1
|
Wu H, Liu Y, Liu C. The interregulatory circuit between non-coding RNA and apoptotic signaling in diabetic cardiomyopathy. Noncoding RNA Res 2024; 9:1080-1097. [PMID: 39022683 PMCID: PMC11254508 DOI: 10.1016/j.ncrna.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Yan Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Chunli Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| |
Collapse
|
2
|
Qiao P, Du H, Guo X, Yu M, Zhang C, Shi Y. Serum exosomal miR-200c is a potential diagnostic biomarker for breast cancer. Biomarkers 2024; 29:419-426. [PMID: 39317236 DOI: 10.1080/1354750x.2024.2406520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Breast cancer (BC) is one of the most common malignancies in women. Exosomes are widely found in body fluids and carry microRNAs (miRNAs) that reflect the biological properties of the parental cells. Our study aimed to investigate the differential expression of miR-200c in BC serum exosomes and its diagnostic value. METHODOLOGY miRNA profiles in culture supernatant exosomes of normal mammary epithelial cells MCF-10A and BC cells (MCF-7, MDA-MB-231, MCF-7 Taxol) were examined by miRNA deep sequencing to screen for significantly differentially expressed miRNAs; Transmission electron microscopy (TEM), Nanoparticle tracking analysis (NTA), and Western blot were used to identify exosomes; qPCR was used to detect the expression level of miR-200c in cellular exosomes and serum exosomes; The efficacy of individual and combined tests of each indicator to diagnose BC was evaluated using receiver operating characteristic (ROC) curves. RESULTS We identified typical exosome features by TEM, NTA and Western blot, indicating successful exosome extraction. Then our miRNA sequencing results and qRT-PCR experiments showed that miR-200c was significantly down-regulated in BC cell exosomes. In addition, we divided the clinical serum samples into two cohorts according to region, and in independent cohort I, the serum exosomal miR-200c levels of BC patients were significantly lower than those of healthy controls. In cohort II, serum exosomal miR-200c expression was significantly lower in the BC group than in the control and benign breast disease (BBD) groups, whereas miR-200c expression in the BBD group was not statistically different from that in the control group. ROC analyses in both independent cohorts confirmed that serum exosomal miR-200c could differentiate between patients with and without BC disease and could be used as an early diagnostic marker for BC disease. CONCLUSION Serum exosome miR-200c can be used as a potential biomarker for the diagnosis of BC, and combined with conventional serum diagnostic markers AFP, CA125 and CA153 can help to improve diagnostic efficiency.
Collapse
Affiliation(s)
- Ping Qiao
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Clinical Laboratory Center, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Tefr Faridová A, Slanař O. The Overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 snRNA and Underexpressed let-7c, miR-328, and miR-451a as Potential Biomarkers in Invasive Breast Cancer and Their Clinicopathological Significance. Oncology 2024:1-16. [PMID: 39134012 DOI: 10.1159/000540863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czechia
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czechia
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Vit Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czechia
| | - Adela Tefr Faridová
- After-surgery Gynecological Department, Institute for the Care of Mother and Child, Prague, Czechia
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
4
|
Ma Y, Wang Y, Wang C, Wang Y, Hu J, Zhang Z, Dong T, Chen X. miR-200a-3p promotes the malignancy of endometrial carcinoma through negative regulation of epithelial-mesenchymal transition. Discov Oncol 2024; 15:243. [PMID: 38916621 PMCID: PMC11199454 DOI: 10.1007/s12672-024-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND miR-200a-3p is involved in the progression of malignant behavior in various tumors, and its mechanism of action in endometrial cancer is speculated to be related to epithelial-mesenchymal transition (EMT). Therefore, this study explored the metastatic mechanism of miR-200a-3p and EMT in endometrial cancer, with the aim of identifying potential therapeutic targets. METHODS qRT-PCR was used to analyze miR-200a-3p expression in HEC-1B and Ishikawa cell lines. The cell proliferation assay, transwell assay, and cell scratch test were used to assess changes in the malignant phenotypes of cells after regulating miR-200a-3p expression. Changes in EMT-related protein zinc finger E-box binding homeobox 1 (ZEB1) were detected after regulating miR-200a-3p expression. An endometrial carcinoma transplantation mouse tumor model was constructed, and multiple EMT-related proteins were examined. RESULTS The expression of miR-200a-3p and ZEB1 in the endometrial cancer cell lines was higher than in normal endometrial epithelial cell lines (P < 0.05). After silencing miR-200a-3p, the expression of EMT-related protein ZEB1 increased, indicating a negative correlation. Simultaneously, the proliferation, invasion, and metastasis of endometrial cancer cells were significantly enhanced. After miR-200a-3p overexpression, the corresponding malignant phenotype was reversed (P < 0.05). In in vivo experiments, the degree of tumor malignancy and the expression level of EMT-related proteins were significantly reduced in the miR-200a-3p mimic group (P < 0.05). CONCLUSION This study found that miR-200a-3p is a promising target, regulating the EMT process and promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yiru Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Can Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yan Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Jingshu Hu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Zexue Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Tuo Dong
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, No. 157 Baojian Road, Harbin, 150081, Heilongjiang, China.
