1
|
Taub DG, Woolf CJ. Age-dependent small fiber neuropathy: Mechanistic insights from animal models. Exp Neurol 2024; 377:114811. [PMID: 38723859 PMCID: PMC11131160 DOI: 10.1016/j.expneurol.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
3
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
4
|
Sindie R, Mwakilama E, Chizala P, Namangale J. A retrospective study on side effects of first-line antiretroviral drugs on HIV patients based on 1A, 2A, and 5A regimen records at Zomba Central Hospital, Malawi. Afr Health Sci 2023; 23:468-480. [PMID: 38357124 PMCID: PMC10862583 DOI: 10.4314/ahs.v23i3.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
AIDS is an incurable disease that is common in Africa. Patients with HIV/AIDS having a CD4 count of less than 240 are put on life prolonging ARV drugs. The ARVs have serious side effects on some patients which may be handled by treating them or switching patient's drug to one with no or less serious side effects. However, before doing this, more understanding of the circumstances that lead to a side effect is vital. We use statistical analyses to link side effects of 1A, 2A, and 5A treatment regimens to the patient's social and demographic characteristics based on hospital data records. A retrospective review of patients' master cards (2011-2014) was done to assess adverse effects associated with different ARV regimens. Out of the 901 patients that showed side effects, 65.37% were females aged 31-40 and 34.63% were males. Comparatively, 1A regimen showed more side effects than 2A and 5A regimens. Age, gender and occupation correlated significantly with regimen symptoms (p< 0.05). Unlike men, women had the following extra side effects; cough, peripheral neuropathy and leg pains as compared to lipodystrophy. Our results show that old people (50years+) are less likely to get skin rash and other symptoms compared to lipodystrophy (RRR=0.973). Further, the probability of either having cough (0.0021, p< 0.05), or skin rash (0.0021, p< 0.05), as a side effect, on average, decreases as age increases with the same sex and weight. The probability of having peripheral neuropathy (0.0042, p< 0.01), however, increases with age. Knowledge of HIV patient's socio-demographics and the patient's regimen side effects can be utilised to appropriately manage severe ARV side effects. A therapy consideration that takes into account chemicals in ARV regimen responsible for specific side effects can be directed to patients with compatible socio-demographic characteristics.
Collapse
Affiliation(s)
- Ruth Sindie
- SouthWest University, China
- University of Malawi, Zomba, Malawi
| | | | | | | |
Collapse
|
5
|
Henpita C, Vyas R, Healy CL, Kieu TL, Gurkar AU, Yousefzadeh MJ, Cui Y, Lu A, Angelini LA, O'Kelly RD, McGowan SJ, Chandrasekhar S, Vanderpool RR, Hennessy‐Wack D, Ross MA, Bachman TN, McTiernan C, Pillai SPS, Ladiges W, Lavasani M, Huard J, Beer‐Stolz D, St. Croix CM, Watkins SC, Robbins PD, Mora AL, Kelley EE, Wang Y, O'Connell TD, Niedernhofer LJ. Loss of DNA repair mechanisms in cardiac myocytes induce dilated cardiomyopathy. Aging Cell 2023; 22:e13782. [PMID: 36734200 PMCID: PMC10086531 DOI: 10.1111/acel.13782] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.
Collapse
Affiliation(s)
- Chathurika Henpita
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rajesh Vyas
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Chastity L. Healy
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Tra L. Kieu
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aditi U. Gurkar
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
- Division of Geriatric Medicine, Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Yuxiang Cui
- Department of ChemistryUniversity of California, RiversideRiversideCaliforniaUSA
| | - Aiping Lu
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Steadman Philippon Research InstituteVailColoradoUSA
| | - Luise A. Angelini
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Ryan D. O'Kelly
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Sara J. McGowan
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Sanjay Chandrasekhar
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rebecca R. Vanderpool
- Division of Cardiology, Heart and Vascular InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Danielle Hennessy‐Wack
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mark A. Ross
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Timothy N. Bachman
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles McTiernan
- Division of Cardiology, Heart and Vascular InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Warren Ladiges
- Department of Comparative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Mitra Lavasani
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationNorthwestern University and Shirley Ryan Ability LabChicagoIllinoisUSA
| | - Johnny Huard
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Steadman Philippon Research InstituteVailColoradoUSA
| | - Donna Beer‐Stolz
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Claudette M. St. Croix
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Simon C. Watkins
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Ana L. Mora
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Division of Pulmonary, Critical Care and Sleep Medicine, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Eric E. Kelley
- Department of Physiology and PharmacologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Yinsheng Wang
- Department of ChemistryUniversity of California, RiversideRiversideCaliforniaUSA
| | - Timothy D. O'Connell
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| |
Collapse
|
6
|
Sen CK, Roy S, Khanna S. Diabetic Peripheral Neuropathy Associated with Foot Ulcer: One of a Kind. Antioxid Redox Signal 2023. [PMID: 35850520 DOI: 10.1089/ars.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Significance: Diabetic peripheral neuropathy (DPN) associated with a diabetic foot ulcer (DFU) is likely to be complicated with critical factors such as biofilm infection and compromised skin barrier function of the diabetic skin. Repaired skin with a history of biofilm infection is known to be compromised in barrier function. Loss of barrier function is also observed in the oxidative stress affected diabetic and aged skin. Recent Advances: Loss of barrier function makes the skin prone to biofilm infection and cellulitis, which contributes to chronic inflammation and vasculopathy. Hyperglycemia favors biofilm formation as glucose lowering led to reduction in biofilm development. While vasculopathy limits oxygen supply, the O2 cost of inflammation is high increasing hypoxia severity. Critical Issues: The host nervous system can be inhabited by bacteria. Because electrical impulses are a part of microbial physiology, polymicrobial colonization of the host's neural circuit is likely to influence transmission of action potential. The identification of perineural apatite in diabetic patients with peripheral neuropathy suggests bacterial involvement. DPN starts in both feet at the same time. Future Directions: Pair-matched studies of DPN in the foot affected with DFU (i.e., DFU-DPN) compared with DPN in the without ulcer, and intact skin barrier function, are likely to provide critical insight that would help inform effective care strategies. This review characterizes DFU-DPN from a translational science point of view presenting a new paradigm that recognizes the current literature in the context of factors that are unique to DFU-DPN.
