1
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Capri M, Fronterrè S, Collura S, Giampieri E, Carrino S, Feroldi FM, Ciurca E, Conte M, Olivieri F, Ullo I, Pini R, Vacirca A, Astolfi A, Vasuri F, La Manna G, Pasquinelli G, Gargiulo M. Circulating CXCL9, monocyte percentage, albumin, and C-reactive protein as a potential, non-invasive, molecular signature of carotid artery disease in 65+ patients with multimorbidity: a pilot study in Age.It. Front Endocrinol (Lausanne) 2024; 15:1407396. [PMID: 39109084 PMCID: PMC11300199 DOI: 10.3389/fendo.2024.1407396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 09/17/2024] Open
Abstract
Background Carotid endarterectomy (CEA) for the prevention of upcoming vascular and cerebral events is necessary in patients with high-grade stenosis (≥70%). In the framework of the Italian National project Age.It, a pilot study was proposed aiming at the discovery of a molecular signature with predictive potential of carotid stenosis comparing 65+ asymptomatic and symptomatic inpatients. Methods A total of 42 inpatients have been enrolled, including 26 men and 16 women, with a mean age of 74 ± 6 years. Sixteen symptomatic and 26 asymptomatic inpatients with ≥70% carotid stenosis underwent CEA, according to the recommendations of the European Society for Vascular Surgery and the Society for Vascular Surgeons. Plaque biopsies and peripheral blood samples from the same individuals were obtained. Hematobiochemical analyses were conducted on all inpatients, and plasma cytokines/molecules, such as microRNAs (miRs), IL-6, sIL-6Ralpha, sgp130, myostatin (GDF8), follistatin, activin A, CXCL9, FGF21, and fibronectin, were measured using the ELISA standard technique. MiR profiles were obtained in the discovery phase including four symptomatic and four asymptomatic inpatients (both plasma and plaque samples), testing 734 miRs. MiRs emerging from the profiling comparison were validated through RT-qPCR analysis in the total cohort. Results and conclusion The two groups of inpatients differ in the expression levels of blood c-miRs-126-5p and -1271-5p (but not in their plaques), which are more expressed in symptomatic subjects. Three cytokines were significant between the two groups: IL-6, GDF8, and CXCL9. Using receiver operating characteristic (ROC) analysis with a machine learning-based approach, the most significant blood molecular signature encompasses albumin, C-reactive protein (CRP), the percentage of monocytes, and CXCL9, allowing for the distinction of the two groups (AUC = 0.83, 95% c.i. [0.85, 0.81], p = 0.0028). The potential of the molecular signature will be tested in a second cohort of monitored patients, allowing the application of a predictive model and the final evaluation of cost/benefit for an assessable screening test.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Interdepartmental Centre - Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Sara Fronterrè
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Salvatore Collura
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sara Carrino
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Erika Ciurca
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Interdepartmental Centre - Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Ines Ullo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rodolfo Pini
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Vacirca
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Gargiulo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Vascular Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Prattichizzo F, Frigé C, Pellegrini V, Scisciola L, Santoro A, Monti D, Rippo MR, Ivanchenko M, Olivieri F, Franceschi C. Organ-specific biological clocks: Ageotyping for personalized anti-aging medicine. Ageing Res Rev 2024; 96:102253. [PMID: 38447609 DOI: 10.1016/j.arr.2024.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Aging is a complex multidimensional, progressive remodeling process affecting multiple organ systems. While many studies have focused on studying aging across multiple organs, assessment of the contribution of individual organs to overall aging processes is a cutting-edge issue. An organ's biological age might influence the aging of other organs, revealing a multiorgan aging network. Recent data demonstrated a similar yet asynchronous inter-organs and inter-individuals progression of aging, thereby providing a foundation to track sources of declining health in old age. The integration of multiple omics with common clinical parameters through artificial intelligence has allowed the building of organ-specific aging clocks, which can predict the development of specific age-related diseases at high resolution. The peculiar individual aging-trajectory, referred to as ageotype, might provide a novel tool for a personalized anti-aging, preventive medicine. Here, we review data relative to biological aging clocks and omics-based data, suggesting different organ-specific aging rates. Additional research on longitudinal data, including young subjects and analyzing sex-related differences, should be encouraged to apply ageotyping analysis for preventive purposes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical, Biomedical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| |
Collapse
|
4
|
Wang X, Jiang Q, Zhang H, He Z, Song Y, Chen Y, Tang N, Zhou Y, Li Y, Antebi A, Wu L, Han JDJ, Shen Y. Tissue-specific profiling of age-dependent miRNAomic changes in Caenorhabditis elegans. Nat Commun 2024; 15:955. [PMID: 38302463 PMCID: PMC10834975 DOI: 10.1038/s41467-024-45249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Ageing exhibits common and distinct features in various tissues, making it critical to decipher the tissue-specific ageing mechanisms. MiRNAs are essential regulators in ageing and are recently highlighted as a class of intercellular messengers. However, little is known about the tissue-specific transcriptomic changes of miRNAs during ageing. C. elegans is a well-established model organism in ageing research. Here, we profile the age-dependent miRNAomic changes in five isolated worm tissues. Besides the diverse ageing-regulated miRNA expression across tissues, we discover numerous miRNAs in the tissues without their transcription. We further profile miRNAs in the extracellular vesicles and find that worm miRNAs undergo inter-tissue trafficking via these vesicles in an age-dependent manner. Using these datasets, we uncover the interaction between body wall muscle-derived mir-1 and DAF-16/FOXO in the intestine, suggesting mir-1 as a messenger in inter-tissue signalling. Taken together, we systematically investigate worm miRNAs in the somatic tissues and extracellular vesicles during ageing, providing a valuable resource to study tissue-autonomous and nonautonomous functions of miRNAs in ageing.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Quanlong Jiang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, 102213, Beijing, China
| | - Hongdao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhidong He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanyuan Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, D-50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | - Ligang Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, 102213, Beijing, China.
