1
|
Lee SH, Cho S, Lee JY, Kim JY, Kim S, Jeong M, Hong JY, Kim GY, Lee SW, Kim E, Kim J, Kim JW, Hwa J, Kim WH. Methionine sulfoxide reductase B2 protects against cardiac complications in diabetes mellitus. Diabetol Metab Syndr 2024; 16:149. [PMID: 38970135 PMCID: PMC11225187 DOI: 10.1186/s13098-024-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Diabetes mellitus (DM) is a progressive, chronic metabolic disorder characterized by high oxidative stress, which can lead to cardiac damage. Methionine sulfoxylation (MetO) of proteins by excessive reactive oxygen species (ROS) can impair the basic functionality of essential cellular proteins, contributing to heart failure. Methionine sulfoxide reductase B2 (MsrB2) can reverse oxidation induced MetO in mitochondrial proteins, so we investigated its role in diabetic cardiomyopathy. We observed that DM-induced heart damage in diabetic mice model is characterized by increased ROS, increased protein MetO with mitochondria structural pathology, and cardiac fibrosis. In addition, MsrB2 was significantly increased in mouse DM cardiomyocytes, supporting the induction of a protective process. Further, MsrB2 directly induces Parkin and LC3 activation (mitophagy markers) in cardiomyocytes. In MsrB2, knockout mice displayed abnormal electrophysiological function, as determined by ECG analysis. Histological analysis confirmed increased cardiac fibrosis and disrupted cardiac tissue in MsrB2 knockout DM mice. We then corroborated our findings in human DM heart samples. Our study demonstrates that increased MsrB2 expression in the heart protects against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
- Division of Endocrine and Kidney Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Suyeon Cho
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jong Youl Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Myoungho Jeong
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jung Yeon Hong
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Geun-Young Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunmi Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jihwa Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jee Woong Kim
- Division of Research Support, Department of Research Planning and Coordination, Korea National Institute of Health, Cheongju, Republic of Korea
| | - John Hwa
- Yale Cardiovascular Research Center, New Haven, USA.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Nakai A, Fukushima Y, Yamamoto A, Amatsu Y, Chen X, Nishigori M, Yoshioka Y, Kaneko M, Koshiba T, Watanabe T. Increased ROS levels in mitochondrial outer membrane protein Mul1-deficient oocytes result in abnormal preimplantation embryogenesis. FEBS Lett 2024; 598:1740-1752. [PMID: 38639871 DOI: 10.1002/1873-3468.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Reactive oxygen species (ROS) are associated with oocyte maturation inhibition, and N-acetyl-l-cysteine (NAC) partially reduces their harmful effects. Mitochondrial E3 ubiquitin ligase 1 (Mul1) localizes to the mitochondrial outer membrane. We found that female Mul1-deficient mice are infertile, and their oocytes contain high ROS concentrations. After fertilization, Mul1-deficient embryos showed a DNA damage response (DDR) and abnormal preimplantation embryogenesis, which was rescued by NAC addition and ROS depletion. These observations clearly demonstrate that loss of Mul1 in oocytes increases ROS concentrations and triggers DDR, resulting in abnormal preimplantation embryogenesis. We conclude that manipulating the mitochondrial ROS levels in oocytes may be a potential therapeutic approach to target infertility.
Collapse
Affiliation(s)
- Ann Nakai
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Yuki Fukushima
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Ayaka Yamamoto
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Yuki Amatsu
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Xiaoyan Chen
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | | | - Yukino Yoshioka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Japan
| |
Collapse
|
3
|
Wang B, Qian W, Chen K, Li M, Du C. Knocking Down PIAS3 Reduces H 2O 2-induced Oxidative Stress Injury in HT22 Cells. Cell Biochem Biophys 2024; 82:1381-1387. [PMID: 38733503 DOI: 10.1007/s12013-024-01292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is involved in the pathological processes of many neurodegenerative diseases. Protein modification by small ubiquitin-like modifiers (SUMOs) has been implicated in oxidative stress injury. By conjugating SUMOs to their selective protein substrates, SUMO ligases play critical roles in regulating functions of proteins involved in oxidative stress injury. In this study, we screened siRNAs to knockdown the SUMO ligase PIAS3 to assess its role in H2O2-induced injury in HT22 cells. H2O2 stimulation increased total protein SUMOylation, facilitated intracellular reactive oxygen species (ROS) release, increased cleaved caspase-3 levels, promoted p38 and JNK activation (phosphorylation), upregulated apoptosis, and decreased cell viability. The siRNA against PIAS3 329-347 (siPIAS3-329) markedly downregulated the protein expression of PIAS3 and reversed these effects, whereas siNC (negative control) had no effect. Our findings demonstrate that PIAS3-mediated SUMOylation facilitates oxidative stress injury and p38/JNK-mediated cell apoptosis and that PIAS3 is a potential target to protect against oxidative stress injury.
Collapse
Affiliation(s)
- Baixue Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Wenxin Qian
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Kaiyue Chen
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Meng Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Caiping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
4
|
Li S, Chen F, Wei X, Yuan L, Qin J, Li R, Chen B. CpSmt3, an ortholog of small ubiquitin-like modifier, is essential for growth, organelle function, virulence, and antiviral defense in Cryphonectria parasitica. Front Microbiol 2024; 15:1391855. [PMID: 38784801 PMCID: PMC11111931 DOI: 10.3389/fmicb.2024.1391855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction SUMOylation is an important post-translational modification that regulates the expression, localization, and activity of substrate proteins, thereby participating in various important cellular processes such as the cell cycle, cell metabolism, gene transcription, and antiviral activity. However, the function of SUMOylation in phytopathogenic fungi has not yet been adequately explored. Methods A comprehensive analysis composed of proteomics, affinity pull-down, molecular and cellular approaches was performed to explore the roles of SUMOylation in Cryphonectria parasitica, the fungal pathogen responsible for chestnut blight. Results and discussion CpSmt3, the gene encoding the SUMO protein CpSmt3 in C. parasitica was identified and characterized. Deletion of the CpSmt3 gene resulted in defects in mycelial growth and hyphal morphology, suppression of sporulation, attenuation of virulence, weakening of stress tolerance, and elevated accumulation of hypovirus dsRNA. The ΔCpSmt3 deletion mutant exhibited an increase in mitochondrial ROS, swollen mitochondria, excess autophagy, and thickened cell walls. About 500 putative SUMO substrate proteins were identified by affinity pull-down, among which many were implicated in the cell cycle, ribosome, translation, and virulence. Proteomics and SUMO substrate analyses further revealed that deletion of CpSmt3 reduced the accumulation of CpRho1, an important protein that is involved in TOR signal transduction. Silencing of CpRho1 resulted in a phenotype similar to that of ΔCpSmt3, while overexpression of CpRho1 could partly rescue some of the prominent defects in ΔCpSmt3. Together, these findings demonstrate that SUMOylation by CpSmt3 is vitally important and provide new insights into the SUMOylation-related regulatory mechanisms in C. parasitica.
