1
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
2
|
Gamit N, Dharmarajan A, Sethi G, Warrier S. Want of Wnt in Parkinson's disease: Could sFRP disrupt interplay between Nurr1 and Wnt signaling? Biochem Pharmacol 2023; 212:115566. [PMID: 37088155 DOI: 10.1016/j.bcp.2023.115566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor known to regulate the development and maintenance of midbrain dopaminergic (mDA) neurons. Reports have confirmed that defect or obliteration of Nurr1 results in neurodegeneration and motor function impairment leading to Parkinson's disease (PD). Studies have also indicated that Nurr1 regulates the expression of alpha-synuclein (α-SYN) and mutations in Nurr1 cause α-SYN overexpression, thereby increasing the risk of PD. Nurr1 is modulated via various pathways including Wnt signaling pathway which is known to play an important role in neurogenesis and deregulation of it contributes to PD pathogenesis. Both Wnt/β-catenin dependent and independent pathways are implicated in the activation of Nurr1 and subsequent downregulation of α-SYN. This review highlights the interaction between Nurr1 and Wnt signaling pathways in mDA neuronal development. We further hypothesize how modulation of Wnt signaling pathway by its antagonist, secreted frizzled related proteins (sFRPs) could be a potential route to treat PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India; School of Pharmacy and Biomedical Sciences, Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117 600, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
3
|
Hong H, Su J, Huang C, Lu X, Cui Z. Comprehensive insights into the function and molecular and pharmacological regulation of neuron-derived orphan receptor 1, an orphan receptor. Front Pharmacol 2022; 13:981490. [PMID: 36110555 PMCID: PMC9468329 DOI: 10.3389/fphar.2022.981490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuron-derived orphan receptor 1 (NOR1), also called nuclear receptor subfamily 4 group A member 3 (NR4A3), is a nuclear receptor belonging to the NR4A family. Since no endogenous ligand has been identified to date, NOR1 is also referred to as an orphan receptor. NOR1 is expressed in a variety of cells and tissues, including neurons, vascular smooth muscle cells, T lymphocytes, dendritic cells, tumor cells, heart, liver, and pancreas. Because NOR1 was first identified in apoptotic neurons, it is functionally associated with the regulation of cell migration and the growth of neuronal synapses. In-depth studies have shown that NOR1 can be edited by the immediate early gene and functions as a transcription factor. NOR1 has been shown to be rapidly induced by a number of stimulants including growth factors, fatty acids, and neurotransmitters. Elevated NOR1 levels may be involved in a number of pathophysiological processes. These include regulation of cellular apoptosis and regeneration, neuron formation, contextual fearing memory, inflammation, vascular smooth muscle proliferation, insulin secretion, and tumor development, whereby NOR1 mediates the pathogenesis of numerous diseases such as cerebral ischemia, depression, post-traumatic stress disorder, atherosclerosis, abdominal aortic aneurysm, cardiac hypertrophy, diabetes, osteoarthritis, rheumatoid arthritis, and cancer. However, to date, comprehensive insights into the function of NOR1 are not available in sources published online. In this review, we provide a brief overview of the function and molecular and pharmacological regulation of NOR1 in various pathological or physiological conditions to advance the development of NOR1 as a novel target for disease treatment.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbin Su
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
4
|
Haddad M. The Impact of CB1 Receptor on Nuclear Receptors in Skeletal Muscle Cells. PATHOPHYSIOLOGY 2021; 28:457-470. [PMID: 35366244 PMCID: PMC8830471 DOI: 10.3390/pathophysiology28040029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabinoids are abundant signaling compounds; their influence predominantly arises via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2. One suggested theory is that cannabinoids regulate a variety of physiological processes within the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both murines and humans, thus representing a potentially significant pathway which plays a role in the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition with respect to these functions and relevant to targets in the periphery, especially skeletal muscle, is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1 receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which regulates the immediate impacts of arachidonyl-2′-chloroethylamide (ACEA) and/or rimonabant in the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal muscle cells have often been used; it is well-documented that they express cannabinoid receptors. Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3 mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist, rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant. Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1 receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways underlying skeletal muscle biological function and disease processes. Further research is required to fully delineate their role(s).