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
6
|
Meseguer-Donlo J, Soldado-Folgado J, Du J, González-Mena A, Blasco-Hernando F, Cañas-Ruano E, Nogués X, Knobel H, Garcia-Giralt N, Güerri-Fernández R. HIV infection is associated with upregulated circulating levels of the inflammaging miR-21-5p. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:931-938. [PMID: 37562995 DOI: 10.1016/j.jmii.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND HIV infection produces a chronic inflammation which leads to early aging of people living with HIV. Even though antiretroviral treatments (ART) have significantly increased HIV patient survival, an underlying chronic inflammation persists leading to HIV-related comorbidities. In this context, changes in microRNAs (miRNAs) expression may contribute to this inflammatory response. This study aims to detect differential expression of circulating miRNAs in treatment-naïve HIV-infected individuals compared to uninfected controls and evaluation of altered miRNAs after one year of ART. METHODS Serum from patients and controls was collected at baseline and after 48-weeks on ART in HIV-treated patients. Circulating miRNAs were analysed using next generation sequencing. RESULTS A total of 32 HIV patients and 10 controls were recruited. Of HIV+ individuals, 7 were long-term non-progressors (elite controllers), a group of HIV-infected individuals that spontaneously control the infection. Higher circulating levels of miR-21-5p, and lower levels of miR-6503-3p and miR-3135b were detected in HIV+ progressors. After one year of ART, these miRNAs remain altered. Moreover, miR-21-5p and miR-6503-3p were also altered in elite controllers compared to control group. In silico analyses showed that miR-21-5p target pathways are related to inflammation mechanisms and immune system. CONCLUSION miR-21-5p circulating levels are involved in inflammation and oxidative stress mechanisms in HIV patients even after one year of ART or in elite controllers.
Collapse
Affiliation(s)
- Javier Meseguer-Donlo
- Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jade Soldado-Folgado
- Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Internal Medicine, Hospital del Mar, Barcelona, Spain
| | - Juan Du
- IMIM (Hospital del Mar Research Institute), Parc de Salut Mar, Department of Infectious Diseases, Barcelona, Spain
| | - Alicia González-Mena
- IMIM (Hospital del Mar Research Institute), Parc de Salut Mar, Department of Infectious Diseases, Barcelona, Spain
| | - Fabiola Blasco-Hernando
- IMIM (Hospital del Mar Research Institute), Parc de Salut Mar, Department of Infectious Diseases, Barcelona, Spain
| | - Esperanza Cañas-Ruano
- IMIM (Hospital del Mar Research Institute), Parc de Salut Mar, Department of Infectious Diseases, Barcelona, Spain
| | - Xavier Nogués
- Department of Internal Medicine, Hospital del Mar, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Hernando Knobel
- IMIM (Hospital del Mar Research Institute), Parc de Salut Mar, Department of Infectious Diseases, Barcelona, Spain
| | - Natalia Garcia-Giralt
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain.
| | - Robert Güerri-Fernández
- Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), Parc de Salut Mar, Department of Infectious Diseases, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas, CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Mortoglou M, Miralles F, Mould RR, Sengupta D, Uysal-Onganer P. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur J Cell Biol 2023; 102:151318. [PMID: 37105116 DOI: 10.1016/j.ejcb.2023.151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5-10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Francesc Miralles
- Centre of Biomedical Education/Molecular and Clinical Sciences, Cell Biology Research Centre, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Dipankar Sengupta
- Health Data Sciences Research Group, Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK.
| |
Collapse
|
9
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
10
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
11
|
A Data-Mining Approach to Identify NF-kB-Responsive microRNAs in Tissues Involved in Inflammatory Processes: Potential Relevance in Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24065123. [PMID: 36982191 PMCID: PMC10049099 DOI: 10.3390/ijms24065123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB’s role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region’s propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of “high-confidence” hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.
Collapse
|
12
|
Qiu L, Sheng P, Wang X. Identification of Metabolic Syndrome-Related miRNA-mRNA Regulatory Networks and Key Genes Based on Bioinformatics Analysis. Biochem Genet 2023; 61:428-447. [PMID: 35877019 DOI: 10.1007/s10528-022-10257-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Metabolic syndrome, which affects approximately one-quarter of the world's population, is a combination of multiple traits and is associated with high all-cause mortality, increased cancer risk, and other hazards. It has been shown that the epigenetic functions of miRNAs are closely related to metabolic syndrome, but epigenetic studies have not yet fully elucidated the regulatory network and key genes associated with metabolic syndrome. To perform data analysis and screening of potential differentially expressed target miRNAs, mRNAs and genes based on a bioinformatics approach using a metabolic syndrome mRNA and miRNA gene microarray, leading to further analysis and identification of metabolic syndrome-related miRNA-mRNA regulatory networks and key genes. The miRNA gene set (GSE98896) and mRNA gene set (GSE98895) of peripheral blood samples from patients with metabolic syndrome from the GEO database were screened, and set|logFC|> 1 and adjusted P < 0.05 were used to identify the differentially expressed miRNAs and mRNAs. Differentially expressed miRNA transcription factors were predicted using FunRich software and subjected to GO and KEGG enrichment analysis. Next, biological process enrichment analysis of differentially expressed mRNAs was performed with Metascape. Differentially expressed miRNAs and mRNAs were identified and visualized as miRNA-mRNA regulatory networks based on the complementary pairing principle. Data analysis of genome-wide metabolic syndrome-related mRNAs was performed using the gene set enrichment analysis (GSEA) database. Finally, further WGCNA of the set of genes most closely associated with metabolic syndrome was performed to validate the findings. A total of 217 differentially expressed mRNAs and 158 differentially expressed miRNAs were identified by screening the metabolic syndrome miRNA and mRNA gene sets, and these molecules mainly included transcription factors, such as SP1, SP4, and EGR1, that function in the IL-17 signalling pathway; cytokine-cytokine receptor interaction; proteoglycan syndecan-mediated signalling events; and the glypican pathway, which is involved in the inflammatory response and glucose and lipid metabolism. miR-34C-5P, which was identified by constructing a miRNA-mRNA regulatory network, could regulate DPYSL4 expression to influence insulin β-cells, the inflammatory response and glucose oxidative catabolism. Based on GSEA, metabolic syndrome is known to be closely related to oxidative phosphorylation, DNA repair, neuronal damage, and glycolysis. Finally, RStudio and DAVID were used to perform WGCNA of the gene sets most closely associated with metabolic syndrome, and the results further validated the conclusions. Metabolic syndrome is a common metabolic disease worldwide, and its mechanism of action is closely related to the inflammatory response, glycolipid metabolism, and impaired mitochondrial function. miR-34C-5P can regulate DPYSL4 expression and can be a potential research target. In addition, UQCRQ and NDUFA8 are core genes of oxidative phosphorylation and have also been identified as potential targets for the future treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lingyan Qiu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Pei Sheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China. .,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
13
|
Liu Y, Zhang Z, Li T, Xu H, Zhang H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther 2022; 24:174. [PMID: 35869508 PMCID: PMC9306208 DOI: 10.1186/s13075-022-02859-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage degenerative disease, and chondrocyte senescence has been extensively studied in recent years. Increased numbers of senescent chondrocytes are found in OA cartilage. Selective clearance of senescent chondrocytes in a post-traumatic osteoarthritis (PTOA) mouse model ameliorated OA development, while intraarticular injection of senescent cells induced mouse OA. However, the means and extent to which senescence affects OA remain unclear. Here, we review the latent mechanism of senescence in OA and propose potential therapeutic methods to target OA-related senescence, with an emphasis on immunotherapies. Natural killer (NK) cells participate in the elimination of senescent cells in multiple organs. A relatively comprehensive discussion is presented in that section. Risk factors for OA are ageing, obesity, metabolic disorders and mechanical overload. Determining the relationship between known risk factors and senescence will help elucidate OA pathogenesis and identify optimal treatments.
