1
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
2
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Torrance BL, Haynes L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front Immunol 2022; 13:1006710. [PMID: 36119079 PMCID: PMC9473698 DOI: 10.3389/fimmu.2022.1006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging. Many of these age-related changes can impair the normal function of the respiratory system and its capability to respond appropriately to potential pathogens that are encountered daily. In this review, we aim to establish the effects of cellular senescence on the disruption of normal lung function with aging and describe how these effects compound to leave an aged respiratory system at great risk when exposed to a pathogen. We will also discuss the role cellular senescence may play in the inability of most vaccines to confer protection against respiratory infections when administered to older adults. We posit that cellular senescence may be the point of convergence of many age-related immunological declines. Enhanced investigation into this area could provide much needed insight to understand the aging immune system and how to effectively ameliorate responses to pathogens that continue to disproportionately harm this vulnerable population.
Collapse
Affiliation(s)
| | - Laura Haynes
- UConn Center on Aging and Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
4
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Trujillo-Vargas CM, Mauk KE, Hernandez H, de Souza RG, Yu Z, Galletti JG, Dietrich J, Paulsen F, de Paiva CS. Immune phenotype of the CD4 + T cells in the aged lymphoid organs and lacrimal glands. GeroScience 2022; 44:2105-2128. [PMID: 35279788 DOI: 10.1007/s11357-022-00529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with a massive infiltration of T lymphocytes in the lacrimal gland. Here, we aimed to characterize the immune phenotype of aged CD4+ T cells in this tissue as compared with lymphoid organs. To perform this, we sorted regulatory T cells (Tregs, CD4+CD25+GITR+) and non-Tregs (CD4+CD25negGITRneg) in lymphoid organs from female C57BL/6J mice and subjected these cells to an immunology NanoString® panel. These results were confirmed by flow cytometry, live imaging, and tissue immunostaining in the lacrimal gland. Importantly, effector T helper 1 (Th1) genes were highly upregulated on aged Tregs, including the master regulator Tbx21. Among the non-Tregs, we also found a significant increase in the levels of EOMESmed/high, TbetnegIFN-γ+, and CD62L+CD44negCD4+ T cells with aging, which are associated with cell exhaustion, immunopathology, and the generation of tertiary lymphoid tissue. At the functional level, aged Tregs from lymphoid organs are less able to decrease proliferation and IFN-γ production of T responders at any age. More importantly, human lacrimal glands (age range 55-81 years) also showed the presence of CD4+Foxp3+ cells. Further studies are needed to propose potential molecular targets to avoid immune-mediated lacrimal gland dysfunction with aging.
Collapse
Affiliation(s)
- Claudia M Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.,Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Kelsey E Mauk
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Rodrigo G de Souza
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Jeremias G Galletti
- Institute of Experimental Medicine, CONICET-National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA.
| |
Collapse
|
7
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
8
|
Lorenzo EC, Torrance BL, Keilich SR, Al‐Naggar I, Harrison A, Xu M, Bartley JM, Haynes L. Senescence-induced changes in CD4 T cell differentiation can be alleviated by treatment with senolytics. Aging Cell 2022; 21:e13525. [PMID: 34962049 PMCID: PMC8761018 DOI: 10.1111/acel.13525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/30/2022] Open
Abstract
Aging and senescence impact CD4 T helper cell (Th) subset differentiation during influenza infection. In the lungs of infected aged mice, there were significantly greater percentages of Th cells expressing the transcription factor FoxP3, indicative of regulatory CD4 T cells (Treg), when compared to young. TGF‐beta levels, which drive FoxP3 expression, were also higher in the bronchoalveolar lavage of aged mice and blocking TGF‐beta reduced the percentage of FoxP3+ Th in aged lungs during influenza infection. Since TGF‐beta can be the product of senescent cells, these were targeted by treatment with senolytic drugs. Treatment of aged mice with senolytics prior to influenza infection restored the differentiation of Th cells in those aged mice to a more youthful phenotype with fewer Th cells expressing FoxP3. In addition, treatment with senolytic drugs induced differentiation of aged Th toward a healing Type 2 phenotype, which promotes a return to homeostasis. These results suggest that senescent cells, via production of cytokines such as TGF‐beta, have a significant impact on Th differentiation.