Collapse
Affiliation(s)
- Mansour Haddad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| |
Collapse
|
5
|
Mohr AE, Reiss RA, Beaudet M, Sena J, Naik JS, Walker BR, Sweazea KL. Short-term high fat diet alters genes associated with metabolic and vascular dysfunction during adolescence in rats: a pilot study. PeerJ 2021; 9:e11714. [PMID: 34285833 PMCID: PMC8274493 DOI: 10.7717/peerj.11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Diet-induced metabolic dysfunction precedes multiple disease states including diabetes, heart disease, and vascular dysfunction. The critical role of the vasculature in disease progression is established, yet the details of how gene expression changes in early cardiovascular disease remain an enigma. The objective of the current pilot project was to evaluate whether a quantitative assessment of gene expression within the aorta of six-week old healthy male Sprague-Dawley rats compared to those exhibiting symptoms of metabolic dysfunction could reveal potential mediators of vascular dysfunction. METHODS RNA was extracted from the aorta of eight rats from a larger experiment; four animals fed a high-fat diet (HFD) known to induce symptoms of metabolic dysfunction (hypertension, increased adiposity, fasting hyperglycemia) and four age-matched healthy animals fed a standard chow diet (CHOW). The bioinformatic workflow included Gene Ontology (GO) biological process enrichment and network analyses. RESULTS The resulting network contained genes relevant to physiological processes including fat and protein metabolism, oxygen transport, hormone regulation, vascular regulation, thermoregulation, and circadian rhythm. The majority of differentially regulated genes were downregulated, including several associated with circadian clock function. In contrast, leptin and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) were notably upregulated. Leptin is involved in several major energy balance signaling pathways and Hmgcs2 is a mitochondrial enzyme that catalyzes the first reaction of ketogenesis. CONCLUSION Together, these data describe changes in gene expression within the aortic wall of HFD rats with early metabolic dysfunction and highlight potential pathways and signaling intermediates that may impact the development of early vascular dysfunction.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Rebecca A. Reiss
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States
| | - Monique Beaudet
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Jay S. Naik
- The Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R. Walker
- The Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Karen L. Sweazea
- College of Health Solutions & School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
Argyrofthalmidou M, Spathis AD, Maniati M, Poula A, Katsianou MA, Sotiriou E, Manousaki M, Perier C, Papapanagiotou I, Papadopoulou-Daifoti Z, Pitychoutis PM, Alexakos P, Vila M, Stefanis L, Vassilatis DK. Nurr1 repression mediates cardinal features of Parkinson's disease in α-synuclein transgenic mice. Hum Mol Genet 2021; 30:1469-1483. [PMID: 33902111 PMCID: PMC8330896 DOI: 10.1093/hmg/ddab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
Duplication/triplication mutations of the SNCA locus, encoding alpha-synuclein (ASYN), and loss of function mutations in Nurr1, a nuclear receptor guiding midbrain dopaminergic neuron development, are associated with familial Parkinson’s disease (PD). As we age, the expression levels of these two genes in midbrain dopaminergic neurons follow opposite directions and ASYN expression increases while the expression of Nurr1 decreases. We investigated the effect of ASYN and Nurr1 age-related expression alterations in the pathogenesis of PD by coupling Nurr1 hemizygous with ASYN(s) (heterozygote) or ASYN(d) (homozygote) transgenic mice. ASYN(d)/Nurr1+/− (2-hit) mice, contrary to the individual genetic traits, developed phenotypes consistent with dopaminergic dysfunction. Aging ‘2-hit’ mice manifested kyphosis, severe rigid paralysis, L-DOPA responsive movement impairment and cachexia and died prematurely. Pathological abnormalities of phenotypic mice included SN neuron degeneration, extensive neuroinflammation and enhanced ASYN aggregation. Mice with two wt Nurr1 alleles [ASYN(d)/Nurr1+/+] or with reduced ASYN load [ASYN(s)/Nurr1+/−] did not develop the phenotype or pathology. Critically, we found that aging ASYN(d), in contrast to ASYN(s), mice suppress Nurr1-protein levels in a brain region–specific manner, which in addition to Nurr1 hemizygosity is necessary to instigate PD pathogenesis. Our experiments demonstrate that ASYN-dependent PD-related pathophysiology is mediated at least in part by Nurr1 down-regulation.