| | - Xiuwei Chen
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
5
|
Awad AM, Dabous E, Alalem M, Alalem N, Nasr ME, Elawdan KA, Nasr GM, Said W, El Khashab K, Basiouny MS, Guirgis AA, Khalil H. MicroRNA-141-regulated KLK10 and TNFSF-15 gene expression in hepatoblastoma cells as a novel mechanism in liver carcinogenesis. Sci Rep 2024; 14:13492. [PMID: 38866875 PMCID: PMC11169620 DOI: 10.1038/s41598-024-63223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Liver cancer is one of the most pivotal global health problems, leading hepatocellular carcinoma (HCC) with a significant increase in cases worldwide. The role of non-coding-RNA in cancer proliferation and carcinogenesis has attracted much attention in the last decade; however, microRNAs (miRNAs), as non-coding RNA, are considered master mediators in various cancer progressions. Yet the role of miR-141 as a modulator for specific cellular processes in liver cancer cell proliferation is still unclear. This study identified the role of miR-141 and its potential functions in liver carcinogenesis. The level of miR-141 in HepG2 and HuH7 cells was assessed using quantitative real-time PCR (qRT-PCR) and compared with its expression in normal hepatocytes. A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HepG2 cells. The protein profile of the kallikrein-related peptidase 10 (KLK10) and tumor necrosis factor TNFSF-15 was investigated in HepG2 cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced inflammatory cytokines from transfected HepG2 cells. Our findings showed that the expression of miR-141 significantly increased in HepG2 and HuH7 cells compared to the normal hepatocytes. Transfection of HepG2 cells with an inhibitor, antagonist miR-141, showed a significant reduction of HepG2 cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HepG2 cells overexpressed miR-141 provided a hundred downregulated genes, including KLK10 and TNFSF-15. Furthermore, the expression profile of KLK10 and TNFSF-15 markedly depleted in HepG2 cells transfected with miR-141 overexpression accompanied by a decreasing level of interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), indicating the role of miR-141 in HepG2 cell proliferation and programmed cell death. Interestingly, the experimental rats with liver cancer induced by Diethylnitrosamine injection further confirmed the upregulation of miR-141 level, IL-10, and TNF-α and the disturbance in KLK10 and TNFSF-15 gene expression compared with their expression in normal rats. The in-silico online tools, IntaRNA and miRWalk were used to confirm the direct interaction and potential binding sites between miR-141 and identified genes. Thus, the seeding regions of potential targeted sequences was cloned upstream of luciferase reporter gene in pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HepG2 cells pre-transfected with miR-141 overexpression vector, while increasing in cells pre-transfected with miR-141 specific inhibitor. In summary, these data suggest the crucial role of miR-141 in liver cancer development via targeting KLK10 and TNFSF-15 and provide miR-141 as an attractive candidate in liver cancer treatment and protection.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mahmoud E Nasr
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ghada M Nasr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Walid Said
- Microbiology and Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Kareem El Khashab
- Medical Laboratory Department, High Technology Institute of Applied Health Science, Badr Academy for Science and Technology, Badr City, Egypt
| | - Mohamed S Basiouny
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt.