Collapse
Affiliation(s)
- Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Zhang W, Chen L. A Nomogram for Predicting the Possibility of Peripheral Neuropathy in Patients with Type 2 Diabetes Mellitus. Brain Sci 2022; 12:brainsci12101328. [PMID: 36291262 PMCID: PMC9599450 DOI: 10.3390/brainsci12101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose: Diabetic peripheral neuropathy (DPN) leads to ulceration, noninvasive amputation, and long-term disability. This study aimed to develop and validate a nomogram for forecasting the probability of DPN in type 2 diabetes mellitus patients. Methods: From February 2017 to May 2021, 778 patients with type 2 diabetes mellitus were included in this study. We confirmed the diagnosis of DPN according to the Toronto Expert Consensus. Patients were randomly divided into a training cohort (n = 519) and a validation cohort (n = 259). In the training cohort, univariate and multivariate logistic regression analyses were performed, and a simple nomogram was built using the stepwise method. The receiver operating characteristic (ROC), calibration curve, and decision curve analysis were computed in order to validate the discrimination and clinical value of the nomogram model. Results: About 65.7% and 72.2% of patients were diagnosed with DPN in the training and validation cohorts. We developed a novel nomogram to predict the probability of DPN based on the parameters of age, gender, duration of diabetes, body mass index, uric acid, hemoglobin A1c, and free triiodothyronine. The areas under the curves (AUCs) of the nomogram model were 0.763 in the training cohort and 0.755 in the validation cohort. The calibration plots revealed well-fitted accuracy between the predicted and actual probability in the training and validation cohorts. Decision curve analysis confirmed the clinical value of the nomogram. In subgroup analysis, the predictive ability of the nomogram model was strong. Conclusions: The nomogram of age, gender, duration of diabetes, body mass index, uric acid, hemoglobin A1c, and free triiodothyronine may assist clinicians with the early identification of DPN in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Lingli Chen
- Correspondence: ; Tel./Fax: +86-577-555-54543
| |
Collapse
|
8
|
Gavini CK, Elshareif N, Aubert G, Germanwala AV, Calcutt NA, Mansuy-Aubert V. LXR agonist improves peripheral neuropathy and modifies PNS immune cells in aged mice. J Neuroinflammation 2022; 19:57. [PMID: 35219337 PMCID: PMC8882298 DOI: 10.1186/s12974-022-02423-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 01/16/2023] Open
Abstract
Background Peripheral neuropathy is a common and progressive disorder in the elderly that interferes with daily activities. It is of importance to find efficient treatments to treat or delay this age-related neurodegeneration. Silencing macrophages by reducing foamy macrophages showed significant improvement of age-related degenerative changes in peripheral nerves of aged mice. We previously demonstrated that activation of the cholesterol sensor Liver X receptor (LXR) with the potent agonist, GW3965, alleviates pain in a diet-induced obesity model. We sought to test whether LXR activation may improve neuropathy in aged mice. Methods 21-month-old mice were treated with GW3965 (25 mg/Kg body weight) for 3 months while testing for mechanical allodynia and thermal hyperalgesia. At termination, flow cytometry was used to profile dorsal root ganglia and sciatic nerve cells. Immune cells were sorted and analyzed for cholesterol and gene expression. Nerve fibers of the skin from the paws were analyzed. Some human sural nerves were also evaluated. Comparisons were made using either t test or one-way ANOVA. Results Treatment with GW3965 prevented the development of mechanical hypersensitivity and thermal hyperalgesia over time in aged mice. We also observed change in polarization and cholesterol content of sciatic nerve macrophages accompanied by a significant increase in nerve fibers of the skin. Conclusions These results suggest that activation of the LXR may delay the PNS aging by modifying nerve-immune cell lipid content. Our study provides new potential targets to treat or delay neuropathy during aging. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02423-z.
Collapse
|
9
|
Kahnert K, Föhrenbach M, Lucke T, Alter P, Trudzinski FT, Bals R, Lutter JI, Timmermann H, Söhler S, Förderreuther S, Nowak D, Watz H, Waschki B, Behr J, Welte T, Vogelmeier CF, Jörres RA. The impact of COPD on polyneuropathy: results from the German COPD cohort COSYCONET. Respir Res 2020; 21:28. [PMID: 31959163 PMCID: PMC6971882 DOI: 10.1186/s12931-020-1293-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
Background Peripheral neuropathy is a common comorbidity in COPD. We aimed to investigate associations between alterations commonly found in COPD and peripheral neuropathy, with particular emphasize on the distinction between direct and indirect effects. Methods We used visit 4 data of the COPD cohort COSYCONET, which included indicators of polyneuropathy (repeated tuning fork and monofilament testing), excluding patients with diabetes a/o increased HbA1c. These indicators were analysed for the association with COPD characteristics, including lung function, blood gases, 6-min walk distance (6-MWD), timed-up-and-go-test (TUG), exacerbation risk according to GOLD, C-reactive protein (CRP), and ankle-brachial index (ABI). Based on the results of conventional regression analyses adjusted for age, BMI, packyears and gender, we utilized structural equation modelling (SEM) to quantify the network of direct and indirect relationships between parameters. Results 606 patients were eligible for analysis. The indices of polyneuropathy were highly correlated with each other and related to base excess (BE), ABI and TUG. ABI was linked to neuropathy and 6-MWD, exacerbations depended on FEV1, 6-MWD and CRP. The associations could be summarized into a SEM comprising polyneuropathy as a latent variable (PNP) with three measured indicator variables. Importantly, PNP was directly dependent on ABI and particularly on BE. When also including patients with diabetes and/or elevated values of HbA1c (n = 742) the SEM remained virtually the same. Conclusion We identified BE and ABI as major determinants of peripheral neuropathy in patients with COPD. All other associations, particularly those with lung function and physical capacity, were indirect. These findings underline the importance of alterations of the micromilieu in COPD, in particular the degree of metabolic compensation and vascular status.