Collapse
|
14
|
Iannone F, Crocco P, Dato S, Passarino G, Rose G. Circulating miR-181a as a novel potential plasma biomarker for multimorbidity burden in the older population. BMC Geriatr 2022; 22:772. [PMID: 36175844 PMCID: PMC9520903 DOI: 10.1186/s12877-022-03451-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Chronic low-level inflammation is thought to play a role in many age-related diseases and to contribute to multimorbidity and to the disability related to this condition. In this framework, inflamma-miRs, an important subset of miRNA able to regulate inflammation molecules, appear to be key players. This study aimed to evaluate plasma levels of the inflamma-miR-181a in relation to age, parameters of health status (clinical, physical, and cognitive) and indices of multimorbidity in a cohort of 244 subjects aged 65- 97. Methods MiR-181a was isolated from plasma according to standardized procedures and its expression levels measured by qPCR. Correlation tests and multivariate regression analyses were applied on gender-stratified groups. Results MiR-181a levels resulted increased in old men, and significantly correlated with worsened blood parameters of inflammation (such as low levels of albumin and bilirubin and high lymphocyte content), particularly in females. Furthermore, we found miR-181a positively correlated with the overall multimorbidity burden, measured by CIRS Comorbidity Score, in both genders. Conclusions These data support a role of miR-181a in age-related chronic inflammation and in the development of multimorbidity in older adults and indicate that the routes by which this miRNA influence health status are likely to be gender specific. Based on our results, we suggest that miR-181a is a promising biomarker of health status of the older population. Levels of the inflamma-miR-181a correlate with multimorbidity burden in older people. MiR-181a levels correlate with blood inflammation markers in a gender-specific manner. MiR-181a is positively correlated with age in males but not in females. The paths by which miR-181a can influence health status likely differ between genders.
Collapse
Affiliation(s)
- Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy.
| |
Collapse
|
15
|
Epigenome Modulation Induced by Ketogenic Diets. Nutrients 2022; 14:nu14153245. [PMID: 35956421 PMCID: PMC9370515 DOI: 10.3390/nu14153245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ketogenic diets (KD) are dietary strategies low in carbohydrates, normal in protein, and high, normal, or reduced in fat with or without (Very Low-Calories Ketogenic Diet, VLCKD) a reduced caloric intake. KDs have been shown to be useful in the treatment of obesity, metabolic diseases and related disorders, neurological diseases, and various pathological conditions such as cancer, nonalcoholic liver disease, and chronic pain. Several studies have investigated the intracellular metabolic pathways that contribute to the beneficial effects of these diets. Although epigenetic changes are among the most important determinants of an organism’s ability to adapt to environmental changes, data on the epigenetic changes associated with these dietary pathways are still limited. This review provides an overview of the major epigenetic changes associated with KDs.
Collapse
|
16
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
17
|
Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
|
18
|
miR-126-3p and miR-21-5p as Hallmarks of Bio-Positive Ageing; Correlation Analysis and Machine Learning Prediction in Young to Ultra-Centenarian Sicilian Population. Cells 2022; 11:cells11091505. [PMID: 35563810 PMCID: PMC9099697 DOI: 10.3390/cells11091505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Human ageing can be characterized by a profile of circulating microRNAs (miRNAs), which are potentially predictors of biological age. They can be used as a biomarker of risk for age-related inflammatory outcomes, and senescent endothelial cells (ECs) have emerged as a possible source of circulating miRNAs. In this paper, a panel of four circulating miRNAs including miR-146a-5p, miR-126-3p, miR-21-5p, and miR-181a-5p, involved in several pathways related to inflammation, and ECs senescence that seem to be characteristic of the healthy ageing phenotype. The circulating levels of these miRNAs were determined in 78 healthy subjects aged between 22 to 111 years. Contextually, extracellular miR-146a-5p, miR-126-3p, miR-21-5p, and miR-181a-5p levels were measured in human ECs in vitro model, undergoing senescence. We found that the levels of the four miRNAs, using ex vivo and in vitro models, progressively increase with age, apart from ultra-centenarians that showed levels comparable to those measured in young individuals. Our results contribute to the development of knowledge regarding the identification of miRNAs as biomarkers of successful and unsuccessful ageing. Indeed, they might have diagnostic/prognostic relevance for age-related diseases.
Collapse
|
19
|
Francisco S, Martinho V, Ferreira M, Reis A, Moura G, Soares AR, Santos MAS. The Role of MicroRNAs in Proteostasis Decline and Protein Aggregation during Brain and Skeletal Muscle Aging. Int J Mol Sci 2022; 23:ijms23063232. [PMID: 35328652 PMCID: PMC8955204 DOI: 10.3390/ijms23063232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/14/2023] Open
Abstract
Aging can be defined as the progressive deterioration of cellular, tissue, and organismal function over time. Alterations in protein homeostasis, also known as proteostasis, are a hallmark of aging that lead to proteome imbalances and protein aggregation, phenomena that also occur in age-related diseases. Among the various proteostasis regulators, microRNAs (miRNAs) have been reported to play important roles in the post-transcriptional control of genes involved in maintaining proteostasis during the lifespan in several organismal tissues. In this review, we consolidate recently published reports that demonstrate how miRNAs regulate fundamental proteostasis-related processes relevant to tissue aging, with emphasis on the two most studied tissues, brain tissue and skeletal muscle. We also explore an emerging perspective on the role of miRNA regulatory networks in age-related protein aggregation, a known hallmark of aging and age-related diseases, to elucidate potential miRNA candidates for anti-aging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Stephany Francisco
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Vera Martinho
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Margarida Ferreira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Andreia Reis
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Gabriela Moura
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Ana Raquel Soares
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Correspondence: (A.R.S.); (M.A.S.S.)
| | - Manuel A. S. Santos
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370 Coimbra, Portugal
- Correspondence: (A.R.S.); (M.A.S.S.)
| |
Collapse
|
20
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11030480. [PMID: 35326131 PMCID: PMC8944605 DOI: 10.3390/antiox11030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life. On the other hand, senescence is gradually being considered as a major contributor of organismal aging and age-related diseases. Increased oxidative stress is one of the main risk factors for cellular damages, and thus a driver of senescence. In fact, there is an intimate link between cell senescence and response to different types of cellular stress. Oxidative stress occurs when the production of reactive oxygen species/reactive nitrogen species (ROS/RNS) is not adequately detoxified by the antioxidant defense systems. Non-coding RNAs are endogenous transcripts that govern gene regulatory networks, thus impacting both physiological and pathological events. Among these molecules, microRNAs, long non-coding RNAs, and more recently circular RNAs are considered crucial mediators of almost all cellular processes, including those implicated in oxidative stress responses. Here, we will describe recent data on the link between ROS/RNS-induced senescence and the current knowledge on the role of non-coding RNAs in the senescence program.