Collapse
Affiliation(s)
- Erica C. Lorenzo
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
| | - Blake L. Torrance
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Spencer R. Keilich
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Iman Al‐Naggar
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
| | - Andrew Harrison
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Ming Xu
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
| | - Jenna M. Bartley
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Laura Haynes
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| |
Collapse
|
9
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
10
|
Kulkarni U, Zemans RL, Smith CA, Wood SC, Deng JC, Goldstein DR. Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunol 2019; 12:545-554. [PMID: 30617300 PMCID: PMC6375784 DOI: 10.1038/s41385-018-0115-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 02/04/2023]
Abstract
Neutrophils clear viruses, but excessive neutrophil responses induce tissue injury and worsen disease. Aging increases mortality to influenza infection; however, whether this is due to impaired viral clearance or a pathological host immune response is unknown. Here we show that aged mice have higher levels of lung neutrophils than younger mice after influenza viral infection. Depleting neutrophils after, but not before, infection substantially improves the survival of aged mice without altering viral clearance. Aged alveolar epithelial cells (AECs) have a higher frequency of senescence and secrete higher levels of the neutrophil-attracting chemokines CXCL1 and CXCL2 during influenza infection. These chemokines are required for age-enhanced neutrophil chemotaxis in vitro. Our work suggests that aging increases mortality from influenza in part because senescent AECs secrete more chemokines, leading to excessive neutrophil recruitment. Therapies that mitigate this pathological immune response in the elderly might improve outcomes of influenza and other respiratory infections.
Collapse
Affiliation(s)
- Upasana Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Candice A Smith
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sherri C Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jane C Deng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Blockage of regulatory T cells augments induction of protective immune responses by influenza virus-like particles in aged mice. Microbes Infect 2017; 19:626-634. [PMID: 28899815 DOI: 10.1016/j.micinf.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
Abstract
Elderly humans over 65 years old are at great risk to pathogenesis by influenza virus infection. However, although influenza vaccines provide effective protection in healthy young adults, protection of elderly adults is substantially lower even with a good match between the vaccine and the circulating influenza virus. To gain insight of the underlying mechanism for the reduced immunogenicity of influenza vaccines in the aged population, we investigated immunogenicity of influenza virus-like particle vaccines in aged mice, which represent a useful model for studying aging associated impairment in immune responses. Specifically, we investigated the effect of inhibiting regulatory T cells in aged mice on induction of protective immune responses by influenza vaccines. Our results showed that injecting anti-CD25 antibodies could down-regulate CD25 on the surface of regulatory T cells and significantly increase the levels of antibody responses induced by VLP immunization in aged mice. Further, the profiles of antibody responses were also changed towards Th1 type by regulatory T cell blockage in aged mice. Moreover, aged mice that were treated by anti-CD25 antibodies prior to vaccination were more effectively protected against lethal influenza virus challenge.
Collapse
|
12
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
13
|
Harpaz I, Bhattacharya U, Elyahu Y, Strominger I, Monsonego A. Old Mice Accumulate Activated Effector CD4 T Cells Refractory to Regulatory T Cell-Induced Immunosuppression. Front Immunol 2017; 8:283. [PMID: 28382033 PMCID: PMC5360761 DOI: 10.3389/fimmu.2017.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/28/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic low-grade inflammation and reduced lymphocyte potency are implicated in the pathogenesis of major illnesses associated with aging. Whether this immune phenotype results from a loss of cell-mediated regulation or intrinsic dysregulated function of effector T cells (Teffs) requires further research. Here, we report that, as compared with young C57BL6 mice, old mice show an increased frequency of CD4+CD62L- Teffs with a dysregulated activated phenotype and markedly increased effector functions. Analysis of the frequency and suppressive function of CD4+FoxP3+ regulatory T cells (Tregs) indicates an increase in the frequency of FoxP3+ T cells with aging which, however, occurs within the CD4+CD25- T cells. Furthermore, whereas Tregs from young and old mice similarly suppress Teffs from young mice, both have a compromised suppressive capacity of Teffs from old mice, a phenomenon which is partially recovered in the presence of IL-2-producing CD4+CD62L+ non-Teffs. Finally, we observed that Teff subsets from old mice are enriched with IL-17A-producing T cells and exhibit intrinsically dysregulated expression of genes encoding cell-surface molecules and transcription factors, which play a key role in T-cell activation and regulation. We, thus, demonstrate an age-related impairment in the regulation of effector CD4 T cells, which may underlie the higher risk for destructive inflammation associated with aging.