Collapse
Affiliation(s)
- K Kahnert
- Department of Internal Medicine V - Pulmonology, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), Marchioninisr. 15, 81377 München, and Ziemssenstr. 1, 80336, Munich, Germany.
| | - M Föhrenbach
- Institute and Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - T Lucke
- Institute and Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - P Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Germany, Member of the German Center for Lung Research (DZL), Baldingerstrasse, 35043, Marburg, Germany.,Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Kirrberger Straße 1, 66424, Homburg, Germany
| | - F T Trudzinski
- Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Kirrberger Straße 1, 66424, Homburg, Germany
| | - R Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Kirrberger Straße 1, 66424, Homburg, Germany
| | - J I Lutter
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Ingolstädter Landstr. 1, 85764, Munich, Germany
| | - H Timmermann
- Hamburger Institut für Therapieforschung GmbH, Colonaden 72, 20354, Hamburg, Germany
| | - S Söhler
- ASCONET Study Coordination Office, University of Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - S Förderreuther
- Department of Neurology, Klinikum Innenstadt, Ludwig Maximilian University of Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - D Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - H Watz
- Institute and Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - B Waschki
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - J Behr
- Department of Internal Medicine V - Pulmonology, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), Marchioninisr. 15, 81377 München, and Ziemssenstr. 1, 80336, Munich, Germany
| | - T Welte
- Department of Pneumology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - C F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Germany, Member of the German Center for Lung Research (DZL), Baldingerstrasse, 35043, Marburg, Germany
| | - R A Jörres
- Institute and Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M, member of German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| |
Collapse
|
10
|
Yousefzadeh MJ, Melos KI, Angelini L, Burd CE, Robbins PD, Niedernhofer LJ. Mouse Models of Accelerated Cellular Senescence. Methods Mol Biol 2019; 1896:203-230. [PMID: 30474850 DOI: 10.1007/978-1-4939-8931-7_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate in multiple tissues as virtually all vertebrate organisms age. Senescence is a highly conserved response to many forms of cellular stress intended to block the propagation of damaged cells. Senescent cells have been demonstrated to play a causal role in aging via their senescence-associated secretory phenotype and by impeding tissue regeneration. Depletion of senescent cells either through genetic or pharmacologic methods has been demonstrated to extend murine lifespan and delay the onset of age-related diseases. Measuring the burden and location of senescent cells in vivo remains challenging, as there is no marker unique to senescent cells. Here, we describe multiple methods to detect the presence and extent of cellular senescence in preclinical models, with a special emphasis on murine models of accelerated aging that exhibit a more rapid onset of cellular senescence.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Kendra I Melos
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Luise Angelini
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christin E Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Hambright WS, Niedernhofer LJ, Huard J, Robbins PD. Murine models of accelerated aging and musculoskeletal disease. Bone 2019; 125:122-127. [PMID: 30844492 DOI: 10.1016/j.bone.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022]
Abstract
The primary risk factor for most musculoskeletal diseases, including osteoarthritis, osteoporosis and sarcopenia, is aging. To treat the diverse types of musculoskeletal diseases and pathologies, targeting their root cause, the aging process itself, has the potential to slow or prevent multiple age-related musculoskeletal conditions simultaneously. However, the development of approaches to delay onset of age related diseases, including musculoskeletal pathologies, has been slowed by the relatively long lifespan of rodent models of aging. Thus, to expedite the development of therapeutic approaches for age-related musculoskeletal disease, the implementation of mouse models of accelerated musculoskeletal aging are of great utility. Currently there are multiple genetically diverse mouse models that mirror certain aspects of normal human and mouse aging. Here, we provide a review of some of the most relevant murine models of accelerated aging that mimic many aspects of natural musculoskeletal aging, highlighting their relative strengths and weaknesses. Importantly, these murine models of accelerated aging recapitulate phenotypes of musculoskeletal age-related decline observed in humans.
Collapse
Affiliation(s)
- William S Hambright
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America; Steadman Philippon Research Institute, Vail, CO, United States of America.
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
12
|
Mao F, Zhu X, Liu S, Qiao X, Zheng H, Lu B, Li Y. Age as an Independent Risk Factor for Diabetic Peripheral Neuropathy in Chinese Patients with Type 2 Diabetes. Aging Dis 2019; 10:592-600. [PMID: 31165003 PMCID: PMC6538210 DOI: 10.14336/ad.2018.0618] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is more prevalent in aging populations. Older adults with diabetes have higher rates of macro and micro vascular complications. Our study assessed whether age is an independent factor for both large and small nerve dysfunctions in Chinese patients with T2DM. This cross-sectional study involved a total of 950 patients with type 2 diabetes (mean age: 60.01±12.30 years). Diabetic peripheral neuropathy (DPN) was assessed according to clinical symptoms and physical examinations by using neuropathy symptom score (NSS), the neuropathy disability score (NDS), Michigan Neuropathy Screening Instrument (MNSI score), vibration perception threshold (VPT) and SUDOSCAN test. By using independent logistic regression model, we showed that age was an independent risk factor of DPN (odds ratio [OR] = 1.036, 95% confidence interval [CI] 1.018-1.054, P< 0.01). T2DM patients over 71 years had a higher risk of DPN determined by using NSS/NDS (OR= 2.087; 95% CI 1.112-3.918; P <0.05), MNSI (OR=1.922; 95% CI 1.136-3.252; P<0.05), VPT (OR=3.452; 95%CI 1.052-11.332; P<0.05) and SUDOSCAN (OR=1.922; 95%CI 1.136-3.252; P<0.05) as diagnostic criteria respectively. The results of spline analysis showed a non-linearly positive association between age and OR of DPN. Individuals with 40, 50, 60, and 70 years old had LnOR of 1.22 (95%CI: 0.44- 2.00), 1.79(95%CI: 0.67- 2.91), 2.29 (95% CI: 0.98- 3.59), and 2.67(95% CI: 1.38-3.96) in DPN risk compared to T2DM patients with 19 years old, respectively. All of the above results in our study suggested age as an independent risk factor for the development of diabetic neuropathy in T2DM patients is significantly associated with the occurrence of both small and large nerve dysfunction, independent of other risk factors.