Collapse
|
21
|
miRNome Profiling Detects miR-101-3p and miR-142-5p as Putative Blood Biomarkers of Frailty Syndrome. Genes (Basel) 2022; 13:genes13020231. [PMID: 35205276 PMCID: PMC8872439 DOI: 10.3390/genes13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled 22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs. We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally, using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and cellular pathways regulated by the two miRNAs and potentially involved in frailty.
Collapse
|
22
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
23
|
Buchanan SR, Miller RM, Nguyen M, Black CD, Kellawan JM, Bemben MG, Bemben DA. Circulating microRNA responses to acute whole-body vibration and resistance exercise in postmenopausal women. Front Endocrinol (Lausanne) 2022; 13:1038371. [PMID: 36440217 PMCID: PMC9692005 DOI: 10.3389/fendo.2022.1038371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Evaluating alterations in circulating microRNA (c-miRNA) expression may provide deeper insight into the role of exercise in the attenuation of the negative effects of aging on musculoskeletal health. Currently, there are sparse data on c-miRNA responses to acute exercise in postmenopausal women. The purpose of this study was to characterize the effects of acute bouts of resistance exercise and whole-body vibration on expression of selected c-miRNAs in postmenopausal women aged 65-76 years (n=10). We also examined relationships between c-miRNAs and muscle strength and bone characteristics. This randomized crossover design study compared c-miRNA responses to a bout of resistance exercise (RE) (3 sets 10 reps 70% 1 repetition maximum (1RM), 5 exercises) and a bout of whole-body vibration (WBV) (5 sets 1 min bouts 20Hz 3.38mm peak to peak displacement, Vibraflex vibration platform). DXA was used to measure body composition and areal bone mineral density (aBMD) of the total body, AP lumbar spine, and dual proximal femur. pQCT was used to measure tibia bone characteristics (4%, 38%, 66% sites). Blood samples were collected before exercise (Pre), immediately-post (IP), 60 minutes post (60P), 24 hours (24H), and 48 hours (48H) after exercise to measure serum miR-21-5p, -23a-3p, -133a-3p, -148a-3p (qPCR) and TRAP5b (ELISA). There was a significant modality × time interaction for c-miR-21-5p expression (p=0.019), which decreased from 60P to 24H after WBV only. TRAP5b serum concentrations significantly increased IP then decreased below Pre at 24H for both WBV and RE (p<0.01). Absolute changes in TRAP5b were negatively correlated with c-miR-21-5p fold changes (r= -0.642 to -0.724, p<0.05) for both exercise modalities. There were significant negative correlations between baseline c-miRNAs and bone status variables (r= -0.639 to -0.877, p<0.05). Our findings suggest that whole-body vibration is a sufficient mechanical stimulus for altering c-miR-21-5p expression, whereas a high intensity resistance exercise protocol did not elicit any c-miRNA responses in postmenopausal women. Increases in the bone resorption marker, TRAP5b, were associated with greater downregulation of c-miR-21-5p expression.
Collapse
Affiliation(s)
- Samuel R. Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, United States
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- *Correspondence: Samuel R. Buchanan,
| | - Ryan M. Miller
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michelle Nguyen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Christopher D. Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - J. Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michael G. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Debra A. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
24
|
Carini G, Musazzi L, Bolzetta F, Cester A, Fiorentini C, Ieraci A, Maggi S, Popoli M, Veronese N, Barbon A. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci 2021; 13:763110. [PMID: 34867290 PMCID: PMC8632944 DOI: 10.3389/fnagi.2021.763110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.
Collapse
Affiliation(s)
- Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bolzetta
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Alberto Cester
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Nicola Veronese
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy.,Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Örsten S, Baysal İ, Yabanoglu-Ciftci S, Ciftci T, Ünal E, Akıncı D, Akyön Y, Akhan O. Can parasite-derived microRNAs differentiate active and inactive cystic echinococcosis patients? Parasitol Res 2021; 121:191-196. [PMID: 34811587 DOI: 10.1007/s00436-021-07382-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Cystic Echinococcosis (CE) is a neglected zoonotic disease caused by the metacestode form of Echinococcus granulosus sensu lato. Non-invasive imaging techniques, especially ultrasound, are primarily used for CE diagnosis. MicroRNAs (miRNAs) are small, non-coding RNA molecules that act as post-transcriptional regulators in various biological processes. After identification of parasite-derived miRNAs, these miRNAs are considered to be potential biomarkers for diagnosis and follow-up. The focus of this research is to compare the expression profiles of certain parasite-derived miRNAs in CE patients with active and inactive cysts as well as healthy controls. Parasite-derived miRNAs, egr-let-7-5p, egr-miR-71a-5p, and egr-miR-9-5p, of inactive CE patients were found to be differentially expressed with 3.74-, 2.72-, and 20.78-fold change (p < 0.05), respectively, when compared with active CE patients. In this study, we evaluated for the first time the expression profile of three parasite-derived miRNAs in the serum of CE patients to determine their potential to distinguish between active and inactive CE. It was concluded that serum levels of parasite-derived miRNAs, egr-let-7-5p and egr-miR-9-5p, could be promising new potential biomarkers for stage-specific diagnosis of CE. Further studies are needed with larger sample set to validate discriminating potential of these miRNAs.