Collapse
Affiliation(s)
- Idan Harpaz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Udayan Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
14
|
Cruvinel WDM, Mesquita Júnior D, Araújo JAP, Samazi KC, Kállas EG, Cendoroglo MS, Andrade LEC. Abnormal phenotypic distribution of regulatory and effector T cells in octogenarian and nonagenarian women. Rev Assoc Med Bras (1992) 2016; 61:329-35. [PMID: 26466214 DOI: 10.1590/1806-9282.61.04.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/21/2014] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION aging is associated with several immunologic changes. Regulatory (Treg) and effector T cells are involved in the pathogenesis of infectious, neoplastic, and autoimmune diseases. Little is known about the effects of aging on the frequency and function of these T cell subpopulations. METHODS peripheral blood mononuclear cells (PBMC) were obtained from 26 young (under 44 years old) and 18 elderly (above 80 years old) healthy women. T cell subpopulations were analyzed by flow cytometry. RESULTS elderly individuals had lower frequency of several activated effector T cell phenotypes as compared with young individuals: CD3+CD4+CD25+ (3.82±1.93 versus 9.53±4.49; p<0.0001); CD3+CD4+CD25+CD127+(2.39±1.19 versus 7.26±3.84; p<0.0001); CD3+CD4+CD25+ (0.41±0.22 versus 1.86±0.85, p<0.0001); and CD3+CD4+CD25highCD127+(0.06±0.038 versus 0.94±0.64, p<0.0001). Treg (CD3+CD4+CD25+CD127øFoxp3+) presented lower frequency in elderly individuals as compared to young adults (0.34±0.18 versus 0.76±0.48; p=0.0004) and its frequency was inversely correlated with age in the whole group (r=-0.439; p=0.013). The elderly group showed higher frequency of two undefined CD25øFoxp3+ phenotypes: CD3+CD4+CD25øFoxp3+(15.05±7.34 versus 1.65±1.71; p<0.0001) and CD3+CD4+CD25øCD127øFoxp3+(13.0±5.52 versus 3.51±2.87; p<0.0001). CONCLUSIONS the altered proportion of different T cell subsets herein documented in healthy elderly women may be relevant to the understanding of the immunologic behavior and disease susceptibility patterns observed in geriatric patients.
