible for a variety of ovarian dysfunctions. Given the known contributions of tissue fibrosis to tumorigenesis, it is anticipated that ovarian fibrosis may contribute to ovarian cancer risk. We recently reported that diabetic postmenopausal women using metformin had ovarian collagen abundance and organization that were similar to premenopausal ovaries from nondiabetic women. In this study, we investigated the effects of aging and metformin on mouse ovarian fibrosis at a single-cell level. We discovered that metformin treatment prevented age-associated ovarian fibrosis by modulating the proportion of fibroblasts, myofibroblasts, and immune cells. Senescence-associated secretory phenotype (SASP)-producing fibroblasts increased in aged ovaries, and a unique metformin-responsive subpopulation of macrophages emerged in aged mice treated with metformin. The results demonstrate that metformin can modulate specific populations of immune cells and fibroblasts to prevent age-associated ovarian fibrosis and offers a new strategy to prevent ovarian fibrosis.
Collapse
Affiliation(s)
- David A. Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Edward Yakubovich
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sijyl Fasih
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Zhuang Z, Zhong X, Chen Q, Chen H, Liu Z. Bioinformatics and System Biology Approach to Reveal the Interaction Network and the Therapeutic Implications for Non-Small Cell Lung Cancer Patients With COVID-19. Front Pharmacol 2022; 13:857730. [PMID: 35721149 PMCID: PMC9201692 DOI: 10.3389/fphar.2022.857730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Ji T, Chen M, Sun W, Zhang X, Cai H, Wang Y, Xu H. JAK-STAT signaling mediates the senescence of cartilage-derived stem/progenitor cells. J Mol Histol 2022; 53:635-643. [PMID: 35716329 DOI: 10.1007/s10735-022-10086-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Aging is a major risk factor for degenerative joint diseases, such as osteoarthritis (OA). Previous studies have confirmed the link between senescent mesenchymal stem cells (MSCs) and OA. Cartilage-derived stem/progenitor cells (CSPCs) with MSCs properties have been extracted from a variety of species. We inferred that the senescence of CSPCs may promote the development of osteoarthritis. However, the cellular and molecular mechanisms of CSPCs senescence remains unknown. In this study, we investigated the role of JAK-STAT signaling pathway in a replicative senescence model of CSPCs. We showed that the late CSPCs (> 15th passage) exhibited distinct senescent phenotypes, including increased proportion of β-gal positive senescent cells and F-actin content, as well as cell cycle arrest. In late CSPCs, the activity of JAK-STAT signaling pathway was significantly increased. Activation of JAK-STAT signaling pathway promoted cell senescence in early CSPCs (< 6th passage). Conversely, pharmacological inhibition or genetic knockdown of JAK-STAT signaling pathway attenuated cell senescence in late CSPCs. In conclusion, our results demonstrated the critical role of JAK-STAT signaling pathway in CSPCs senescence.
Collapse
Affiliation(s)
- Tianyi Ji
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Xiao Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Cytokine-Induced Senescence in the Tumor Microenvironment and Its Effects on Anti-Tumor Immune Responses. Cancers (Basel) 2022; 14:cancers14061364. [PMID: 35326515 PMCID: PMC8946098 DOI: 10.3390/cancers14061364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
In contrast to surgical excision, chemotherapy or radiation therapy, immune checkpoint blockade therapies primarily influence cells in the tumor microenvironment, especially the tumor-associated lymphocytes and antigen-presenting cells. Besides complete remission of tumor lesions, in some patients, early tumor regression is followed by a consolidation phase where residing tumors remain dormant. Whereas the cytotoxic mechanisms of the regression phase (i.e., apoptosis, necrosis, necroptosis, and immune cell-mediated cell death) have been extensively described, the mechanisms underlying the dormant state are still a matter of debate. Here, we propose immune-mediated induction of senescence in cancers as one important player. Senescence can be achieved by tumor-associated antigen-specific T helper 1 cells, cytokines or antibodies targeting immune checkpoints. This concept differs from cytotoxic treatment, which often targets the genetic makeup of cancer cells. The immune system's ability to establish "defensive walls" around tumors also places the tumor microenvironment into the fight against cancer. Those "defensive walls" isolate the tumor cells instead of increasing the selective pressure. They also keep the tumor cells in a non-proliferating state, thereby correcting the derailed tissue homeostasis. In conclusion, strengthening the senescence surveillance of tumors by the immune cells of the microenvironment is a future goal to dampen this life-threatening disease.
Collapse
|
18
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Lynch SM, Guo G, Gibson DS, Bjourson AJ, Rai TS. Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells 2021; 10:3367. [PMID: 34943875 PMCID: PMC8699414 DOI: 10.3390/cells10123367] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide, with particular risk for severe disease and mortality in the elderly population. SARS-CoV-2 infection is driven by a pathological hyperinflammatory response which results in a dysregulated immune response. Current advancements in aging research indicates that aging pathways have fundamental roles in dictating healthspan in addition to lifespan. Our review discusses the aging immune system and highlights that senescence and aging together, play a central role in COVID-19 pathogenesis. In our review, we primarily focus on the immune system response to SARS-CoV-2 infection, the interconnection between severe COVID-19, immunosenescence, aging, vaccination, and the emerging problem of Long-COVID. We hope to highlight the importance of identifying specific senescent endotypes (or "sendotypes"), which can used as determinants of COVID-19 severity and mortality. Indeed, identified sendotypes could be therapeutically exploited for therapeutic intervention. We highlight that senolytics, which eliminate senescent cells, can target aging-associated pathways and therefore are proving attractive as potential therapeutic options to alleviate symptoms, prevent severe infection, and reduce mortality burden in COVID-19 and thus ultimately enhance healthspan.