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
6
|
Ling Z, Yang L. Diagnostic value of miR-200 family in non-small cell lung cancer: a meta-analysis. Biomark Med 2024; 18:419-431. [PMID: 39041844 DOI: 10.2217/bmm-2024-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To investigate the diagnostic potential of the miR-200 family for early detection in non-small cell lung cancer (NSCLC). Materials & methods: A systematic search was conducted of PubMed, Embase and Web of Science databases to identify studies of the miR-200 family in NSCLC. Sixteen studies meeting the inclusion criteria were included in the analysis with a total of 20 cohorts. Results: The combined sensitivity and specificity reached 73% and 85%, with an area under the curve of 0.83. Notably, miR-200b introduced heterogeneity. Subgroup analysis highlighted miR-200a and miR-141 as more sensitive, while blood-derived miRNAs showed slightly lower accuracy. Conclusion: The miR-200 family, predominantly assessed in blood, exhibits significant diagnostic potential for NSCLC, especially in distinguishing it from benign diseases.
Collapse
Affiliation(s)
- Zhen Ling
- Graduate School, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Lichang Yang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
7
|
Jafari S, Motedayyen H, Javadi P, Jamali K, Moradi Hasan-Abad A, Atapour A, Sarab GA. The roles of lncRNAs and miRNAs in pancreatic cancer: a focus on cancer development and progression and their roles as potential biomarkers. Front Oncol 2024; 14:1355064. [PMID: 38559560 PMCID: PMC10978783 DOI: 10.3389/fonc.2024.1355064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Jamali
- Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Bhartiya P, Jaiswal A, Negi M, Kaushik N, Ha Choi E, Kumar Kaushik N. Unlocking melanoma Suppression: Insights from Plasma-Induced potent miRNAs through PI3K-AKT-ZEB1 axis. J Adv Res 2024:S2090-1232(24)00084-5. [PMID: 38447612 DOI: 10.1016/j.jare.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
9
|
Qattan A. Genomic Alterations Affecting Competitive Endogenous RNAs (ceRNAs) and Regulatory Networks (ceRNETs) with Clinical Implications in Triple-Negative Breast Cancer (TNBC). Int J Mol Sci 2024; 25:2624. [PMID: 38473871 DOI: 10.3390/ijms25052624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The concept of competitive endogenous RNA regulation has brought on a change in the way we think about transcriptional regulation by miRNA-mRNA interactions. Rather than the relatively simple idea of miRNAs negatively regulating mRNA transcripts, mRNAs and other non-coding RNAs can regulate miRNAs and, therefore, broad networks of gene products through competitive interactions. While this concept is not new, its significant roles in and implications on cancer have just recently come to light. The field is now ripe for the extrapolation of technologies with a substantial clinical impact on cancer. With the majority of the genome consisting of non-coding regions encoding regulatory RNAs, genomic alterations in cancer have considerable effects on these networks that have been previously unappreciated. Triple-negative breast cancer (TNBC) is characterized by high mutational burden, genomic instability and heterogeneity, making this aggressive breast cancer subtype particularly relevant to these changes. In the past few years, much has been learned about the roles of competitive endogenous RNA network regulation in tumorigenesis, disease progression and drug response in triple-negative breast cancer. In this review, we present a comprehensive view of the new knowledge and future perspectives on competitive endogenous RNA networks affected by genomic alterations in triple-negative breast cancer. An overview of the competitive endogenous RNA (ceRNA) hypothesis and its bearing on cellular function and disease is provided, followed by a thorough review of the literature surrounding key competitive endogenous RNAs in triple-negative breast cancer, the genomic alterations affecting them, key disease-relevant molecular and functional pathways regulated by them and the clinical implications and significance of their dysregulation. New knowledge of the roles of these regulatory mechanisms and the current acceleration of research in the field promises to generate insights into the diagnosis, classification and treatment of triple-negative breast cancer through the elucidation of new molecular mechanisms, therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
10
|
Jarych D, Mikulski D, Wilczyński M, Wilczyński JR, Kania KD, Haręża D, Malinowski A, Perdas E, Nowak M, Paradowska E. Differential microRNA Expression Analysis in Patients with HPV-Infected Ovarian Neoplasms. Int J Mol Sci 2024; 25:762. [PMID: 38255835 PMCID: PMC10815566 DOI: 10.3390/ijms25020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to identify microRNAs (miRNAs) whose expression levels are altered by high-risk human papillomavirus (HR-HPV) infection in women with epithelial ovarian neoplasms. MiRNA expression was quantified by real-time polymerase chain reaction, while HR-HPV DNA was quantified using digital-droplet PCR. Analysis of 11 miRNAs demonstrated significantly lower hsa-miR-25-5p expression in HPV-infected compared to uninfected ovarian tissues (p = 0.0405), while differences in miRNA expression in corresponding serum were statistically insignificant. The expression of hsa-miR-218-5p in ovarian tumors was significantly higher in high-grade serous ovarian carcinoma (HGSOC) cases than in other neoplasms (p = 0.0166). In addition, hsa-miR-218-5p was significantly upregulated, whereas hsa-miR-191-5p was significantly downregulated in tissues with stage III/IV FIGO (p = 0.0009 and p = 0.0305, respectively). Using unsupervised clustering, we identified three unique patient groups with significantly varied frequencies of HPV16/18-positive samples and varied miRNA expression profiles. In multivariate analysis, high expression of hsa-miR-16-5p was an independent prognostic factor for poor overall survival (p = 0.0068). This preliminary analysis showed the changes in miRNA expression in ovarian neoplasms during HPV infection and those collected from HGSOCs or patients with advanced disease. This prospective study can provide new insights into the pathogenesis of ovarian neoplasms and host-virus interactions.