Collapse
Affiliation(s)
- Wilson de Melo Cruvinel
- School of Medical, Pharmaceutical and Biomedical Sciences, Pontifícia Universidade Católica de Goiás, Goiás, GO, BR
| | | | | | - Karina Carvalho Samazi
- Division of Clinical Immunology and Allergy, Universidade de São Paulo, São Paulo, SP, BR
| | - Esper Georges Kállas
- Division of Clinical Immunology and Allergy, Universidade de São Paulo, São Paulo, SP, BR
| | | | | |
Collapse
|
15
|
Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice. J Virol 2015; 90:1333-44. [PMID: 26581984 DOI: 10.1128/jvi.02488-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), a mosquito-borne flavivirus, has induced severe neurological symptoms, mostly in the elderly population. No vaccines are available for human use. Recent work showed that an attenuated WNV, a nonstructural (NS) 4B-P38G mutant, induced no lethality but strong immune responses in young (6- to 10-week-old) mice. While studying protective efficacy, we found unexpectedly that old (21- to 22-month) mice were susceptible to WNV NS4B-P38G mutant infection but were protected from subsequent lethal wild-type WNV challenge. Compared to responses in young mice, the NS4B-P38G mutant triggered higher inflammatory cytokine and interleukin-10 (IL-10) production, a delayed γδ T cell expansion, and lower antibody and WNV-specific T cell responses in old mice. Toll-like receptor 7 (TLR7) is expressed on multiple types of cells. Impaired TLR7 signaling in old mice led to dendritic cell (DC) antigen-presenting function compromise and a reduced γδ T cell and regulatory T cell (Treg) expansion during NS4B-P38G mutant infection. R848, a TLR7 agonist, decreased host vulnerability in NS4B-P38G-infected old mice by enhancing γδ T cell and Treg expansion and the antigen-presenting capacity of DCs, thereby promoting T cell responses. In summary, our results suggest that dysregulation of TLR7 partially contributes to impaired innate and adaptive T cell responses and an enhanced vulnerability in old mice during WNV NS4B-P38G mutant infection. R848 increases the safety and efficacy during immunization of old mice with the WNV NS4B-P38G mutant. IMPORTANCE The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), an emerging mosquito-borne flavivirus, has induced severe neurological symptoms more frequently in the elderly population. No vaccines are available for human use. Here, we used an aged mouse model to investigate the protective efficacy of an attenuated WNV, the nonstructural 4B-P38G mutant, which was previously shown to induce no lethality but strong immune responses in young adult mice. Studies that contribute to a mechanistic understanding of immune defects in the elderly will allow the development of strategies to improve responses to infectious diseases and to increase vaccine efficacy and safety in aging individuals.
Collapse
|
16
|
Birmingham JM, Gillespie VL, Srivastava K, Li XM, Busse PJ. Influenza A infection enhances antigen-induced airway inflammation and hyperresponsiveness in young but not aged mice. Clin Exp Allergy 2015; 44:1188-99. [PMID: 25039815 DOI: 10.1111/cea.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although morbidity and mortality rates from asthma are highest in patients > 65 years of age, the effect of older age on airway inflammation in asthma is not well established. OBJECTIVE To investigate age-related differences in the promotion of allergic inflammation after influenza A viral respiratory infection on antigen-specific IgE production, antigen-induced airway inflammation and airway hyperresponsiveness in mice. METHODS To accomplish this objective, the following model system was used. Young (6 week) and aged (18 months) BALB/c mice were first infected with a non-lethal dose of influenza virus A (H/HKx31). Mice were then ovalbumin (OVA)-sensitized during the acute infection (3-days post inoculation) and then chronically underwent challenge to the airways with OVA. Forty-eight hours after the final OVA challenge, airway hyperresponsiveness (AHR), bronchoalveolar fluid (BALF) cellular and cytokine profile, antigen-specific IgE and IgG1, and lung tissue inflammation were measured. RESULTS Age-specific differences were noted on the effect of a viral infection, allergic sensitization, airway inflammation and airway hyperresponsiveness. Serum OVA-specific IgE was significantly increased in only the aged mice infected with influenza virus. Despite greater morbidity (e.g. weight loss and sickness scores) during the acute infection in the 18-month old mice that were OVA-sensitized, there was little effect on the AHR and BALF cellular differential. In contrast, BALF neutrophils and AHR increased, but eosinophils decreased in 6-week mice that were OVA-sensitized during an acute influenza infection. CONCLUSION With increased age in a mouse model, viral infection prior to antigen sensitization affects the airway and systemic allergic response differently. These differences may reflect distinct phenotypic features of allergic inflammation in older patients with asthma.