Collapse
Affiliation(s)
- Maria Argyrofthalmidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Athanasios D Spathis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Matina Maniati
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Amalia Poula
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maira A Katsianou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelos Sotiriou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maria Manousaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Celine Perier
- Research Institute, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Ioanna Papapanagiotou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Pothitos M Pitychoutis
- Department of Pharmacology, Medical School, University of Athens, Athens 11527, Greece.,Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469-2320, USA
| | - Pavlos Alexakos
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Miquel Vila
- Research Institute, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Leonidas Stefanis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.,Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
| | - Demetrios K Vassilatis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
7
|
Zárraga-Granados G, Muciño-Hernández G, Sánchez-Carbente MR, Villamizar-Gálvez W, Peñas-Rincón A, Arredondo C, Andrés ME, Wood C, Covarrubias L, Castro-Obregón S. The nuclear receptor NR4A1 is regulated by SUMO modification to induce autophagic cell death. PLoS One 2020; 15:e0222072. [PMID: 32210435 PMCID: PMC7094859 DOI: 10.1371/journal.pone.0222072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
NR4A is a nuclear receptor protein family whose members act as sensors of cellular environment and regulate multiple processes such as metabolism, proliferation, migration, apoptosis, and autophagy. Since the ligand binding domains of these receptors have no cavity for ligand interaction, their function is most likely regulated by protein abundance and post-translational modifications. In particular, NR4A1 is regulated by protein abundance, phosphorylation, and subcellular distribution (nuclear-cytoplasmic translocation), and acts both as a transcription factor and as a regulator of other interacting proteins. SUMOylation is a post-translational modification that can affect protein stability, transcriptional activity, alter protein-protein interactions and modify intracellular localization of target proteins. In the present study we evaluated the role of SUMOylation as a posttranslational modification that can regulate the activity of NR4A1 to induce autophagy-dependent cell death. We focused on a model potentially relevant for neuronal cell death and demonstrated that NR4A1 needs to be SUMOylated to induce autophagic cell death. We observed that a triple mutant in SUMOylation sites has reduced SUMOylation, increased transcriptional activity, altered intracellular distribution, and more importantly, its ability to induce autophagic cell death is impaired.
Collapse
Affiliation(s)
- Gabriela Zárraga-Granados
- División de Neurociencias, Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Gabriel Muciño-Hernández
- División de Neurociencias, Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - María R. Sánchez-Carbente
- Biotechnology Research Center, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Wendy Villamizar-Gálvez
- División de Neurociencias, Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Ana Peñas-Rincón
- División de Neurociencias, Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Cristian Arredondo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María E. Andrés
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Luis Covarrubias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Susana Castro-Obregón
- División de Neurociencias, Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
- * E-mail:
| |
Collapse
|
8
|
Comparison of diploid and triploid Carassius auratus provides insights into adaptation to environmental change. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1407-1419. [DOI: 10.1007/s11427-017-9358-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
|
9
|
The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. J Neurosci 2018; 38:1335-1350. [PMID: 29295823 PMCID: PMC5815341 DOI: 10.1523/jneurosci.2793-17.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
The energetic costs of behavioral chronic stress are unlikely to be sustainable without neuronal plasticity. Mitochondria have the capacity to handle synaptic activity up to a limit before energetic depletion occurs. Protective mechanisms driven by the induction of neuronal genes likely evolved to buffer the consequences of chronic stress on excitatory neurons in prefrontal cortex (PFC), as this circuitry is vulnerable to excitotoxic insults. Little is known about the genes involved in mitochondrial adaptation to the buildup of chronic stress. Using combinations of genetic manipulations and stress for analyzing structural, transcriptional, mitochondrial, and behavioral outcomes, we characterized NR4A1 as a stress-inducible modifier of mitochondrial energetic competence and dendritic spine number in PFC. NR4A1 acted as a transcription factor for changing the expression of target genes previously involved in mitochondrial uncoupling, AMP-activated protein kinase activation, and synaptic growth. Maintenance of NR4A1 activity by chronic stress played a critical role in the regressive synaptic organization in PFC of mouse models of stress (male only). Knockdown, dominant-negative approach, and knockout of Nr4a1 in mice and rats (male only) protected pyramidal neurons against the adverse effects of chronic stress. In human PFC tissues of men and women, high levels of the transcriptionally active NR4A1 correlated with measures of synaptic loss and cognitive impairment. In the context of chronic stress, prolonged expression and activity of NR4A1 may lead to responses of mitochondria and synaptic connectivity that do not match environmental demand, resulting in circuit malfunction between PFC and other brain regions, constituting a pathological feature across disorders. SIGNIFICANCE STATEMENT The bioenergetic cost of chronic stress is too high to be sustainable by pyramidal prefrontal neurons. Cellular checkpoints have evolved to adjust the responses of mitochondria and synapses to the buildup of chronic stress. NR4A1 plays such a role by controlling the energetic competence of mitochondria with respect to synapse number. As an immediate-early gene, Nr4a1 promotes neuronal plasticity, but sustained expression or activity can be detrimental. NR4A1 expression and activity is sustained by chronic stress in animal models and in human studies of neuropathologies sensitive to the buildup of chronic stress. Therefore, antagonism of NR4A1 is a promising avenue for preventing the regressive synaptic reorganization in cortical systems in the context of chronic stress.