Collapse
Affiliation(s)
- Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (E.P.)
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Oncological Gynecology, Institute of the Polish Mother’s Health Center, 93-338 Lodz, Poland; (M.W.); (A.M.)
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Gynecology and Obstetrics, Tomaszow Health Center, 97-200 Tomaszow Mazowiecki, Poland;
| | - Katarzyna D. Kania
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| | - Daria Haręża
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
- Bio-Med-Chem Doctoral School of University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-136 Lodz, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncological Gynecology, Institute of the Polish Mother’s Health Center, 93-338 Lodz, Poland; (M.W.); (A.M.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (E.P.)
| | - Mateusz Nowak
- Department of Gynecology and Obstetrics, Tomaszow Health Center, 97-200 Tomaszow Mazowiecki, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| |
Collapse
|
11
|
Zha B, Luo Y, Kamili M, Zha X. Non-coding RNAs and gastrointestinal cancers prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. Front Oncol 2023; 13:1193665. [PMID: 37546412 PMCID: PMC10399243 DOI: 10.3389/fonc.2023.1193665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Aim Provide an overview and a systematic evaluation of the evidence quality on the association between non-coding RNAs (ncRNAs) and prognosis value for gastrointestinal cancers (GICs). Methods We searched the literature from three electronic databases: Pubmed, Embase, and Web of science, then carefully screened and extracted the primary information and results from the included articles. We use A measurable systematic review and meta-analysis evaluation tool (AMSTAR2) to evaluate the quality of methodology and then use the Grading of Recommendations Assessment 2, Development and Evaluation guideline (GRADE) make sure the reliability of the meta-analysis. Results Overall, 182 meta-analyses from 58 studies were included in this study. Most of these studies are of low or very low quality. Using the scoring tool, we found that only two meta-analyses were rated as high reliability, and 17 meta-analyses were rated as medium reliability. Conclusions Although ncRNA has good prognostic value in some studies, only a tiny amount of evidence is highly credible at present. More research is needed in the future. PROSPERO registration number CRD42022382296.
Collapse
Affiliation(s)
- Bowen Zha
- The Sixth Clinical Medical College, Capital Medical University, Beijing, China
| | - Yuxi Luo
- The First Clinical Medical College, Capital Medical University, Beijing, China
| | - Muladili Kamili
- The Sixth Clinical Medical College, Capital Medical University, Beijing, China
| | - Xiaqin Zha
- Department of Blood Purification, University Affiliated Second Hospital, Nanchang, China
| |
Collapse
|
12
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
13
|
Otte M, Stachelscheid J, Glaß M, Wahnschaffe L, Jiang Q, Lone W, Ianevski A, Aittokallio T, Iqbal J, Hallek M, Hüttelmaier S, Schrader A, Braun T, Herling M. The miR-141/200c-STAT4 Axis Contributes to Leukemogenesis by Enhancing Cell Proliferation in T-PLL. Cancers (Basel) 2023; 15:2527. [PMID: 37173993 PMCID: PMC10177500 DOI: 10.3390/cancers15092527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
T-prolymphocytic leukemia (T-PLL) is a rare and mature T-cell malignancy with characteristic chemotherapy-refractory behavior and a poor prognosis. Molecular concepts of disease development have been restricted to protein-coding genes. Recent global microRNA (miR) expression profiles revealed miR-141-3p and miR-200c-3p (miR-141/200c) as two of the highest differentially expressed miRs in T-PLL cells versus healthy donor-derived T cells. Furthermore, miR-141/200c expression separates T-PLL cases into two subgroups with high and low expression, respectively. Evaluating the potential pro-oncogenic function of miR-141/200c deregulation, we discovered accelerated proliferation and reduced stress-induced cell death induction upon stable miR-141/200c overexpression in mature T-cell leukemia/lymphoma lines. We further characterized a miR-141/200c-specific transcriptome involving the altered expression of genes associated with enhanced cell cycle transition, impaired DNA damage responses, and augmented survival signaling pathways. Among those genes, we identified STAT4 as a potential miR-141/200c target. Low STAT4 expression (in the absence of miR-141/200c upregulation) was associated with an immature phenotype of primary T-PLL cells as well as with a shortened overall survival of T-PLL patients. Overall, we demonstrate an aberrant miR-141/200c-STAT4 axis, showing for the first time the potential pathogenetic implications of a miR cluster, as well as of STAT4, in the leukemogenesis of this orphan disease.