Collapse
Affiliation(s)
- J M Birmingham
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | |
Collapse
|
17
|
van der Geest KSM, Abdulahad WH, Tete SM, Lorencetti PG, Horst G, Bos NA, Kroesen BJ, Brouwer E, Boots AMH. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol 2014; 60:190-6. [PMID: 25449852 DOI: 10.1016/j.exger.2014.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 01/19/2023]
Abstract
Healthy aging requires an optimal balance between pro-inflammatory and anti-inflammatory immune responses. Although CD4+ T cells play an essential role in many immune responses, few studies have directly assessed the effect of aging on the balance between effector T (Teff) cells and regulatory T (Treg) cells. Here, we determined if and how aging affects the ratio between Treg and Teff cells. Percentages of both naive Treg (nTreg; CD45RA+CD25(int)FOXP3(low)) and memory Treg (memTreg; CD45RA-CD25(high)FOXP3(high)) cells were determined by flow cytometry in peripheral blood samples of healthy individuals of various ages (20-84 years). Circulating Th1, Th2 and Th17 effector cells were identified by intracellular staining for IFN-γ, IL-4 and IL-17, respectively, upon in vitro stimulation with PMA and calcium ionophore. Whereas proportions of nTreg cells declined with age, memTreg cells increased. Both Th1 and Th2 cells were largely maintained in the circulation of aged humans, whereas Th17 cells were decreased. Similar to memTreg cells, the 3 Teff subsets resided primarily in the memory CD4+ T cell compartment. Overall, Treg/Teff ratios were increased in the memory CD4+ T cell compartment of aged individuals when compared to that of young individuals. Finally, the relative increase of memTreg cells in elderly individuals was associated with poor responses to influenza vaccination. Taken together, our findings imply that aging disturbs the balance between Treg cells and Teff cells.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sarah M Tete
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pedro G Lorencetti
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Johnstone J, Parsons R, Botelho F, Millar J, McNeil S, Fulop T, McElhaney J, Andrew MK, Walter SD, Devereaux PJ, Malekesmaeili M, Brinkman RR, Mahony J, Bramson J, Loeb M. Immune biomarkers predictive of respiratory viral infection in elderly nursing home residents. PLoS One 2014; 9:e108481. [PMID: 25275464 PMCID: PMC4183538 DOI: 10.1371/journal.pone.0108481] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To determine if immune phenotypes associated with immunosenescence predict risk of respiratory viral infection in elderly nursing home residents. METHODS Residents ≥ 65 years from 32 nursing homes in 4 Canadian cities were enrolled in Fall 2009, 2010 and 2011, and followed for one influenza season. Following influenza vaccination, peripheral blood mononuclear cells (PBMCs) were obtained and analysed by flow cytometry for T-regs, CD4+ and CD8+ T-cell subsets (CCR7+CD45RA+, CCR7-CD45RA+ and CD28-CD57+) and CMV-reactive CD4+ and CD8+ T-cells. Nasopharyngeal swabs were obtained and tested for viruses in symptomatic residents. A Cox proportional hazards model adjusted for age, sex and frailty, determined the relationship between immune phenotypes and time to viral infection. RESULTS 1072 residents were enrolled; median age 86 years and 72% female. 269 swabs were obtained, 87 were positive for virus: influenza (24%), RSV (14%), coronavirus (32%), rhinovirus (17%), human metapneumovirus (9%) and parainfluenza (5%). In multivariable analysis, high T-reg% (HR 0.41, 95% CI 0.20-0.81) and high CMV-reactive CD4+ T-cell% (HR 1.69, 95% CI 1.03-2.78) were predictive of respiratory viral infection. CONCLUSIONS In elderly nursing home residents, high CMV-reactive CD4+ T-cells were associated with an increased risk and high T-regs were associated with a reduced risk of respiratory viral infection.