Collapse
|
10
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
11
|
Seyssel K, Meugnier E, Lê KA, Durand C, Disse E, Blond E, Pays L, Nataf S, Brozek J, Vidal H, Tappy L, Laville M. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle. Mol Nutr Food Res 2016; 60:2691-2699. [PMID: 27468128 DOI: 10.1002/mnfr.201600407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
SCOPE The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. METHODS AND RESULTS Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. CONCLUSION This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans.
Collapse
Affiliation(s)
- Kevin Seyssel
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Kim-Anne Lê
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Durand
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Emmanuel Disse
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emilie Blond
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Laurent Pays
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Serge Nataf
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Hubert Vidal
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martine Laville
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
12
|
Safe S, Jin UH, Morpurgo B, Abudayyeh A, Singh M, Tjalkens RB. Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mol Biol 2016; 157:48-60. [PMID: 25917081 PMCID: PMC4618773 DOI: 10.1016/j.jsbmb.2015.04.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 01/17/2023]
Abstract
The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer.
Collapse
MESH Headings
- Arthritis/metabolism
- Cardiovascular Diseases/metabolism
- DNA-Binding Proteins/metabolism
- Homeostasis
- Humans
- Immunity, Cellular
- Inflammation/metabolism
- Ligands
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Neoplasms/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine, Texas A&M University, 670 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Ala Abudayyeh
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandip Singh
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ronald B Tjalkens
- Department of Toxicology and Neuroscience, Colorado State University, 1680Campus Delivery, Fort Collins, CO 80523-1680, USA
| |
Collapse
|
13
|
Sepulveda PV, Bush ED, Baar K. Pharmacology of manipulating lean body mass. Clin Exp Pharmacol Physiol 2015; 42:1-13. [PMID: 25311629 PMCID: PMC4383600 DOI: 10.1111/1440-1681.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.
Collapse
Affiliation(s)
- Patricio V Sepulveda
- Department of Physiology, Monash University, Monash College Wellington Rd, Melbourne Victoria, Australia
| | - Ernest D Bush
- Akashi Therapeutics, Cambridge, MA, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Departments of Neurobiology, Physiology and Behaviour and Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
14
|
Paillasse MR, de Medina P. The NR4A nuclear receptors as potential targets for anti-aging interventions. Med Hypotheses 2014; 84:135-40. [PMID: 25543265 DOI: 10.1016/j.mehy.2014.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The development of innovative anti-aging strategy is urgently needed to promote healthy aging and overcome the occurrence of age-related diseases such as cancer, diabetes, cardiovascular and neurodegenerative diseases. Genomic instability, deregulated nutrient sensing and mitochondrial dysfunction are established hallmark of aging. Interestingly, the orphan nuclear receptors NR4A subfamily (NR4A1, NR4A2 and NR4A3) are nutrient sensors that trigger mitochondria biogenesis and improve intrinsic mitochondrial function. In addition, NR4A receptors are components of DNA repair machinery and promote DNA repair. Members of the NR4A subfamily should also be involved in anti-aging properties of hormesis since these receptors are induced by various form of cellular stress and stimulate protective cells response such as anti-oxidative activity and DNA repair. Previous studies reported that NR4A nuclear receptors subfamily is potential therapeutic targets for the treatment of age related disorders (e.g. metabolic syndromes, diabetes and neurodegenerative diseases). Consequently, we propose that targeting NR4A receptors might constitute a new approach to delay aging and the onset of diseases affecting our aging population.