Collapse
Affiliation(s)
| | | | | | | | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK; (S.M.L.); (G.G.); (D.S.G.); (A.J.B.)
| |
Collapse
|
20
|
Martínez-Sabadell A, Arenas EJ, Arribas J. IFNγ Signaling in Natural and Therapy-Induced Antitumor Responses. Clin Cancer Res 2021; 28:1243-1249. [PMID: 34785585 DOI: 10.1158/1078-0432.ccr-21-3226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
IFNγ is a cytokine produced by a restricted number of immune cells that acts on every nucleated cell type. Consistent with this remarkably wide spectrum of targets, the effects of IFNγ are highly pleiotropic. On cells of the immune system, IFNγ signaling has generally a pro-inflammatory effect, coordinating the innate and adaptive responses. On nonimmune cells, IFNγ tends to exert the opposite effect; it inhibits cell proliferation, induces cell death, and, in addition, promotes their recognition by the immune system. These effects on the immune and nonimmune compartments play a crucial role during the immunoediting of tumors and, as shown by recent reports, also determine the efficacy of certain immunotherapies. Different therapeutic interventions to target IFNγ signaling are currently under way, and the emerging picture indicates that rewiring IFNγ signaling, disrupted in some cancer cells, may be an efficacious antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Alex Martínez-Sabadell
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J Arenas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain.,Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
21
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
22
|
Chan TK, Bramono D, Bourokba N, Krishna V, Wang ST, Neo BH, Lim RYX, Kim H, Misra N, Lim S, Betts RJ. Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and induce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci 2021; 104:83-94. [PMID: 34690024 DOI: 10.1016/j.jdermsci.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Urban pollution is correlated with an increased prevalence of skin pigmentation disorders, however the physiological processes underlying this association are unclear. OBJECTIVES To delineate the relationship between polycyclic aromatic hydrocarbons (PAHs), a key constituent of atmospheric pollution, and immunity/skin pigmentation pathways. METHODS We exposed peripheral blood mononuclear cells (PBMC) to PAHs and performed cytokines/chemokine profiling. We then examined the effect of immune activation on pigmentation by co-culturing PBMC and Benzo(a)pyrene (BaP) with reconstructed human pigmented epidermis (RHPE). To study the mechanism, we treated keratinocytes with conditioned medium from BaP-exposed PBMC and studied DNA damage responses, aryl hydrocarbon receptor (AhR) activation and pro-pigmentation factor, proopiomelanocortin (POMC) secretion. RESULTS PAHs induced up-regulation of inflammatory cytokines/chemokine in PBMC. Co-culturing of RHPE with PBMC+BaP resulted in increased melanin content and localization. BaP-conditioned medium significantly increased DNA damage, p53 stabilization, AhR activation and POMC secretion in keratinocytes. We found that IFNγ induced DNA damage, while TNFα and IL-8 potentiated POMC secretion in keratinocytes. Importantly, BaP-conditioned medium-induced DNA damage and POMC secretion is prevented by antioxidants vitamin E, vitamin C and sulforaphane, as well as the prototypical corticosteroid dexamethasone. Finally, vitamin C and sulforaphane enhanced the genome protective and depigmentation effects of dexamethasone, providing proof-of-concept for a combinatorial approach for the prevention and/or correction of PAH-induced pigment spots formation. CONCLUSION Our study reveals the importance of systemic immunity in regulating PAH-induced skin pigmentation, and provide a new keratinocyte DNA damage response mechanistic target for the prevention or reversal of pollution-associated skin pigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyoju Kim
- L'Oréal Research & Innovation, Singapore
| | - Namita Misra
- L'Oréal Research & Innovation, Aulnay sous Bois, France
| | - Shawn Lim
- L'Oréal Research & Innovation, Singapore
| | | |
Collapse
|
23
|
Lee HJ, Lee WJ, Hwang SC, Choe Y, Kim S, Bok E, Lee S, Kim SJ, Kim HO, Ock SA, Noh HS, Rho GJ, Lee SI, Lee SL. Chronic inflammation-induced senescence impairs immunomodulatory properties of synovial fluid mesenchymal stem cells in rheumatoid arthritis. Stem Cell Res Ther 2021; 12:502. [PMID: 34521481 PMCID: PMC8439066 DOI: 10.1186/s13287-021-02453-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Although the immunomodulatory properties of mesenchymal stem cells (MSCs) have been highlighted as a new therapy for autoimmune diseases, including rheumatoid arthritis (RA), the disease-specific characteristics of MSCs derived from elderly RA patients are not well understood. Methods We established MSCs derived from synovial fluid (SF) from age-matched early (average duration of the disease: 1.7 years) and long-standing (average duration of the disease: 13.8 years) RA patients (E-/L-SF-MSCs) and then analyzed the MSC characteristics such as stemness, proliferation, cellular senescence, in vitro differentiation, and in vivo immunomodulatory properties. Results The presence of MSC populations in the SF from RA patients was identified. We found that L-SF-MSCs exhibited impaired proliferation, intensified cellular senescence, reduced immunomodulatory properties, and attenuated anti-arthritic capacity in an RA animal model. In particular, E-SF-MSCs demonstrated cellular senescence progression and attenuated immunomodulatory properties similar to those of L-SF-MSC in an RA joint-mimetic milieu due to hypoxia and pro-inflammatory cytokine exposure. Due to a long-term exposure to the chronic inflammatory milieu, cellular senescence, attenuated immunomodulatory properties, and the loss of anti-arthritic potentials were more often identified in SF-MSCs in a long-term RA than early RA. Conclusion We conclude that a chronic RA inflammatory milieu affects the MSC potential. Therefore, this work addresses the importance of understanding MSC characteristics during disease states prior to their application in patients. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02453-z.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Republic of Korea
| | - Yongho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Saetbyul Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Eunyeong Bok
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sangyeob Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung-Joon Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine and Institute of Health Sciences, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Hae-Sook Noh
- Department of Internal Medicine and Institute of Health Sciences, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Sciences, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Republic of Korea.
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
25
|
Fitsiou E, Soto-Gamez A, Demaria M. Biological functions of therapy-induced senescence in cancer. Semin Cancer Biol 2021; 81:5-13. [PMID: 33775830 DOI: 10.1016/j.semcancer.2021.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
26
|
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 2021; 66:101251. [PMID: 33385543 DOI: 10.1016/j.arr.2020.101251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
As the world's population progressively ages, the burden on the socio-economic and health systems is escalating, demanding sustainable and lasting solutions. Cellular senescence, one of the hallmarks of ageing, is a state of irreversible cell cycle arrest that occurs in response to various genotoxic stressors and is considered an important factor in the development of many age-related diseases and therefore a potential therapeutic target. Here, the role of senescent cells in age-related diseases is discussed, focusing on their formation and main characteristics. The mechanisms leading to senescent cells are presented, including replicative and premature senescence as well as senescence that occurs in various physiological processes, such as wound healing. The second part comprises a comprehensive description of various biomarkers currently used for the detection of senescent cells along with the investigated therapeutic approaches, namely senolytics, senomorphics and the clearance of senescent cells by the immune system. Potential delivery systems suitable for such therapies and model organisms to study senescence are also briefly examined. This in-depth overview of cellular senescence contributes to a deeper understanding of a rapidly evolving area aimed to tackle the age-related diseases in a more mechanistic way, as well as highlights future research opportunities.