Collapse
Affiliation(s)
- Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiayao Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Jing J, Wang J, Xiang X, Yin S, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Selenomethionine alleviates chronic heat stress-induced breast muscle injury and poor meat quality in broilers via relieving mitochondrial dysfunction and endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:363-375. [PMID: 38362514 PMCID: PMC10867585 DOI: 10.1016/j.aninu.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/17/2024]
Abstract
In the present study, the chronic heat stress (CHS) broiler model was developed to investigate the potential protection mechanism of organic selenium (selenomethionine, SeMet) on CHS-induced skeletal muscle growth retardation and poor meat quality. Four hundred Arbor Acres male broilers (680 ± 70 g, 21 d old) were grouped into 5 treatments with 8 replicates of 10 broilers per replicate. Broilers in the control group were raised in a thermoneutral environment (22 ± 2 °C) and fed with a basal diet. The other four treatments were exposed to hyperthermic conditions (33 ± 2 °C, 24 h in each day) and fed on the basal diet supplied with SeMet at 0.0, 0.2, 0.4, and 0.6 mg Se/kg, respectively, for 21 d. Results showed that CHS reduced (P < 0.05) the growth performance, decreased (P < 0.05) the breast muscle weight and impaired the meat quality of breast muscle in broilers. CHS induced protein metabolic disorder in breast muscle, which increased (P < 0.05) the expression of caspase 3, caspase 8, caspase 9 and ubiquitin proteasome system related genes, while decreased the protein expression of P-4EBP1. CHS also decreased the antioxidant capacity and induced mitochondrial stress and endoplasmic reticulum (ER) stress in breast muscle, which increased (P < 0.05) the ROS levels, decreased the concentration of ATP, increased the protein expression of HSP60 and CLPX, and increased (P < 0.05) the expression of ER stress biomarkers. Dietary SeMet supplementation linearly increased (P < 0.05) breast muscle Se concentration and exhibited protective effects via up-regulating the expression of the selenotranscriptome and several key selenoproteins, which increased (P < 0.05) body weight, improved meat quality, enhanced antioxidant capacity and mitigated mitochondrial stress and ER stress. What's more, SeMet suppressed protein degradation and improved protein biosynthesis though inhibiting the caspase and ubiquitin proteasome system and promoting the mTOR-4EBP1 pathway. In conclusion, dietary SeMet supplementation increases the expression of several key selenoproteins, alleviates mitochondrial dysfunction and ER stress, improves protein biosynthesis, suppresses protein degradation, thus increases the body weight and improves meat quality of broilers exposed to CHS.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoyu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
6
|
Shi L, Shangguan J, Lu Y, Rong J, Yang Q, Yang Y, Xie C, Shu X. ROS-mediated up-regulation of SAE1 by Helicobacter pylori promotes human gastric tumor genesis and progression. J Transl Med 2024; 22:148. [PMID: 38351014 PMCID: PMC10863176 DOI: 10.1186/s12967-024-04913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.
Collapse
Affiliation(s)
- Liu Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, No.16, Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Jianfang Shangguan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Ying Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Qinyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yihan Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Cell Mol Life Sci 2024; 81:58. [PMID: 38279024 PMCID: PMC10817850 DOI: 10.1007/s00018-023-05035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Collapse
Affiliation(s)
- Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Sofia Perdikari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
8
|
Sánchez-Quintero MJ, Delgado J, Martín Chaves L, Medina-Vera D, Murri M, Becerra-Muñoz VM, Estévez M, Crespo-Leiro MG, Paz López G, González-Jiménez A, A. G. Ranea J, Queipo-Ortuño MI, Plaza-Andrades I, Rodríguez-Capitán J, Pavón-Morón FJ, Jiménez-Navarro MF. Multi-Omics Approach Reveals Prebiotic and Potential Antioxidant Effects of Essential Oils from the Mediterranean Diet on Cardiometabolic Disorder Using Humanized Gnotobiotic Mice. Antioxidants (Basel) 2023; 12:1643. [PMID: 37627638 PMCID: PMC10451832 DOI: 10.3390/antiox12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils sourced from herbs commonly used in the Mediterranean diet have demonstrated advantageous attributes as nutraceuticals and prebiotics within a model of severe cardiometabolic disorder. The primary objective of this study was to assess the influences exerted by essential oils derived from thyme (Thymus vulgaris) and oregano (Origanum vulgare) via a comprehensive multi-omics approach within a gnotobiotic murine model featuring colonic microbiota acquired from patients diagnosed with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM). Our findings demonstrated prebiotic and potential antioxidant effects elicited by these essential oils. We observed a substantial increase in the relative abundance of the Lactobacillus genus in the gut microbiota, accompanied by higher levels of short-chain fatty acids and a reduction in trimethylamine N-oxide levels and protein oxidation in the plasma. Moreover, functional enrichment analysis of the cardiac tissue proteome unveiled an over-representation of pathways related to mitochondrial function, oxidative stress, and cardiac contraction. These findings provide compelling evidence of the prebiotic and antioxidant actions of thyme- and oregano-derived essential oils, which extend to cardiac function. These results encourage further investigation into the promising utility of essential oils derived from herbs commonly used in the Mediterranean diet as potential nutraceutical interventions for mitigating chronic diseases linked to CAD and T2DM.
Collapse
Grants
- PI-0170-2018, PI-0131/2020, and PI-0245-2021 Consejería de Salud y Familias-Junta de Andalucía and European Regional Development Funds/European Social Fund
- UMA20-FEDERJA-074 Universidad de Málaga, Consejería de Economía, Conocimiento, Empresas y Universidad-Junta de Andalucía and ERDF/ESF
- ProyExcel_01009 Consejería de Transformación Económica, Industria, Conocimiento y Universidades-Junta de Andalucía and ERDF/ESF
- SEC/FEC-INV-BAS 23 Sociedad Española de Cardiología and Fundación Andaluza de Cardiología
- PT20/00101 Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España
- CB16/11/00360 CIBERCV-Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España and ERDF/ESF
- Q-2918001-E Cátedra de Terapias Avanzadas en Patología Cardiovascular, Universidad de Málaga
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josué Delgado
- Higiene y Salud Alimentaria, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - Laura Martín Chaves
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Dina Medina-Vera
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Clinical Management Unit of Mental Health, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mora Murri
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Clinical Management Unit of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Víctor M. Becerra-Muñoz
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - María G. Crespo-Leiro
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Service of Cardiology, Complexo Hospitalario Universitario A Coruña (CHUAC), University of A Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Guillermo Paz López
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Andrés González-Jiménez
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Juan A. G. Ranea
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Málaga, 29010 Málaga, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemistry, and Immunology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Isaac Plaza-Andrades
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Francisco Javier Pavón-Morón
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Manuel F. Jiménez-Navarro
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
9
|
Huang MC, Tzeng SL, Chen WJ, Chen SL, Ding YR, Lee CI, Lee MS, Lee TH. SUMO1 and Defective Spermatozoa Correlate with Endogenous Hydrogen Peroxide and Live Birth Outcome in Intrauterine Insemination Cycles for Unexplained Infertility. Int J Mol Sci 2023; 24:12775. [PMID: 37628954 PMCID: PMC10454912 DOI: 10.3390/ijms241612775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the correlation between hydrogen peroxide (H2O2), small ubiquitin-like modifier molecules (SUMO), and pregnancy outcomes in couples with unexplained infertility (UI) undergoing intrauterine insemination (IUI) treatment. We prospectively collected semen samples from 56 couples with UI and divided the spermatozoa into motile and immotile fractions by density gradient centrifugation (DSC). Immunofluorescence staining was used to examine the immunostaining and localization of nuclear pore complex (NPC), SUMO1, and SUMO2/3 in spermatozoa. We detected H2O2 levels by chemiluminescence methods. We found that H2O2 levels correlated with NPC (neck) (r = 0.400) and NPC (tail) (r = 0.473) in motile sperm fractions. In immotile fractions, H2O2 positively correlated with NPC (tail) (r = 0.431) and SUMO1 (neck) (r = 0.282). Furthermore, the positive NPC (tail) group had a significantly lower live birth rate than the negative NPC group (17.9% = 5/28 vs. 42.9% = 12/28). In conclusion, H2O2 positively correlated with SUMO1 (neck) and NPC (tail) in human spermatozoa. The DSC may partially eliminate defective spermatozoa (positive NPC staining); however, if defective spermatozoa remain in the motile fraction, this scenario is associated with a low live birth rate following IUI treatment.