Collapse
|
15
|
Pérez-Sieira S, López M, Nogueiras R, Tovar S. Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Sci Rep 2014; 4:4264. [PMID: 24584059 PMCID: PMC3939456 DOI: 10.1038/srep04264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/14/2014] [Indexed: 01/11/2023] Open
Abstract
The NR4A is a subfamily of the orphan nuclear receptors (NR) superfamily constituted by three well characterized members: Nur77 (NR4A1), Nurr1 (NR4A2) and Nor 1 (NR4A3). They are implicated in numerous biological processes as DNA repair, arteriosclerosis, cell apoptosis, carcinogenesis and metabolism. Several studies have demonstrated the role of this subfamily on glucose metabolism, insulin sensitivity and energy balance. These studies have focused mainly in liver and skeletal muscle. However, its potential role in white adipose tissue (WAT), one of the most important tissues involved in the regulation of energy homeostasis, is not well-studied. The aim of this work was to elucidate the regulation of NR4A in WAT under different physiological and pathophysiological settings involved in energy balance such as fasting, postnatal development, gender, hormonal deficiency and pregnancy. We compared NR4A mRNA expression of Nur77, Nurr1 and Nor 1 and found a clear regulation by nutritional status, since the expression of the 3 isoforms is increased after fasting in a leptin-independent manner and sex steroid hormones also modulate NR4A expression in males and females. Our findings indicate that NR4A are regulated by different physiological and pathophysiological settings known to be associated with marked alterations in glucose metabolism and energy status.
Collapse
Affiliation(s)
- S Pérez-Sieira
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - M López
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - R Nogueiras
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - S Tovar
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
16
|
Osada J. The use of transcriptomics to unveil the role of nutrients in Mammalian liver. ISRN NUTRITION 2013; 2013:403792. [PMID: 24967258 PMCID: PMC4045299 DOI: 10.5402/2013/403792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.
Collapse
Affiliation(s)
- Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain ; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Vacca M, Murzilli S, Salvatore L, Di Tullio G, D'Orazio A, Lo Sasso G, Graziano G, Pinzani M, Chieppa M, Mariani-Costantini R, Palasciano G, Moschetta A. Neuron-derived orphan receptor 1 promotes proliferation of quiescent hepatocytes. Gastroenterology 2013; 144:1518-1529.e3. [PMID: 23462179 DOI: 10.1053/j.gastro.2013.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 02/02/2013] [Accepted: 02/17/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Studies of the transcriptional networks that regulate nuclear receptor-mediated proliferation of quiescent hepatocytes could lead to new information about liver growth and hepatoprotective strategies. METHODS We used quantitative real-time PCR to analyze expression of neuron-derived orphan receptor 1 (Nor-1) and its target genes during liver regeneration after hepatectomy in mice, and in hepatocellular carcinoma (HCC) samples from patients. We used adenoviral vectors to express Nor-1 in normal liver (Ad/CMV/V5-Nor-1), or reduce its level with small hairpin RNAs (Ad/BLOCK-iT/Nor-1(small hairpin RNA)) after partial hepatectomy. RESULTS Levels of Nor-1 messenger RNA and protein, and transcription of Nor-1 target genes (Ccnd1 and Vcam-1), increased during the late priming and proliferative phases of liver regeneration after partial hepatectomy. Levels of NOR-1 messenger RNA and transcription of its target gene CCND1 and of the NOR-1 subfamily member NUR-77 also increased in human HCC samples compared with paired HCC-free tissue. Ad-Nor-1(small hairpin RNA) reduced the hepatocyte proliferation after hepatectomy. Overexpression of Nor-1 in normal livers of mice induced proliferation of quiescent hepatocytes independently of interleukin-6 and tumor necrosis factor-α signaling. In gene expression profile analysis, Nor-1 altered expression of genes involved in the cell cycle, proliferation, and tumorigenesis. CONCLUSIONS In mice, the orphan nuclear receptor Nor-1 activates proliferation of quiescent hepatocytes and is required for hepatocyte proliferation after partial hepatectomy. Nor-1 and its gene targets are also up-regulated in human HCC samples. Nor-1 activates a transcriptional program that induces hepatocyte proliferation independently of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Michele Vacca
- Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McCormick MA, Kennedy BK. Genome-scale studies of aging: challenges and opportunities. Curr Genomics 2013; 13:500-7. [PMID: 23633910 PMCID: PMC3468883 DOI: 10.2174/138920212803251454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/08/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022] Open
Abstract
Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend.
