1
|
Ahmadi S, Yazdi F, Khastar S, Kaur I, Ahmed MH, Kumar A, Rathore G, Kaur P, Shahsavan M, Dehghani-Ghorbi M, Akhavan-Sigari R. Molecular Mechanism of lncRNAs in Regulation of Breast Cancer Metastasis; a Comprehensive Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01535-y. [PMID: 39367197 DOI: 10.1007/s12013-024-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/06/2024]
Abstract
Although the number of breast cancer deaths has decreased, and there have been developments in targeted therapies and combination treatments for the management of metastatic illness, metastatic breast cancer is still the second most common cause of cancer-related deaths in U.S. women. Numerous phases and a vast number of proteins and signaling molecules are involved in the invasion-metastasis cascade. The tumor cells penetrate and enter the blood or lymphatic vessels, and travel to distant organs via the lymphatic or blood vessels. Tumor cells enter cell cycle arrest, adhere to capillary beds in the target organ, and then disseminate throughout the organ's parenchyma, proliferating and enhancing angiogenesis. Each of these processes is regulated by changes in the expression of different genes, in which lncRNAs play a role in this regulation. Transcripts that are longer than 200 nucleotides and do not translate into proteins are called RNAs. LncRNA molecules, whose function depends on their unique molecular structure, play significant roles in controlling the expression of genes at various epigenetic levels, transcription, and so on. LncRNAs have essential functions in regulating the expression of genes linked to cell development in healthy and pathological processes, specialization, programmed cell death, cell division, invasion, DNA damage, and spread to other parts of the body. A number of cancer types have been shown to exhibit aberrant expression of lncRNAs. In this review, we describe the general characteristics, potential molecular mechanisms and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Shokoufeh Ahmadi
- Department of Microbiology, Rabe'Rashidi University, Tabriz, Iran
| | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Mohammad Shahsavan
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Liu H, Ju Z, Hui X, Li W, Lv R. Upconversion and NIR-II luminescent rare earth nanoparticles combined with machine learning for cancer theranostics. NANOSCALE 2024; 16:16697-16705. [PMID: 39171742 DOI: 10.1039/d4nr01861c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
How to develop contrast agents for cancer theranostics is a meaningful and challenging endeavor, and rare earth nanoparticles (RENPs) may provide a possible solution. In this study, we initially modified RENPs through the application of photodynamic agents (ZnPc) and targeted the bevacizumab antibody for cancer theranostics, which was aimed at improving the therapeutic targeting and efficacy. Subsequently, we amalgamated anthocyanin with the modified RENPs, creating a potential cancer diagnosis platform. When the spectral data were obtained from the composite of cells, the crucial information was extracted through a competitive adaptive reweighted sampling feature algorithm. Then, we employed a machine learning classification model and classified both the individual spectral data and fused spectral data to accurately predict distinctions between breast cancer and normal tissue. The results indicate that the amalgamation of fusion techniques with machine learning algorithms provides highly precise predictions for molecular-level breast cancer detection. Finally, in vitro and in vivo experiments were carried out to validate the near-infrared luminescence and therapeutic effectiveness of the modified nanomedicine. This research not only underscores the targeted effects of nanomedicine but also demonstrates the potent synergy between optical spectral technology and machine learning. This innovative approach offers a comprehensive strategy for the integrated treatment of breast cancer.
Collapse
Affiliation(s)
- Hanyu Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ziyue Ju
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xin Hui
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
- Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xi'an, Shaanxi 710071, China
| |
Collapse
|
3
|
Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P, Rao G. VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer 2024; 1879:189079. [PMID: 38280470 DOI: 10.1016/j.bbcan.2024.189079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Angiogenesis is a crucial process for tissue development, repair, and tumor survival. Vascular endothelial growth factor (VEGF) is a key driver secreted by cancer cells, promoting neovascularization. While VEGF's role in angiogenesis is well-documented, its influence on the other aspects in tumor microenvironemt is less discussed. This review elaborates on VEGF's impact on intercellular interactions within the tumor microenvironment, including how VEGF affects pericyte proliferation and migration and mediates interactions between tumor-associated macrophages and cancer cells, resulting in PDL-1-mediated immunosuppression and Nrf2-mediated epithelial-mesenchymal transition. The review discusses VEGF's involvement in intra-organelle crosstalk, tumor metabolism, stemness, and epithelial-mesenchymal transition. It also provides insights into current anti-VEGF therapies and their limitations in cancer treatment. Overall, this review aims to provide a thorough overview of the current state of knowledge concerning VEGF signaling and its impact, not only on angiogenesis but also on various other oncogenic processes.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Chen C, Yingyao O, Yan X, Qianru H, Hong W, Chen C, Lei Y. Metastasis of ovarian cancer to nasal skin and skin on the trunk: a rare case report. Front Oncol 2023; 13:1266820. [PMID: 37920167 PMCID: PMC10619721 DOI: 10.3389/fonc.2023.1266820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Cutaneous metastases of ovarian cancer are rare and often have poor prognosis. We report a case of a 62-year-old woman with recurrent low-grade serous ovarian cancer, who presented with lung, brain, and multiple skin (nasal and anterior chest wall) metastases approximately six months after the initial diagnosis. In this case, Nijmegen breakage syndrome carrier status caused by RAD50 heterozygous mutation and previous bevacizumab therapy could be the predisposing factor for cutaneous metastases. The patient was treated with local radiotherapy (nasal skin and brain, 30Gy/6f/1.2W) and three courses of chemotherapy with albumin-bound paclitaxel and carboplatin, resulting in drastic remission of the cutaneous metastases. Unfortunately, treatment interruption resulted in rapid tumor progression, followed by death. This case represents an interesting example of cutaneous metastasis of ovarian cancer with rare clinical manifestations, unique genetic mutations, and reasonable response to treatment. Chemoradiotherapy might be an appropriate option for cutaneous metastases of ovarian cancer. Nevertheless, we still hope to find out the best treatment strategy after collecting and reviewing more cases in the future.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ouyang Yingyao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiang Yan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - He Qianru
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Wang Hong
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Lei
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
6
|
Drzał A, Delalande A, Dziurman G, Fournié M, Pichon C, Elas M. Increasing oxygen tension in tumor tissue using ultrasound sensitive O 2 microbubbles. Free Radic Biol Med 2022; 193:567-578. [PMID: 36356713 DOI: 10.1016/j.freeradbiomed.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Low tissue oxygenation significantly impairs the effectiveness of cancer therapy and promotes a more aggressive phenotype. Many strategies to improve tissue oxygenation have been proposed throughout the years, but only a few showed significant effects in clinical settings. We investigated stability and ultrasound pulse (UP) triggered oxygen release from phospholipid coated oxygen microbubbles (OMB) in vitro and in murine tumors in vivo using EPR oximetry. In solution, the investigated microbubbles are stable and responsive to ultrasound pulse. The addition of the OMB solution alone resulted in an increase in pO2 of approximately 70 mmHg which was further increased for an additional 80 mmHg after the application of UP. The in vivo kinetic study revealed a substantial, up to 120 mmHg, increase in tumor pO2 after UP application and then pO2 was decreasing for 20 min for intravenous injection and 15 min for intratumoral injection. A significant increase was also observed in groups that received microbubbles filled with nitrogen and ultrasound pulse and OMB without UP, but the effect was much lower. Oxygen microbubbles lead to a decrease in HIF-1a and VEGF-A both at the level of mRNA and protein. Toxicity analysis showed that intravenous injection of OMB does not cause oxidative damage to the heart, liver, or kidneys. However, elevated levels of oxidative damage to lipids and proteins were observed short-term in tumor tissue. In conclusion, we have demonstrated the feasibility of oxygen microbubbles in delivering oxygen effectively and safely to the tumor in living animals. Such treatment might enhance the effectiveness of other anticancer therapies.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland
| | - Anthony Delalande
- University of Orleans, 45067, Orleans, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Gabriela Dziurman
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland
| | - Mylene Fournié
- University of Orleans, 45067, Orleans, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Chantal Pichon
- University of Orleans, 45067, Orleans, France; Institut Universitaire de France, 75231, Paris, France; Center for Molecular Biophysics, CNRS Orleans, 45071, Orleans, France
| | - Martyna Elas
- Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland.