Collapse
Affiliation(s)
- Ming-Chao Huang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Hsinchu 30071, Taiwan;
- MacKay Junior College of Medicine, Nursing, and Management, Taipei 23741, Taiwan
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.T.); (Y.-R.D.); (M.-S.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Wen-Jung Chen
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (W.-J.C.); (S.-L.C.)
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
| | - Sung-Lang Chen
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; (W.-J.C.); (S.-L.C.)
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
| | - You-Ren Ding
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.T.); (Y.-R.D.); (M.-S.L.)
| | - Chun-I Lee
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung 40602, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.T.); (Y.-R.D.); (M.-S.L.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung 40602, Taiwan
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.T.); (Y.-R.D.); (M.-S.L.)
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan;
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung 40602, Taiwan
| |
Collapse
|
10
|
Huang D, Zhong G, Zhang S, Jiang K, Wang C, Wu J, Wang B. Trichome-Specific Analysis and Weighted Gene Co-Expression Correlation Network Analysis (WGCNA) Reveal Potential Regulation Mechanism of Artemisinin Biosynthesis in Artemisia annua. Int J Mol Sci 2023; 24:ijms24108473. [PMID: 37239820 DOI: 10.3390/ijms24108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Trichomes are attractive cells for terpenoid biosynthesis and accumulation in Artemisia annua. However, the molecular process underlying the trichome of A. annua is not yet fully elucidated. In this study, an analysis of multi-tissue transcriptome data was performed to examine trichome-specific expression patterns. A total of 6646 genes were screened and highly expressed in trichomes, including artemisinin biosynthetic genes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 monooxygenase (CYP71AV1). Mapman and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that trichome-specific genes were mainly enriched in lipid metabolism and terpenoid metabolism. These trichome-specific genes were analyzed by a weighted gene co-expression network analysis (WGCNA), and the blue module linked to terpenoid backbone biosynthesis was determined. Hub genes correlated with the artemisinin biosynthetic genes were selected based on TOM value. ORA, Benzoate carboxyl methyltransferase (BAMT), Lysine histidine transporter-like 8 (AATL1), Ubiquitin-like protease 1 (Ulp1) and TUBBY were revealed as key hub genes induced by methyl jasmonate (MeJA) for regulating artemisinin biosynthesis. In summary, the identified trichome-specific genes, modules, pathways and hub genes provide clues and shed light on the potential regulatory mechanisms of artemisinin biosynthesis in trichomes in A. annua.
Collapse
Affiliation(s)
- Dawei Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guixian Zhong
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyang Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Reduced SUMOylation of Nrf2 signaling contributes to its inhibition induced by amyloid-β. Neurosci Lett 2023; 799:137118. [PMID: 36764479 DOI: 10.1016/j.neulet.2023.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Oxidative stress induced by amyloid-β (Aβ) has been considered as one of the important mechanisms in the development of Alzheimer disease (AD). The inhibition of endogenous antioxidant Nrf2 signaling in the brain of AD patients aggravates the oxidative damage, however, the causes of Nrf2 signaling inhibition are unclear. It is reported that smallubiquitin-like modification (SUMOylation) is involved in the process of oxidative injury. To investigate whether and how SUMOylation was involved in the inhibition of Nrf2 signaling pathway induced by Aβ, Aβ intrahippocampal injection rat model and Aβ treated SH-SY5Y cell model were used in the current study. Small interfering RNA and lentivirus transfection were used to intervene SUMOylation, and the level of SUMOylation was assessed by immunoprecipitation. The present in vivo and in vitro studies revealed that SUMOylation levels of Nrf2 and MafF, as well as the overall SUMOylation level were reduced under long-term Aβ insult. Meanwhile, the binding of Nrf2 to MafF was decreased, accompanied by low interaction with antioxidant response element (ARE) area of gene. Down-regulation of SUMO protein exacerbated the Aβ-induced inhibition of Nrf2 signaling pathway, while, enhancement of SUMOylation of Nrf2 and MafF by overexpression of Ubc9 reversed this process. These results imply that reduction in SUMOylation induced by Aβ contributed to the inhibition of Nrf2 signaling, and SUMOylation might be a potential therapeutic target of AD.
Collapse
|
12
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
13
|
Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells. Nat Commun 2022; 13:5726. [PMID: 36175410 PMCID: PMC9522831 DOI: 10.1038/s41467-022-33147-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/05/2022] [Indexed: 01/12/2023] Open
Abstract
Membrane-less organelles are condensates formed by phase separation whose functions often remain enigmatic. Upon oxidative stress, PML scaffolds Nuclear Bodies (NBs) to regulate senescence or metabolic adaptation. PML NBs recruit many partner proteins, but the actual biochemical mechanism underlying their pleiotropic functions remains elusive. Similarly, PML role in embryonic stem cell (ESC) and retro-element biology is unsettled. Here we demonstrate that PML is essential for oxidative stress-driven partner SUMO2/3 conjugation in mouse ESCs (mESCs) or leukemia, a process often followed by their poly-ubiquitination and degradation. Functionally, PML is required for stress responses in mESCs. Differential proteomics unravel the KAP1 complex as a PML NB-dependent SUMO2-target in arsenic-treated APL mice or mESCs. PML-driven KAP1 sumoylation enables activation of this key epigenetic repressor implicated in retro-element silencing. Accordingly, Pml-/- mESCs re-express transposable elements and display 2-Cell-Like features, the latter enforced by PML-controlled SUMO2-conjugation of DPPA2. Thus, PML orchestrates mESC state by coordinating SUMO2-conjugation of different transcriptional regulators, raising new hypotheses about PML roles in cancer.
Collapse
|
14
|
Ezzine C, Loison L, Montbrion N, Bôle-Feysot C, Déchelotte P, Coëffier M, Ribet D. Fatty acids produced by the gut microbiota dampen host inflammatory responses by modulating intestinal SUMOylation. Gut Microbes 2022; 14:2108280. [PMID: 35978476 PMCID: PMC9466625 DOI: 10.1080/19490976.2022.2108280] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota produces a wide variety of metabolites, which interact with intestinal cells and contribute to host physiology. The effect of gut commensal bacteria on host protein SUMOylation, an essential ubiquitin-like modification involved in various intestinal functions, remains, however, unknown. Here, we show that short chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) produced by the gut microbiota increase protein SUMOylation in intestinal cells in a pH-dependent manner. We demonstrate that these metabolites inactivate intestinal deSUMOylases and promote the hyperSUMOylation of nuclear matrix-associated proteins. We further show that BCFAs inhibit the NF-κB pathway, decrease pro-inflammatory cytokine expression, and promote intestinal epithelial integrity. Together, our results reveal that fatty acids produced by gut commensal bacteria regulate intestinal physiology by modulating SUMOylation and illustrate a new mechanism of dampening of host inflammatory responses triggered by the gut microbiota.