Collapse
Affiliation(s)
- Jennie Johnstone
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Robin Parsons
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Fernando Botelho
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jamie Millar
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Shelly McNeil
- Canadian Center for Vaccinology, IWK Health Centre and Capital Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tamas Fulop
- Department of Medicine, Geriatrics Division, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Janet McElhaney
- Department of Medicine, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Melissa K. Andrew
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen D. Walter
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - P. J. Devereaux
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Ryan R. Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Mahony
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Dotson AL, Zhu W, Libal N, Alkayed NJ, Offner H. Different immunological mechanisms govern protection from experimental stroke in young and older mice with recombinant TCR ligand therapy. Front Cell Neurosci 2014; 8:284. [PMID: 25309326 PMCID: PMC4174768 DOI: 10.3389/fncel.2014.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of death and disability in the United States. The lack of clinical success in stroke therapies can be attributed, in part, to inadequate basic research on aging rodents. The current study demonstrates that recombinant TCR ligand therapy uses different immunological mechanisms to protect young and older mice from experimental stroke. In young mice, RTL1000 therapy inhibited splenocyte efflux while reducing frequency of T cells and macrophages in the spleen. Older mice treated with RTL1000 exhibited a significant reduction in inflammatory cells in the brain and inhibition of splenic atrophy. Our data suggest age specific differences in immune response to stroke that allow unique targeting of stroke immunotherapies.
Collapse
Affiliation(s)
- Abby L Dotson
- Neuroimmunology Research, VA Medical Center Portland, OR, USA ; Department of Neurology, Oregon Health and Science University Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Nabil J Alkayed
- Department of Neurology, Oregon Health and Science University Portland, OR, USA ; Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA ; Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Medical Center Portland, OR, USA ; Department of Neurology, Oregon Health and Science University Portland, OR, USA ; Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
20
|
Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology 2013; 60:130-7. [PMID: 24296590 DOI: 10.1159/000355303] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 01/02/2023] Open
Abstract
Constant exposure to new and persisting antigens and the need to replace cellular attrition with newly built cells lead to profound remodeling of the immune system after the age of 50 years. The impact of the immunosenescence process varies amongst the different cellular subsets represented within the immune system. Emerging data suggest that progressive aging significantly affects frequencies, subset distribution and functional competence of regulatory T cells (Tregs). Given the central role of Tregs in immune homeostasis, age-related loss of Treg function would be predicted to cause excessive immunity, encountered in elderly humans as a syndrome of chronic, smoldering inflammation as well as the age-related increase in the risk for autoimmunity. Conversely, age-dependent gain of Treg activity would result in failing immunity, such as the rising risk of malignancies and infections amongst the elderly. Emerging data suggest that some Treg populations, specifically naturally occurring Tregs, seem to accumulate with advancing age, whereas inducible Tregs appear to be less available in the older host. More studies are necessary to elucidate functional competence of old Tregs, with an emphasis on comparing the efficacy of young and old Tregs for defined functional domains. Mechanisms of declining Treg inducibility are not understood, but may provide an opportunity for targeted immunomodulation in the elderly. On the horizon is the potential to develop novel therapeutic interventions that target Tregs to make the elderly more efficient in fighting cancers and infections and dampen the risk for senescence-associated inflammation.