| |
Collapse
|
7
|
Dai Y, Tang Y, Huang W, Zhao Y, Gao X, Gu Y. Multi-modal imaging probe for EpCAM overexpressed in breast cancer. Talanta 2022; 250:123715. [PMID: 35868149 DOI: 10.1016/j.talanta.2022.123715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer is a highly lethal and aggressive form of cancer. Early-stager diagnosis and intraoperative guidance are important endeavors for reducing associated morbidity and mortality among breast cancer patients. Epithelial cell adhesion molecule (EpCAM) is aberrantly expressed in the majority of breast carcinoma, making it an attractive imaging biomarker. Herein, we have designed novel EpCAM-targeting peptides (denoted as YQ-S) for precise breast carcinoma detection. The greater binding affinity of the designed peptide YQ-S2 over YQ-S1 and the reported peptide SNF was displayed on different cell lines with flow cytometry analysis, showing a positive correlation with the expression of EpCAM. Besides, YQ-S2 displayed an ideal biosafety profile with no evidence of any acute toxicity. Thus, YQ-S2 was chosen to represent YQ-S. By linking with the near-infrared fluorescent dye (MPA), we further developed the EpCAM-targeting probe (YQ-S2-MPA) for real-time imaging and fluorescence-guided resection of breast cancer tumors. In vivo imaging of the MCF-7 tumor-bearing model demonstrated higher tumor uptake of YQ-S2-MPA compared with that of SNF-MPA. The maximum tumor-to-normal tissue signal ratio of YQ-S2-MPA was 5.1, which was about 2 times that of SNF-MPA. Meanwhile, the metastatic lesions in 4T1 lung metastasis, and lymph node metastasis (LNM) mice were successfully detected under this imaging system. Notably, YQ-S2-MPA had excellent performance in surgical navigation studies in the preclinical models. Moreover, we exploited the 99mTc-HYNIC-YQ-S2 to localize EpCAM positive tumors successfully. These data proved that YQ-S2 can distinguish EpCAM-positive orthotopic and metastatic tumors from surrounding normal tissues accurately, and possesses the clinical potential as a surgical navigation probe.
Collapse
Affiliation(s)
- Yaxue Dai
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Yongjia Tang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Wenjing Huang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Xin Gao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China.
| |
Collapse
|
8
|
Xia Y, Wang Y, Shan M, Hao Y, Liu H, Chen Q, Liang Z. Advances in the pathogenesis and clinical application prospects of tumor biomolecules in keloid. BURNS & TRAUMA 2022; 10:tkac025. [PMID: 35769828 PMCID: PMC9233200 DOI: 10.1093/burnst/tkac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Indexed: 12/29/2022]
Abstract
Keloid scarring is a kind of pathological healing manifestation after skin injury and possesses various tumor properties, such as the Warburg effect, epithelial-mesenchymal transition (EMT), expression imbalances of apoptosis-related genes and the presence of stem cells. Abnormal expression of tumor signatures is critical to the initiation and operation of these effects. Although previous experimental studies have recognized the potential value of a single or several tumor biomolecules in keloids, a comprehensive evaluation system for multiple tumor signatures in keloid scarring is still lacking. This paper aims to summarize tumor biomolecules in keloids from the perspectives of liquid biopsy, genetics, proteomics and epigenetics and to investigate their mechanisms of action and feasibility from bench to bedside. Liquid biopsy is suitable for the early screening of people with keloids due to its noninvasive and accurate performance. Epigenetic biomarkers do not require changes in the gene sequence and their reversibility and tissue specificity make them ideal therapeutic targets. Nonetheless, given the ethnic specificity and genetic predisposition of keloids, more large-sample multicenter studies are indispensable for determining the prevalence of these signatures and for establishing diagnostic criteria and therapeutic efficacy estimations based on these molecules.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Jin M, Zeng B, Liu Y, Jin L, Hou Y, Liu C, Liu W, Wu H, Chen L, Gao Z, Huang W. Co-Delivery of Repurposing Itraconazole and VEGF siRNA by Composite Nanoparticulate System for Collaborative Anti-Angiogenesis and Anti-Tumor Efficacy against Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071369. [PMID: 35890264 PMCID: PMC9317122 DOI: 10.3390/pharmaceutics14071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Combinations of two different therapeutic modalities of VEGF inhibitors against angiogenesis can cooperatively impede breast cancer tumor growth and enhance therapeutic efficacy. Itraconazole (ITZ) is a conventional antifungal drug with high safety; however, it has been repurposed to be a multi target anti-angiogenesis agent for cancer therapy in recent years. In the present study, composite nanoparticles co-loaded with ITZ and VEGF siRNA were prepared in order to investigate their anti-angiogenesis efficacy and synergistic anticancer effect against breast cancer. The nanoparticles had a suitable particle size (117.9 ± 10.3 nm) and weak positive surface charge (6.69 ± 2.46 mV), as well as good stability and drug release profile in vitro. Moreover, the nanoparticles successfully escaped from endosomes and realized cell apoptosis and cell proliferation inhibition in vitro. In vitro and in vivo experiments showed that the nanoparticles could induce the silencing of VEGF-related expressions as well as anti-angiogenesis efficacy, and the co-loaded ITZ-VEGF siRNA NPs could inhibit tumor growth effectively with low toxicity and side effects. Taken together, the as-prepared delivery vehicles are a simple and safe nano-platform that improves the antitumor efficacy of VEGF siRNA and ITZ, which allows the repositioning of the generic drug ITZ as a great candidate for antitumor therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lili Jin
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| |
Collapse
|
10
|
The role of plasma exosomal lnc-SNAPC5-3:4 in monitoring the efficacy of anlotinib in the treatment of advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2022; 148:2867-2879. [DOI: 10.1007/s00432-022-04071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
11
|
Ghauri MA, Raza A, Hayat U, Atif N, Iqbal HMN, Bilal M. Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis. Biochim Biophys Acta Gen Subj 2022; 1866:130113. [PMID: 35202768 DOI: 10.1016/j.bbagen.2022.130113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Breast cancer (BCa) has become the leading cause of death in women worldwide. Irrespective of advancement in cancer treatments, e.g., surgery, radiation, chemotherapy, hormonal therapy, immunotherapy, and targeted therapy, recurrence leading to metastasis poses the greatest threat in BCa management. BCa receptors estrogen (ER), progesterone (PR), and human epidermal growth factor receptor-2 (HER2) hold significant reputations as prognostic and predictive biomarkers in therapeutic decision-making. Under normal physiological conditions, these receptors modulate critical biological functions, e.g., cell migration, proliferation, and apoptosis events, etc. However, aberrant expression causes deviations, triggering signaling course to adapt permanent switching "ON" mode. The later events induce rapid and unrestrained proliferation leading to cancer. As conventional ways of cancer management ultimately lead to resistance; therefore, recently targeted therapies have been extensively studied to conquer resistance. Targeting various small molecules in downstream signaling has become an area of interest in scientific society. The severity of cancer converts many folds soon after it takes on a migratory approach that eventually commences metastasis. Cancer migration comprises protrusion of cytoplasm at the leading edge of the migration forward-facing, establishing adhesions with the basic cell-matrix, disassembly of the adhesions at the back end of the cell, and actin-myosin fiber contractions to pull the bulk of the cytoplasm forward. On the other hand, metastatic progression comprises a cascade of events, including invasion, migration, and establishment of tumor microenvironment. The progression of BCa from early stage to metastatic development causes remarkable heterogeneity. Interference at any explicit level could hamper the process, and it has thus become an area of interest for scientists. Metastasis is the ultimate cause of spreading tumor cells to invade distant organs. Recently small molecule inhibitors of protein tyrosine kinases, which can cross the blood-brain barrier, have become a center point of research for investigators in developing novel treatment strategies against BCa management.