Collapse
Affiliation(s)
- Chaima Ezzine
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Léa Loison
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nadine Montbrion
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Christine Bôle-Feysot
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Pierre Déchelotte
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France,Department of Nutrition, Rouen University Hospital, CHU Rouen, Rouen, France
| | - Moïse Coëffier
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France,Department of Nutrition, Rouen University Hospital, CHU Rouen, Rouen, France
| | - David Ribet
- Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, Rouen, France,Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France,CONTACT David Ribet Université de Rouen Normandie, INSERM UMR 1073, Nutrition, Inflammation et axe Microbiote-Intestin-Cerveau, UFR Santé - 22 Boulevard Gambetta, 76000Rouen, France; Université de Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
15
|
Singhal J, Madan E, Chaurasiya A, Srivastava P, Singh N, Kaushik S, Kahlon AK, Maurya MK, Marothia M, Joshi P, Ranganathan A, Singh S. Host SUMOylation Pathway Negatively Regulates Protective Immune Responses and Promotes Leishmania donovani Survival. Front Cell Infect Microbiol 2022; 12:878136. [PMID: 35734580 PMCID: PMC9207379 DOI: 10.3389/fcimb.2022.878136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is one of the post-translational modifications that have recently been described as a key regulator of various cellular, nuclear, metabolic, and immunological processes. The process of SUMOylation involves the modification of one or more lysine residues of target proteins by conjugation of a ubiquitin-like, small polypeptide known as SUMO for their degradation, stability, transcriptional regulation, cellular localization, and transport. Herein, for the first time, we report the involvement of the host SUMOylation pathway in the process of infection of Leishmania donovani, a causative agent of visceral leishmaniasis. Our data revealed that infection of L. donovani to the host macrophages leads to upregulation of SUMOylation pathway genes and downregulation of a deSUMOylating gene, SENP1. Further, to confirm the effect of the host SUMOylation on the growth of Leishmania, the genes associated with the SUMOylation pathway were silenced and parasite load was analyzed. The knockdown of the SUMOylation pathway led to a reduction in parasitic load, suggesting the role of the host SUMOylation pathway in the disease progression and parasite survival. Owing to the effect of the SUMOylation pathway in autophagy, we further investigated the status of host autophagy to gain mechanistic insights into how SUMOylation mediates the regulation of growth of L. donovani. Knockdown of genes of host SUMOylation pathway led to the reduction of the expression levels of host autophagy markers while promoting autophagosome–lysosome fusion, suggesting SUMOylation-mediated autophagy in terms of autophagy initiation and autophagy maturation during parasite survival. The levels of reactive oxygen species (ROS) generation, nitric oxide (NO) production, and pro-inflammatory cytokines were also elevated upon the knockdown of genes of the host SUMOylation pathway during L. donovani infection. This indicates the involvement of the SUMOylation pathway in the modulation of protective immune responses and thus favoring parasite survival. Taken together, the results of this study indicate the hijacking of the host SUMOylation pathway by L. donovani toward the suppression of host immune responses and facilitation of host autophagy to potentially facilitate its survival. Targeting of SUMOylation pathway can provide a starting point for the design and development of novel therapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Jhalak Singhal
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | | | | | | | | | | | | | | | | | | | - Anand Ranganathan
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | - Shailja Singh
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| |
Collapse
|
16
|
Deng NH, Zhou ZX, Liu HT, Tian Z, Wu ZF, Liu XY, Xiong WH, Wang Z, Jiang ZS. TRIMs: Generalists Regulating the NLRP3 Inflammasome Signaling Pathway. DNA Cell Biol 2022; 41:262-275. [PMID: 35180350 PMCID: PMC8972007 DOI: 10.1089/dna.2021.0943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a double-edged sword. The moderate inflammatory response is a fundamental defense mechanism produced by the body's resistance to dangerous stimuli and a repair process of the body itself. Increasing studies have confirmed that the overactivation of the inflammasome is involved in the occurrence and development of inflammatory diseases. Strictly controlling the overactivation of the inflammasome and preventing excessive inflammatory response have always been the research focus on inflammatory diseases. However, the endogenous regulatory mechanism of inflammasome is not completely clear. The tripartite motif (TRIM) protein is one of the members of E3 ligases in the process of ubiquitination. The universality and importance of the functions of TRIM members are recognized, including the regulation of inflammatory response. This article will focus on research on the relationship between TRIMs and NLRP3 Inflammasome, which may help us make some references for future related research and the discovery of treatment methods.
Collapse
Affiliation(s)
- Nian-Hua Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zhen Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Ze-Fan Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Xi-Yan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China.,Address correspondence to: Zhi-Sheng Jiang, PhD, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| |
Collapse
|
17
|
Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. BIOLOGY 2022; 11:biology11020155. [PMID: 35205022 PMCID: PMC8869449 DOI: 10.3390/biology11020155] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Collapse
|
18
|
Velatooru LR, Abe RJ, Imanishi M, Gi YJ, Ko KA, Heo KS, Fujiwara K, Le NT, Kotla S. Disturbed flow-induced FAK K152 SUMOylation initiates the formation of pro-inflammation positive feedback loop by inducing reactive oxygen species production in endothelial cells. Free Radic Biol Med 2021; 177:404-418. [PMID: 34619327 PMCID: PMC8664087 DOI: 10.1016/j.freeradbiomed.2021.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Focal adhesion kinase (FAK) activation plays a crucial role in vascular diseases. In endothelial cells, FAK activation is involved in the activation of pro-inflammatory signaling and the progression of atherosclerosis. Disturbed flow (D-flow) induces endothelial activation and senescence, but the exact role of FAK in D-flow-induced endothelial activation and senescence remains unclear. The objective of this study is to investigate the role of FAK SUMOylation in D-flow-induced endothelial activation and senescence. The results showed that D-flow induced reactive oxygen species (ROS) production via NADPH oxidase activation and activated a redox-sensitive kinase p90RSK, leading to FAK activation by upregulating FAK K152 SUMOylation and the subsequent Vav2 phosphorylation, which in turn formed a positive feedback loop by upregulating ROS production. This feedback loop played a crucial role in regulating endothelial activation and senescence. D-flow-induced endothelial activation and senescence were significantly inhibited by mutating a FAK SUMOylation site lysine152 to arginine. Collectively, we concluded that FAK K152 SUMOylation plays a key role in D-flow-induced endothelial activation and senescence by forming a positive feedback loop through ROS production.
Collapse
Affiliation(s)
- Loka Reddy Velatooru
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, Texas, USA
| | - Rei J Abe
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, Texas, USA
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Kyung-Sun Heo
- Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, Texas, USA.
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA.
| |
Collapse
|
19
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
20
|
Cao W, Gao J, Zhang Y, Li A, Yu P, Cao N, Liang J, Tang X. Autophagy up-regulated by MEK/ERK promotes the repair of DNA damage caused by aflatoxin B1. Toxicol Mech Methods 2021; 32:87-96. [PMID: 34396909 DOI: 10.1080/15376516.2021.1968985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, exerts its cytotoxicity by increasing the oxidative damage of target organs, especially the liver. In vivo and in vitro experiments were carried out to elucidate the toxic mechanism of AFB1. The results of MTT, cloning-formation, flow cytometry, immunocytochemistry, Reverse transcription PCR (RT-PCR) and western blot showed that AFB1 activated NOX2 gp91 phox, inhibited proliferation and migration, and blocked cell cycle at G0/G1 period of HHL-5 cells. Autophagy promoted the repair of NOX2-dependent DNA damage. NOX2/gp91 phox mainly activates MEK/ERK pathway and then up-regulates autophagy. In vivo experiments have shown that AFB1 (0.75 mg/kg daily orally, 4 weeks) had no significant changes in the size and shape of the liver in mice. However, these treatments lead to structural abnormalities of hepatocytes and DNA damage. In summary, AFB1 caused intracellular oxidative stress and DNA damage, NOX2/gp91-phox activates the MEK/ERK pathway, and upregulated autophagy to promote the repair of DNA damage. We concluded that by increasing the level of autophagy, the ability of anti-AFB1 toxicity of liver can be increased.