Collapse
Affiliation(s)
- Serra Örsten
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey.
| | - İpek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Türkmen Ciftci
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Emre Ünal
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Devrim Akıncı
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yakut Akyön
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Okan Akhan
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
26
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
27
|
Kazemi S, Mirzaei R, Sholeh M, Karampoor S, Keramat F, Saidijam M, Alikhani MY. microRNAs in human brucellosis: A promising therapeutic approach and biomarker for diagnosis and treatment. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1209-1218. [PMID: 34449979 PMCID: PMC8589381 DOI: 10.1002/iid3.519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
Introduction Human brucellosis is a zoonotic bacterial disease with up to 500,000 new cases each year. The major evasion mechanisms from the host immune system by Brucella are restraint of complement pathway and Toll‐like receptors signaling pathways, interference with efficient antigen presentation to CD4‐positive T lymphocytes, selective subversion of autophagy pathways, inhibition of dendritic cell stimulation, inhibition of autophagolysosomal fusion, and macrophage apoptosis. Many molecular and cellular pathways contribute to brucellosis that microRNAs have a vital function in the immunopathogenesis of this disease. In this regard, these molecules apply for their roles by modulating various events like inflammatory reactions and immune defense. Recently, in the case of immunity to human brucellosis, it has been shown that microRNAs play an important role in immunity against these bacteria. Methods and Results In this study, we tried to review the immune defense and immunopathogenesis of Brucella infection and highlight the current knowledge of the microRNAs in infected cells by Brucella pathogens. The recent findings suggest that the regulation of microRNAs expression is impaired during brucellosis infection, which may contribute to disease progression or inhibition by modulating immune responses against this pathogen. Conclusions The interplay between miRNAs and Brucella pathogens and the underlying process required comprehensive examination to unravel the novel therapeutic or diagnostic approaches.
Collapse
Affiliation(s)
- Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
Abstract
The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.
Collapse
Affiliation(s)
- Maël Lemoine
- CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
29
|
Mayhew JA, Cummins MJ, Cresswell ET, Callister RJ, Smith DW, Graham BA. Age-related gene expression changes in lumbar spinal cord: Implications for neuropathic pain. Mol Pain 2021; 16:1744806920971914. [PMID: 33241748 DOI: 10.1177/1744806920971914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.
Collapse
Affiliation(s)
- Jack A Mayhew
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mitchell J Cummins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
30
|
Morsiani C, Terlecki‐Zaniewicz L, Skalicky S, Bacalini MG, Collura S, Conte M, Sevini F, Garagnani P, Salvioli S, Hackl M, Grillari J, Franceschi C, Capri M. Circulating miR-19a-3p and miR-19b-3p characterize the human aging process and their isomiRs associate with healthy status at extreme ages. Aging Cell 2021; 20:e13409. [PMID: 34160893 PMCID: PMC8282272 DOI: 10.1111/acel.13409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Blood circulating microRNAs (c-miRs) are potential biomarkers to trace aging and longevity trajectories to identify molecular targets for anti-aging therapies. Based on a cross-sectional study, a discovery phase was performed on 12 donors divided into four groups: young, old, healthy, and unhealthy centenarians. The identification of healthy and unhealthy phenotype was based on cognitive performance and capabilities to perform daily activities. Small RNA sequencing identified 79 differentially expressed c-miRs when comparing young, old, healthy centenarians, and unhealthy centenarians. Two miRs, that is, miR-19a-3p and miR-19b-3p, were found increased at old age but decreased at extreme age, as confirmed by RT-qPCR in 49 donors of validation phase. The significant decrease of those miR levels in healthy compared to unhealthy centenarians appears to be due to the presence of isomiRs, not detectable with RT-qPCR, but only with a high-resolution technique such as deep sequencing. Bioinformatically, three main common targets of miR-19a/b-3p were identified, that is, SMAD4, PTEN, and BCL2L11, converging into the FoxO signaling pathway, known to have a significant role in aging mechanisms. For the first time, this study shows the age-related increase of plasma miR-19a/b-3p in old subjects but a decrease in centenarians. This decrease is more pronounced in healthy centenarians and was confirmed by the modified pattern of isomiRs comparing healthy and unhealthy centenarians. Thus, our study paves the way for functional studies using c-miRs and isomiRs as additional parameter to track the onset of aging and age-related diseases using new potential biomarkers.
Collapse
Affiliation(s)
- Cristina Morsiani
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Lucia Terlecki‐Zaniewicz
- Christian Doppler Laboratory for Biotechnology of Skin Aging Vienna Austria
- Department of Biotechnology Institute of Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
| | | | | | - Salvatore Collura
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Maria Conte
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| | - Federica Sevini
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Paolo Garagnani
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Applied Biomedical Research Center (CRBA) S. Orsola‐Malpighi Polyclinic Bologna Italy
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli‐Sforza" – Unit of Bologna Bologna Italy
- Department of Laboratory Medicine Clinical Chemistry Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Stefano Salvioli
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| | | | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging Vienna Austria
- Department of Biotechnology Institute of Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology Vienna Austria
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics Lobachevsky University Nizhny Novgorod Russia
| | - Miriam Capri
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| |
Collapse
|
31
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
32
|
MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines 2021; 9:biomedicines9040347. [PMID: 33808155 PMCID: PMC8067275 DOI: 10.3390/biomedicines9040347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.
Collapse
|
33
|
Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X, Guan H. MicroRNA Let-7c-5p-Mediated Regulation of ERCC6 Disrupts Autophagic Flux in Age-Related Cataract via the Binding to VCP. Curr Eye Res 2021; 46:1353-1362. [PMID: 33703976 DOI: 10.1080/02713683.2021.1900273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: DNA damage contributes to the pathogenesis of age-related cataract (ARC) and is repaired through the nucleotide excision repair (NER) pathway, which includes ERCC6. Evidence has demonstrated that defective autophagy leads to lens organelle degradation and cataract. This study aimed to investigate the effects of ERCC6 on autophagy and determine its mechanisms in ARC.Methods: The clinical case-control study comprised 30 patients with ARC and 30 age-matched controls who received transparent lens extraction. Transmission electron microscopy was used to assess the ultrastructure of autophagic vesicles in lens anterior capsule tissues and lens epithelial cell line (SRA01/04). Real-time polymerase chain reaction and western blot analyses were performed to measure relative gene expression levels. Gene expression levels and localization were assessed by immunofluorescence. A coimmunoprecipitation assay was used to investigate the relationship between CSB which encoded by ERCC6 and VCP. ERCC6-siRNA and let-7 c-5p mimic were used to alter the expression of ERCC6 and let-7 c-5p.Results: Autophagy induction occurred in lens anterior capsule tissues of patients with ARC and in UVB-induced SRA01/04 cells, where the number of LC3B puncta was increased. Consistent with this result, the expression of beclin1 (BECN1) and LC3B, in addition to that of p62, was increased. Additionally, ERCC6 expression decreased, and silencing ERCC6 induced increases in the expression of BECN1, LC3B and p62. Moreover, CSB interacted with VCP, and let-7 c-5p induced dysregulation of autophagy by targeting ERCC6.Conclusion: In ARC, Let-7 c-5p-mediated downregulation of ERCC6 might prevent the degradation of autophagic vacuoles. CSB binds to VCP, inducing autophagosomes to combine with lysosomes and be degraded.