Collapse
Affiliation(s)
- Mohsin Ahmad Ghauri
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naveel Atif
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
12
|
The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement? Cancers (Basel) 2021; 13:cancers13215412. [PMID: 34771575 PMCID: PMC8582496 DOI: 10.3390/cancers13215412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The modulation of tumor blood vessels is a great opportunity for improving cancer therapies. Understanding the cellular and molecular players that regulate the biology of tumor blood vessels and tumor angiogenesis is necessary for the development of new anti-tumor strategies. Bone morphogenetic protein 9 (BMP9) is a circulating factor with multiple effects in vascular biology through its receptor activin receptor-like kinase 1 (ALK1). In this review, we give an overview of the possible benefits of modulating BMP9–ALK1 functions for cancer therapy improvement. Abstract The improvement of cancer therapy efficacy, the extension of patient survival and the reduction of adverse side effects are major challenges in cancer research. Targeting blood vessels has been considered a promising strategy in cancer therapy. Since the tumor vasculature is disorganized, leaky and triggers immunosuppression and tumor hypoxia, several strategies have been studied to modify tumor vasculature for cancer therapy improvement. Anti-angiogenesis was first described as a mechanism to prevent the formation of new blood vessels and prevent the oxygen supply to tumor cells, showing numerous limitations. Vascular normalization using low doses of anti-angiogenic drugs was purposed to overcome the limitations of anti-angiogenic therapies. Other strategies such as vascular promotion or the induction of high endothelial venules are being studied now to improve cancer therapy. Bone morphogenetic protein 9 (BMP9) exerts a dual effect through the activin receptor-like kinase 1 (ALK1) receptor in blood vessel maturation or activation phase of angiogenesis. Thus, it is an interesting pathway to target in combination with chemotherapies or immunotherapies. This review manuscript explores the effect of the BMP9–ALK1 pathway in tumor angiogenesis and the possible usefulness of targeting this pathway in anti-angiogenesis, vascular normalization or vascular promotion therapies.
Collapse
|
13
|
Jin M, Hou Y, Quan X, Chen L, Gao Z, Huang W. Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice. Int J Nanomedicine 2021; 16:5479-5494. [PMID: 34413645 PMCID: PMC8370882 DOI: 10.2147/ijn.s313339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background The dual-loaded nano-delivery system can realize chemotherapeutic drug and small interfering RNA (siRNA) co-loading as well as enhance the therapeutic effect of drugs on tumors through a synergistic effect, while reducing their toxic and side effects on normal tissues. Methods Previously, we developed layered smart nanoparticles (NPs) to co-deliver survivin siRNA as well as small molecule drugs for lung cancer. In this study, we used such smart NPs to co-deliver paclitaxel (PTX) and siRNA against vascular endothelial growth factor (VEGF) gene for breast cancer therapy in mice models. For the prepared NPs, characterizations such as particle size, zeta potential, gel electrophoresis imaging and in vitro stability were investigated. Then, 4T1 cells were used to evaluate the in vitro VEGF silencing capacity, tumor cell inhibitory and anti-apoptotic abilities. Finally, an orthotopic model of mouse breast cancer was established to evaluate the in vivo antitumor effects and safety properties of PTX-siRNAVEGF-NPs. Results We prepared PTX-siRNAVEGF-NPs with particle size of 85.25 nm, PDI of 0.261, and zeta potential of 5.25 mV. The NPs with VEGF siRNA effectively knocked down the expression of VEGF mRNA. Cell counting kit-8 (CCK-8) and apoptosis assays revealed that the PTX-siRNAVEGF-NPs exhibited antiproliferation effect of PTX on 4T1 cells. The in vivo anti-tumor study indicated that PTX-siRNAVEGF-NPs could exert an antitumor effect by inhibiting the formation and development of new blood vessels in tumor tissues, thereby cutting off nutrient and blood supplies required for tumor tissue growth. Both the anti-tumor efficacy and in vivo safety of the PTX-siRNAVEGF-NPs group were better than that of the PTX-NPs and siRNAVEGF-NPs groups. Conclusion The combination of PTX and VEGF siRNA exerts good antitumor effect on 4T1 tumor cells. This study provides a theoretical and practical basis for breast cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Department of Pharmacy, Yanbian University, Yanji, Jilin, 133000, People's Republic of China
| | - Xiuquan Quan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Department of Emergency Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, People's Republic of China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
14
|
Zhang G, Gong S, Pang L, Hou L, He W. Efficacy and Safety of Apatinib Treatment for Advanced Cholangiocarcinoma After Failed Gemcitabine-Based Chemotherapy: An Open-Label Phase II Prospective Study. Front Oncol 2021; 11:659217. [PMID: 34012920 PMCID: PMC8126718 DOI: 10.3389/fonc.2021.659217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose As a novel small-molecule vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor (VEGFR2-TKI), Methylsulfonic apatinib (apatinib) exhibits a specific antitumor effect in various solid tumors via inhibition of angiogenesis. The present study was performed to evaluate the clinical efficacy and safety of apatinib in the treatment of advanced cholangiocarcinoma after failed gemcitabine-based chemotherapy. Patients and Methods This was a prospective open-label phase II trial (NCT03521219). A total of 32 patients, in whom gemcitabine-based first-line chemotherapy for advanced intrahepatic cholangiocarcinoma had failed, were consecutively enrolled in a prospective, open, exploratory, and single-center clinical trial from November 2017 to November 2018. They were treated with apatinib mesylate second-line monotherapy (orally, 500 mg per day for a cycle of 28 days) until progressive disease or unacceptable toxicity. Using Response Evaluation Criteria in Solid Tumor version 1.1 (RECIST 1.1) and the Common Terminology Criteria for Adverse Events version 4.0 (NCI-CTCAE 4.0), the efficacy and adverse were evaluated, respectively. Kaplan-Meier method was used for survival analysis. Results Twenty-six patients were enrolled in full analysis set. At the end of follow-up, two patients were lost to follow-up, 24 of 26 patients in FAS were included in efficacy analyses. For the efficacy analysis set, the objective response rate (ORR) was 20.8% [95% confidence interval (CI): 9.24-40.47%] and the disease control rate (DCR) was 62.5% (95% CI: 112.86-387.14 days). One patient (4%) showed complete response (CR), 4 patients (17%) showed partial response (PR), 10 patients (41.7%) stable disease (SD), and 9 patients (37.5%) had progressive disease (PD). Meanwhile, apatinib therapy achieved the median progression-free survival PFS was 95 days (95% CI: 79.70-154.34 days), and the median OS was 250 days (95% CI: 112.86-387.14 days). Furthermore, univariate analysis revealed that age and tumor's anatomic location significantly affected PFS (P < 0.05). The most common clinically adverse events (AEs) included myelosuppression (69.2%), hypertension (57.7%), proteinuria (46.2%). The AEs were mild, mainly in grade 1 or 2, and no toxicity-induced death occurred. Conclusion Apatinib monotherapy is an effective and promising regimen for treating patients with advanced cholangiocarcinoma who experienced failure of gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Gong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Pang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei He
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Li Z, Yang Y, Liu M, Zhang C, Shao J, Hou X, Tian J, Cui Q. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomed Pharmacother 2021; 137:111393. [PMID: 33761610 DOI: 10.1016/j.biopha.2021.111393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The leaves of Ficus carica Linn. (FC) have been widely used for medicine purposes since ancient times, and its decoction is consumed as tea. Many scientific papers have been published in the literature and the researchers across the world are still exploring the health benefits of FC leaves. In this review, we have collected the literature published since 2010 in the databases: Pubmed, Scopus, Web of Science, SciFinder, Google Scholar, Baidu Scholar and local classic herbal literature. The summary of the chemical constituents in FC leaves, biological activities, toxicity studies, and clinical studies carried out on FC leaves is provided in this review. In addition, the molecular mechanisms of the active constituents in FC leaves are also comprehended. FC leaves are reported to 126 constituents out of which the polyphenolic compounds are predominant. Many scientific studies have proven the antidiabetic, antioxidant, anti-inflammatory, anticancer, anticholinesterase, antimicrobial, hepatoprotective, and renoprotective activities. Many studies have carried out to provide the insights on molecular pathways involved in the biological activities of FC leaves. The toxicity studies have suggested that FC leaves exhibit toxicity only at very high doses. We believe this review serve as a comprehensive resource for those who are interested to understand the scientific evidence that support the medicinal values of FC leaves and also the research gaps to further improve the commercial value and health benefits of FC leaves.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chenghua Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junjing Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuewen Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medicinal Sciences Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medicinal Sciences Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
16
|
Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, Almalki AH, Althobaiti YS. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Int J Mol Sci 2021; 22:1631. [PMID: 33562829 PMCID: PMC7915670 DOI: 10.3390/ijms22041631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
| | - Alanoud S. Al-Hibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia;
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khawlah K. Alrabighi
- Batterjee Medical College for Sciences and Technology, Jeddah 21577, Saudi Arabia;
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Akram Alwithenani
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Atiah H. Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmaceutical Chemistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
17
|
Hu C, Hui K, Jiang X. Effects of microRNA regulation on antiangiogenic therapy resistance in non-small cell lung cancer. Biomed Pharmacother 2020; 131:110557. [PMID: 32836072 DOI: 10.1016/j.biopha.2020.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
Antiangiogenic drugs have become a standard therapeutic regimen for advanced non-small cell lung cancer (NSCLC); however, many issues remain to be solved. Identifying specific markers to predict patient response to antiangiogenic drugs to ensure therapeutic efficacy would increase their clinical benefit. MicroRNAs (miRNAs) are involved in the process of resistance to antiangiogenic therapy, as they regulate various key signaling pathways. Therefore, miRNAs may be used as targets for reversing tumor resistance to antiangiogenic therapy. This article reviews the molecular mechanisms of antiangiogenic therapy resistance and the specific mechanisms of miRNA regulation of resistance. Signal transducer and activator of transcription 3 (STAT3) is one of multiple target genes of miRNAs, and is closely related to antiangiogenic research. Thus, it is described separately in this review article.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China
| | - Kaiyuan Hui
- Department of Oncology, Lianyungang Clinical Medical College of Nanjing Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China.