Collapse
Affiliation(s)
- Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiafeng Gao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Pan Yu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Niandie Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiaojiao Liang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| |
Collapse
|
21
|
Abstract
SUMOylation dynamically conjugates SUMO molecules to the lysine residue of a substrate protein, which depends on the physiological state of the cell and the attached SUMO isoforms. A prominent role of SUMOylation in molecular pathways is to govern the cellular death process. Herein, we summarize the association between SUMOylation modification events and four types of cellular death processes: apoptosis, autophagy, senescence and pyroptosis. SUMOylation positively or negatively regulates a certain cellular death pattern depending on specific conditions including the attached SUMO isoforms, disease types, substrate proteins and cell context. Moreover, we also discuss the possible role of SUMOylation in ferroptosis and propose a potential role of the SUMOylated GPX4 in the regulation of ferroptosis. Mapping the exact SUMOylation network with cellular death contributes to develop novel SUMOylation-targeting disease therapeutic strategies.
Collapse
Affiliation(s)
- Zenghua Sheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Shan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
22
|
Wang C, Jing J, Hu X, Yu S, Yao F, Li Z, Cheng L. Gankyrin activates the hedgehog signalling to drive metastasis in osteosarcoma. J Cell Mol Med 2021; 25:6232-6241. [PMID: 34089292 PMCID: PMC8366451 DOI: 10.1111/jcmm.16576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gankyrin is a regulatory subunit of the 26-kD proteasome complex and promotes the occurrence and progression of many malignancies. However, the role of gankyrin in osteosarcoma (OS) metastasis remains unclear. Hedgehog signalling has been shown to regulate stem cell homeostasis and cancer metastasis, but the mechanisms that activate this pathway in OS are still poorly understood. Here, a series of in vitro and in vivo assays were carried out to explore the function and mechanism of gankyrin regulating Hedgehog signalling in OS. We demonstrated that gankyrin promotes migration, invasion and regulates the expression of some stemness factors by up-regulating Gli1 in OS. Importantly, our data showed an interaction between gankyrin and Gli1. Moreover, gankyrin suppresses the ubiquitin-mediated degradation of Gli1 protein in OS. Gankyrin also significantly promotes the lung metastasis of OS in vivo. Our findings suggest that gankyrin drives metastasis and regulates the expression of some stemness factors in osteosarcoma by activating Hedgehog signalling, indicating that drug screening for compounds targeting gankyrin may contribute to the development of novel and effective therapies for OS.
Collapse
Affiliation(s)
- Chongchong Wang
- Department of OncologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Juehua Jing
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuyang Hu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shuisheng Yu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei Yao
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ziyu Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Li Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- School of pharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
23
|
Siraj A, Lim DY, Tayara H, Chong KT. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites. Genes (Basel) 2021; 12:genes12050717. [PMID: 34064731 PMCID: PMC8151217 DOI: 10.3390/genes12050717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Protein ubiquitylation is an essential post-translational modification process that performs a critical role in a wide range of biological functions, even a degenerative role in certain diseases, and is consequently used as a promising target for the treatment of various diseases. Owing to the significant role of protein ubiquitylation, these sites can be identified by enzymatic approaches, mass spectrometry analysis, and combinations of multidimensional liquid chromatography and tandem mass spectrometry. However, these large-scale experimental screening techniques are time consuming, expensive, and laborious. To overcome the drawbacks of experimental methods, machine learning and deep learning-based predictors were considered for prediction in a timely and cost-effective manner. In the literature, several computational predictors have been published across species; however, predictors are species-specific because of the unclear patterns in different species. In this study, we proposed a novel approach for predicting plant ubiquitylation sites using a hybrid deep learning model by utilizing convolutional neural network and long short-term memory. The proposed method uses the actual protein sequence and physicochemical properties as inputs to the model and provides more robust predictions. The proposed predictor achieved the best result with accuracy values of 80% and 81% and F-scores of 79% and 82% on the 10-fold cross-validation and an independent dataset, respectively. Moreover, we also compared the testing of the independent dataset with popular ubiquitylation predictors; the results demonstrate that our model significantly outperforms the other methods in prediction classification results.
Collapse
Affiliation(s)
- Arslan Siraj
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea; (A.S.); (D.Y.L.)
| | - Dae Yeong Lim
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea; (A.S.); (D.Y.L.)
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.T.); (K.T.C.)
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea; (A.S.); (D.Y.L.)
- Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.T.); (K.T.C.)
| |
Collapse
|
24
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
25
|
A disease-causing mutation K240E disrupts ferroportin trafficking by SUMO (ferroportin SUMOylation). Biochem Biophys Rep 2021; 25:100873. [PMID: 33490642 PMCID: PMC7809393 DOI: 10.1016/j.bbrep.2020.100873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
Ferroportin (Fpn/IREG1/MTP1) is the only known transporter mediating iron efflux from epithelial cells and macrophages, and thus regulates how much iron is released into the circulation. Consequently, Fpn mutations are associated with haemochromatosis. Fpn itself is post-translationally regulated by hepcidin (Hepc) which induces its redistribution and degradation in a ubiquitin-dependent process. Together, the two proteins appear to be the nexus for iron homeostasis. Here we show that a rare gain-of-function mutation (K240E) that is associated with iron overload, impedes Fpn binding and subcellular trafficking by the small ubiquitin-like modifier (SUMO). Whereas wild-type Fpn is ensconced within vesicular bodies, the FpnK240E mutant appeared diffused within the cell when co-expressed with SUMO. Furthermore, compared with wild type Fpn, the sumoylation-defective mutant was constitutively-active, resulting in a lower intracellular labile iron pool than the former. These findings suggest that SUMO may regulate iron homeostasis by controlling Fpn trafficking. Ferroportin (Fpn) regulates iron efflux. A disease causing mutation (K240E) in a patient causes iron-overload. Fpn K240 is a SUMO conjugation site important for Fpn trafficking to endosomes by SUMO. The Fpn mutant K240E cannot be trafficked properly by SUMO and is a gain-of-function mutant that is constitutively active. FpnK240E effluxes more iron from intracellular stores than wild type Fpn.
Collapse
|
26
|
Wu J, Lai X, Cui G, Chen Q, Liu J, Kang Y, Zhang Y, Feng X, Hu C, Shao L. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122809. [PMID: 32937690 DOI: 10.1016/j.jhazmat.2020.122809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been extensively applied in our daily life. Humans are at high risk of being exposed to ZnO-NPs, which induce potentially adverse health effects. Although a growing number of studies have investigated the toxic effects of ZnO-NPs, the available data concerning ZnO-NP interactions with the blood-milk barrier (BMB) remain highly limited. Herein, we systematically investigated the damage to BMB integrity induced by ZnO-NPs and the mechanisms involved. ZnO-NPs that were intravenously injected into lactating dams accumulated in the mammary gland and entered into the breast milk, inducing disruption to BMB integrity and changes in the tight junction (TJ) and adherens junction (AJ) components. Furthermore, using an in vitro BMB model composed of EpH4-Ev cells, we verified that ZnO-NP-triggered ROS generation and the activation of MKK4 and JNK are the main mechanism of cell-cell junction damage. More interestingly, JNK activation played different roles in inducing changes in the TJ and AJ complex, and these effects did not need to activate the downstream c-Jun. These data provide more information for understanding ZnO-NP interactions with the BMB and raise concern for the daily use and the intravenous use of ZnO-NPs by lactating mothers.