Collapse
Affiliation(s)
- Ann Jagger
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif., USA
| | | | | | | |
Collapse
|
21
|
Shen X, Niu C, König R. Increased numbers and suppressive activity of regulatory CD25(+)CD4(+) T lymphocytes in the absence of CD4 engagement by MHC class II molecules. Cell Immunol 2013; 282:117-28. [PMID: 23770721 DOI: 10.1016/j.cellimm.2013.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
Mechanisms of central and peripheral tolerance prevent autoimmunity. Regulatory T cells inhibit the activation of potentially auto-reactive T cells in peripheral lymphoid organs. In transgenic mice in which all MHC class II molecules are incapable of binding to CD4, class II MHC-restricted T cells preferentially differentiated into immunosuppressive, regulatory T cells. In these mutant MHC class II transgenic mice, a subset of CD4(+) T cells constitutively expressed moderately elevated levels of CD25 and potently inhibited interleukin-2 secretion by T cells from normal mice in a cell-to-cell, contact-dependent manner. Immunosuppressive activity depended on activation of the regulatory T cells. Thus, CD25(+)CD4(+) T cells from mutant MHC class II transgenic mice resembled phenotypically and functionally a major subset of natural regulatory T cells in normal mice, but were two to three-times more abundant. These results further clarify the mechanisms that govern the differentiation and maintenance of CD25(+)CD4(+) regulatory T cells, and present avenues for immunomodulation.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
22
|
Wilk E, Schughart K. The Mouse as Model System to Study Host-Pathogen Interactions in Influenza A Infections. ACTA ACUST UNITED AC 2012; 2:177-205. [PMID: 26069011 DOI: 10.1002/9780470942390.mo110173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mouse is one of the most important mammalian model systems for studying host-pathogen-interactions during influenza A virus infections and for assessing the virulence of newly emerging influenza viruses. Here, we provide the basic protocols for infecting mice with influenza virus and studying the main pathological changes associated with disease. Critical parameters, e.g., virus variants and subtypes or mouse strains, are discussed. Curr. Protoc. Mouse Biol. 2:177-205 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| |
Collapse
|
23
|
Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol 2012; 24:482-7. [PMID: 22560294 DOI: 10.1016/j.coi.2012.04.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022]
Abstract
A hallmark of aging is the progressive deterioration of immune function. Age-related immune suppression increases susceptibility to infectious diseases and cancer, significant causes of morbidity and mortality in the elderly. In particular, age-related T cell dysfunction is a major contributor to 'immune-senescence'. Recently, it has become clear that the frequency of regulatory T cells (Treg) significantly increases in aged mice and humans. As Treg control the intensity of T cell responses, their accrual probably contributes to age-related immune dysfunction. This review will focus on mechanisms underlying Treg homeostasis and function in aging.
Collapse
|
24
|
Immunodominance: a pivotal principle in host response to viral infections. Clin Immunol 2012; 143:99-115. [PMID: 22391152 DOI: 10.1016/j.clim.2012.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 11/24/2022]
Abstract
We encounter pathogens on a daily basis and our immune system has evolved to mount an immune response following an infection. An interesting phenomenon that has evolved in response to clearing bacterial and viral infections is called immunodominance. Immunodominance refers to the phenomenon that, despite co-expression of multiple major histocompatibility complex class I alleles by host cells and the potential generation of hundreds of distinct antigenic peptides for recognition following an infection, a large portion of the anti-viral cytotoxic T lymphocyte population targets only some peptide/MHC class I complexes. Here we review the main factors contributing to immunodominance in relation to influenza A and HIV infection. Of special interest are the factors contributing to immunodominance in humans and rodents following influenza A infection. By critically reviewing these findings, we hope to improve understanding of the challenges facing the discovery of new factors enabling better anti-viral vaccine strategies in the future.
Collapse
|
25
|
Reber AJ, Chirkova T, Kim JH, Cao W, Biber R, Shay DK, Sambhara S. Immunosenescence and Challenges of Vaccination against Influenza in the Aging Population. Aging Dis 2012; 3:68-90. [PMID: 22500272 PMCID: PMC3320806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023] Open
Abstract
Influenza is an important contributor to morbidity and mortality worldwide. Accumulation of genetic mutations termed antigenic drift, allows influenza viruses to inflict yearly epidemics that may result in 250,000 to 500,000 deaths annually. Over 90% of influenza-related deaths occur in the older adult population. This is at least in part a result of increasing dysregulation of the immune system with age, termed immunosenescence. This dysregulation results in reduced capacity to cope with infections and decreased responsiveness to vaccination. The older adult population is in dire need of improved vaccines capable of eliciting protective responses in the face of a waning immune system. This review focuses on the status of immunity, responses to influenza vaccination, and strategies that are currently being explored to elicit enhanced immune responses in this high risk population.