Collapse
|
27
|
Kandhaya-Pillai R, Hou D, Zhang J, Yang X, Compoginis G, Mori T, Tchkonia T, Martin GM, Hisama FM, Kirkland JL, Oshima J. SMAD4 mutations and cross-talk between TGF-β/IFNγ signaling accelerate rates of DNA damage and cellular senescence, resulting in a segmental progeroid syndrome-the Myhre syndrome. GeroScience 2021; 43:1481-1496. [PMID: 33428109 DOI: 10.1007/s11357-020-00318-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
SMAD4 encodes a member of the SMAD family of proteins involved in the TGF-β signaling pathway. Potentially heritable, autosomal dominant, gain-of-function heterozygous variants of SMAD4 cause a rare developmental disorder, the Myhre syndrome, which is associated with a wide range of developmental and post-developmental phenotypes that we now characterize as a novel segmental progeroid syndrome. Whole-exome sequencing of a patient referred to our International Registry of Werner Syndrome revealed a heterozygous p.Arg496Cys variant of the SMAD4 gene. To investigate the role of SMAD4 mutations in accelerated senescence, we generated cellular models overexpressing either wild-type SMAD4 or mutant SMAD4-R496C in normal skin fibroblasts. We found that cells expressing the SMAD4-R496C mutant exhibited decreased proliferation and elevated expression of cellular senescence and inflammatory markers, including IL-6, IFNγ, and a TGF-β target gene, PAI-1. Here we show that transient exposure to TGF-β, an inflammatory cytokine, followed by chronic IFNγ stimulation, accelerated rates of senescence that were associated with increased DNA damage foci and SMAD4 expression. TGF-β, IFNγ, or combinations of both were not sufficient to reduce proliferation rates of fibroblasts. In contrast, TGF-β alone was able to induce preadipocyte senescence via induction of the mTOR protein. The mTOR inhibitor rapamycin mitigated TGF-β-induced expression of p21, p16, and DNA damage foci and improved replicative potential of preadipocytes, supporting the cell-specific response to this cytokine. These findings collectively suggest that persistent DNA damage and cross-talk between TGF-β/IFNγ pathways contribute to a series of molecular events leading to cellular senescence and a segmental progeroid syndrome.
Collapse
Affiliation(s)
- Renuka Kandhaya-Pillai
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Deyin Hou
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Jiaming Zhang
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Xiaomeng Yang
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Goli Compoginis
- Department of Dermatology, University of Southern California, Los Angeles, CA, USA
| | - Takayasu Mori
- Department of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - George M Martin
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA.
| |
Collapse
|
28
|
Baek AR, Hong J, Song KS, Jang AS, Kim DJ, Chin SS, Park SW. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med 2020; 52:2034-2045. [PMID: 33318630 PMCID: PMC8080799 DOI: 10.1038/s12276-020-00545-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Spermidine is an endogenous biological polyamine that plays various longevity-extending roles and exerts antioxidative, antiaging, and cell growth-promoting effects. We previously reported that spermidine levels were significantly reduced in idiopathic pulmonary fibrosis (IPF) of the lung. The present study assessed the potential beneficial effects of spermidine on lung fibrosis and investigated the possible mechanism. Lung fibrosis was established in mice using bleomycin (BLM), and exogenous spermidine was administered daily by intraperitoneal injection (50 mg/kg in phosphate-buffered saline). BLM-induced alveolar epithelial cells showed significant increases in apoptosis and endoplasmic reticulum stress (ERS)-related mediators, and spermidine attenuated BLM-induced apoptosis and activation of the ERS-related pathway. Senescence-associated β-gal staining and decreased expression of p16 and p21 showed that spermidine ameliorated BLM-induced premature cellular senescence. In addition, spermidine enhanced beclin-1-dependent autophagy and autophagy modulators in IPF fibroblasts and BLM-induced mouse lungs, in which inflammation and collagen deposition were significantly decreased. This beneficial effect was related to the antiapoptotic downregulation of the ERS pathway, antisenescence effects, and autophagy activation. Our findings suggest that spermidine could be a therapeutic agent for IPF treatment.
Collapse
Affiliation(s)
- Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Ki Sung Song
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - An Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 14584, Gyeonggi-Do, South Korea.
| |
Collapse
|
29
|
Liang Y, Liang N, Yin L, Xiao F. Cellular and molecular mechanisms of xenobiotics-induced premature senescence. Toxicol Res (Camb) 2020; 9:669-675. [PMID: 33178427 DOI: 10.1093/toxres/tfaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Premature senescence, which share common features with replicative senescence such as morphology, senescence-associated galactosidase (SA-β-gal) activity, cell cycle regulation, and gene expression, can be triggered by the exposure of various xenobiotics including environmental pollutant, peroxides, and anticancer drugs. The exact mechanisms underlying the senescence onset and stabilization are still obscure. In this review, we summarized the possible cellular and molecular mechanisms of xenobiotics-induced premature senescence, including induction of reactive oxygen species (ROS), tumor suppressors, and DNA damage; disequilibrium of calcium homeostasis; activation of transforming growth factor-β (TGF-β); and blockage of aryl hydrocarbon receptor (AHR) pathway. The deeper understanding of the molecular mechanisms underlying xenobiotics-induced senescence may shed light on new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Lirong Yin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| |
Collapse
|
30
|
Nehme J, Borghesan M, Mackedenski S, Bird TG, Demaria M. Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell 2020; 19:e13237. [PMID: 32955770 PMCID: PMC7576296 DOI: 10.1111/acel.13237] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
SARS-CoV-2 is a novel betacoronavirus which infects the lower respiratory tract and can cause coronavirus disease 2019 (COVID-19), a complex respiratory distress syndrome. Epidemiological data show that COVID-19 has a rising mortality particularly in individuals with advanced age. Identifying a functional association between SARS-CoV-2 infection and the process of biological aging may provide a tractable avenue for therapy to prevent acute and long-term disease. Here, we discuss how cellular senescence-a state of stable growth arrest characterized by pro-inflammatory and pro-disease functions-can hypothetically be a contributor to COVID-19 pathogenesis, and a potential pharmaceutical target to alleviate disease severity. First, we define why older COVID-19 patients are more likely to accumulate high levels of cellular senescence. Second, we describe how senescent cells can contribute to an uncontrolled SARS-CoV-2-mediated cytokine storm and an excessive inflammatory reaction during the early phase of the disease. Third, we discuss the various mechanisms by which senescent cells promote tissue damage leading to lung failure and multi-tissue dysfunctions. Fourth, we argue that a high senescence burst might negatively impact on vaccine efficacy. Measuring the burst of cellular senescence could hypothetically serve as a predictor of COVID-19 severity, and targeting senescence-associated mechanisms prior and after SARS-CoV-2 infection might have the potential to limit a number of severe damages and to improve the efficacy of vaccinations.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
- Doctoral School of Science and TechnologyLebanese UniversityBeirutLebanon
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Sebastian Mackedenski
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Thomas G. Bird
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
- MRC Centre for Inflammation ResearchThe Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| |
Collapse
|
31
|
Frisch SM, MacFawn IP. Type I interferons and related pathways in cell senescence. Aging Cell 2020; 19:e13234. [PMID: 32918364 PMCID: PMC7576263 DOI: 10.1111/acel.13234] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
This review article addresses the largely unanticipated convergence of two landmark discoveries. The first is the discovery of interferons, critical signaling molecules for all aspects of both innate and adaptive immunity, discovered originally by Isaacs and Lindenmann at the National Institute for Medical Research, London, in 1957 (Proceedings of the Royal Society of London. Series B: Biological Sciences, 1957, 147, 258). The second, formerly unrelated discovery, by Leonard Hayflick and Paul Moorhead (Wistar Institute, Philadelphia) is that cultured cells undergo an irreversible but viable growth arrest, termed senescence, after a finite and predictable number of cell divisions (Experimental Cell Research, 1961, 25, 585). This phenomenon was suspected to relate to organismal aging, which was confirmed subsequently (Nature, 2011, 479, 232). Cell senescence has broad‐ranging implications for normal homeostasis, including immunity, and for diverse disease states, including cancer progression and response to therapy (Nature Medicine, 2015, 21, 1424; Cell, 2019, 179, 813; Cell, 2017, 169, 1000; Trends in Cell Biology, 2018, 28, 436; Journal of Cell Biology, 2018, 217, 65). Here, we critically address the bidirectional interplay between interferons (focusing on type I) and cell senescence, with important implications for health and healthspan.