Collapse
Affiliation(s)
- Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangman Cui
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
27
|
Wang Z, Zhao Y, Sun R, Sun Y, Liu D, Lin M, Chen Z, Zhou J, Lv L, Tian X, Yao J. circ-CBFB upregulates p66Shc to perturb mitochondrial dynamics in APAP-induced liver injury. Cell Death Dis 2020; 11:953. [PMID: 33159035 PMCID: PMC7648761 DOI: 10.1038/s41419-020-03160-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
p66Shc, a master regulator of mitochondrial reactive oxygen species (mtROS), is a crucial mediator of hepatocyte oxidative stress. However, its functional contribution to acetaminophen (APAP)-induced liver injury and the mechanism by which it is modulated remain unknown. Here, we aimed to assess the effect of p66Shc on APAP-induced liver injury and to evaluate if circular RNA (circRNA) functions as a competitive endogenous RNA (ceRNA) to mediate p66Shc in APAP-induced liver injury. p66Shc-, miR-185-5p-, and circ-CBFB-silenced mice were injected with APAP. AML12 cells were transfected with p66Shc, miR-185-5p, and circ-CBFB silencing or overexpression plasmids or siRNAs prior to APAP stimulation. p66Shc was upregulated in liver tissues in response to APAP, and p66Shc silencing in vivo protected mice from APAP-induced mitochondrial dynamics perturbation and liver injury. p66Shc knockdown in vitro attenuated mitochondrial dynamics and APAP-induced hepatocyte injury. Mechanically, p66Shc perturbs mitochondrial dynamics partially by inhibiting OMA1 ubiquitination. miR-185-5p, which directly suppressed p66Shc translation, was identified by microarray and bioinformatics analyses, and its overexpression attenuated mitochondrial dynamics and hepatocyte injury in vitro. Furthermore, luciferase, pull-down and RNA immunoprecipitation assays demonstrated that circ-CBFB acts as a miRNA sponge of miR-185-5p to mediate p66Shc in APAP-induced liver injury. circ-CBFB knockdown also alleviated APAP-induced mitochondrial dynamics perturbation and hepatocyte injury. More importantly, we found that the protective effects of circ-CBFB knockdown on p66Shc, mitochondrial dynamics and liver injury were abolished by miR-185-5p inhibition both in vivo and in vitro. In conclusion, p66Shc is a key regulator of APAP-induced liver injury that acts by triggering mitochondrial dynamics perturbation. circ-CBFB functions as a ceRNA to regulate p66Shc during APAP-induced liver injury, which may provide a potential therapeutic target.
Collapse
Affiliation(s)
- Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Yu Sun
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Musen Lin
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China.
| |
Collapse
|
28
|
The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells 2020; 9:cells9112359. [PMID: 33114748 PMCID: PMC7693722 DOI: 10.3390/cells9112359] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Sumoylation is the covalent attachment of the small ubiquitin-related modifier (SUMO) to a vast variety of proteins in order to modulate their function. Sumoylation has emerged as an important modification with a regulatory role in the cellular response to different types of stress including osmotic, hypoxic and oxidative stress. Hypoxia can occur under physiological or pathological conditions, such as ischemia and cancer, as a result of an oxygen imbalance caused by low supply and/or increased consumption. The hypoxia inducible factors (HIFs), and the proteins that regulate their fate, are critical molecular mediators of the response to hypoxia and modulate procedures such as glucose and lipid metabolism, angiogenesis, erythropoiesis and, in the case of cancer, tumor progression and metastasis. Here, we provide an overview of the sumoylation-dependent mechanisms that are activated under hypoxia and the way they influence key players of the hypoxic response pathway. As hypoxia is a hallmark of many diseases, understanding the interrelated connections between the SUMO and the hypoxic signaling pathways can open the way for future molecular therapeutic interventions.
Collapse
|
29
|
Zhou H, Zhang L, Li Y, Wu G, Zhu H, Zhang H, Su JK, Guo L, Zhou Q, Xiong F, Yu Q, Yang P, Zhang S, Cai J, Wang CY. Cigarette smoke extract stimulates bronchial epithelial cells to undergo a SUMOylation turnover. BMC Pulm Med 2020; 20:276. [PMID: 33097022 PMCID: PMC7584069 DOI: 10.1186/s12890-020-01300-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) characterized by the airway and lung inflammation, is a leading cause of morbidity and mortality worldwide, especially among smokers over 40 years of age and individuals exposed to biomass smoke. Although the detailed mechanisms of this disease remain elusive, there is feasible evidence that protein posttranslational modifications (PTMs) may play a role in its pathoetiology. We thus conducted studies to dissect the effect of cigarette smoke extracts (CSE) on the change of SUMOylated substrates in human bronchial epithelial cells (HBEs). METHODS Samples were collected in HBEs with or without 24 h of CSE insult and then subjected to Western-blot and LC-MS/MS analysis. Subsequently, bioinformatic tools were used to analyze the data. The effect of SUMOylation on cytochrome P450 1A1 (CYP1A1) was evaluated by flow cytometry. RESULTS It was noted that CSE stimulated HBEs to undergo a SUMOylation turnover as evidenced by the changes of SUMOylated substrates and SUMOylation levels for a particular substrate. The SUMOylated proteins are relevant to the regulation of biological processes, molecular function and cellular components. Particularly, CSE stimulated a significant increase of SUMOylated CYP1A1, a critical enzyme involved in the induction of oxidative stress. CONCLUSIONS Our data provide a protein SUMOylation profile for better understanding of the mechanisms underlying COPD and support that smoking induces oxidative stress in HBEs, which may predispose to the development of COPD in clinical settings.
Collapse
Affiliation(s)
- Haifeng Zhou
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Lei Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Guorao Wu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Huilan Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Kun Su
- The Technology Center, China Tobacco Jiangxi Industrial Co., Ltd., Nanchang High Technology Development Valley, Nanchang, 330096, China
| | - Lei Guo
- The Technology Center, China Tobacco Jiangxi Industrial Co., Ltd., Nanchang High Technology Development Valley, Nanchang, 330096, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Fei Xiong
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China
| | - Jibao Cai
- The Technology Center, China Tobacco Jiangxi Industrial Co., Ltd., Nanchang High Technology Development Valley, Nanchang, 330096, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Caidian, 431000, China.