Collapse
|
19
|
Zhu X, Walton RG, Tian L, Luo N, Ho SR, Fu Y, Garvey WT. Prostaglandin A2 enhances cellular insulin sensitivity via a mechanism that involves the orphan nuclear receptor NR4A3. Horm Metab Res 2013; 45:213-20. [PMID: 23104421 PMCID: PMC4116744 DOI: 10.1055/s-0032-1327619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin's ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3.
Collapse
Affiliation(s)
- X Zhu
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Duszka K, Bogner-Strauss JG, Hackl H, Rieder D, Neuhold C, Prokesch A, Trajanoski Z, Krogsdam AM. Nr4a1 is required for fasting-induced down-regulation of Pparγ2 in white adipose tissue. Mol Endocrinol 2012; 27:135-49. [PMID: 23250487 DOI: 10.1210/me.2012-1248] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the nuclear receptor gene, Nur77 (Nr4a1), is induced in white adipose tissue (WAT) in response to β-adrenergic stimulation and fasting. Recently, Nur77 has been shown to play a gene regulatory role in the fasting response of several other major metabolic tissues. Here we investigated the effects of Nur77 on the WAT transcriptome after fasting. For this purpose, we performed gene expression profiling of WAT from wild-type and Nur77(-/-) mice submitted to prolonged fasting. Results revealed Nur77-dependent changes in expression profiles of 135 transcripts, many involved in insulin signaling, lipid and fatty acid metabolism, and glucose metabolism. Network analysis identified the deregulated genes Pparγ2 and Nur77 as central hubs and closely connected in the network, indicating overlapping biological function. We further assayed the expression level of Pparγ2 in a bigger cohort of fasted mice and found a significant Nur77-dependent down-regulation of Pparγ2 in the wild-type mice (P = 0.021, n = 10). Consistently, the expression of several known Pparγ2 targets, found among the Nur77-regulated genes (i.e. G0s2, Grp81, Fabp4, and Adipoq), were up-regulated in WAT of fasted Nur77(-/-) mice. Finally, we show with chromatin immunoprecipitation and luciferase assays that the Pparγ2 promoter is a direct target of Nurr-related 77-kDa protein (Nur77)-dependent repressive regulation and that the N-terminal domain of Nur77 is required for this regulation. In conclusion, we present data implicating Nur77 as a mediator of fasting-induced Pparγ2 regulation in WAT.
Collapse
Affiliation(s)
- Kalina Duszka
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Papac-Milicevic N, Breuss JM, Zaujec J, Ryban L, Plyushch T, Wagner GA, Fenzl S, Dremsek P, Cabaravdic M, Steiner M, Glass CK, Binder CJ, Uhrin P, Binder BR. The interferon stimulated gene 12 inactivates vasculoprotective functions of NR4A nuclear receptors. Circ Res 2012; 110:e50-63. [PMID: 22427340 DOI: 10.1161/circresaha.111.258814] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Innate and adaptive immune responses alter numerous homeostatic processes that are controlled by nuclear hormone receptors. NR4A1 is a nuclear receptor that is induced in vascular pathologies, where it mediates protection. OBJECTIVE The underlying mechanisms that regulate the activity of NR4A1 during vascular injury are not clear. We therefore searched for modulators of NR4A1 function that are present during vascular inflammation. METHODS AND RESULTS We report that the protein encoded by interferon stimulated gene 12 (ISG12), is a novel interaction partner of NR4A1 that inhibits the transcriptional activities of NR4A1 by mediating its Crm1-dependent nuclear export. Using 2 models of vascular injury, we show that ISG12-deficient mice are protected from neointima formation. This effect is dependent on the presence of NR4A1, as mice deficient for both ISG12 and NR4A1 exhibit neointima formation similar to wild-type mice. CONCLUSIONS These findings identify a previously unrecognized feedback loop activated by interferons that inhibits the vasculoprotective functions of NR4A nuclear receptors, providing a potential new therapeutic target for interferon-driven pathologies.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/immunology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/prevention & control
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Feedback, Physiological
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Gene Expression Regulation
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Interferons/metabolism
- Karyopherins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Interaction Domains and Motifs
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Receptors, Cytoplasmic and Nuclear/metabolism
- Time Factors
- Transcription, Genetic
- Transfection
- Vascular System Injuries/genetics
- Vascular System Injuries/immunology
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Vascular System Injuries/prevention & control
- Exportin 1 Protein
Collapse
Affiliation(s)