Collapse
Affiliation(s)
- Fei Mao
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Zhu
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Siying Liu
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaona Qiao
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Hangping Zheng
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Lu
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- 1Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,2Department of Endocrinology and Metabolism, Jing'an District Center Hospital of Shanghai, China
| |
Collapse
|
13
|
West H, Coffey M, Wagner MJ, McLeod HL, Colley JP, Adams RA, Fleck O, Maughan TS, Fisher D, Kaplan RS, Harris R, Cheadle JP. Role for Nucleotide Excision Repair Gene Variants in Oxaliplatin-Induced Peripheral Neuropathy. JCO Precis Oncol 2018; 2:1-18. [PMID: 35135151 DOI: 10.1200/po.18.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
PURPOSE Oxaliplatin forms part of routine treatment of advanced colorectal cancer; however, it often causes severe peripheral neuropathy, resulting in treatment discontinuation. We sought to determine the molecular and cellular mechanism underlying this toxicity. PATIENTS AND METHODS We exome resequenced blood DNA samples from nine patients with advanced colorectal cancer who had severe peripheral neuropathy associated with oxaliplatin (PNAO) within 12 weeks of treatment. We Sanger sequenced the ERCC4 and ERCC6 open reading frames in 63 patients with PNAO and carried out targeted genotyping in 1,763 patients without PNAO. We tested the functionality of ERCC4 variants using viability and DNA repair assays in Schizosaccharomyces pombe and human cell lines after exposure to oxaliplatin and ultraviolet light. RESULTS Exome resequencing identified one patient carrying a novel germline truncating mutation in the nucleotide excision repair (NER) gene ERCC4. This mutation was functionally associated with sensitivity to oxaliplatin (P = 3.5 × 10-2). We subsequently found that multiple rare ERCC4 nonsynonymous variants were over-represented in affected individuals (P = 7.7 × 10-3) and three of these were defective in the repair of ultraviolet light-induced DNA damage (P < 1 × 10-3). We validated a role for NER genes in PNAO by finding that multiple rare ERCC6 nonsynonymous variants were similarly over-represented in affected individuals (P = 2.4 × 10-8). Excluding private variants, 22.2% of patients (14 of 63 patients) with PNAO carried Pro379Ser or Glu875Gly in ERCC4 or Asp425Ala, Gly446Asp, or Ser797Cys in ERCC6, compared with 8.7% of unaffected patients (152 of 1,750 patients; odds ratio, 3.0; 95% CI, 1.6 to 5.6; P = 2.5 × 10-4). CONCLUSION Our study provides evidence for a role of NER genes in PNAO, together with mechanistic insights.
Collapse
Affiliation(s)
- Hannah West
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Michelle Coffey
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Michael J Wagner
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Howard L McLeod
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - James P Colley
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Richard A Adams
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Oliver Fleck
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Timothy S Maughan
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - David Fisher
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Richard S Kaplan
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Rebecca Harris
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Jeremy P Cheadle
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
14
|
Sharma K, Darvas M, Keene CD, Niedernhofer LJ, Ladiges W. Modeling Alzheimer's disease in progeria mice. An age-related concept. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1524815. [PMID: 30319737 PMCID: PMC6179061 DOI: 10.1080/20010001.2018.1524815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of Alzheimer’s disease (AD) is expected to dramatically increase in older people worldwide. Efforts to find disease-modifying treatments have been largely unsuccessful because of the focus on disease-specific pathogenesis, and lack of animal models to study AD in the context of aging and age-related co-morbidities. The geroscience approach to studying AD would suggest that modulation of aging per se would be a useful strategy, but a mammalian model system that combines both aging and AD is not available. One approach to study old age and AD is to utilize murine models of progeroid syndrome, which can provide a number of advantages not only for basic aging biology but also for preclinical drug testing. A progeria background, such as the Ercc1 mutant mouse (Ercc1−/Δ), provides an aging component not seen in current murine models of AD that lack age-related co-morbidities typical of AD patients. Ercc1−/Δ mice experience the same types of stochastic endogenous DNA damage as WT mice, but accumulate lesions faster due to impaired DNA repair, which accelerates the normal aging process by 6-fold. These mice do not show frank AD pathology but represent a predisposed or hypersensitive environment for AD pathology, where pathogenic elements of AD can be introduced, either by crossing with well-established AD transgenic mouse lines, or transcranial stereotaxic delivery directly into the brain. Since Ercc1−/Δ mice age five to six times faster than WT mice, very rapid characterization and testing of therapeutic interventions is possible. Studies are urgently needed to capitalize on the highly informative potential of this novel AD mouse model.
Collapse
Affiliation(s)
- Kavita Sharma
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Martin Darvas
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Czerwińska J, Nowak M, Wojtczak P, Dziuban-Lech D, Cieśla JM, Kołata D, Gajewska B, Barańczyk-Kuźma A, Robinson AR, Shane HL, Gregg SQ, Rigatti LH, Yousefzadeh MJ, Gurkar AU, McGowan SJ, Kosicki K, Bednarek M, Zarakowska E, Gackowski D, Oliński R, Speina E, Niedernhofer LJ, Tudek B. ERCC1-deficient cells and mice are hypersensitive to lipid peroxidation. Free Radic Biol Med 2018; 124:79-96. [PMID: 29860127 PMCID: PMC6098728 DOI: 10.1016/j.freeradbiomed.2018.05.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023]
Abstract
Lipid peroxidation (LPO) products are relatively stable and abundant metabolites, which accumulate in tissues of mammals with aging, being able to modify all cellular nucleophiles, creating protein and DNA adducts including crosslinks. Here, we used cells and mice deficient in the ERCC1-XPF endonuclease required for nucleotide excision repair and the repair of DNA interstrand crosslinks to ask if specifically LPO-induced DNA damage contributes to loss of cell and tissue homeostasis. Ercc1-/- mouse embryonic fibroblasts were more sensitive than wild-type (WT) cells to the LPO products: 4-hydroxy-2-nonenal (HNE), crotonaldehyde and malondialdehyde. ERCC1-XPF hypomorphic mice were hypersensitive to CCl4 and a diet rich in polyunsaturated fatty acids, two potent inducers of endogenous LPO. To gain insight into the mechanism of how LPO influences DNA repair-deficient cells, we measured the impact of the major endogenous LPO product, HNE, on WT and Ercc1-/- cells. HNE inhibited proliferation, stimulated ROS and LPO formation, induced DNA base damage, strand breaks, error-prone translesion DNA synthesis and cellular senescence much more potently in Ercc1-/- cells than in DNA repair-competent control cells. HNE also deregulated base excision repair and energy production pathways. Our observations that ERCC1-deficient cells and mice are hypersensitive to LPO implicates LPO-induced DNA damage in contributing to cellular demise and tissue degeneration, notably even when the source of LPO is dietary polyunsaturated fats.