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
López I, Chalatsi E, Ellenbroek SIJ, Andrieux A, Roux PF, Cerapio JP, Jouvion G, van Rheenen J, Seeler JS, Dejean A. An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency. Oncogene 2020; 39:6692-6703. [PMID: 32948837 PMCID: PMC7581512 DOI: 10.1038/s41388-020-01457-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Sumoylation is an essential posttranslational modification in eukaryotes that has emerged as an important pathway in oncogenic processes. Most human cancers display hyperactivated sumoylation and many cancer cells are remarkably sensitive to its inhibition, thus supporting application of chemical sumoylation inhibitors in cancer treatment. Here we show, first, that transformed embryonic fibroblasts derived from mice haploinsufficient for Ubc9, the essential and unique gene encoding the SUMO E2 conjugating enzyme, exhibit enhanced proliferation and transformed phenotypes in vitro and as xenografts ex vivo. To then evaluate the possible impact of loss of one Ubc9 allele in vivo, we used a mouse model of intestinal tumorigenesis. We crossed Ubc9+/- mice with mice harboring a conditional ablation of Apc either all along the crypt-villus axis or only in Lgr5+ crypt-based columnar (CBC) cells, the cell compartment that includes the intestinal stem cells proposed as cells-of-origin of intestinal cancer. While Ubc9+/- mice display no overt phenotypes and no globally visible hyposumoylation in cells of the small intestine, we found, strikingly, that, upon loss of Apc in both models, Ubc9+/- mice develop more (>2-fold) intestinal adenomas and show significantly shortened survival. This is accompanied by reduced global sumoylation levels in the polyps, indicating that Ubc9 levels become critical upon oncogenic stress. Moreover, we found that, in normal conditions, Ubc9+/- mice show a moderate but robust (15%) increase in the number of Lgr5+ CBC cells when compared to their wild-type littermates, and further, that these cells display higher degree of stemness and cancer-related and inflammatory gene expression signatures that, altogether, may contribute to enhanced intestinal tumorigenesis. The phenotypes of Ubc9 haploinsufficiency discovered here indicate an unanticipated tumor-suppressive role of sumoylation, one that may have important implications for optimal use of sumoylation inhibitors in the clinic.
Collapse
Affiliation(s)
- Ignacio López
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
| | - Eleftheria Chalatsi
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
- Bio-Rad Laboratories, Marnes-la-Coquette, France
| | - Saskia I J Ellenbroek
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
| | - Pierre-François Roux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
| | - Juan P Cerapio
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Toulouse, France
| | - Grégory Jouvion
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob-S Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France.
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
31
|
Liu X, Heras G, Lauschke VM, Mi J, Tian G, Gastaldello S. High glucose-induced oxidative stress accelerates myogenesis by altering SUMO reactions. Exp Cell Res 2020; 395:112234. [DOI: 10.1016/j.yexcr.2020.112234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023]
|
32
|
Behl T, Chadha S, Sachdeva M, Kumar A, Hafeez A, Mehta V, Bungau S. Ubiquitination in rheumatoid arthritis. Life Sci 2020; 261:118459. [PMID: 32961230 DOI: 10.1016/j.lfs.2020.118459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis is a chronic, inflammatory joint disease leading to inflammation of synovial membrane that lines the joints. This inflammation further progresses and results in destruction of joints and surrounding cartilages. The underlying factors can be oxidative stress, pro-inflammatory mediators, imbalance and attenuation between various enzymes and proteins (like nuclear factor erythroid 2 related factor 2/Nrf2 and ubiquitin). Protein degradation pathways comprises of lysosomal, proteasomal pathway, and autophagosome (that are carried out in mammalian cells) are regulated through ubiquitin. Ubiquitin proteasomal system is dominating pathway for carrying out non-lysosomal proteolysis of intracellularly proteins. Fundamental processes including cell cycle progression, process of division, apoptosis, modulation of immune responses and cell trafficking are regulated by process of ubiquitination. Ubiquitin proteasomal pathway (UPP) includes ubiquitin moieties which are covalently attached to proteins and guides them proteasome for degradation. Misfolded, oxidized and damaged proteins which are responsible for critical processes, are major targets of degradation process. Any alteration in this system leads to dysregulated cellular homeostasis; progressively leading to numerous diseases including rheumatoid arthritis. Factors including TAK1, TRAF6 undergo are required for the progression of disease and thus contributes towards pathology of inflammatory disorders such as rheumatoid arthritis. This review will include all linked aspects which contribute its major role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Uttar Pradesh, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Ditt. Shimla, Himachal Pradesh, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
33
|
Homchan A, Sukted J, Mongkolsuk S, Jeruzalmi D, Matangkasombut O, Pakotiprapha D. Wss1 homolog from Candida albicans and its role in DNA-protein crosslink tolerance. Mol Microbiol 2020; 114:409-422. [PMID: 32302440 DOI: 10.1111/mmi.14518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Candida albicans is an opportunistic yeast that can cause life-threatening systemic infection in immunocompromised individuals. During infections, C. albicans has to cope with genotoxic stresses generated by the host immune system. DNA-protein crosslink (DPC), the covalent linkage of proteins with DNA, is one type of DNA damages that can be caused by the host immune response. DPCs are bulky lesions that interfere with the progression of replication and transcription machineries, and hence threaten genomic integrity. Accordingly, either a DPC tolerance mechanism or a DPC repair pathway is essential for C. albicans to maintain genomic stability and survive in the host. Here, we identified Wss1 (weak suppressor of Smt3) in C. albicans (CaWss1) using bioinformatics, genetic complementation, and biochemical studies. We showed that CaWss1 promotes cell survival under genotoxic stress conditions that generate DPCs and that the catalytic metalloprotease domain of CaWss1 is essential for its cellular function. Interactions of CaWss1 with Cdc48 and small ubiquitin-like modifier, although not strictly required, contribute to the function of CaWss1 in the suppression of the growth defects under DPC-inducing conditions. This report is the first investigation of the role of CaWss1 in DPC tolerance in C. albicans.
Collapse
Affiliation(s)
- Aimorn Homchan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Juthamas Sukted
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
35
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
36
|
RNF34 overexpression exacerbates neurological deficits and brain injury in a mouse model of intracerebral hemorrhage by potentiating mitochondrial dysfunction-mediated oxidative stress. Sci Rep 2019; 9:16296. [PMID: 31704983 PMCID: PMC6841714 DOI: 10.1038/s41598-019-52494-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common neurological condition associated with high disability and mortality. Alterations in protein ubiquitination have emerged as a key mechanism in the pathogenesis of neurological diseases. Here, we investigated the effects of the E3 ubiquitin ligase ring finger protein 34 (RNF34) on neurological deficits and brain injury in ICH mice. An ICH model was established via intracerebral injection of autologous blood into wild-type and RNF34 transgenic mice. Brain injury, neurological function, neuronal activity, and oxidative stress levels were measured, respectively. The underlying mechanisms were explored by molecular and cellular approaches. Our results showed that RNF34 overexpression in mice significantly aggravated the ICH-induced memory impairment, brain edema, infarction, hematoma volume, and loss of neuronal activity. RNF34 and oxidative stress levels gradually increased from 6 to 48 h after the ICH challenge and were positively correlated. The ICH-induced increase in intracellular ROS, superoxide anion, and mROS generation and the decrease in adenosine triphosphate production were exacerbated in RNF34 transgenic mice, but NADPH oxidase activity was unaffected. Moreover, RNF34 upregulation potentiated the ICH-induced decrease in PGC-1α, UCP2, and MnSOD expressions. RNF34 interacted with PGC-1α and targeted it for ubiquitin-dependent degradation. This study reveals that RNF34 exacerbates neurological deficits and brain injury by facilitating PGC-1α protein degradation and promoting mitochondrial dysfunction-mediated oxidative stress.