Collapse
Affiliation(s)
- Moritz Otte
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Johanna Stachelscheid
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Markus Glaß
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle, Germany; (M.G.)
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Qu Jiang
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.L.); (J.I.)
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (A.I.); (T.A.)
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (A.I.); (T.A.)
- Institute for Cancer Research, Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, 0372 Oslo, Norway
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.L.); (J.I.)
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
- Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle, Germany; (M.G.)
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphoma ImmunoBiology, INSERM, U1111 CNRS UMR 5308, University of Lyon, Université Claude Bernard Lyon 1, 69364 Lyon, France
| | - Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
14
|
Gong W, Guo Y, Yuan H, Chai R, Wan Z, Zheng B, Hu X, Chen B, Gao S, Dai Q, Yu P, Tu S. Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-Flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3. Cancer Gene Ther 2023:10.1038/s41417-023-00591-5. [PMID: 36890211 DOI: 10.1038/s41417-023-00591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/10/2023]
Abstract
Hypoxia-mediated tumor progression is a major clinical challenge in human cancers including colorectal cancer (CRC). In addition, exosome-mediated transfer of miRNAs from cancer-associated fibroblasts (CAFs) to cancer cells could promote tumor progression. However, the mechanisms by which hypoxia CAFs promotes CRC progression remain largely unknown. CAFs and normal fibroblasts (NFs) were isolated from CRC tissues and adjacent normal tissues. Next, exosomes were isolated from the supernatant of CAFs that cultured under normoxia (CAFs-N-Exo) and hypoxia (CAFs-H-Exo). RNA-sequencing was then performed to identify differentially expressed miRNAs (DEMs) between CAFs-N-Exo and CAFs-H-Exo. Compared with exosomes derived from normoxia CAFs, exosomes derived from hypoxic CAFs were able to promote CRC cell proliferation, migration, invasion, stemness and reduce the sensitivity of CRC cells to 5-fluorouracil (5-FU). In addition, miR-200b-3p levels were dramatically decreased in exosomes derived from hypoxic CAFs. Remarkably, increasing exosomal miR-200b-3p in hypoxic CAFs reversed the promoting effects of hypoxic CAFs on CRC cell growth in vitro and in vivo. Furthermore, miR-200b-3p agomir could inhibit CRC cell migration, invasion, stemness and increase the sensitivity of SW480 cells to 5-FU via downregulating ZEB1 and E2F3. Collectively, loss of exosomal miR-200b-3p in hypoxia CAFs could contribute to CRC progression via upregulation of ZEB1 and E2F3. Thus, increasing exosomal miR-200b-3p might serve as an alternative approach for the treatment of CRC.