Collapse
Affiliation(s)
- Jolanta Czerwińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Małgorzata Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Wojtczak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Dorota Dziuban-Lech
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Jarosław M Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Daria Kołata
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Beata Gajewska
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland.
| | | | - Andria R Robinson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Hillary L Shane
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Siobhán Q Gregg
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Lora H Rigatti
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Aditi U Gurkar
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Sara J McGowan
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Konrad Kosicki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Małgorzata Bednarek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Laura J Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford Progeria Syndrome: A Premature Aging Disease. Mol Neurobiol 2017; 55:4417-4427. [PMID: 28660486 DOI: 10.1007/s12035-017-0610-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
Progeria is sporadic, very rare, autosomal dominant, deadly childhood disorder. It is one of the progeroid syndromes also known as Hutchinson-Gilford progeria syndrome (HGPS). Aging is a developmental process that begins with fertilization and ends up with death involving a lot of environmental and genetic factors. The disease firstly involves premature aging and then death from complications of atherosclerosis such as myocardial infarction, stroke, atherosclerosis, or heart failure. The lifespan of the patient is normally up to teen age or early twenties. It is usually not inherited because a patient normally dies before the age of reproduction. The most important genetic linkage between progeria and aging is shortening of telomere ends with each replication cycle. The patients are normally observed to have extremely short telomeres. Currently, 90% of the patients are said to have de novo point mutations in the LMNA gene that substitute cytosine with thymine and have been found in individuals with HGPS. Lmna encodes lamins A and C, and the A-type lamins have important structural function in the nuclear envelope. The most common type of HGPS mutation is located at codon 608 (G608G). It could not be diagnosed at birth, but after the age of 2 years, visible, prominent symptoms can be observed. Still, lot of research is needed to solve this mystery; hopefully, future research on HGPS would provide important clues for progeria and other fatal age-related disorders.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan.,Department of Biological Engineering/Institute of Biotransformation and Synthetic Biosystem, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Sana Ikram
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Nousheen Bibi
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan.,National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Asif Mir
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
17
|
Abstract
Transcription-coupled DNA repair (TCR) acts on lesions in the transcribed strand of active genes. Helix distorting adducts and other forms of DNA damage often interfere with the progression of the transcription apparatus. Prolonged stalling of RNA polymerase can promote genome instability and also induce cell cycle arrest and apoptosis. These generally unfavorable events are counteracted by RNA polymerase-mediated recruitment of specific proteins to the sites of DNA damage to perform TCR and eventually restore transcription. In this perspective we discuss the decision-making process to employ TCR and we elucidate the intricate biochemical pathways leading to TCR in E. coli and human cells.
Collapse
Affiliation(s)
- Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Ioannidou A, Goulielmaki E, Garinis GA. DNA Damage: From Chronic Inflammation to Age-Related Deterioration. Front Genet 2016; 7:187. [PMID: 27826317 PMCID: PMC5078321 DOI: 10.3389/fgene.2016.00187] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
To lessen the "wear and tear" of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression.
Collapse
Affiliation(s)
- Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Biology, University of CreteHeraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Biology, University of CreteHeraklion, Greece
| |
Collapse
|
19
|
Hamilton R, Walsh M, Singh R, Rodriguez K, Gao X, Rahman MM, Chaudhuri A, Bhattacharya A. Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J Neurol Sci 2016; 370:47-52. [PMID: 27772785 DOI: 10.1016/j.jns.2016.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Aging is associated with a decline in peripheral nerve function of both motor and sensory nerves. The decline in function of peripheral sensorimotor nerves with aging has been linked to sarcopenia, the age-related decline in muscle mass and function that significantly compromises the quality of life in older humans. In this study, we report a significant increase in oxidized fatty acids and insoluble protein carbonyls in sciatic nerves of aged C57BL/6 male mice (28-30mo) that exhibit a profound decline in motor nerve function and degenerative changes in both axon and myelin structure, compared to young mice (6-8mo). Our data further suggests that this age-related loss of function of peripheral motor nerves is likely precipitated by changes in mechanisms that protect and/or repair oxidative damage. We predict that interventions that target these mechanisms may protect against age-related decline in peripheral sensorimotor nerve function and likely improve the debilitating outcome of sarcopenia in older humans.
Collapse
Affiliation(s)
- Ryan Hamilton
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Michael Walsh
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Rashmi Singh
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Karl Rodriguez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Md Mizanur Rahman
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Asish Chaudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Arunabh Bhattacharya
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
| |
Collapse
|
20
|
Li Y, Hassinger L, Thomson T, Ding B, Ashley J, Hassinger W, Budnik V. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding. Curr Biol 2016; 26:2052-2059. [PMID: 27451905 DOI: 10.1016/j.cub.2016.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022]
Abstract
Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging.
Collapse
Affiliation(s)
- Yihang Li
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Linda Hassinger
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Baojin Ding
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - James Ashley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - William Hassinger
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
21
|
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 2016; 161:37-50. [PMID: 27235538 DOI: 10.1016/j.mad.2016.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
22
|
Abstract
Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data.