Collapse
Affiliation(s)
- Steven M. Frisch
- Department of Biochemistry and WVU Cancer Institute West Virginia University Morgantown West Virginia USA
| | - Ian P. MacFawn
- Department of Biochemistry and WVU Cancer Institute West Virginia University Morgantown West Virginia USA
| |
Collapse
|
32
|
Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun 2020; 11:4289. [PMID: 32855397 PMCID: PMC7453018 DOI: 10.1038/s41467-020-18039-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Older organs represent an untapped potential to close the gap between demand and supply in organ transplantation but are associated with age-specific responses to injury and increased immunogenicity, thereby aggravating transplant outcomes. Here we show that cell-free mitochondrial DNA (cf-mt-DNA) released by senescent cells accumulates with aging and augments immunogenicity. Ischemia reperfusion injury induces a systemic increase of cf-mt-DNA that promotes dendritic cell-mediated, age-specific inflammatory responses. Comparable events are observed clinically, with the levels of cf-mt-DNA elevated in older deceased organ donors, and with the isolated cf-mt-DNA capable of activating human dendritic cells. In experimental models, treatment of old donor animals with senolytics clear senescent cells and diminish cf-mt-DNA release, thereby dampening age-specific immune responses and prolonging the survival of old cardiac allografts comparable to young donor organs. Collectively, we identify accumulating cf-mt-DNA as a key factor in inflamm-aging and present senolytics as a potential approach to improve transplant outcomes and availability. Organ transplantation involving aged donors is often confounded by reduced post-transplantation organ survival. By studying both human organs and mouse transplantation models, here the authors show that pretreating the donors with senolytics to reduce mitochondria DNA and pro-inflammatory dendritic cells may help promote survival of aged organs.
Collapse
|
33
|
Al-Azab M, Wang B, Elkhider A, Walana W, Li W, Yuan B, Ye Y, Tang Y, Almoiliqy M, Adlat S, Wei J, Zhang Y, Li X. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY) 2020; 12:5693-5715. [PMID: 32235006 PMCID: PMC7185126 DOI: 10.18632/aging.102958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Premature senescence of bone marrow-derived mesenchymal stem cells (BMSC) remains a major concern for their application clinically. Hedgehog signaling has been reported to regulate aging-associated markers and MSC skewed differentiation. Indian Hedgehog (IHH) is a ligand of Hedgehog intracellular pathway considered as an inducer in chondrogenesis of human BMSC. However, the role of IHH in the aging of BMSC is still unclear. This study explored the role IHH in the senescence of BMSC obtained from human samples and senescent mice. Isolated BMSC were transfected with IHH siRNA or incubated with exogenous IHH protein and the mechanisms of aging and differentiation investigated. Moreover, the interactions between IHH, and mammalian target of rapamycin (mTOR) and reactive oxygen species (ROS) were evaluated using the corresponding inhibitors and antioxidants. BMSC transfected with IHH siRNA showed characteristics of senescence-associated features including increased senescence-associated β-galactosidase activity (SA-β-gal), induction of cell cycle inhibitors (p53/p16), development of senescence-associated secretory phenotype (SASP), activation of ROS and mTOR pathways as well as the promotion of skewed differentiation. Interestingly, BMSC treatment with IHH protein reversed the senescence markers and corrected biased differentiation. Moreover, IHH shortage-induced senescence signs were compromised after mTOR and ROS inhibition. Our findings presented anti-aging activity for IHH in BMSC through down-regulation of ROS/mTOR pathways. This discovery might contribute to increasing the therapeutic, immunomodulatory and regenerative potency of BMSC and introduce a novel remedy in the management of aging-related diseases.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Clinical Microbiology, University for Development Studies, Tamale, Ghana
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Marwan Almoiliqy
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
34
|
Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf 2020; 18:326-334. [PMID: 31953222 DOI: 10.1016/j.jtos.2019.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
The conjunctiva is a goblet cell rich mucosal tissue. Goblet cells are supported by tear growth factors and IL-13 produced by resident immune cells. Goblet cell secretions are essential for maintaining tear stability and ocular surface homeostasis. In addition to producing tear stabilizing mucins, they also produce cytokines and retinoic acid that condition monocyte-derived phagocytic cells in the conjunctiva. Aqueous tear deficiency from lacrimal gland disease and systemic inflammatory conditions results in goblet cell loss that amplifies dry eye severity. Reduced goblet cell density is correlated with more severe conjunctival disease, increased IFN-γ expression and antigen presenting cell maturation. Sterile Alpha Motif (SAM) pointed domain epithelial specific transcription factor (Spdef) gene deficient mice that lack goblet cells have increased infiltration of monocytes and dendritic cells with greater IL-12 expression in the conjunctiva. Similar findings were observed in the conjunctiva of aged mice. Reduced retinoic acid receptor (RXRα) signaling also increases conjunctival monocyte infiltration, IFN-γ expression and goblet cell loss. Evidence suggests that dry eye therapies that suppress IFN-γ expression preserve conjunctival goblet cell number and function and should be considered in aqueous deficiency.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
35
|
Pangrazzi L, Reidla J, Carmona Arana JA, Naismith E, Miggitsch C, Meryk A, Keller M, Krause AAN, Melzer FL, Trieb K, Schirmer M, Grubeck-Loebenstein B, Weinberger B. CD28 and CD57 define four populations with distinct phenotypic properties within human CD8 + T cells. Eur J Immunol 2019; 50:363-379. [PMID: 31755098 PMCID: PMC7079235 DOI: 10.1002/eji.201948362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Indexed: 12/12/2022]
Abstract