Collapse
Affiliation(s)
- Wenjing Gong
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Yang Guo
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Hang Yuan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Rui Chai
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Ziang Wan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Boan Zheng
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Xinye Hu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Bingchen Chen
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Shan Gao
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Qiaoqiong Dai
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Peng Yu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Shiliang Tu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
15
|
Fotakopoulos G, Georgakopoulou VE, Spandidos DA, Papalexis P, Angelopoulou E, Aravantinou-Fatorou A, Trakas N, Trakas I, Brotis AG. Role of miR‑200 family in brain metastases: A systematic review. Mol Clin Oncol 2023; 18:15. [PMID: 36798467 PMCID: PMC9926042 DOI: 10.3892/mco.2023.2611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Brain metastasis (BM) represents the single most severe neurological complication of systemic cancer. The prognosis of patients with BM is poor, irrespective of the implemented treatment. The present study performed a systematic review of the literature using three online databases (PubMed, Scopus and Web of Science). Recently, a number of small RNA molecules, the microRNAs (miRNAs/miRs), have attracted increasing scientific attention. Members of the miR-200 family, which includes five miRNAs (miR-141, miR-200a, miR-200b, miR-200c and miR-429) appear to play pivotal roles in cancer initiation and metastasis. Indeed, a systematic review of the pertinent literature revealed that miR-200 family members regulate the brain metastatic cascade, particularly by modulating epithelial-to-mesenchymal transition. That holds true for the major representatives of BM, including lung and breast cancer, as well as for other less frequent secondary lesions originating from melanoma and the gastrointestinal tract. Therefore, the miRNAs may serve as potential diagnostic and/or prognostic markers, and under specific circumstances, as invaluable therapeutic targets. However, the available clinical evidence is relatively limited. A number of studies have suggested that the miR-200 family members are accurate prognostic markers of survival and resistance to chemotherapy in patients with breast cancer. Similarly, they may prove helpful in differentiating a metastatic lesion from a malignant glioma, or a hemangioblastoma from a renal cell carcinoma in patients with von Hippel Lindau syndrome, based on a cerebrospinal fluid sample. However, currently, there is no known therapeutic role for miR-200 family members in the setting of BM.
Collapse
Affiliation(s)
- George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece,Correspondence to: Dr George Fotakopoulos, Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, 41221 Larissa, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Efthalia Angelopoulou
- Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Aikaterini Aravantinou-Fatorou
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Ilias Trakas
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros G. Brotis
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| |
Collapse
|
16
|
Bahramy A, Zafari N, Rajabi F, Aghakhani A, Jayedi A, Khaboushan AS, Zolbin MM, Yekaninejad MS. Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis. Front Mol Biosci 2023; 10:1096524. [PMID: 36726376 PMCID: PMC9885171 DOI: 10.3389/fmolb.2023.1096524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Breast cancer (BC) is the most common cancer in women. The incidence and morbidity of BC are expected to rise rapidly. The stage at which BC is diagnosed has a significant impact on clinical outcomes. When detected early, an overall 5-year survival rate of up to 90% is possible. Although numerous studies have been conducted to assess the prognostic and diagnostic values of non-coding RNAs (ncRNAs) in breast cancer, their overall potential remains unclear. In this field of study, there are various systematic reviews and meta-analysis studies that report volumes of data. In this study, we tried to collect all these systematic reviews and meta-analysis studies in order to re-analyze their data without any restriction to breast cancer or non-coding RNA type, to make it as comprehensive as possible. Methods: Three databases, namely, PubMed, Scopus, and Web of Science (WoS), were searched to find any relevant meta-analysis studies. After thoroughly searching, the screening of titles, abstracts, and full-text and the quality of all included studies were assessed using the AMSTAR tool. All the required data including hazard ratios (HRs), sensitivity (SENS), and specificity (SPEC) were extracted for further analysis, and all analyses were carried out using Stata. Results: In the prognostic part, our initial search of three databases produced 10,548 articles, of which 58 studies were included in the current study. We assessed the correlation of non-coding RNA (ncRNA) expression with different survival outcomes in breast cancer patients: overall survival (OS) (HR = 1.521), disease-free survival (DFS) (HR = 1.33), recurrence-free survival (RFS) (HR = 1.66), progression-free survival (PFS) (HR = 1.71), metastasis-free survival (MFS) (HR = 0.90), and disease-specific survival (DSS) (HR = 0.37). After eliminating low-quality studies, the results did not change significantly. In the diagnostic part, 22 articles and 30 datasets were retrieved from 8,453 articles. The quality of all studies was determined. The bivariate and random-effects models were used to assess the diagnostic value of ncRNAs. The overall area under the curve (AUC) of ncRNAs in differentiated patients is 0.88 (SENS: 80% and SPEC: 82%). There was no difference in the potential of single and combined ncRNAs in differentiated BC patients. However, the overall potential of microRNAs (miRNAs) is higher than that of long non-coding RNAs (lncRNAs). No evidence of publication bias was found in the current study. Nine miRNAs, four lncRNAs, and five gene targets showed significant OS and RFS between normal and cancer patients based on pan-cancer data analysis, demonstrating their potential prognostic value. Conclusion: The present umbrella review showed that ncRNAs, including lncRNAs and miRNAs, can be used as prognostic and diagnostic biomarkers for breast cancer patients, regardless of the sample sources, ethnicity of patients, and subtype of breast cancer.