Collapse
Affiliation(s)
- L Harkema
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S A Youssef
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Vermeij WP, Hoeijmakers JHJ, Pothof J. Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options. Annu Rev Pharmacol Toxicol 2015; 56:427-45. [PMID: 26514200 DOI: 10.1146/annurev-pharmtox-010814-124316] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology.
Collapse
Affiliation(s)
- Wilbert P Vermeij
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| | - Jan H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| | - Joris Pothof
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| |
Collapse
|
24
|
Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 2015; 569:153-61. [PMID: 26074087 DOI: 10.1016/j.gene.2015.06.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/01/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1-XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1-XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5' to 3' away from a junction. ERCC1-XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1-XPF complex cleaves the 3' tails of DNA intermediates in preparation for further processing. ERCC1-XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1-XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome.
Collapse
Affiliation(s)
- Mandira Manandhar
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Karen S Boulware
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Biasibetti E, Bisanzio D, Mioletti S, Amedeo S, Iuliano A, Bianco P, Capucchio MT. Spontaneous Age-related Changes of Peripheral Nerves in Cattle: Morphological and Biochemical Studies. Anat Histol Embryol 2015; 45:100-8. [PMID: 25823666 DOI: 10.1111/ahe.12177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022]
Abstract
Peripheral nerve function is significantly affected by ageing. During ageing process, multiple changes occur on tissue cells and extracellular matrix. The aim of this work was to study the ageing-associated changes of peripheral nerves in adult and old regularly slaughtered cattle compared with young calves, and correlate them to the features reported in humans and laboratory animals. Samples of axial dorsal metacarpal nerves from 44 cows were collected immediately after slaughtering. Each nerve was dissected and divided into two fragments: one used for morphological evaluation (n = 43) and the other one for biochemical analysis (n = 31). Axonal degeneration, demyelination, thickness of perineurium and endoneurium and increase of mast cells were the most important features detected. The mean amount of glycosaminoglycan quantitative content recorded in the samples increased with the age. Axonal degeneration, demyelination and thickness of endoneurium were positively and significantly correlated with biochemistry. The presence of changes affecting the different elements of the peripheral nerves, similar to that reported in humans and in laboratory species, the easy availability of the nerve tissue in this species, the considerable size of the samples and the life conditions more similar to humans than to laboratory animals, allows the authors to consider cattle as a potential good model for the comparative study of spontaneous ageing nerve lesions.
Collapse
Affiliation(s)
- E Biasibetti
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - D Bisanzio
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA
| | - S Mioletti
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - S Amedeo
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - A Iuliano
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - P Bianco
- ASLTo4, via Po 11, 10034, Chivasso, Torino, Italy
| | - M T Capucchio
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| |
Collapse
|
26
|
Shahidi Bonjar MR, Shahidi Bonjar L. Antiaging therapy: a prospective hypothesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:663-7. [PMID: 25670884 PMCID: PMC4315563 DOI: 10.2147/dddt.s71216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This hypothesis proposes a new prospective approach to slow the aging process in older humans. The hypothesis could lead to developing new treatments for age-related illnesses and help humans to live longer. This hypothesis has no previous documentation in scientific media and has no protocol. Scientists have presented evidence that systemic aging is influenced by peculiar molecules in the blood. Researchers at Albert Einstein College of Medicine, New York, and Harvard University in Cambridge discovered elevated titer of aging-related molecules (ARMs) in blood, which trigger cascade of aging process in mice; they also indicated that the process can be reduced or even reversed. By inhibiting the production of ARMs, they could reduce age-related cognitive and physical declines. The present hypothesis offers a new approach to translate these findings into medical treatment: extracorporeal adjustment of ARMs would lead to slower rates of aging. A prospective “antiaging blood filtration column” (AABFC) is a nanotechnological device that would fulfill the central role in this approach. An AABFC would set a near-youth homeostatic titer of ARMs in the blood. In this regard, the AABFC immobilizes ARMs from the blood while blood passes through the column. The AABFC harbors antibodies against ARMs. ARM antibodies would be conjugated irreversibly to ARMs on contact surfaces of the reaction platforms inside the AABFC till near-youth homeostasis is attained. The treatment is performed with the aid of a blood-circulating pump. Similar to a renal dialysis machine, blood would circulate from the body to the AABFC and from there back to the body in a closed circuit until ARMs were sufficiently depleted from the blood. The optimal application criteria, such as human age for implementation, frequency of treatments, dosage, ideal homeostasis, and similar concerns, should be revealed by appropriate investigations. If AABFC technology undergoes practical evaluations and gains approval, it would hold future promises such as: 1) prolonged lifespans; 2) slowed age-related illnesses such as low bone mass, weak muscular systems, diabetes, arthritis, Alzheimer’s disease, and impaired memory in the elderly; 3) reduced health expenses; 4) reduced cosmetic surgeries performed on the elderly; 5) healthier astronauts in extended outer space journeys; 6) reduced financial burden of advanced care for the elderly imposed upon both government and society; and 7) rejuvenating effects in healthy, non-aged individuals.
Collapse
Affiliation(s)
| | - Leyla Shahidi Bonjar
- Department of Pharmacology, College of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Gurkar AU, Niedernhofer LJ. Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 2015; 68:43-50. [PMID: 25617508 DOI: 10.1016/j.exger.2015.01.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age are lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities among the strains may lead to the identification of fundamental pathways of aging.