After repeated antigen exposure, both memory and terminally differentiated cells can be generated within CD8+ T cells. Although, during their differentiation, activated CD8+ T cells may first lose CD28, and CD28- cells may eventually express CD57 as a subsequent step, a population of CD28+ CD57+ (DP) CD8+ T cells can be identified in the peripheral blood. How this population is distinct from CD28- CD57- (DN) CD8+ T cells, and from the better characterized non-activated/early-activated CD28+ CD57- and senescent-like CD28- CD57+ CD8+ T cell subsets is currently unknown. Here, RNA expression of the four CD8+ T cell subsets isolated from human PBMCs was analyzed using microarrays. DN cells were more similar to "early" highly differentiated cells, with decreased TNF and IFN-γ production, impaired DNA damage response and apoptosis. Conversely, increased apoptosis and expression of cytokines, co-inhibitory, and chemokine receptors were found in DP cells. Higher levels of DP CD8+ T cells were observed 7 days after Hepatitis B vaccination, and decreased levels of DP cells were found in rheumatoid arthritis patients. More DP and DN CD8+ T cells were present in the bone marrow, in comparison with PBMCs. In summary, our results indicate that DP and DN cells are distinct CD8+ T cell subsets displaying defined properties.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Jürgen Reidla
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - José Antonio Carmona Arana
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Carina Miggitsch
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Michael Keller
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Adelheid Alma Nora Krause
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Grieskirchnerstrasse 42, Wels, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| |
Collapse
|
36
|
Schwab N, Grenier K, Hazrati LN. DNA repair deficiency and senescence in concussed professional athletes involved in contact sports. Acta Neuropathol Commun 2019; 7:182. [PMID: 31727161 PMCID: PMC6857343 DOI: 10.1186/s40478-019-0822-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) leads to diverse symptoms including mood disorders, cognitive decline, and behavioral changes. In some individuals, these symptoms become chronic and persist in the long-term and can confer an increased risk of neurodegenerative disease and dementia diagnosis later in life. Despite the severity of its consequences, the pathophysiological mechanism of mTBI remains unknown. In this post-mortem case series, we assessed DNA damage-induced cellular senescence pathways in 38 professional athletes with a history of repeated mTBI and ten controls with no mTBI history. We assessed clinical presentation, neuropathological changes, load of DNA damage, morphological markers of cellular senescence, and expression of genes involved in DNA damage signaling, DNA repair, and cellular senescence including the senescence-associated secretory phenotype (SASP). Twenty-eight brains with past history of repeated mTBI history had DNA damage within ependymal cells, astrocytes, and oligodendrocytes. DNA damage burden was increased in brains with proteinopathy compared to those without. Cases also showed hallmark features of cellular senescence in glial cells including astrocytic swelling, beading of glial cell processes, loss of H3K27Me3 (trimethylation at lysine 27 of histone H3) and lamin B1 expression, and increased expression of cellular senescence and SASP pathways. Neurons showed a spectrum of changes including loss of emerin nuclear membrane expression, loss of Brahma-related gene-1 (BRG1 or SMARCA4) expression, loss of myelin basic protein (MBP) axonal expression, and translocation of intranuclear tau to the cytoplasm. Expression of DNA repair proteins was decreased in mTBI brains. mTBI brains showed substantial evidence of DNA damage and cellular senescence. Decreased expression of DNA repair genes suggests inefficient DNA repair pathways in this cohort, conferring susceptibly to cellular senescence and subsequent brain dysfunction after mTBI. We therefore suggest that brains of contact-sports athletes are characterized by deficient DNA repair and DNA damage-induced cellular senescence and propose that this may affect neurons and be the driver of brain dysfunction in mTBI, predisposing the progression to neurodegenerative diseases. This study provides novel targets for diagnostic and prognostic biomarkers, and represents viable targets for future treatments.
Collapse
Affiliation(s)
- Nicole Schwab
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir, Toronto, ON, M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
| | - Karl Grenier
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir, Toronto, ON, M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir, Toronto, ON, M5S 1A8, Canada.
- The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
37
|
Mrazkova B, Dzijak R, Imrichova T, Kyjacova L, Barath P, Dzubak P, Holub D, Hajduch M, Nahacka Z, Andera L, Holicek P, Vasicova P, Sapega O, Bartek J, Hodny Z. Induction, regulation and roles of neural adhesion molecule L1CAM in cellular senescence. Aging (Albany NY) 2019; 10:434-462. [PMID: 29615539 PMCID: PMC5892697 DOI: 10.18632/aging.101404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Aging involves tissue accumulation of senescent cells (SC) whose elimination through senolytic approaches may evoke organismal rejuvenation. SC also contribute to aging-associated pathologies including cancer, hence it is imperative to better identify and target SC. Here, we aimed to identify new cell-surface proteins differentially expressed on human SC. Besides previously reported proteins enriched on SC, we identified 78 proteins enriched and 73 proteins underrepresented in replicatively senescent BJ fibroblasts, including L1CAM, whose expression is normally restricted to the neural system and kidneys. L1CAM was: 1) induced in premature forms of cellular senescence triggered chemically and by gamma-radiation, but not in Ras-induced senescence; 2) induced upon inhibition of cyclin-dependent kinases by p16INK4a; 3) induced by TGFbeta and suppressed by RAS/MAPK(Erk) signaling (the latter explaining the lack of L1CAM induction in RAS-induced senescence); and 4) induced upon downregulation of growth-associated gene ANT2, growth in low-glucose medium or inhibition of the mevalonate pathway. These data indicate that L1CAM is controlled by a number of cell growth- and metabolism-related pathways during SC development. Functionally, SC with enhanced surface L1CAM showed increased adhesion to extracellular matrix and migrated faster. Our results provide mechanistic insights into senescence of human cells, with implications for future senolytic strategies.