- Nikolina Papac-Milicevic
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Veum VL, Dankel SN, Gjerde J, Nielsen HJ, Solsvik MH, Haugen C, Christensen BJ, Hoang T, Fadnes DJ, Busch C, Våge V, Sagen JV, Mellgren G. The nuclear receptors NUR77, NURR1 and NOR1 in obesity and during fat loss. Int J Obes (Lond) 2011; 36:1195-202. [PMID: 22143616 DOI: 10.1038/ijo.2011.240] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Adipose tissue is critical for systemic metabolic health. Identifying key factors regulating adipose tissue function is a research priority. The NR4A subfamily of nuclear receptors (NRs) (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) has emerged as important proteins in different disease states and in the regulation of metabolic tissues, particularly in liver and muscle. However, the expression of the NR4A members in human adipose tissue has not previously been described, and their target genes are largely unknown. OBJECTIVE To determine whether the NR4As are differentially expressed in human adipose tissue in obesity, and identify potential NR4A target genes. DESIGN Prospective analysis of s.c. adipose tissue before and 1 year after fat loss, and during in vitro differentiation of primary human preadipocytes. Case-control comparison of omental (OM) adipose tissue. SUBJECTS A total of 13 extremely obese patients undergoing biliopancreatic diversion with duodenal switch for fat loss, 12 extremely obese patients undergoing laparoscopic sleeve gastrectomy and 37 lean individuals undergoing hernia repair or laparotomy were included in the study. Measurements were done by quantitative PCR gene expression analysis of the NR4A members and in silico promoter analysis based on microarray data. RESULTS There was a strong upregulation of the NR4As in extreme obesity and normalization after fat loss. The NR4As were expressed at the highest level in stromal-vascular fraction compared with adipocytes, but were downregulated in both fractions after fat loss. Their expression levels were also significantly higher in OM compared with s.c. adipocytes in obesity. The NR4As were downregulated during differentiation of primary human preadipocytes. Moreover, the NR4As were strongly induced within 30 min of tissue incubation. Finally, promoter analysis revealed potential NR4A target genes involved in stress response, immune response, development and other functions. Our data show altered adipose tissue expression of the NR4As in obesity, suggesting that these stress responsive nuclear receptors may modulate pathogenic potential in humans.
Collapse
Affiliation(s)
- V L Veum
- Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wright LE, Brandon AE, Hoy AJ, Forsberg GB, Lelliott CJ, Reznick J, Löfgren L, Oscarsson J, Strömstedt M, Cooney GJ, Turner N. Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 2011; 54:1417-26. [PMID: 21331471 DOI: 10.1007/s00125-011-2068-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/06/2011] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS To determine if acute overexpression of peroxisome proliferator-activated receptor, gamma, coactivator 1 beta (Pgc-1β [also known as Ppargc1b]) in skeletal muscle improves insulin action in a rodent model of diet-induced insulin resistance. METHODS Rats were fed either a low-fat or high-fat diet (HFD) for 4 weeks. In vivo electroporation was used to overexpress Pgc-1β in the tibialis cranialis (TC) and extensor digitorum longus (EDL) muscles. Downstream effects of Pgc-1β on markers of mitochondrial oxidative capacity, oxidative stress and muscle lipid levels were characterised. Insulin action was examined ex vivo using intact muscle strips and in vivo via a hyperinsulinaemic-euglycaemic clamp. RESULTS Pgc-1β gene expression was increased >100% over basal levels. The levels of proteins involved in mitochondrial function, lipid metabolism and antioxidant defences, the activity of oxidative enzymes, and substrate oxidative capacity were all increased in muscles overexpressing Pgc-1β. In rats fed a HFD, increasing the levels of Pgc-1β partially ameliorated muscle insulin resistance, in association with decreased levels of long-chain acyl-CoAs (LCACoAs) and increased antioxidant defences. CONCLUSIONS Our data show that an increase in Pgc-1β expression in vivo activates a coordinated subset of genes that increase mitochondrial substrate oxidation, defend against oxidative stress and improve lipid-induced insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- L E Wright