| | - Xiaodong Jiang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China; Department of Oncology, Lianyungang Clinical Medical College of Nanjing Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China.
| |
Collapse
|
18
|
Di Martile M, Gabellini C, Desideri M, Matraxia M, Farini V, Valentini E, Carradori S, Ercolani C, Buglioni S, Secci D, Andreazzoli M, Del Bufalo D, Trisciuoglio D. Inhibition of lysine acetyltransferases impairs tumor angiogenesis acting on both endothelial and tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:103. [PMID: 32498717 PMCID: PMC7273677 DOI: 10.1186/s13046-020-01604-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Background Understanding the signalling pathways involved in angiogenesis, and developing anti-angiogenic drugs are one of the major focuses on cancer research. Herein, we assessed the effect of CPTH6, a lysine acetyltransferase inhibitor and anti-tumoral compound, on angiogenesis-related properties of both endothelial and cancer cells. Methods The in vitro effect of CPTH6 on protein acetylation and anti-angiogenic properties on endothelial and lung cancer cells was evaluated via wound healing, trans-well invasion and migration, tube formation, immunoblotting and immunofluorescence. Matrigel plug assay, zebrafish embryo and mouse xenograft models were used to evaluate in vivo anti-angiogenic effect of CPTH6. Results CPTH6 impaired in vitro endothelial angiogenesis-related functions, and decreased the in vivo vascularization both in mice xenografts and zebrafish embryos. Mechanistically, CPTH6 reduced α-tubulin acetylation and induced accumulation of acetylated microtubules in the perinuclear region of endothelial cells. Interestingly, CPTH6 also affected the angiogenesis-related properties of lung cancer cells, and conditioned media derived from CPTH6-treated lung cancer cells impaired endothelial cells morphogenesis. CPTH6 also modulated the VEGF/VEGFR2 pathway, and reshaped cytoskeletal organization of lung cancer cells. Finally, anti-migratory effect of CPTH6, dependent on α-tubulin acetylation, was also demonstrated by genetic approaches in lung cancer cells. Conclusion Overall, this study indicates that α-tubulin acetylation could play a role in the anti-angiogenic effect of CPTH6 and, more in general, it adds information to the role of histone acetyltransferases in tumor angiogenesis, and proposes the inhibition of these enzymes as an antiangiogenic therapy of cancer.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Matraxia
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Valentina Farini
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristiana Ercolani
- Pathology Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Secci
- Department of Chemistry and Technologies of Drugs, "Sapienza" University, Rome, Italy
| | | | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy. .,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.
| |
Collapse
|
19
|
Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. J Cancer 2020; 11:4474-4494. [PMID: 32489466 PMCID: PMC7255381 DOI: 10.7150/jca.44313] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is a significant event in a wide range of healthy and diseased conditions. This process frequently involves vasodilation and an increase in vascular permeability. Numerous players referred to as angiogenic factors, work in tandem to facilitate the outgrowth of endothelial cells (EC) and the consequent vascularity. Conversely, angiogenic factors could also feature in pathological conditions. Angiogenesis is a critical factor in the development of tumors and metastases in numerous cancers. An increased level of angiogenesis is associated with decreased survival in breast cancer patients. Therefore, a good understanding of the angiogenic mechanism holds a promise of providing effective treatments for breast cancer progression, thereby enhancing patients' survival. Disrupting the initiation and progression of this process by targeting angiogenic factors such as vascular endothelial growth factor (Vegf)-one of the most potent member of the VEGF family- or by targeting transcription factors, such as Hypoxia-Inducible Factors (HIFs) that act as angiogenic regulators, have been considered potential treatment options for several types of cancers. The objective of this review is to highlight the mechanism of angiogenesis in diseases, specifically its role in the progression of malignancy in breast cancer, as well as to highlight the undergoing research in the development of angiogenesis-targeting therapies.
Collapse
Affiliation(s)
- Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Stephanie Wang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117. USA
| | - Chinua O. Madu
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117. USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163. USA
| |
Collapse
|
20
|
Combining transcatheter arterial embolization with iodized oil containing Apatinib inhibits HCC growth and metastasis. Sci Rep 2020; 10:2964. [PMID: 32076049 PMCID: PMC7031235 DOI: 10.1038/s41598-020-59746-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 01/21/2023] Open
Abstract
Transcatheter arterial embolization (TAE) plays an important role in clinical liver tumor therapy. However, hypoxia after TAE limit the medium-long term efficacy of TAE. Thus, in our study, we explored the treatment effect and mechanism of combining transcatheter arterial embolization with adopted iodized oil containing Apatinib on suppressing tumor growth and metastasis. We simulated the changing of tumor microenvironment before and after TAE both in vitro and in vivo models. The anti-angiogenic effect of Apatinib was explored by bioassays in human umbilical vein endothelial cells (HUVECs), including cell migration, invasion and apoptosis, tube formation, and wound healing. Further experiments showed that Apatinib inhibited tumor microangiogenesis to achieve the aims of inhibiting tumor growth and recurrence by means of down-regulating the phosphorylation of the RAF-mek-erk, PI3K-akt and P38MAPK pathways. The antitumor growth and anti-angiogenic effect of Apatinib was further validated by the animal experiment. Taken together, we concluded that Apatinib inhibits the angiogenesis and growth of liver cancer by down-regulating the PI3K-akt, RAF-mek-erk and P38MAPK pathways, and has a stronger inhibitory effect in hypoxic environments. Combining TAE with adopted iodized oil containing Apatinib has a stronger inhibitory effect in VX2 liver tumor growth and metastasis, which suggesting such combinations may provide a new target and strategy for interventional therapy of liver cancer.
Collapse
|
21
|
Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: a structural and functional perspective. eLife 2020; 9:e50740. [PMID: 31990272 PMCID: PMC6986875 DOI: 10.7554/elife.50740] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review is to pinpoint the specific features, including the weaknesses, of various tumor models, and to discuss the reasons why treatments that are efficient in murine tumor models often do not work in clinics. In a detailed comparison of transplanted and spontaneous tumor models, we focus on structure-function relationships in the tumor microenvironment. For instance, the architecture of the vascular tree, which depends on whether tumor cells have gone through epithelial-mesenchymal transition, is determinant for the extension of the spontaneous necrosis, and for the intratumoral localization of the immune infiltrate. Another key point is the model-dependent abundance of TGFβ in the tumor, which controls the variable susceptibility of different tumor models to treatments. Grounded in a historical perspective, this review provides a rationale for checking factors that will be key for the transition between preclinical murine models and clinical applications.