Collapse
Affiliation(s)
- Blanka Mrazkova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Rastislav Dzijak
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Terezie Imrichova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Lenka Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Dusan Holub
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Ladislav Andera
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Petr Holicek
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Olena Sapega
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic.,Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| |
Collapse
|
38
|
Wei W, Ji S. Cellular senescence: Molecular mechanisms and pathogenicity. J Cell Physiol 2018; 233:9121-9135. [PMID: 30078211 DOI: 10.1002/jcp.26956] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is the arrest of normal cell division. Oncogenic genes and oxidative stress, which cause genomic DNA damage and generation of reactive oxygen species, lead to cellular senescence. The senescence-associated secretory phenotype is a distinct feature of senescence. Senescence is normally involved in the embryonic development. Senescent cells can communicate with immune cells to invoke an immune response. Senescence emerges during the aging process in several tissues and organs. In fact, increasing evidence shows that cellular senescence is implicated in aging-related diseases, such as nonalcoholic fatty liver disease, obesity and diabetes, pulmonary hypertension, and tumorigenesis. Cellular senescence can also be induced by microbial infection. During cellular senescence, several signaling pathways, including those of p53, nuclear factor-κB (NF-κB), mammalian target of rapamycin, and transforming growth factor-beta, play important roles. Accumulation of senescent cells can trigger chronic inflammation, which may contribute to the pathological changes in the elderly. Given the variety of deleterious effects caused by cellular senescence in humans, strategies have been proposed to control senescence. In this review, we will focus on recent studies to provide a brief introduction to cellular senescence, including associated signaling pathways and pathology.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Basic Medical School, Henan University, Kaifeng, Henan, China.,Department of Microbiology, Basic Medical School, Henan University, Kaifeng, Henan, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Basic Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
39
|
Khor ES, Wong PF. Endothelial replicative senescence delayed by the inhibition of MTORC1 signaling involves MicroRNA-107. Int J Biochem Cell Biol 2018; 101:64-73. [PMID: 29857052 DOI: 10.1016/j.biocel.2018.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023]
Abstract
Accumulation of senescent endothelial cells can contribute to endothelium dysfunction. Suppression of MTOR signaling has been shown to delay senescence but the mechanism that underpins this effect, particularly one that involves miRNAs, remains to be further defined. This study sought to identify miRNAs involved in MTORC1-mediated inhibition of replicative senescence in endothelial cells. Pre-senescent HUVECs were prolonged treated with low dose rapamycin (1 nM), an MTOR inhibitor. Rapamycin treatment down-regulated the phosphorylated MTOR, RPS6 and 4EBP1 expressions, which confirmed MTORC1 suppression. Prolonged low dose rapamycin treatment has significantly reduced the percentage of senescence-associated beta galactosidase (SA-β gal) positively stained senescent cells and P16INK4A expression in these cells. On the contrary, the percentage of BrdU-labelled proliferating cells has significantly increased. RPTOR, a positive regulator of MTORC1 was knockdown using RPTOR siRNA to inhibit MTORC1 activation. RPTOR knockdown was evidenced by significant suppressions of RPTOR mRNA and protein expression levels. In these cells, the expression of miR-107 was down-regulated whereas miR-145-5p and miR-217 were up-regulated. Target gene prediction revealed PTEN as the target of miR-107 and this was confirmed by biotin pull-down assay. Over-expression of miR-107 has decreased PTEN expression, increased MTORC1 activity, induced cell cycle arrest at G0/G1 phase and up-regulated P16INK4A expression but mitigated tube formation. Collectively, our findings revealed that delayed endothelial replicative senescence caused by the inhibition of MTORC1 activation could be modulated by miR-107 via its influence on PTEN.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Ji J, Hao Z, Liu H, Liu Y, Liu J, Lin B, Ma C, Lin Y. Effect of KNDC1 overexpression on the senescence of human umbilical vein endothelial cells. Mol Med Rep 2018; 17:7037-7044. [PMID: 29568929 PMCID: PMC5928657 DOI: 10.3892/mmr.2018.8775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Kinase non-catalytic C-lobe domain containing 1 (KNDC1) exists in dendrites, guanine nucleotide exchange factor complexes and neuronal cell bodies as a putative protein-protein interaction module that regulates a number of signaling pathways. Previous studies have demonstrated that the knockdown of KNDC1 delays human umbilical vein endothelial cell (HUVEC) senescence. However, the effect of KNDC1 overexpression on HUVEC function remains unclear. In the present study, an adenovirus vector carrying KNDC1 was constructed and then transfected into endothelial cells to observe cell senescence. Furthermore, the effect of KNDC1 overexpression on HUVEC senescence was investigated in vitro and the underlying molecular mechanism was investigated. Senescence-associated β-galactosidase staining was used to determine cellular senescence and reactive oxygen species (ROS) were monitored to detect the level of cell oxidative stress. The mRNA transcription level and protein expression were analyzed by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The results demonstrated that KNDC1 overexpression possibly inhibited HUVEC activity and function and promoted HUVEC senescence. Mechanistic studies demonstrated that KNDC1 triggered a p53-ROS positive feedback loop, which serves a crucial role in regulating senescence. In conclusion, to the best of the authors' knowledge, this is the first time that KNDC1-adenovirus vector inhibition of HUVEC proliferation by activating the p53 signaling pathway has been reported. Theoretically, the results of the present study also support KNDC1 as a therapeutic target for future anti-senescence.
Collapse
Affiliation(s)
- Jinrui Ji
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Zhenxuan Hao
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Hengliang Liu
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Yang Liu
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Jing Liu
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Binghui Lin
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Chao Ma
- Department of Cardiology, Zhengzhou People Hospital, Southern Medical University, Zhengzhou, Henan 450002, P.R. China
| | - Yajun Lin
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
41
|
TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging (Albany NY) 2018; 9:2411-2435. [PMID: 29176033 PMCID: PMC5723694 DOI: 10.18632/aging.101328] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/11/2017] [Indexed: 01/05/2023]
Abstract
Cellular senescence is a cell fate program that entails essentially irreversible proliferative arrest in response to damage signals. Tumor necrosis factor-alpha (TNFα), an important pro-inflammatory cytokine secreted by some types of senescent cells, can induce senescence in mouse and human cells. However, downstream signaling pathways linking TNFα-related inflammation to senescence are not fully characterized. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that TNFα induces permanent growth arrest and increases p21CIP1, p16INK4A, and SA-β-gal, accompanied by persistent DNA damage and ROS production. By gene expression profiling, we identified the crucial involvement of inflammatory and JAK/STAT pathways in TNFα-mediated senescence. We found that TNFα activates a STAT-dependent autocrine loop that sustains cytokine secretion and an interferon signature to lock cells into senescence. Furthermore, we show STAT1/3 activation is necessary for cytokine and ROS production during TNFα-induced senescence. However, inhibition of STAT1/3 did not rescue cells from proliferative arrest, but rather suppressed cell cycle regulatory genes and altered TNFα-induced senescence. Our findings suggest a positive feedback mechanism via the STAT pathway that sustains cytokine production and reveal a reciprocal regulatory role of JAK/STAT in TNFα-mediated senescence.