Collapse
Affiliation(s)
- Yu Cao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
34
|
Giuliani A, Gaetani S, Sorgentoni G, Agarbati S, Laggetta M, Matacchione G, Gobbi M, Rossi T, Galeazzi R, Piccinini G, Pelliccioni G, Bonfigli AR, Procopio AD, Albertini MC, Sabbatinelli J, Olivieri F, Fazioli F. Circulating Inflamma-miRs as Potential Biomarkers of Cognitive Impairment in Patients Affected by Alzheimer's Disease. Front Aging Neurosci 2021; 13:647015. [PMID: 33776746 PMCID: PMC7990771 DOI: 10.3389/fnagi.2021.647015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the growing population of elderly people, is still lacking minimally-invasive circulating biomarkers that could facilitate the diagnosis and the monitoring of disease progression. MicroRNAs (miRNAs) are emerging as tissue-specific and/or circulating biomarkers of several age-related diseases, but evidence on AD is still not conclusive. Since a systemic pro-inflammatory status was associated with an increased risk of AD development and progression, we focused our investigation on a subset of miRNAs modulating the inflammatory process, namely inflamma-miRNAs. The expression of inflamma-miR-17-5p, -21-5p, -126-3p, and -146a-5p was analyzed in plasma samples from 116 patients with AD compared with 41 age-matched healthy control (HC) subjects. MiR-17-5p, miR-21-5p, and miR-126-3p plasma levels were significantly increased in AD patients compared to HC. Importantly, a strong inverse relationship was observed between miR-21-5p and miR-126-3p, and the cognitive impairment, assessed by Mini-Mental State Examination (MMSE). Notably, miR-126-3p was able to discriminate between mild and severe cognitive impairment. Overall, our results reinforce the hypothesis that circulating inflamma-miRNAs could be assessed as minimally invasive tools associated with the development and progression of cognitive impairment in AD.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Maristella Laggetta
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Gina Piccinini
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | | | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
35
|
Kellogg C, Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Hum Vaccin Immunother 2021; 17:638-643. [PMID: 33064620 PMCID: PMC7993178 DOI: 10.1080/21645515.2020.1818519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
The thymus is a largely neglected organ but plays a significant role in the regulation of adaptive immune responses. The effect of aging on the thymus and immune senescence is well established, and the resulting inflammaging is found to be implicated in the development of many chronic diseases including atherosclerosis, hypertension and type 2 diabetes. Both aging and diseases of inflammaging are associated with severe COVID-19 disease, and a dysfunctional thymus may be a predisposing factor. In addition, insults on the thymus during childhood may lead to abnormal thymic function and may explain severe COVID-19 disease among younger individuals; therefore, measurement of thymic function may assist COVID-19 care. Those with poor thymic function may be treated prophylactically with convalescent serum or recombinant antibodies, and they may respond better to high-dose or adjuvanted COVID-19 vaccines. Treatments inducing thymic regeneration may improve patients' overall health and may be incorporated in COVID-19 management.
Collapse
Affiliation(s)
- Caitlyn Kellogg
- University of California, San Diego School of Medicine, San Diego, CA, USA
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| | - Ozlem Equils
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| |
Collapse
|
36
|
Lo Curto A, Taverna S, Costa MA, Passantino R, Augello G, Adamo G, Aiello A, Colomba P, Zizzo C, Zora M, Accardi G, Candore G, Francofonte D, Di Chiara T, Alessandro R, Caruso C, Duro G, Cammarata G. Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease. Cells 2021; 10:356. [PMID: 33572275 PMCID: PMC7915347 DOI: 10.3390/cells10020356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) "young" and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.
Collapse
Affiliation(s)
- Alessia Lo Curto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Simona Taverna
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Maria Assunta Costa
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Rosa Passantino
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Giuseppa Augello
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Paolo Colomba
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Carmela Zizzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Marco Zora
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Daniele Francofonte
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Tiziana Di Chiara
- Department PROMISE, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Alessandro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-Section of Biology and Genetics, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giuseppe Cammarata
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| |
Collapse
|
37
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
38
|
MicroRNA expression profile in patients with cystic echinococcosis and identification of possible cellular pathways. J Helminthol 2021; 95:e1. [PMID: 33441208 DOI: 10.1017/s0022149x2000098x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cystic echinococcosis (CE) is a neglected tropical disease, caused by metacestode (larval) form of the Echinococcus granulosus sensu lato (sl) in humans. MicroRNAs (miRNAs) are small, stable, tissue-specific RNA molecules encoded by the genome that are not translated into proteins. Circulating miRNA expression profiles vary in health and disease. The aim of this study is to determine the altered cellular pathways in CE by comparing the miRNA profiles of controls and CE patients with active or inactive cysts. Following abdominal ultrasonography (US) examination, 20 patients diagnosed with active CE (CE1, CE2, CE3a and CE3b) or inactive CE (CE4 and CE5) and three healthy controls were included in the study. The expression profiles of 372 biologically relevant human miRNAs were investigated in serum samples from CE patients and healthy controls with miScript miRNA HC PCR Array. Compared with the control group, expression of 6 miRNAs (hsa-miR-4659a-5p, hsa-miR-4518, hsa-miR-3977, hsa-miR-4692, hsa-miR-181b-3p, hsa-miR-4491) and one miRNA (hsa-miR-4687-5p) were found to be downregulated in CE patients with active and inactive cysts, respectively (p < 0.05). For downregulated miRNAs in this study, predicted targets were found to be associated mainly with cell proliferation, apoptosis, cell-cell interactions and cell cycle regulation. Further studies in this direction may elucidate the pathogenesis of human CE and the relationship between CE and other pathologies.