- Diabetes & Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao Y, Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol 2010; 30:1535-41. [PMID: 20631354 DOI: 10.1161/atvbaha.109.191163] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Members of the nuclear hormone receptor superfamily, including the peroxisome proliferator-activated receptor and the liver X receptor subfamilies, orchestrate transcriptional networks involved in the control of metabolism and the development of vascular disease. In addition to these well-characterized ligand-activated transcription factors, the nuclear receptor (NR) superfamily comprises many orphan receptors, whose ligands and physiological functions remain unknown. Among this group of orphan receptors is the NR4A subfamily, including Nur77 (NR4A1), Nurr1 (NR4A2), and NOR1 (NR4A3). These orphan NRs constitute an evolutionary ancient and highly conserved group of transcription factors. In contrast to other members of the superfamily, NR4A receptors function as ligand-independent transcription factors and immediate- or early-response genes, which are rapidly induced by a pleiotropy of environmental cues. Early functional studies have pointed to a critical role of NR4A receptors in regulating differentiation, proliferation, and apoptosis. More recent research has characterized NR4A receptors as key transcriptional regulators of glucose and lipid homeostasis, adipogenesis, inflammation, and vascular remodeling. In this review, we will summarize recent advances in understanding the molecular biology and physiological functions of NR4A receptors and discuss their role in the transcriptional control of metabolism and vascular remodeling.
Collapse
Affiliation(s)
- Yue Zhao
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, USA
| | | |
Collapse
|
25
|
Pearen MA, Muscat GEO. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 2010; 24:1891-903. [PMID: 20392876 DOI: 10.1210/me.2010-0015] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous members of the nuclear hormone receptor (NR) superfamily have been demonstrated to regulate metabolic function in a cell- and tissue-specific manner. This review brings together recent studies that have associated members of the NR superfamily, the orphan NR4A subgroup, with the regulation of metabolic function and disease. The orphan NR4A subgroup includes Nur77 (NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3). Expression of these receptors is induced in multiple tissues by a diverse range of stimuli, including stimuli associated with metabolic function, such as: β-adrenoceptor agonists, cold, fatty acids, glucose, insulin, cholesterol, and thiazolidinediones. In vitro and in vivo gain- and loss-of-function studies in major metabolic tissues (including skeletal muscle, adipose, and liver cells and tissues) have associated the NR4A subgroup with specific aspects of lipid, carbohydrate, and energy homeostasis. Most excitingly, although these orphan receptors do not have known endogenous ligands, several small molecule agonists have recently been identified. The preliminary studies reviewed in this manuscript suggest that therapeutic exploitation of the NR4A subgroup may show utility against dyslipidemia, obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
26
|
Weyrich P, Staiger H, Stancáková A, Schäfer SA, Kirchhoff K, Ullrich S, Ranta F, Gallwitz B, Stefan N, Machicao F, Kuusisto J, Laakso M, Fritsche A, Häring HU. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced beta-cell function in non-diabetic subjects. BMC MEDICAL GENETICS 2009; 10:77. [PMID: 19682370 PMCID: PMC2741445 DOI: 10.1186/1471-2350-10-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/14/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuron-derived orphan receptor (Nor) 1, nuclear receptor (Nur) 77, and nuclear receptor-related protein (Nurr) 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or beta-cell dysfunction. METHODS We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs) rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies >or= 0.05) covering 100% of genetic variation within the NR4A3 locus (with D' = 1.0, r2 >or= 0.9) and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT), and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506). SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265) for replication. RESULTS All five SNPs were in Hardy-Weinberg equilibrium (p >or= 0.7, all). The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT), AUCC C-peptide-to-AUC Gluc ratio and the AUC Ins30-to-AUC Gluc30 ratio with rs12686676 reaching the level of significance (p <or= 0.03, all; additive model). The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p <or= 0.03, additive model). There was no consistent association with glucose tolerance or insulin resistance in both study cohorts. CONCLUSION We conclude that common genetic variation within the NR4A3 locus determines insulin secretion. Thus, NR4A3 represents a novel candidate gene for beta-cell function which was not covered by the SNP arrays of recent genome-wide association studies for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Peter Weyrich
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|