Collapse
|
42
|
Zhang XT, Gong AY, Wang Y, Chen X, Lim SYS, Dolata CE, Chen XM. Cryptosporidium parvum infection attenuates the ex vivo propagation of murine intestinal enteroids. Physiol Rep 2017; 4:4/24/e13060. [PMID: 28039407 PMCID: PMC5210379 DOI: 10.14814/phy2.13060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022] Open
Abstract
Cryptosporidium, a ubiquitous coccidian protozoan parasite that infects the gastrointestinal epithelium and other mucosal surfaces, is an important opportunistic pathogen for immunocompromised individuals and a common cause of diarrhea in young children in the developing countries. One of the pathological hallmarks of intestinal cryptosporidiosis is villous atrophy, which results in a shorter height of intestinal villi. Here, we investigated the effects of Cryptosporidium infection on intestinal epithelial growth, using an ex vivo model of intestinal cryptosporidiosis employing enteroids from mice. We detected infection of enteroids isolated from immunocompetent adult and neonatal mice after ex vivo exposure to Cryptosporidium sporozoites. We observed a significant inhibition of enteroid propagation following infection. Intriguingly, we identified a decreased expression level of intestinal stem cell markers in enteroids following C. parvum infection. We further measured the expression levels of several Wnt antagonists or agonists in infected enteroids, as induction of the Wnt/β‐catenin activation is a key factor for intestinal stem cell function. We detected a markedly increased level of the Dickkopf‐related protein 1 and decreased level of the Wnt family member 5a in enteroids after infection. The low density lipoprotein receptor‐related protein 5, one of the Wnt co‐receptors, is downregulated in the infected enteroids. In addition, increased apoptotic cell death and cell senescence were observed in the infected enteroids. Our results demonstrate a significant inhibitory effect of Cryptosporidium infection on the ex vivo propagation of enteroids from mice, providing additional insights into the impact of Cryptosporidium infection on intestinal epithelial growth.
Collapse
Affiliation(s)
- Xin-Tian Zhang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Sheng-Yau S Lim
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Courtney E Dolata
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| |
Collapse
|
43
|
Rai TS, Glass M, Cole JJ, Rather MI, Marsden M, Neilson M, Brock C, Humphreys IR, Everett RD, Adams PD. Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity. Nucleic Acids Res 2017; 45:11673-11683. [PMID: 28981850 PMCID: PMC5691367 DOI: 10.1093/nar/gkx771] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity.
Collapse
Affiliation(s)
- Taranjit Singh Rai
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, Scotland
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Mandy Glass
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, Scotland
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - John J. Cole
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Mohammad I. Rather
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Morgan Marsden
- Cardiff Institute of Infection & Immunity, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | | | - Claire Brock
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Ian R. Humphreys
- Cardiff Institute of Infection & Immunity, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Roger D. Everett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Peter D. Adams
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
44
|
Immune dysfunctionality of replicative senescent mesenchymal stromal cells is corrected by IFNγ priming. Blood Adv 2017; 1:628-643. [PMID: 28713871 DOI: 10.1182/bloodadvances.2017006205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Industrial-scale expansion of mesenchymal stromal cells (MSCs) is often used in clinical trials, and the effect of replicative senescence on MSC functionality is of mechanistic interest. Senescent MSCs exhibit cell-cycle arrest, cellular hypertrophy, and express the senescent marker β-galactosidase. Although both fit and senescent MSCs display intact lung-homing properties in vivo, senescent MSCs acquire a significant defect in inhibiting T-cell proliferation and cytokine secretion in vitro. IFNγ does not upregulate HLA-DR on senescent MSCs, whereas its silencing did not reverse fit MSCs' immunosuppressive properties. Secretome analysis of MSC and activated peripheral blood mononuclear cell coculture demonstrate that senescent MSCs are significantly defective in up (vascular endothelial growth factor [VEGF], granulocyte colony-stimulating factor [GCSF], CXCL10, CCL2) or down (IL-1ra, IFNγ, IL-2r, CCL4, tumor necrosis factor-α, IL-5) regulating cytokines/chemokines. Unlike indoleamine 2,3 dioxygenase (IDO), silencing of CXCL9, CXCL10, CXCL11, GCSF, CCL2, and exogenous addition of VEGF, fibroblast growth factor-basic do not modulate MSCs' immunosuppressive properties. Kynurenine levels were downregulated in senescent MSC cocultures compared with fit MSC counterparts, and exogenous addition of kynurenine inhibits T-cell proliferation in the presence of senescent MSCs. IFNγ prelicensing activated several immunomodulatory genes including IDO in fit and senescent MSCs at comparable levels and significantly enhanced senescent MSCs' immunosuppressive effect on T-cell proliferation. Our results define immune functional defects acquired by senescent MSCs, which are reversible by IFNγ prelicensing.
Collapse
|
45
|
Ji J, Wu Y, Meng Y, Zhang L, Feng G, Xia Y, Xue W, Zhao S, Gu Z, Shao X. JAK-STAT signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients. Acta Biochim Biophys Sin (Shanghai) 2017; 49:208-215. [PMID: 28177455 DOI: 10.1093/abbs/gmw134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
Previous studies have revealed that bone marrow-mesenchymal stem cells (BM-MSCs) from systemic lupus erythematosus (SLE) patients exhibited early signs of senescence, which may participate in the development of SLE. However, the molecular mechanisms about this phenomenon have not been fully elucidated. In the current study, we aimed to investigate whether Janus kinase (JAK)-signaling transducers and activators of transcription (STAT) signaling mediated the senescence of BM-MSCs from SLE patients. Twelve female SLE patients and healthy subjects were enrolled in the study. All BM-MSCs were isolated by density gradient centrifugation. Western blot analysis was used to test the expression of JAK-STAT signaling molecules. We observed the activity of β-gal of cells, the changes of cytoskeletal structure by F-actin staining, and the distribution of cell cycle by flow cytometry. BM-MSCs from SLE patients showed prominent features of senescence, and abnormal activation of JAK-STAT signaling transduction, high level of phosphorylated JAK2, and STAT3. After stimulation of IFN-γ in normal MSCs, JAK-STAT signaling was activated. The cell volume and the number of senescence-associated β-galactosidase (SA-β-gal) positive in SLE BM-MSCs were increased. The organization of cytoskeleton was nearly disordered. The rate of cell proliferation was decreased. AG490, the inhibitor of JAK2, and knockdown of STAT3 in BM-MSCs, could significantly reverse the senescence. In summary, our study indicated that JAK-STAT signaling pathway may play a critical role in the senescence of SLE BM-MSCs.