Collapse
Affiliation(s)
- Adrian J. Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Tatiana Chirkova
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Renata Biber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - David K. Shay
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| |
Collapse
|
26
|
Corona AW, Fenn AM, Godbout JP. Cognitive and behavioral consequences of impaired immunoregulation in aging. J Neuroimmune Pharmacol 2011; 7:7-23. [PMID: 21932047 DOI: 10.1007/s11481-011-9313-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/07/2011] [Indexed: 11/29/2022]
Abstract
A hallmark of the aged immune system is impaired immunoregulation of the innate and adaptive immune system in the periphery and also in the central nervous system (CNS). Impaired immunoregulation may predispose older individuals to an increased frequency of peripheral infections with concomitant cognitive and behavioral complications. Thus, normal aging is hypothesized to alter the highly coordinated interactions between the immune system and the brain. In support of this notion, mounting evidence in rodent models indicate that the increased inflammatory status of the brain is associated with increased reactivity of microglia, the innate immune cells of the CNS. Understanding how immunity is affected with age is important because CNS immune cells play an integral role in propagating inflammatory signals that are initiated in the periphery. Increased reactivity of microglia sets the stage for an exaggerated inflammatory cytokine response following activation of the peripheral innate immune system that is paralleled by prolonged sickness, depressive-like complications and cognitive impairment. Moreover, amplified neuroinflammation negatively affects several aspects of neural plasticity (e.g., neurogenesis, long-term potentiation, and dendritic morphology) that can contribute to the severity of neurological complications. The purpose of this review is to discuss several key peripheral and central immune changes that impair the coordinated response between the immune system and the brain and result in behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Angela W Corona
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
27
|
Jiang J, Fisher EM, Murasko DM. CD8 T cell responses to influenza virus infection in aged mice. Ageing Res Rev 2011; 10:422-7. [PMID: 21315186 DOI: 10.1016/j.arr.2011.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 01/15/2023]
Abstract
Influenza is one of the most common infectious diseases afflicting humans, particularly the elderly. The murine model has been widely employed for investigation of immunity to influenza virus infection. In this paper, we review the recent advances in understanding the diminished CD8 T cell immune response to influenza virus infection in aged mice. Possible mechanisms of impaired CD8 T cell responses with aging are addressed, including: (1) the role of dendritic cells (DCs); (2) the effect of age-associated changes in the T cell repertoire; and (3) the interactions with CD4 T cells, including T regulatory (Treg) cells and CD4 T helper cells. The aged murine model of the CD8 T cell response to influenza virus is helping to elucidate the mechanisms of immunosenescence which can lead to therapeutic improvements in the primary CD8 T cell response to new infections, as well as the development of new strategies for immunization to prevent influenza in the elderly.
Collapse
|
28
|
Du W, Shen H, Galan A, Goldstein DR. An age-specific CD8+ T cell pathway that impairs the effectiveness of strategies to prolong allograft survival. THE JOURNAL OF IMMUNOLOGY 2011; 187:3631-40. [PMID: 21873523 DOI: 10.4049/jimmunol.1100441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Age-related decline in immunity can impair cell-mediated responses during an infection, malignancy, and acute allograft rejection. Although much research has been allocated to understand the immune responses that impact the former two conditions, the cellular mechanisms by which aging impacts the immune acceptance of organ allografts are not completely clear. In this study, we examined how recipient age impacts the efficacy of therapies that modulate immune recognition of allografts using an immunogenic murine skin transplant model. We found that costimulatory blockade-based treatment failed to extend allograft survival in older recipients to the same extent as that observed in younger recipients. CD8(+) T cells were critical for the inability of aged recipients to achieve maximal allograft survival. Although aged mice displayed a larger number of effector memory T cells prior to transplantation, these cells did not exhibit enhanced alloreactivity compared with young memory T cells. In contrast, naive aged CD8(+) T cells exhibited enhanced IFN-γ production to allostimulation compared with young naive T cells. Our results provide evidence that aging enhances CD8(+) T cell alloreactivity. This could impair the ability of costimulatory blockade-based therapies to prolong allograft survival. Thus, targeting CD8(+) T cells in humans may be a way to improve outcomes in older patients requiring immune modulatory therapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Internal Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06525, USA
| | | | | | | |
Collapse
|