Collapse
Affiliation(s)
- Afshin Bahramy
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zafari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Aghakhani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| |
Collapse
|
17
|
Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:428. [PMID: 36672378 PMCID: PMC9856444 DOI: 10.3390/cancers15020428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a frequent type of childhood hematological malignancy. The disease is classified into several subtypes according to genetic abnormalities. MicroRNAs (miRNAs) are involved in pathological processes (e.g., proliferation, apoptosis, differentiation). A miRNA is a group of short non-coding RNAs with relevant regulatory effects on gene expression achieved by suppression of the translation or degradation of messenger RNA (mRNA). These molecules act as tumor suppressors and/or oncogenes in the pathogenesis of pediatric leukemias. The characteristic features of miRNAs are their stable form and the possibility of secretion to the circulatory system. The role of miRNA in BCP-ALL pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. The dysregulation of some miRNAs involved in childhood acute lymphoid leukemia, such as miR-155, miR-200c, miR-100, miR-181a, miR125b, and miR146a is discussed, showing their possible employment as therapeutic targets. In the current review, the capabilities of miRNAs in non-invasive diagnostics and their prognostic potential as biomarkers are presented.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Lejman
- Independent Public Health Care Facility of The Ministry of Internal Affairs and Administration in Lublin, 20-331 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
18
|
Arshinchi Bonab R, Asfa S, Kontou P, Karakülah G, Pavlopoulou A. Identification of neoplasm-specific signatures of miRNA interactions by employing a systems biology approach. PeerJ 2022; 10:e14149. [PMID: 36213495 PMCID: PMC9536303 DOI: 10.7717/peerj.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs represent major regulatory components of the disease epigenome and they constitute powerful biomarkers for the accurate diagnosis and prognosis of various diseases, including cancers. The advent of high-throughput technologies facilitated the generation of a vast amount of miRNA-cancer association data. Computational approaches have been utilized widely to effectively analyze and interpret these data towards the identification of miRNA signatures for diverse types of cancers. Herein, a novel computational workflow was applied to discover core sets of miRNA interactions for the major groups of neoplastic diseases by employing network-based methods. To this end, miRNA-cancer association data from four comprehensive publicly available resources were utilized for constructing miRNA-centered networks for each major group of neoplasms. The corresponding miRNA-miRNA interactions were inferred based on shared functionally related target genes. The topological attributes of the generated networks were investigated in order to detect clusters of highly interconnected miRNAs that form core modules in each network. Those modules that exhibited the highest degree of mutual exclusivity were selected from each graph. In this way, neoplasm-specific miRNA modules were identified that could represent potential signatures for the corresponding diseases.