Collapse
Affiliation(s)
- Marion V Guerin
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| | - Veronica Finisguerra
- Ludwig Institute for Cancer Research, de Duve Institute WELBIOUCLouvainBrusselsBelgium
| | | | - Nadege Bercovici
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| | - Alain Trautmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| |
Collapse
|
22
|
Roy S, Glaser S, Chakraborty S. Inflammation and Progression of Cholangiocarcinoma: Role of Angiogenic and Lymphangiogenic Mechanisms. Front Med (Lausanne) 2019; 6:293. [PMID: 31921870 PMCID: PMC6930194 DOI: 10.3389/fmed.2019.00293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA), or cancer of the biliary epithelium is a relatively rare but aggressive form of biliary duct cancer which has a 5-year survival rate post metastasis of 2%. Although a number of risk factors are established for CCA growth and progression, a careful evaluation of the existing literature on CCA reveals that an inflammatory environment near the biliary tree is the most common causal link between the risk factors and the development of CCA. The fact that inflammation predisposes affected individuals to CCA is further bolstered by multiple observations where the presence and maintenance of an inflammatory microenvironment at the site of the primary tumor plays a significant role in the development and metastasis of CCA. In addition, mechanisms activating the tumor vasculature and enhancing angiogenesis and lymphangiogenesis significantly contribute to CCA aggressiveness and metastasis. This review aims to address the role of an inflammatory microenvironment-CCA crosstalk and will present the basic concepts, observations, and current perspectives from recent research studies in the field of tumor stroma of CCA.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
23
|
Mattheolabakis G, Mikelis CM. Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg? Front Oncol 2019; 9:1227. [PMID: 31799190 PMCID: PMC6863425 DOI: 10.3389/fonc.2019.01227] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-induced angiogenesis has been a significant focus of anti-cancer therapies for several decades. The immature and "leaky" tumor vasculature leads to significant cancer cell intravasation, increasing the metastatic potential, while the disoriented and hypo-perfused tumor vessels hamper the anti-tumor efficacy of immune cells and prevent the efficient diffusion of chemotherapeutic drugs. Therefore, tumor vascular normalization has emerged as a new treatment goal, aiming to provide a mature tumor vasculature, with higher perfusion, decreased cancer cell extravasation, and higher efficacy for anti-cancer therapies. Here we propose an overview of the nanodelivery approaches that target tumor vasculature, aiming to achieve vascular normalization. At the same time, abnormal vascular architecture and leaky tumor vessels have been the cornerstone for nanodelivery approaches through the enhanced permeability and retention (EPR) effect. Vascular normalization presents new opportunities and requirements for efficient nanoparticle delivery against the tumor cells and overall improved anti-cancer therapies.
Collapse
Affiliation(s)
- George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States
| |
Collapse
|
24
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
25
|
Pekmezci E, Türkoğlu M. Radish (Raphanus sativus) extract downregulates VEGF, TNF-α, and 5α-R2 gene expressions in HaCaT cells: possible implications for the relevant dermatoses. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Li Q, Fu X, Ge X, Tao F, Huang P, Ge M, Jin H. Antitumor Effects and Related Mechanisms of Ethyl Acetate Extracts of Polygonum perfoliatum L. Front Oncol 2019; 9:578. [PMID: 31334112 PMCID: PMC6621420 DOI: 10.3389/fonc.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Polygonum perfoliatum L. belongs to the genus Polygonaceae and has a long history to be used as a Chinese medicinal herb to reduce swelling, control body temperature, and promote detoxification. However, its anticancer activity and mechanisms of action have not been evaluated yet. In the present study, we used several cell lines and xenograft models from different cancers to demonstrate the broad-spectrum anticancer activity of P. perfoliatum L as well as its underlying mechanisms of action in vitro and in vivo. The ethyl acetate extract of P. perfoliatum L showed good anticancer activity and was further fractioned to obtain five active components, including PEA to PEE. Among these fractions, PEC showed the strongest cytotoxicities against various cancer cell lines. It was further observed that PEC inhibited cancer cell growth, arrested cells at G2 phase, and induced apoptosis in vitro and suppressed tumor growth and angiogenesis in vivo in a dose- and time-dependent manner. Furthermore, PEC decreased the expression of vascular endothelial growth factor (VEGF) and micro-vascular density (MVD) in tumor tissues in vivo. It also promoted the proliferation of T and B lymphocytes, increased the activities of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), enhanced the secretion of interleukin 2 (IL-2) by spleen cells, and raised the levels of IgG, IgG2a, and IgG2b antibodies in tumor-bearing mice in vivo, which were at least partially responsible for the anticancer activity of PEC. In summary, PEC has shown broad-spectrum anticancer activities without causing any host toxicity in vitro and in vivo and may be developed as a preventive and therapeutic agent against human cancer. Further studies are urgently needed to determine the anticancer compounds in PEC and their detailed molecular mechanisms.
Collapse
Affiliation(s)
- Qinglin Li
- Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| | | | - Xinyang Ge
- Heartland Christian School, Columbiana, OH, United States
| | - Feng Tao
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Ping Huang
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Minghua Ge
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongchuan Jin
- Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Prenen H, Mazzone M. Tumor-associated macrophages: a short compendium. Cell Mol Life Sci 2019; 76:1447-1458. [PMID: 30747250 PMCID: PMC11105658 DOI: 10.1007/s00018-018-2997-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Macrophages play an important role in tissue development and homeostasis. They serve as a nexus between adaptive and innate immunity, and employ considerable plasticity. In cancer, they play a pivotal role in chronic inflammation and tumor growth either by directly stimulating the proliferation of cancer cells or by producing angiogenic and lymphangiogenic factors. Although numerous immune cells play an important role in the tumor microenvironment, tumor-associated macrophages (TAMs) are by far the most extensively studied. A better understanding of the role of TAMs in mediating chemo- and radiotherapy resistance and suppressing immunosurveillance has led to numerous strategies targeting TAMs as an anticancer therapy either by targeting them directly or by polarizing TAMs toward a tumoricidal phenotype.
Collapse
Affiliation(s)
- Hans Prenen
- Oncology Department, University Hospital Antwerp, Edegem, Belgium.
- Center for Oncological Research, Antwerp University, Edegem, Belgium.
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of oncology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
28
|
Abstract
Research over the last decades has provided strong evidence for the pivotal role of the tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T cell-mediated immunosurveillance. Conversely, tumor blood and lymphatic vessel growth is in part regulated by the immune system, with infiltrating innate as well as adaptive immune cells providing both immunosuppressive and various angiogenic signals. Thus, tumor angiogenesis and escape of immunosurveillance are two cancer hallmarks that are tightly linked and interregulated by cell constituents from compartments secreting both chemokines and cytokines. In this review, we discuss the implication and regulation of innate and adaptive immune cells in regulating blood and lymphatic angiogenesis in tumor progression and metastases. Moreover, we also highlight novel therapeutic approaches that target the tumor vasculature as well as the immune compartment to sustain and improve therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Massimiliano Mazzone
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
| | - Gabriele Bergers
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, San Francisco, California 94158, USA;
| |
Collapse
|
29
|
Inhibition of SIRT2 limits tumour angiogenesis via inactivation of the STAT3/VEGFA signalling pathway. Cell Death Dis 2018; 10:9. [PMID: 30584257 PMCID: PMC6315023 DOI: 10.1038/s41419-018-1260-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022]
Abstract
Mounting evidence has demonstrated that angiogenesis plays an important role in tumour progression. However, the key regulators in tumour angiogenesis remain unclear. Recently, emerging reports have indicated that SIRT2 plays critical roles in proliferation, metastasis and tumourigenesis in diverse tumours. However, the function of SIRT2 in tumour angiogenesis and the mechanism underlying the regulation of angiogenesis by SIRT2 are still unknown. Here, we found that SIRT2 was upregulated in colorectal cancer tissues compared to that in normal samples and that the elevated SIRT2 was associated with poor prognosis in patients with colorectal cancer. In addition, a series of in vitro and in vivo experiments were performed to demonstrate the role of SIRT2 in tumour angiogenesis. We showed that silencing SIRT2 significantly suppressed tumour angiogenesis. Mechanistically, the knockdown of SIRT2 inhibited STAT3 phosphorylation, causing decreased secretion of VEGFA. Notably, we found that SIRT2 directly interacted with STAT3 and affected the phosphorylation of STAT3 and the translocation of phosphorylated STAT3 to the nucleus. Importantly, a series of rescue experiments suggested that the function of SIRT2 in tumour angiogenesis depends on the STAT3/VEGFA signalling pathway. Our findings provide insight into the important role of SIRT2 in colon tumour angiogenesis and suggest that SIRT2/STAT3/VEGFA might be a novel prognostic biomarker and a potential therapeutic target for patients with colorectal cancer.