Collapse
|
37
|
Jiao T, Chu XH, Gao ZQ, Yang TT, Liu Y, Yang L, Zhang DZ, Wang JL, Tang BP, Wu K, Liu QN, Dai LS. New insight into the molecular basis of Fe (III) stress responses of Procambarus clarkii by transcriptome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109388. [PMID: 31299477 DOI: 10.1016/j.ecoenv.2019.109388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Iron in excess can have toxic effects on living organisms. In China, the freshwater crayfish Procambarus clarkii is a source of aquatic food with high-quality protein and has significant commercial value. P. clarkii shows oxidative stress on exposure to heavy metals, and antioxidant enzymes, such as ubiquitination enzymes and proteasomes, play important roles in oxidative stress. To understand the antioxidant defense system of P. clarkii, we analyzed the hepatopancreas transcriptomes of P. clarkii after stimulation with FeCl3. In total, 5199 differentially expressed genes (DEGs) were identified (2747 upregulated and 2452 downregulated). GO analysis revealed that these DEGs belonged to 16 cellular component, 16 molecular function, and 19 biological process subcategories. A total of 1069 DEGs were classified into 25 categories by using COG. Some antioxidant defense pathways, such as "Ubiquitin mediated proteolysis" and "Glutathione metabolism," were identified using KEGG. In addition, quantitative real time-PCR (qRT-PCR) substantiated the up-regulation of a random selection of DEGs including antioxidant and immune defense genes. We obtained information for P. clarkii transcriptome databases and new insights into the responses of P. clarkii hepatopancreas to heavy metals.
Collapse
Affiliation(s)
- Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Xiao-Hua Chu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Zhen-Qiu Gao
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, People's Republic of China
| | - Li Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, 334001, People's Republic of China.
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| |
Collapse
|
38
|
Aichem A, Sailer C, Ryu S, Catone N, Stankovic-Valentin N, Schmidtke G, Melchior F, Stengel F, Groettrup M. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nat Commun 2019; 10:4452. [PMID: 31575873 PMCID: PMC6773726 DOI: 10.1038/s41467-019-12430-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The covalent attachment of the cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) to hundreds of substrate proteins leads to their rapid degradation by the 26 S proteasome independently of ubiquitylation. Here, we identify another function of FAT10, showing that it interferes with the activation of SUMO1/2/3 in vitro and down-regulates SUMO conjugation and the SUMO-dependent formation of promyelocytic leukemia protein (PML) bodies in cells. Mechanistically, we show that FAT10 directly binds to and impedes the activity of the heterodimeric SUMO E1 activating enzyme AOS1/UBA2 by competing very efficiently with SUMO for activation and thioester formation. Nevertheless, activation of FAT10 by AOS1/UBA2 does not lead to covalent conjugation of FAT10 with substrate proteins which relies on its cognate E1 enzyme UBA6. Hence, we report that one ubiquitin-like modifier (FAT10) inhibits the conjugation and function of another ubiquitin-like modifier (SUMO) by impairing its activation. FAT10 is an ubiquitin-like modifier that targets proteins to proteasomal degradation. Here, the authors show that FAT10 also regulates SUMO activation in vitro and in cells, providing evidence for functional crosstalk between two ubiquitin-like modifiers.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany.
| | - Carolin Sailer
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Gunter Schmidtke
- Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
39
|
The SUMO Pathway in Hematomalignancies and Their Response to Therapies. Int J Mol Sci 2019; 20:ijms20163895. [PMID: 31405039 PMCID: PMC6721055 DOI: 10.3390/ijms20163895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
SUMO (Small Ubiquitin-related MOdifier) is a post-translational modifier of the ubiquitin family controlling the function and fate of thousands of proteins. SUMOylation is deregulated in various hematological malignancies, where it participates in both tumorigenesis and cancer cell response to therapies. This is the case for Acute Promyelocytic Leukemias (APL) where SUMOylation, and subsequent destruction, of the PML-RARα fusion oncoprotein are triggered by arsenic trioxide, which is used as front-line therapy in combination with retinoic acid to cure APL patients. A similar arsenic-induced SUMO-dependent degradation was also documented for Tax, a human T-cell lymphotropic virus type I (HTLV1) viral protein implicated in Adult T-cell Leukemogenesis. SUMOylation also participates in Acute Myeloid Leukemia (AML) response to both chemo- and differentiation therapies, in particular through its ability to regulate gene expression. In Multiple Myeloma, many enzymes of the SUMO pathway are overexpressed and their high expression correlates with lower response to melphalan-based chemotherapies. B-cell lymphomas overexpressing the c-Myc oncogene also overexpress most components of the SUMO pathway and are highly sensitive to SUMOylation inhibition. Targeting the SUMO pathway with recently discovered pharmacological inhibitors, alone or in combination with current therapies, might therefore constitute a powerful strategy to improve the treatment of these cancers.
Collapse
|
40
|
SUMOylation Evoked by Oxidative Stress Reduced Lens Epithelial Cell Antioxidant Functions by Increasing the Stability and Transcription of TP53INP1 in Age-Related Cataracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7898069. [PMID: 31281592 PMCID: PMC6590620 DOI: 10.1155/2019/7898069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.
Collapse
|
41
|
Sun W, Dai L, Yu H, Puspita B, Zhao T, Li F, Tan JL, Lim YT, Chen MW, Sobota RM, Tenen DG, Prabhu N, Nordlund P. Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. Redox Biol 2019; 24:101168. [PMID: 30925293 PMCID: PMC6439307 DOI: 10.1016/j.redox.2019.101168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) induce different cellular stress responses but can also mediate cellular signaling. Augmented levels of ROS are associated with aging, cancer as well as various metabolic and neurological disorders. ROS can also affect the efficacy and adverse effects of drugs. Although proteins are key mediators of most ROS effects, direct studies of ROS-modulated-protein function in the cellular context are very challenging. Therefore the understanding of specific roles of different proteins in cellular ROS responses is still relatively rudimentary. In the present work we show that Mass Spectrometry-Cellular Thermal Shift Assay (MS-CETSA) can directly monitor ROS and redox modulations of protein structure at the proteome level. By altering ROS levels in cultured human hepatocellular carcinoma cell lysates and intact cells, we detected CETSA responses in many proteins known to be redox sensitive, and also revealed novel candidate ROS sensitive proteins. Studies in intact cells treated with hydrogen peroxide and sulfasalazine, a ROS modulating drug, identified not only proteins that are directly modified, but also proteins reporting on downstream cellular effects. Comprehensive changes are seen on rate-limiting proteins regulating key cellular processes, including known redox control systems, protein degradation, epigenetic control and protein translational processes. Interestingly, concerted shifts on ATP-binding proteins revealed redox-induced modulation of ATP levels, which likely control many cellular processes. Collectively, these studies establish CETSA as a novel method for cellular studies of redox modulations of proteins, which implicated in a wide range of processes and for the discovery of CETSA-based biomarkers reporting on the efficacy as well as adverse effects of drugs.
Collapse
Affiliation(s)
- Wendi Sun
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Brenda Puspita
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Tianyun Zhao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Feng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Justin L Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A*STAR, 138672, Singapore
| | - Yan Ting Lim
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden.
| |
Collapse
|
42
|
Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Redox Biol 2019; 20:533-543. [PMID: 30508698 PMCID: PMC6279957 DOI: 10.1016/j.redox.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.
Collapse
Affiliation(s)
- L Bramasole
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - A Sinha
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - S Gurevich
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - M Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Y Klein
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - N Panat
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - E Gefen
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - T Rinaldi
- Department of Biology and Biotechnology, University of Rome ''La Sapienza'', Rome 00185, Italy
| | - D Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - J Johnson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N Reis
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - D Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - M H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - E Pick
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel.
| |
Collapse
|
43
|
|