Collapse
Affiliation(s)
- Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yeqing Wu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200000, China
| | - Lijuan Zhang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wenrong Xue
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shuyang Zhao
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyi Shao
- Department of Immunology, Medical College, Nantong University, Nantong 226001, China
| |
Collapse
|
46
|
Kulkarni A, Scully TJ, O'Donnell LA. The antiviral cytokine interferon-gamma restricts neural stem/progenitor cell proliferation through activation of STAT1 and modulation of retinoblastoma protein phosphorylation. J Neurosci Res 2016; 95:1582-1601. [PMID: 27862183 PMCID: PMC5432422 DOI: 10.1002/jnr.23987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Neural stem/progenitor cells (NPSCs) express receptors for many inflammatory cytokines, with varying effects on differentiation and proliferation depending on the stage of development and the milieu of inflammatory mediators. In primary neurons and astrocytes, we recently showed that interferon gamma (IFNγ), a potent antiviral cytokine that is required for the control and clearance of many central nervous system (CNS) infections, could differentially affect cell survival and cell cycle progression depending upon the cell type and the profile of activated intracellular signaling molecules. Here, we show that IFNγ inhibits proliferation of primary NSPCs through dephosphorylation of the tumor suppressor Retinoblastoma protein (pRb), which is dependent on activation of signal transducers and activators of transcription‐1 (STAT1) signaling pathways. Our results show i) IFNγ inhibits neurosphere growth and proliferation rate in a dose‐dependent manner; ii) IFNγ blocks cell cycle progression through a late‐stage G1/S phase restriction; iii) IFNγ induces phosphorylation and expression of STAT1 and STAT3; iv) IFNγ decreases cyclin E/cdk2 expression and reduces phosphorylation of cyclin D1 and pRb on serine residue 795; and v) the effects of IFNγ on NSPC proliferation, cell cycle protein expression, and pRb phosphorylation are STAT1‐dependent. These data define a mechanism by which IFNγ could contribute to a reduction in NSPC proliferation in inflammatory conditions. Further delineation of the effects of inflammatory cytokines on NSPC growth could improve our understanding of how CNS infections and other inflammatory events disrupt brain development and NSPC function. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| | - Taylor J Scully
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| | - Lauren A O'Donnell
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| |
Collapse
|
47
|
Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep 2016; 43:1213-1220. [DOI: 10.1007/s11033-016-4065-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022]
|
48
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
49
|
Choubey D, Panchanathan R. IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases. Ageing Res Rev 2016; 28:27-36. [PMID: 27063514 DOI: 10.1016/j.arr.2016.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
Abstract
DNA-damage induces a DNA-damage response (DDR) in mammalian cells. The response, depending upon the cell-type and the extent of DNA-damage, ultimately results in cell death or cellular senescence. DDR-induced signaling in cells activates the ATM-p53 and ATM-IKKα/β-interferon (IFN)-β signaling pathways, thus leading to an induction of the p53 and IFN-inducible IFI16 gene. Further, upon DNA-damage, DNA accumulates in the cytoplasm, thereby inducing the IFI16 protein and STING-dependent IFN-β production and activation of the IFI16 inflammasome, resulting in the production of proinflammatory cytokines (e.g., IL-1β and IL-18). Increased expression of IFI16 protein in a variety of cell-types promotes cellular senescence. However, reduced expression of IFI16 in cells promotes cell proliferation. Because expression of the IFI16 gene is induced by activation of DNA-damage response in cells and increased levels of IFI16 protein in cells potentiate the p53-mediated transcriptional activation of genes and p53 and pRb-mediated cell cycle arrest, we discuss how an improved understanding of the role of IFI16 protein in cellular senescence and associated inflammatory secretory phenotype is likely to identify the molecular mechanisms that contribute to the development of aging-associated human inflammatory diseases and a failure to cancer therapy.
Collapse
Affiliation(s)
- Divaker Choubey
- Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States; Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States.
| | - Ravichandran Panchanathan
- Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States; Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States
| |
Collapse
|
50
|
Moudra A, Hubackova S, Machalova V, Vancurova M, Bartek J, Reinis M, Hodny Z, Jonasova A. Dynamic alterations of bone marrow cytokine landscape of myelodysplastic syndromes patients treated with 5-azacytidine. Oncoimmunology 2016; 5:e1183860. [PMID: 27853634 DOI: 10.1080/2162402x.2016.1183860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 01/05/2023] Open
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal stem cell disorders characterized by ineffective hematopoiesis frequently progressing into acute myeloid leukemia (AML), with emerging evidence implicating aberrant bone marrow (BM) microenvironment and inflammation-related changes. 5-azacytidine (5-AC) represents standard MDS treatment. Besides inhibiting DNA/RNA methylation, 5-AC has been shown to induce DNA damage and apoptosis in vitro. To provide insights into in vivo effects, we assessed the proinflammatory cytokines alterations during MDS progression, cytokine changes after 5-AC, and contribution of inflammatory comorbidities to the cytokine changes in MDS patients. We found that IL8, IP10/CXCL10, MCP1/CCL2 and IL27 were significantly elevated and IL12p70 decreased in BM of MDS low-risk, high-risk and AML patients compared to healthy donors. Repeated sampling of the high-risk MDS patients undergoing 5-AC therapy revealed that the levels of IL8, IL27 and MCP1 in BM plasma were progressively increasing in agreement with in vitro experiments using several cancer cell lines. Moreover, the presence of inflammatory diseases correlated with higher levels of IL8 and MCP1 in low-risk but not in high-risk MDS. Overall, all forms of MDS feature a deregulated proinflammatory cytokine landscape in the BM and such alterations are further augmented by therapy of MDS patients with 5-AC.
Collapse
Affiliation(s)
- Alena Moudra
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Sona Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Laboratory of Molecular Therapy, Institute of Biotechnology, v.v.i., Academy of Sciences of the Czech Republic, BIOCEV, Vestec, Czech Republic
| | - Veronika Machalova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Marketa Vancurova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institute, Solna, Sweden
| | - Milan Reinis
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Immunology Unit, Czech Center for Phenogenomics, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Anna Jonasova
- 1st Department of Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital , Prague, Czech Republic
| |
Collapse
|