Collapse
|
30
|
Kiso M, Tanaka S, Saji S, Toi M, Sato F. Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network. Int J Cancer 2018; 143:2905-2918. [PMID: 29971782 PMCID: PMC6282968 DOI: 10.1002/ijc.31645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
VEGF stimulates endothelial cells as a key molecule in angiogenesis. VEGF also works as a multifunction molecule, which targets a variety of cell members in the tumor microenvironment. We aimed to reveal VEGF-related molecular mechanisms on breast cancer cells. VEGF-knocked-out MDA-MB-231 cells (231 VEGFKOex3 ) showed rounded morphology and shorter perimeter (1.6-fold, p < 0.0001). The 231 VEGFKOex3 cells also showed impaired cell migration (2.6-fold, p = 0.002). Bevacizumab treatment did not induce any change in morphology and mobility. Soluble neuropilin-1 overexpressing MDA-MB-231 cells (231 sNRP1 ) exhibited rounded morphology and shorter perimeter (1.3-fold, p < 0.0001). The 231 sNRP1 cells also showed impaired cell migration (1.7-fold, p = 0.003). These changes were similar to that of 231 VEGFKOex3 cells. As MDA-MB-231 cells express almost no VEGFR, these results indicate that the interaction between NRP1 and long isoform of VEGF containing a NRP-binding domain regulates the morphology and migration ability of MDA-MB-231 cells. Genome-wide gene expression profiling identified ARHGAP17 as one of the target genes in the downstream of the VEGF/NRP1 signal. We also show that VEGF/NRP1 signal controls filopodia formation of the cells by modulating Cdc42 activity via ARHGAP17. Among 1,980 breast cancer cases from a public database, the ratio of VEGF and SEMA3A in primary tumors (n = 450) of hormone-receptor-negative breast cancer is associated with ARHGAP17 expression inversely, and with disease free survival. Altogether, the bevacizumab-independent VEGF/NRP1/ARHGAP17/Cdc42 regulatory network plays important roles in malignant behavior of breast cancer.
Collapse
Affiliation(s)
- Marina Kiso
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Sunao Tanaka
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shigehira Saji
- Department of Medical OncologyFukushima Medical UniversityFukushimaJapan
| | - Masakazu Toi
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Fumiaki Sato
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
31
|
Zhai X, Hong R, Fan Y, Yuan P, Wang J, Sang D, Chen J, Zhao C, Ou K, Ma F, Xu B. Analysis of the activity and safety of weekly low-dose bevacizumab-based regimens in heavily pretreated patients with metastatic breast cancer. Thorac Cancer 2018; 9:613-620. [PMID: 29575760 PMCID: PMC5928366 DOI: 10.1111/1759-7714.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 11/28/2022] Open
Abstract
Background Currently, there are no standard regimens for metastatic breast cancer patients (MBC) who have failed ≥ 3 chemotherapy treatments. The aim of this study was to assess whether weekly low‐dose bevacizumab‐based regimens were well tolerated and would improve efficacy in MBC patients who had failed numerous therapies. Methods Seventeen patients with MBC who were heavily pretreated with a median of five regimens of therapy (range 1–10) between 2012 and 2016 were included in the analysis. Bevacizumab was administered at a dose of 100 mg intravenously once a week combined with one or two types of chemotherapeutic drugs until confirmed disease progression or an intolerable adverse event was observed. Patient characteristics, objective response rate, clinical benefit rate, progression‐free survival, and toxicity were assessed. Results All 17 patients had been pretreated with taxane‐based and anthracycline‐based chemotherapy. Weekly low‐dose bevacizumab combined with one or two types of chemotherapeutic drugs, which had usually not been previously used (e.g. etoposide, irinotecan, pemetrexed, methotrexate, and nab‐paclitaxel), was administered. Three patients achieved a partial response, while one had stable disease for > 24 weeks, and the clinical benefit rate was 23.5%. Median progression‐free survival was 3.4 months (95% confidence interval 2.0–4.8). The most common hematological adverse events were neutropenia, anemia, and thrombocytopenia. Bevacizumab‐related adverse events included grade 1 bleeding (17.6%) and grade 2 hypertension (5.9%). Conclusions Weekly low‐dose bevacizumab combined with chemotherapy shows a relatively favorable clinical response and tolerable toxicity, providing a feasible option for heavily pretreated MBC patients.
Collapse
Affiliation(s)
- Xiaoyu Zhai
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Die Sang
- Department of Medical Oncology, Beijing Chaoyang District San Huan Cancer Hospital, Beijing, China
| | - Junlin Chen
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District Beijing, Beijing, China
| | - Chunying Zhao
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District Beijing, Beijing, China
| | - Kaiping Ou
- Department of Medical Oncology, Beijing Chaoyang District San Huan Cancer Hospital, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Di Pietro M, Pascuali N, Parborell F, Abramovich D. Ovarian angiogenesis in polycystic ovary syndrome. Reproduction 2018; 155:R199-R209. [PMID: 29386378 DOI: 10.1530/rep-17-0597] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS.
Collapse
Affiliation(s)
- Mariana Di Pietro
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| |
Collapse
|
33
|
Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ 2017; 25:573-588. [PMID: 29229999 PMCID: PMC5864215 DOI: 10.1038/s41418-017-0001-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022] Open
Abstract
Heme is required for cell respiration and survival. Nevertheless, its intracellular levels need to be finely regulated to avoid heme excess, which may catalyze the production of reactive oxygen species (ROS) and promote cell death. Here, we show that alteration of heme homeostasis in endothelial cells due to the loss of the heme exporter FLVCR1a, results in impaired angiogenesis. In vitro, FLVCR1a silencing in endothelial cells causes defective tubulogenesis and poor viability due to intracellular heme accumulation. Consistently, endothelial-specific Flvcr1a knockout mice show aberrant angiogenesis responsible for hemorrhages and embryonic lethality. Importantly, we demonstrate that impaired heme export leads to endothelial cell death by paraptosis and provide evidence that endoplasmic reticulum (ER) stress precedes heme-induced paraptosis. These findings highlight a crucial role for the cytosolic heme pool in the control of endothelial cell survival and in the regulation of the angiogenic process. Interfering with endothelial heme export represents a valuable model for a deeper understanding of the molecular mechanisms underlying heme-triggered paraptosis and, in the future, might provide a novel tool for the modulation of angiogenesis in pathophysiologic conditions.
Collapse
|
34
|
Effect of Emodin on Expression of VEGF-A and VEGFR_2 Genes in Human Breast Carcinoma MCF-7 Cell. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Turkoglu M, Pekmezci E, Kilic S, Dundar C, Sevinc H. Effect of Ficus carica
leaf extract on the gene expression of selected factors in HaCaT cells. J Cosmet Dermatol 2017; 16:e54-e58. [DOI: 10.1111/jocd.12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Murat Turkoglu
- Biota Laboratories R&D Center; Sancaktepe Istanbul-Turkey
| | - Erkin Pekmezci
- Biota Laboratories R&D Center; Sancaktepe Istanbul-Turkey
| | - Songul Kilic
- Biota Laboratories R&D Center; Sancaktepe Istanbul-Turkey
| | - Cihat Dundar
- Biota Laboratories R&D Center; Sancaktepe Istanbul-Turkey
| | - Hakan Sevinc
- Biota Laboratories R&D Center; Sancaktepe Istanbul-Turkey
| |
Collapse
|
36
|
Current Controversies on the Pathogenesis of Medication-Related Osteonecrosis of the Jaw. Dent J (Basel) 2016; 4:dj4040038. [PMID: 29563480 PMCID: PMC5806951 DOI: 10.3390/dj4040038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/11/2016] [Accepted: 10/21/2016] [Indexed: 11/17/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) was first reported more than a decade ago. Since then, numerous cases have been diagnosed. Currently, there are three groups of drugs related to MRONJ: bisphosphonates, denosumab and anti-angiogenic drugs. As MRONJ can lead to debilitating clinical sequels and limited effective treatment options are available, much research has been done in understanding its pathophysiology. Until now, the exact pathogenesis of MRONJ has not been fully elucidated. While history of invasive dental procedures or local trauma may be present, some cases occur spontaneously without any preceding factors. This review aims to examine and discuss the three main hypotheses for the pathogenesis of MRONJ, namely suppressed bone turnover, cellular toxicity and infection.