Collapse
|
39
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Giuliani A, Londin E, Ferracin M, Mensà E, Prattichizzo F, Ramini D, Marcheselli F, Recchioni R, Rippo MR, Bonafè M, Rigoutsos I, Olivieri F, Sabbatinelli J. Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs. Sci Rep 2020; 10:21782. [PMID: 33311640 PMCID: PMC7732983 DOI: 10.1038/s41598-020-78871-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5′ and/or 3′ ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5′ miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | | | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | | | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy. .,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
41
|
Belyi AA, Alekseev AA, Fedintsev AY, Balybin SN, Proshkina EN, Shaposhnikov MV, Moskalev AA. The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants (Basel) 2020; 9:antiox9121239. [PMID: 33297320 PMCID: PMC7762242 DOI: 10.3390/antiox9121239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
We studied how aging affects the ability of Drosophila melanogaster to tolerate various types of stress factors. Data were obtained on the resistance of D. melanogaster to oxidative and genotoxic (separately paraquat, Fe3+, Cu2+, and Zn2+ ions), proteotoxic (hyperthermia, Cd2+ ions), and osmotic (NaCl) stresses, starvation, and infection with the pathological Beauveria bassiana fungus at different ages. In all cases, we observed a strong negative correlation between age and stress tolerance. The largest change in the age-dependent decline in survival occurred under oxidative and osmotic stress. In most experiments, we observed that young Drosophila females have higher stress resistance than males. We checked whether it is possible to accurately assess the biological age of D. melanogaster based on an assessment of stress tolerance. We have proposed a new approach for assessing a biological age of D. melanogaster using a two-parameter survival curve model. For the model, we used an algorithm that evaluated the quality of age prediction for different age and gender groups. The best predictions were obtained for females who were exposed to CdCl2 and ZnCl2 with an average error of 0.32 days and 0.36 days, respectively. For males, the best results were observed for paraquat and NaCl with an average error of 0.61 and 0.68 days, respectively. The average accuracy for all stresses in our model was 1.73 days.
Collapse
Affiliation(s)
- Alexei A. Belyi
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Alekseev
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Alexander Y. Fedintsev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Stepan N. Balybin
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Ekaterina N. Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Mikhail V. Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
- Correspondence: ; Tel.: +78-21-231-2894
| |
Collapse
|
42
|
Aprahamian I, Mamoni RL, Cervigne NK, Augusto TM, Romanini CV, Petrella M, da Costa DL, Lima NA, Borges MK, Oude Voshaar RC. Design and protocol of the multimorbidity and mental health cohort study in frailty and aging (MiMiCS-FRAIL): unraveling the clinical and molecular associations between frailty, somatic disease burden and late life depression. BMC Psychiatry 2020; 20:573. [PMID: 33261579 PMCID: PMC7706060 DOI: 10.1186/s12888-020-02963-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To explore the mutual relationship between multimorbidity, mental illness and frailty, we have set-up the Multimorbidity and Mental health Cohort Study in FRAILty and Aging (MiMiCS-FRAIL) cohort. At the population level, multimorbidity, frailty and late-life depression are associated with similar adverse outcomes (i.e. falls, disability, hospitalization, death), share the same risk factors, and partly overlap in their clinical presentation. Moreover, these three variables may share a common underlying pathophysiological mechanism like immune-metabolic dysregulation. The overall objectives of MiMiCS-FRAIL are 1) to explore (determinants of) the cross-sectional and longitudinal relationship between multimorbidity, depression, and frailty among non-demented geriatric outpatients; 2) to evaluate molecular levels of senoinflammation as a broad pathophysiological process underlying these conditions; and 3) to examine adverse outcomes of multimorbidity, frailty and depression and their interconnectedness. METHODS MiMiCS-FRAIL is an ongoing observational cohort study of geriatric outpatients in Brazil, with an extensive baseline assessment and yearly follow-up assessments. Each assessment includes a comprehensive geriatric assessment to identify multimorbidity and geriatric syndromes, a structured psychiatric diagnostic interview and administration of the PHQ-9 to measure depression, and several frailty measures (FRAIL, Physical Phenotype criteria, 36-item Frailty Index). Fasten blood samples are collected at baseline to assess circulating inflammatory and anti-inflammatory cytokines, leukocytes' subpopulations, and to perform immune-metabolic-paired miRome analyses. The primary outcome is death and secondary outcomes are the number of falls, hospital admissions, functional ability, well-being, and dementia. Assuming a 5-year mortality rate between 25 and 40% and a hazard rate varying between 1.6 and 2.3 for the primary determinants require a sample size between 136 and 711 patients to detect a statistically significant effect with a power of 80% (beta = 0.2), an alpha of 5% (0.05), and an R2 between the predictor (death) and all covariates of 0.20. Local ethical board approved this study. DISCUSSION Frailty might be hypothesized as a final common pathway by which many clinical conditions like depression and chronic diseases (multimorbidity) culminate in many adverse effects. The MiMiCS-FRAIL cohort will help us to understand the interrelationship between these variables, from a clinical perspective as well as their underlying molecular signature.
Collapse
Affiliation(s)
- Ivan Aprahamian
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Ronei Luciano Mamoni
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Nilva Karla Cervigne
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Taize Machado Augusto
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | | | - Marina Petrella
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Daniele Lima da Costa
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Natalia Almeida Lima
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Marcus K. Borges
- grid.11899.380000 0004 1937 0722Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Richard C. Oude Voshaar
- grid.11899.380000 0004 1937 0722Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil ,grid.4494.d0000 0000 9558 4598University Medical Center Groningen, University Center for Psychiatry and Interdisciplinary Center for Psychopathology of Emotion Regulation, Groningen, Netherlands
| |
Collapse
|
43
|
Li P, Yao Y, Ma Y, Chen Y. MiR-30a-5p ameliorates LPS-induced inflammatory injury in human A549 cells and mice via targeting RUNX2. Innate Immun 2020; 27:41-49. [PMID: 33232195 PMCID: PMC7780354 DOI: 10.1177/1753425920971347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we aim to investigate the role of miR-30a-5p in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) using LPS-induced A549 cells and mice. We found cell viability was significantly declined accompanied by cell apoptosis and cell cycle arrest at G0/G1 phase in LPS-treated A549 cells. MiR-30a-5p was down-regulated by LPS treatment and miR-30a-5p significantly protected A549 cells from LPS-induced injury by increasing cell viability, reducing cell apoptosis, promoting cell cycle progression, and inhibiting inflammatory reactions. Dual-luciferase activity demonstrated that RUNX2 was a direct target for miR-30a-5p and its expression was negatively and directly regulated by miR-30a-5p. Over-expression of RUNX2 weakened the inhibitory effect of miR-30a-5p on inflammatory injury. In vivo, over-expression of miR-30a-5p alleviated LPS-induced inflammatory responses and lung injury in LPS-administrated mice. Besides, miR-30a-5p repressed LPS-elevated phosphorylation levels of the signal transducer and activator of transcription 3 (STAT3) and c-Jun N-terminal kinase (JNK), IκBα degradation, and NF-κB p65 phosphorylation. In conclusion, miR-30a-5p ameliorates LPS-induced inflammatory injury in A549 cells and mice via targeting RUNX2 and related signaling pathways, thereby influencing the progression of ARDS.