Collapse
Affiliation(s)
- Aditi U Gurkar
- Department of Metabolism and Aging, Scripps Florida, 130 Scripps Way #3B3, Jupiter, FL 33458, USA
| | - Laura J Niedernhofer
- Department of Metabolism and Aging, Scripps Florida, 130 Scripps Way #3B3, Jupiter, FL 33458, USA.
| |
Collapse
|
28
|
Reichert C, Gölz L, Götz W, Wolf M, Deschner J, Jäger A. Dental and craniofacial characteristics in a patient with Hutchinson-Gilford progeria syndrome. J Orofac Orthop 2014; 75:251-63. [PMID: 25001855 DOI: 10.1007/s00056-014-0216-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/31/2013] [Indexed: 11/28/2022]
Abstract
The Hutchinson-Gilford progeria syndrome (HGPS) is an exceptionally rare medical disorder caused by mutations in the lamin A/C gene. Affected patients display typical features of premature aging. Beside general medical disorders, these patients have several specific features related to the craniofacial phenotype and the oral cavity. In this article, the dental and craniofacial characteristics of a 9-year-old girl with HGPS are presented. It is the first report addressing orthodontic tooth movement and microbiological features in a HGPS patient. We describe and discuss pathologic findings and provide a detailed histology of the teeth which had to be extracted during initial treatment.
Collapse
Affiliation(s)
- Christoph Reichert
- Department of Orthodontics, Dental Hospital, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany,
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The discovery of DNA repair defects in human syndromes, initially in xeroderma pigmentosum (XP) but later in many others, led to striking observations on the association of molecular defects and patients' clinical phenotypes. For example, patients with syndromes resulting from defective nucleotide excision repair (NER) or translesion synthesis (TLS) present high levels of skin cancer in areas exposed to sunlight. However, some defects in NER also lead to more severe symptoms, such as developmental and neurological impairment and signs of premature aging. Skin cancer in XP patients is clearly associated with increased mutagenesis and genomic instability, reflecting the defective repair of DNA lesions. By analogy, more severe symptoms observed in NER-defective patients have also been associated with defective repair, likely involving cell death after transcription blockage of damaged templates. Endogenously induced DNA lesions, particularly through oxidative stress, have been identified as responsible for these severe pathologies. However, this association is not that clear and alternative explanations have been proposed. Despite high levels of exposure to intense sunlight, patients from tropical countries receive little attention or care, which likely also reflects the lack of understanding of how DNA damage causes cancer and premature aging.
Collapse
Affiliation(s)
- Carlos FM Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP,
Brazil
| | - Veridiana Munford
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP,
Brazil
| |
Collapse
|
30
|
Roh DS, Du Y, Gabriele ML, Robinson AR, Niedernhofer LJ, Funderburgh JL. Age-related dystrophic changes in corneal endothelium from DNA repair-deficient mice. Aging Cell 2013; 12:1122-31. [PMID: 23927039 DOI: 10.1111/acel.12143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium (CE) is a single layer of cells lining the posterior face of the cornea providing metabolic functions essential for maintenance of corneal transparency. Adult CE cells lack regenerative potential, and the number of CE cells decreases throughout life. To determine whether endogenous DNA damage contributes to the age-related spontaneous loss of CE, we characterized CE in Ercc1(-/Δ) mice, which have impaired capacity to repair DNA damage and age prematurely. Eyes from 4.5- to 6-month-old Ercc1(-/Δ) mice, age-matched wild-type (WT) littermates, and old WT mice (24- to 34-month-old) were compared by spectral domain optical coherence tomography and corneal confocal microscopy. Histopathological changes in CE were further identified in paraffin tissue sections, whole-mount immunostaining, and scanning electron and transmission electron microscopy. The CE of old WT mice displayed polymorphism and polymegathism, polyploidy, decreased cell density, increased cell size, increases in Descemet's thickness, and the presence of posterior projections originating from the CE toward the anterior chamber, similar to changes documented for aging human corneas. Similar changes were observed in young adult Ercc1(-/Δ) mice CE, demonstrating spontaneous premature aging of the CE of these DNA repair-deficient mice. CD45(+) immune cells were associated with the posterior surface of CE from Ercc1(-/Δ) mice and the tissue expressed increased IL-1α, Cxcl2, and TNFα, pro-inflammatory proteins associated with senescence-associated secretory phenotype. These data provide strong experimental evidence that DNA damage can promote aging of the CE and that Ercc1(-/Δ) mice offer a rapid and accurate model to study CE pathogenesis and therapy.
Collapse
Affiliation(s)
- Danny S. Roh
- Department of Ophthalmology; University of Pittsburgh School of Medicine; 203 Lothrop St. Pittsburgh PA 15213 USA
| | - Yiqin Du
- Department of Ophthalmology; University of Pittsburgh School of Medicine; 203 Lothrop St. Pittsburgh PA 15213 USA
| | - Michelle L. Gabriele
- Department of Ophthalmology; University of Pittsburgh School of Medicine; 203 Lothrop St. Pittsburgh PA 15213 USA
| | - Andria R. Robinson
- Department of Human Genetics; University of Pittsburgh School of Public Health; 130 DeSoto Street Pittsburgh PA 15261 USA
- University of Pittsburgh Cancer Institute; Hillman Cancer Center; 5117 Centre Ave, 2.6 Pittsburgh PA 15213 USA
| | - Laura J. Niedernhofer
- University of Pittsburgh Cancer Institute; Hillman Cancer Center; 5117 Centre Ave, 2.6 Pittsburgh PA 15213 USA
- Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II 450 Technology Drive Pittsburgh PA 15219 USA
| | - James L. Funderburgh
- Department of Ophthalmology; University of Pittsburgh School of Medicine; 203 Lothrop St. Pittsburgh PA 15213 USA
| |
Collapse
|
31
|
Nidadavolu LS, Niedernhofer LJ, Khan SA. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress. Aging (Albany NY) 2013; 5:460-73. [PMID: 23852002 PMCID: PMC3824412 DOI: 10.18632/aging.100571] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
XFE progeroid syndrome, a disease of accelerated aging caused by deficiency in the DNA repair endonuclease XPF-ERCC1, is modeled by Ercc1 knockout and hypomorphic mice. Tissues and primary cells from these mice senesce prematurely, offering a unique opportunity to identify factors that regulate senescence and aging. We compared microRNA (miRNA) expression in Ercc1−/− primary mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs in different growth conditions to identify miRNAs that drive cellular senescence. Microarray analysis showed three differentially expressed miRNAs in passage 7 (P7) Ercc1−/− MEFs grown at 20% O2 compared to Ercc1−/− MEFs grown at 3% O2. Thirty-six differentially expressed miRNAs were identified in Ercc1−/− MEFs at P7 compared to early passage (P3) in 3% O2. Eight of these miRNAs (miR-449a, miR-455*, miR-128, miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b) were similarly downregulated in the liver of progeroid Ercc1−/Δ and old WT mice compared to adult WT mice, a tissue that senesces with aging. Three miRNAs (miR-449a, miR-455* and miR-128) were also downregulated in Ercc1−/Δ and WT old mice kidneys compared to young WT mice. We also discovered that the miRNA expression regulator Dicer is significantly downregulated in tissues of old mice and late passage cells compared to young controls. Collectively these results support the conclusion that the miRNAs identified may play an important role in staving off cellular senescence and their altered expression could be indicative of aging.