Collapse
|
37
|
Gebreyohannes YK, Schöffski P, Van Looy T, Wellens J, Vreys L, Cornillie J, Vanleeuw U, Aftab DT, Debiec-Rychter M, Sciot R, Wozniak A. Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations. Mol Cancer Ther 2016; 15:2845-2852. [DOI: 10.1158/1535-7163.mct-16-0224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/30/2023]
|
38
|
Abstract
A tumor-targeting drug delivery system consists of a tumor recognition moiety and a directly linked cytotoxic agent or an agent attached to a water-soluble synthetic polymer carrier through a suitable linker. Conjugation of a drug with a polymer carrier can change its solubility, toxicity, biodistribution, blood clearance and therapeutic specificity. Increased therapeutic specificity of a polymer drug can be achieved by the attachment of a targeting moiety (e.g. a lectin, protein, antibody, or peptide) that specifically interacts with receptors on the target cells. A large number of tumor-specific peptides were described in recent years. After a short introduction, some important examples of peptide-targeted conjugates will be described and discussed.
Collapse
Affiliation(s)
| | - R. POLA
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
39
|
Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:87-95. [PMID: 27155135 DOI: 10.1016/j.jep.2016.04.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper nigrum is widely used as a folk medicine including usage for pain relief, fevers, as well as an anti-cancer agent. However the crude extract of piperine free P. nigrum (PFPE), which inhibits breast cancer, and its mechanisms are still being kept secret. This research aims to elucidate the anti-cancer effects of PFPE and its mechanisms. MATERIALS AND METHODS Anti-cancer effects of PFPE were investigated in N-nitroso-N-methylurea (NMU)-induced mammary tumorigenesis rats and breast cancer cell lines MCF-7 and ZR-75-1. Furthermore, the cancer prevention effects of PFPE were investigated in rats. Western blotting was employed to study protein levels induced by PFPE. RESULTS PFPE was found to up-regulate p53, and down-regulate estrogen receptor (ER), E-cadherin (E-cad), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), c-Myc, and vascular endothelial growth factor (VEGF) levels in breast cancer rats. Moreover, PFPE decreased protein levels of E-cad, c-Myc, and VEGF in MCF-7 cells. These results suggest that PFPE can enhance breast cancer cell response to phytochemicals, then induce cell cycle arrest, and inhibit cancer cell proliferation resulting in tumor size decrease in the PFPE treated group. It further suggests that PFPE may suppress tumor cell invasion, migration, and angiogenesis. In addition, PFPE possessed cancer prevention effects through generation of reactive oxygen species (ROS) to higher cancer cell cellular stress. CONCLUSIONS PFPE may possess anti-cancer and cancer prevention effects; hence, it deserves further investigation as a novel candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Yan Deng
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Yunnan Institute of Parasitic Diseases, Puer, Yunnan 65900, PR China.
| | - Somchai Sriwiriyajan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Aman Tedasen
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Poonsit Hiransai
- Molecular Medicine and Cancer Biology Research Unit, School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Potchanapond Graidist
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
40
|
Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget 2016; 6:11295-309. [PMID: 25948774 PMCID: PMC4484457 DOI: 10.18632/oncotarget.3123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Different mechanisms of angiogenesis and vasculogenesis are involved in the development of the tumor vasculature. Among them, cancer stem cells are known to contribute to tumor vasculogenesis through their direct endothelial differentiation. Here, we investigated the effect of anti-angiogenic therapy on vasculogenesis of cancer stem cells derived from breast and renal carcinomas. We found that all the anti-angiogenic approaches impaired proliferation and survival of cancer stem cells once differentiated into endothelial cells in vitro and reduced murine angiogenesis in vivo. At variance, only VEGF-receptor inhibition using the non-specific tyrosine kinase inhibitor Sunitinib or the anti-VEGF-receptor 2 neutralizing antibody, but not VEGF blockade using Bevacizumab, impaired the process of endothelial differentiation in vitro, suggesting a VEGF-independent mechanism. In addition, tyrosine kinase inhibition by Sunitinib but not VEGF blockade using the soluble VEGF trap sFlk1 inhibited the cancer stem cell-induced vasculogenesis in vivo. Accordingly, Sunitinib but not Bevacizumab inhibited the induction of hypoxia-inducible factor pathway occurring during endothelial differentiation under hypoxia. The present results highlight a differential effect of VEGF-receptor blockade versus VEGF inhibition in tumor vascularization. VEGFR blockade inhibits the process of tumor vasculogenesis occurring during tumor hypoxia whereas the effect of VEGF inhibition appears restricted to differentiated endothelial cells.
Collapse
|
41
|
Heijmen L, Ter Voert EGW, Punt CJA, Heerschap A, Oyen WJG, Bussink J, Sweep CGJ, Laverman P, Span PN, de Geus-Oei LF, Boerman OC, van Laarhoven HWM. Monitoring hypoxia and vasculature during bevacizumab treatment in a murine colorectal cancer model. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:237-45. [PMID: 24700751 DOI: 10.1002/cmmi.1564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 01/17/2023]
Abstract
The purpose of this study was to assess the effect of bevacizumab on vasculature and hypoxia in a colorectal tumor model. Nude mice with subcutaneous LS174T tumors were treated with bevacizumab or saline. To assess tumor properties, separate groups of mice were imaged using (18) F-Fluoromisonidazole (FMISO) and (18) F-Fluorodeoxyglucose (FDG) positron emission tomography or magnetic resonance imaging before and 2, 6 and 10 days after the start of treatment. Tumors were harvested after imaging to determine hypoxia and vascular density immunohistochemically. The T2 * time increased significantly less in the bevacizumab group. FMISO uptake increased more over time in the control group. Vessel density significantly decreased in the bevacizumab-treated group. The Carbonic anhydrase 9 (CAIX) and glucose uptake transporter 1 (GLUT1) fractions were higher in bevacizumab-treated tumors. However, the hypoxic fraction showed no significant difference. Bevacizumab led to shorter T2 * times and higher GLUT1 and CAIX expression, suggesting an increase in hypoxia and a higher glycolytic rate. This could be a mechanism of resistance to bevacizumab. The increase in hypoxia, however, could not be demonstrated by pimonidazole/FMISO, possibly because distribution of these tracers is hampered by bevacizumab-induced effects on vascular permeability and perfusion.
Collapse
Affiliation(s)
- L Heijmen
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Patel V, Kelleher M, Sproat C, Kwok J, McGurk M. New cancer therapies and jaw necrosis. Br Dent J 2015; 219:203-7. [DOI: 10.1038/sj.bdj.2015.680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
|
43
|
García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A, Oleaga L, Gómez-Caamaño A, Koh DM. Imaging of Tumor Angiogenesis for Radiologists—Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 2015; 44:407-24. [DOI: 10.1067/j.cpradiol.2015.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/09/2023]
|
44
|
Santos A, Matos A. Advances in the understanding of the clinically relevant genetic pathways and molecular aspects of canine mammary tumours. Part 2: Invasion, angiogenesis, metastasis and therapy. Vet J 2015; 205:144-53. [DOI: 10.1016/j.tvjl.2015.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
|
45
|
Selim S, Al Jaouni S. Anti-inflammatory, antioxidant and antiangiogenic activities of diosgenin isolated from traditional medicinal plant, Costus speciosus (Koen ex.Retz.) Sm. Nat Prod Res 2015. [PMID: 26222585 DOI: 10.1080/14786419.2015.1065493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Costus speciosus is an important medicinal plant widely used in several indigenous medicinal formulations. The present study was conducted to evaluate the in vitro anti-inflammatory, antioxidant and antiangiogenic activities of diosgenin isolated from C. speciosus. The diosgenin was isolated from C. speciosus by HPTLC and its biological activities were studied by different protocols. The results demonstrated that LPS stimulated TNF-α generation in RAW 264.7 macrophage culture supernatant up to 3.7-fold of the control and that sample treatment (50 μg/mL) resulted in a highly significant inhibitory effect on LPS-stimulated TNF-α (p < 0.01) in a similar manner to methotrexate inhibitory effect. The tested sample possessed an effective antioxidant scavenging affinity against DPPH radicals as compared with the standard antioxidant activity of vitamin C. The results presented here may suggest that diosgenin isolated from C. speciosus possess anticancer, apoptotic and inhibitory effects on cell proliferation.