Collapse
Affiliation(s)
- Pibao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Jiangsu, China.,Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yanfen Yao
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yuezhen Ma
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yanbin Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Jiangsu, China
| |
Collapse
|
44
|
Cerisoli S, Marinelli Busilacchi E, Mattiucci D, Rossi E, Mariani M, Guescini M, Pugnaloni A, Olivieri F, Olivieri A, Poloni A. The exosomal surface phenotype and inflamma-miR cargo correlate with MDS diagnosis. Br J Haematol 2020; 192:e4-e7. [PMID: 33095921 DOI: 10.1111/bjh.17113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Silvia Cerisoli
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Rossi
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Marianna Mariani
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Attilio Olivieri
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Hematology, AOU Ospedali Riuniti, Ancona, Italy
| | - Antonella Poloni
- Hematology, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Hematology, AOU Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
45
|
Denham J, McCluskey M, Denham MM, Sellami M, Davie AJ. Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions. Equine Vet J 2020; 53:431-450. [PMID: 32671871 DOI: 10.1111/evj.13320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Horses (Equus ferus caballus) have evolved over the past 300 years in response to man-made selection for particular athletic traits. Some of the selected traits were selected based on the size and horses' muscular power (eg Clydesdales), whereas other breeds were bred for peak running performance (eg Thoroughbred and Arabian). Although the physiological changes and some of the cellular adaptations responsible for athletic potential of horses have been identified, the molecular mechanisms are only just beginning to be comprehensively investigated. The purpose of this review was to outline and discuss the current understanding of the molecular mechanisms underpinning the athletic performance and cardiorespiratory fitness in athletic breeds of horses. A brief review of the biology of epigenetics is provided, including discussion on DNA methylation, histone modifications and small RNAs, followed by a summary and critical review of the current work on the exercise-induced epigenetic and transcriptional changes in horses. Important unanswered questions and currently unexplored areas that deserve attention are highlighted. Finally, a rationale for the analysis of epigenetic modifications in the context with exercise-related traits and ailments associated with athletic breeds of horses is outlined in order to help guide future research.
Collapse
Affiliation(s)
- Joshua Denham
- RMIT University, School of Health and Biomedical Sciences, Melbourne, VIC, Australia
| | | | | | - Maha Sellami
- Qatar University, College of Arts and Sciences (CAS), Sport Science Program (SSP), Doha, Qatar
| | - Allan J Davie
- Australian Equine Racing and Research Centre (AERR), Ballina, NSW, Australia
| |
Collapse
|
46
|
The carotid plaque as paradigmatic case of site-specific acceleration of aging process: The microRNAs and the inflammaging contribution. Ageing Res Rev 2020; 61:101090. [PMID: 32474155 DOI: 10.1016/j.arr.2020.101090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered a chronic inflammatory disease of arteries associated with the aging process. Many risk factors have been identified and they are mainly related to life-styles, gene-environment interactions and socioeconomic status. Carotid and coronary artery diseases are the two major atherosclerotic conditions, being the primary cause of stroke and heart attack, respectively. Nevertheless, carotid plaque assumes particular aspects not only for the specific molecular mechanisms, but also for the types of atheroma which may be associated with a better or a worst prognosis. The identification of circulating blood biomarkers able to distinguish carotid plaque types (stable or vulnerable) is a crucial step for the improvement of adequate therapeutic approaches avoiding or delaying endarterectomy in the oldest old individuals (> 80 years), a population predicted to growth in the next years. The review highlights the most recent knowledge on carotid plaque molecular mechanisms, focusing on microRNAs (miRs), as a site-specific accelerated aging within the conceptual framework of Geroscience for new affordable therapies.
Collapse
|
47
|
Wang H, Zhou Y, Yin Z, Chen L, Jin L, Cui Q, Xue L. Transcriptome analysis of common and diverged circulating miRNAs between arterial and venous during aging. Aging (Albany NY) 2020; 12:12987-13004. [PMID: 32609094 PMCID: PMC7377886 DOI: 10.18632/aging.103385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Circulating miRNAs have received extensive attention as non-invasive biomarkers for prediction and diagnosis of disease. However, most samples have been obtained from peripheral venous blood. To evaluate whether peripheral venous miRNAs represent circulating miRNAs from all blood vessels under a given condition, such as aging, we compared the miRNA profiles of venous and arterial plasma between young and aged rats by Illumina next-generation sequencing. The DEseq2 tool was used to obtain differentially-expressed miRNAs. We observed 105 aging-related deregulated miRNAs in vein and 62 in artery, which were highly associated with cell survival and inflammation, respectively. On the other hand, the young and aged groups exhibited a unique arterial-venous bias. There were 54 differentially-expressed miRNAs in the young group and 42 in the aged group; only 8 miRNAs were shared. Further transcriptional factors enrichment analysis found that the shared miRNAs could be partially upregulated by NF-κB and SIRT1. These transcriptional factors could be organ-specific and/or regulated in physiological and aging states as possible causal factors. This study suggested the potential application of circulating miRNAs, which reflect the systematic response to certain conditions, such as aging, and the importance of origin selection for candidate circulating miRNAs.
Collapse
Affiliation(s)
- Hao Wang
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Li Chen
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Ling Jin
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China.,Biobank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
48
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|
49
|
Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J, Olivieri F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev 2020; 53:33-37. [PMID: 32389499 PMCID: PMC7252014 DOI: 10.1016/j.cytogfr.2020.04.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | | | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
50
|
The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mech Ageing Dev 2020; 189:111263. [PMID: 32461143 PMCID: PMC7347005 DOI: 10.1016/j.mad.2020.111263] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are key mediators within the senescence-associated secretory phenotype (SASP). Increased EV production has been demonstrated following senescence induction. Changes in EVs cargoes including proteins, nucleic acids and lipids have been demonstrated following senescence induction. EVs have been demonstrated to contribute to both the beneficial (Bright) and detrimental (Dark) sides of the SASP.
Senescence is a state of proliferative arrest which has been described as a protective mechanism against the malignant transformation of cells. However, senescent cells have also been demonstrated to accumulate with age and to contribute to a variety of age-related pathologies. These pathological effects have been attributed to the acquisition of an enhanced secretory profile geared towards inflammatory molecules and tissue remodelling agents – known as the senescence-associated secretory phenotype (SASP). Whilst the SASP has long been considered to be comprised predominantly of soluble mediators, growing evidence has recently emerged for the role of extracellular vesicles (EVs) as key players within the secretome of senescent cells. This review is intended to consolidate recent evidence for the roles of senescent cell-derived EVs to both the beneficial (Bright) and detrimental (Dark) effects of the SASP.
Collapse
|