Collapse
Affiliation(s)
- Lolita S Nidadavolu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
32
|
Englander EW. DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions. DNA Repair (Amst) 2013; 12:685-90. [PMID: 23684797 DOI: 10.1016/j.dnarep.2013.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the absence of blood brain barrier (BBB) the DNA of peripheral nervous system (PNS) neurons is exposed to a broader spectrum of endogenous and exogenous threats compared to that of the central nervous system (CNS). Hence, while CNS and PNS neurons cope with many similar challenges inherent to their high oxygen consumption and vigorous metabolism, PNS neurons are also exposed to circulating toxins and inflammatory mediators due to relative permeability of PNS blood nerve barrier (BNB). Consequently, genomes of PNS neurons incur greater damage and the question awaiting investigation is whether specialized repair mechanisms for maintenance of DNA integrity have evolved to meet the additional needs of PNS neurons. Here, I review data showing how PNS neurons manage collateral DNA damage incurred in the course of different anti-cancer treatments designed to block DNA replication in proliferating tumor cells. Importantly, while PNS neurotoxicity and concomitant chemotherapy-induced peripheral neuropathy (CIPN) are among major dose limiting barriers in achieving therapy goals, CIPN is partially reversible during post-treatment nerve recovery. Clearly, cell recovery necessitates mobilization of the DNA damage response and underscores the need for systematic investigation of the scope of DNA repair capacities in the PNS to help predict post-treatment risks to recovering neurons.
Collapse
Affiliation(s)
- Ella W Englander
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
33
|
Cárdenes N, Cáceres E, Romagnoli M, Rojas M. Mesenchymal stem cells: a promising therapy for the acute respiratory distress syndrome. Respiration 2013; 85:267-78. [PMID: 23428562 DOI: 10.1159/000347072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a pulmonary syndrome with growing prevalence and high mortality and morbidity that increase with age. There is no current therapy able to restore pulmonary function in ARDS patients. Preclinical models of ARDS have demonstrated that intratracheal or systemic administration of mesenchymal stem cells (MSCs) protects the lung against injury. The mechanisms responsible for the protective effects are multiple, including the secretion of multiple paracrine factors capable of modulating the immune response and restoring epithelial and endothelial integrity. Recent studies have demonstrated that MSCs can also control oxidative stress, transfer functional mitochondria to the damaged cells, and control bacterial infection by secretion of antibacterial peptides. These characteristics make MSCs promising candidates for ARDS therapy.
Collapse
Affiliation(s)
- Nayra Cárdenes
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
34
|
Zhong Y, Hu Y, Peng W, Sun Y, Yang Y, Zhao X, Huang X, Zhang H, Kong W. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion. Hear Res 2012; 294:40-8. [DOI: 10.1016/j.heares.2012.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/15/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023]
|
35
|
Wang J, Cao H, You C, Yuan B, Bahde R, Gupta S, Nishigori C, Niedernhofer LJ, Brooks PJ, Wang Y. Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion. Nucleic Acids Res 2012; 40:7368-74. [PMID: 22581771 PMCID: PMC3424544 DOI: 10.1093/nar/gks357] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/10/2012] [Accepted: 03/29/2012] [Indexed: 12/19/2022] Open
Abstract
Exposure to reactive oxygen species (ROS) can give rise to the formation of various DNA damage products. Among them, d(G[8-5 m]T) can be induced in isolated DNA treated with Fenton reagents and in cultured human cells exposed to γ-rays, d(G[8-5m]T) can be recognized and incised by purified Escherichia coli UvrABC nuclease. However, it remains unexplored whether d(G[8-5 m]T) accumulates in mammalian tissues and whether it is a substrate for nucleotide excision repair (NER) in vivo. Here, we found that d(G[8-5 m]T) could be detected in DNA isolated from tissues of healthy humans and animals, and elevated endogenous ROS generation enhanced the accumulation of this lesion in tissues of a rat model of Wilson's disease. Additionally, XPA-deficient human brain and mouse liver as well as various types of tissues of ERCC1-deficient mice contained higher levels of d(G[8-5 m]T) but not ROS-induced single-nucleobase lesions than the corresponding normal controls. Together, our studies established that d(G[8-5 m]T) can be induced endogenously in mammalian tissues and constitutes a substrate for NER in vivo.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Huachuan Cao
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Changjun You
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Ralf Bahde
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Sanjeev Gupta
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Chikako Nishigori
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Laura J. Niedernhofer
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Philip J. Brooks
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| |
Collapse
|
36
|
Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD. NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 2012; 122:2601-12. [PMID: 22706308 DOI: 10.1172/jci45785] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/10/2012] [Indexed: 12/21/2022] Open
Abstract
The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB-activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging.
Collapse
Affiliation(s)
- Jeremy S Tilstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vallejo AN. Is Immune Aging a Cause of Disease among the Elderly, or is it a Passive Indicator of General Decline of Physiologic Function? Aging Dis 2011; 2:444-8. [PMID: 22396893 PMCID: PMC3295059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023] Open
Affiliation(s)
- Abbe N. Vallejo
- Departments of Pediatrics and Immunology, University of Pittsburgh School of Medicine, the UPMC Children’s Hospital of Pittsburgh, the University of Pittsburgh Cancer Institute, the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|