Collapse
Affiliation(s)
- Samy Selim
- a Department of Clinical Laboratory Sciences , College of Applied Medical Sciences, Aljouf University , Sakaka , Saudi Arabia.,c Faculty of Science, Microbiology and Botany Department , Suez Canal University , Ismailia , Egypt
| | - Soad Al Jaouni
- b YAJ Prophetic Medicine Application , College of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
46
|
Iagaru A, Mosci C, Mittra E, Zaharchuk G, Fischbein N, Harsh G, Li G, Nagpal S, Recht L, Gambhir SS. Glioblastoma Multiforme Recurrence: An Exploratory Study of (18)F FPPRGD2 PET/CT. Radiology 2015; 277:497-506. [PMID: 25965900 DOI: 10.1148/radiol.2015141550] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To prospectively evaluate fluorine 18 ((18)F) 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) (FPPRGD2) positron emission tomography (PET) in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS The institutional review board approved this HIPAA-compliant protocol. Written informed consent was obtained from each patient. (18)F FPPRGD2 uptake was measured semiquantitatively in the form of maximum standardized uptake values (SUV(max)) and uptake volumes before and after treatment with bevacizumab. Vital signs and laboratory results were collected before, during, and after the examinations. A nonparametric version of multivariate analysis of variance was used to assess safety outcome measures simultaneously across time points. A paired two-sample t test was performed to compare SUV(max). RESULTS A total of 17 participants (eight men, nine women; age range, 25-65 years) were enrolled prospectively. (18)F FPPRGD2 PET/computed tomography (CT), (18)F fluorodeoxyglucose (FDG) PET/CT, and brain magnetic resonance (MR) imaging were performed within 3 weeks, prior to the start of bevacizumab therapy. In eight of the 17 patients (47%), (18)F FPPRGD2 PET/CT was repeated 1 week after the start of bevacizumab therapy; six patients (35%) underwent (18)F FPPRGD2 PET/CT a third time 6 weeks after starting bevacizumab therapy. There were no changes in vital signs, electrocardiographic findings, or laboratory values that qualified as adverse events. One patient (6%) had recurrent GBM identified only on (18)F FPPRGD2 PET images, and subsequent MR images enabled confirmation of recurrence. Of the 17 patients, 14 (82%) had recurrent GBM identified on (18)F FPPRGD2 PET and brain MR images, while (18)F FDG PET enabled identification of recurrence in 13 (76%) patients. Two patients (12%) had no recurrent GBM. CONCLUSION (18)F FPPRGD2 is a safe PET radiopharmaceutical that has increased uptake in GBM lesions. Larger cohorts are required to confirm these preliminary findings.
Collapse
Affiliation(s)
- Andrei Iagaru
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Camila Mosci
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Erik Mittra
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Greg Zaharchuk
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Nancy Fischbein
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Griffith Harsh
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Gordon Li
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Seema Nagpal
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Lawrence Recht
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| | - Sanjiv Sam Gambhir
- From the Division of Nuclear Medicine and Molecular Imaging (A.I., C.M., E.M.), Department of Radiology, Neuroradiology Section (G.Z., N.F.), Division of Neurosurgery (G.H., G.L.), and Division of Neuro Oncology (S.N., L.R.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Departments of Radiology, Bioengineering, Materials Science, and Engineering, Stanford University School of Medicine, Stanford, Calif (S.S.G.)
| |
Collapse
|
47
|
Pazopanib, a Receptor Tyrosine Kinase Inhibitor, Suppresses Tumor Growth through Angiogenesis in Dedifferentiated Liposarcoma Xenograft Models. Transl Oncol 2014; 7:665-71. [PMID: 25500074 PMCID: PMC4311036 DOI: 10.1016/j.tranon.2014.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The rarity of dedifferentiated liposarcoma (DDLPS) and the lack of experimental DDLPS models limit the development of novel therapeutic strategies. Pazopanib (PAZ) is a tyrosine kinase inhibitor that is approved for the treatment of non-adipocytic advanced soft tissue sarcoma. The activity of this agent has not yet been properly explored in preclinical liposarcoma models nor in a randomized phase Ш clinical trial in this entity. The aim of the present study was to investigate whether PAZ had antitumor activity in DDLPS models in vivo. MATERIAL AND METHODS We established two patient-derived DDLPS xenograft models (UZLX-STS3 and UZLX-STS5) through implantation of tumor material from sarcoma patients in athymic nude NMRI mice. An animal model of the SW872 liposarcoma cell line was also used. To investigate the efficacy of PAZ in vivo, mice bearing tumors were treated for 2 weeks with sterile water, doxorubicin (1.2 mg/kg, intraperitoneally, twice per week), PAZ [40 mg/kg, orally (p.o.), twice per day], or PAZ plus doxorubicin (same schedules as for single treatments). RESULTS Patient-derived xenografts retained the histologic and molecular features of DDLPS. PAZ significantly delayed tumor growth by decreasing proliferation and inhibited angiogenesis in all models tested. Combining the angiogenesis inhibitor with an anthracycline did not show superior efficacy. CONCLUSION These results suggest that PAZ has potential antitumor activity in DDLPS primarily through antiangiogenic effects and therefore should be explored in clinical trials.
Collapse
|
48
|
Kristensen TB, Knutsson MLT, Wehland M, Laursen BE, Grimm D, Warnke E, Magnusson NE. Anti-vascular endothelial growth factor therapy in breast cancer. Int J Mol Sci 2014; 15:23024-41. [PMID: 25514409 PMCID: PMC4284752 DOI: 10.3390/ijms151223024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 12/31/2022] Open
Abstract
Neo-angiogenesis is a critical process for tumor growth and invasion and has become a promising target in cancer therapy. This manuscript reviews three currently relevant anti-angiogenic agents targeting the vascular endothelial growth factor system: bevacizumab, ramucirumab and sorafenib. The efficacy of anti-angiogenic drugs in adjuvant therapy or as neo-adjuvant treatment has been estimated in clinical trials of advanced breast cancer. To date, the overall observed clinical improvements are unconvincing, and further research is required to demonstrate the efficacy of anti-angiogenic drugs in breast cancer treatments. The outcomes of anti-angiogenic therapy have been highly variable in terms of tumor response. New methods are needed to identify patients who will benefit from this regimen. The development of biomarkers and molecular profiling are relevant research areas that may strengthen the ability to focus anti-angiogenic therapy towards suitable patients, thereby increase the cost-effectiveness, currently estimated to be inadequate.
Collapse
Affiliation(s)
- Tina Bøgelund Kristensen
- Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C 8000, Denmark.
| | - Malin L T Knutsson
- Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C 8000, Denmark.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany.
| | - Britt Elmedal Laursen
- Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, Aarhus C 8000, Denmark.
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C 8000, Denmark.
| | - Elisabeth Warnke
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany.
| | - Nils E Magnusson
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Aarhus C 8000, Denmark.
| |
Collapse
|
49
|
Iagaru A, Mosci C, Shen B, Chin FT, Mittra E, Telli ML, Gambhir SS. 18F-FPPRGD2 PET/CT: Pilot Phase Evaluation of Breast Cancer Patients. Radiology 2014; 273:549-59. [DOI: 10.1148/radiol.14140028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Li R, Li X, Ning S, Ye J, Han L, Kang C, Li X. Identification of a core miRNA-pathway regulatory network in glioma by therapeutically targeting miR-181d, miR-21, miR-23b, β-Catenin, CBP, and STAT3. PLoS One 2014; 9:e101903. [PMID: 25007077 PMCID: PMC4090169 DOI: 10.1371/journal.pone.0101903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/12/2014] [Indexed: 11/24/2022] Open
Abstract
The application of microRNAs (miRNAs) in the therapeutics of glioma and other human diseases is an area of intense interest. However, it’s still a great challenge to interpret the functional consequences of using miRNAs in glioma therapy. Here, we examined paired deep sequencing expression profiles of miRNAs and mRNAs from human glioma cell lines after manipulating the levels of miRNAs miR-181d, -21, and -23b, as well as transcriptional regulators β-catenin, CBP, and STAT3. An integrated approach was used to identify functional miRNA-pathway regulatory networks (MPRNs) responding to each manipulation. MiRNAs were identified to regulate glioma related biological pathways collaboratively after manipulating the level of either post-transcriptional or transcriptional regulators, and functional synergy and crosstalk was observed between different MPRNs. MPRNs responsive to multiple interventions were found to occupy central positions in the comprehensive MPRN (cMPRN) generated by integrating all the six MPRNs. Finally, we identified a core module comprising 14 miRNAs and five pathways that could predict the survival of glioma patients and represent potential targets for glioma therapy. Our results provided novel insight into miRNA regulatory mechanisms implicated in therapeutic interventions and could offer more inspiration to miRNA-based glioma therapy.
Collapse
Affiliation(s)
- Ronghong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingrun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
- * E-mail: (XL); (CK)
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- * E-mail: (XL); (CK)
| |
Collapse
|