Collapse
Affiliation(s)
- Reza Arshinchi Bonab
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Seyedehsadaf Asfa
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Panagiota Kontou
- Department of Mathematics, University of Thessaly, Lamia, Greece
| | - Gökhan Karakülah
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
19
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
20
|
Pan Y, Shao S, Sun H, Zhu H, Fang H. Bile-derived exosome noncoding RNAs as potential diagnostic and prognostic biomarkers for cholangiocarcinoma. Front Oncol 2022; 12:985089. [PMID: 36091129 PMCID: PMC9449313 DOI: 10.3389/fonc.2022.985089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is one of the most aggressive malignancies, lacking novel diagnostic and prognostic biomarkers. Exosome noncoding RNAs (ncRNA) were previously proposed as a potential source of biomarkers in several cancers. This study aimed to interpret the value of specific bile-derived ncRNA as predictors for early diagnosis and prognosis of CCA. Methods We recruited 100 patients who received endoscopic retrograde cholangiopancreatography at our hospital for bile duct obstruction due to CCA (n = 50) and biliary stone (n = 50). They were further divided into training set and validation set (3:2). A panel of CCA-specific ncRNAs including 5 miRNAs (PMID: 30165035) and 2 lncRNAs (PMID: 29050258) were detected in both serum and bile exosomes. The diagnostic accuracy was assessed using the area under the receiver operating characteristic curve. Logistic analysis was used to classify the potential predictors of CCA and further establish the diagnostic model. And the prognostic value of the ncRNAs was also assessed. Results Exosomes were successfully collected from bile and serum. Exosomal miR-141-3p, miR-200a-3p, miR-200c-3p in serum and bile, as well as miR-200b-3p and ENST00000588480.1 in bile showed AUCs of >0.70 in the diagnosis of CCA. Bile exosomal miR-200c-3p displayed the best diagnostic value with the AUC of 0.87. The combination of serum CA19-9 into the model could increase the AUC to 0.906. Bile exosomal miR-200a-3p and miR-200c-3p were found to be independent predictors of CCA. Among exosomal ncRNAs in human bile and blood, 3 (serum and bile exosomal miR-200c-3p, bile exosomal miR-200a-3p) showed significant value in predicting cancer recurrence and 1 (serum exosomal miR-200c-3p) had great predictive ability of cancer death. High levels of serum exosomal miR-200c-3p showed unfavorable tumor-free survival and overall survival. Conclusion The bile exosomal miR-200 family, particularly miR-200c-3p, was verified to be a potential biomarker for the early detection of CCA. The diagnostic ability of exosomal ncRNAs in human bile is better than that in blood. Moreover, high levels of bile exosomal miR-200a-3p, miR-200c-3p, and serum exosomal miR-200c-3p represented adverse clinical outcomes.
Collapse
Affiliation(s)
- Yan Pan
- Department of Integrative Oncology, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Shao
- Department of Oncological Surgery, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Sun
- Department of Oncological Surgery, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Huafeng Zhu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixing Fang
- Department of Oncological Surgery, The First People’s Hospital of Fuyang, Fuyang First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haixing Fang,
| |
Collapse
|
21
|
The miR-200 Family Targeting amh Affects the Gonadal Development of Japanese Flounder. FISHES 2022. [DOI: 10.3390/fishes7030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Four members of the miR-200 family in Japanese flounder (Paralichthys olivaceus) have sex-biased expression patterns, but their target genes and how they work in the development of the gonads are rarely known. Anti-Müllerian hormone (AMH) can inhibit the development of Muller’s duct in female mammals and regulate the formation of gametes after sexual maturity. There is no Muller’s duct in teleosts, but the amh gene still exists. Knockout of amh results in sex reversal from male to female. Therefore, it is essential to explore the relationship between the miR-200 family and amh to clarify what role miR-200 plays in the development of the gonads. In Japanese flounder, the two binding sites for the miR-200 family in the 3′UTR of amh were found through bioinformatic prediction. Double luciferase and green fluorescent protein reporter experiments demonstrated amh to be directly targeted by miR-200a and miR-200b. Moreover, miR-200a and miR-200b reduced the expression of amh through site 1 rather than site 2. To explore the regulatory role of miR-200a in gonadal development, we further overexpressed miR-200a in the primary Sertoli cells of the testis. With the overexpression of miR-200a, the expression of amh decreased, while the expression of the other two male sex-related genes, dmrt1 (doublesex and mab-3 related transcription factor 1) and gsdf (diagonal soma driven factor), increased significantly. This result indicates that the miR-200 family regulates the gonadal differentiation and development by targeting amh in Japanese flounder.
Collapse
|
22
|
Navarro-Manzano E, Luengo-Gil G, González-Conejero R, García-Garre E, García-Martínez E, García-Torralba E, Chaves-Benito A, Vicente V, Ayala de la Peña F. Prognostic and Predictive Effects of Tumor and Plasma miR-200c-3p in Locally Advanced and Metastatic Breast Cancer. Cancers (Basel) 2022; 14:cancers14102390. [PMID: 35625994 PMCID: PMC9139340 DOI: 10.3390/cancers14102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
While the role of miR-200c in cancer progression has been established, its expression and prognostic role in breast cancer is not completely understood. The predictive role of miR-200c in response to chemotherapy has also been suggested by some studies, but only limited clinical evidence is available. The purpose of this study was to investigate miR-200c-3p in the plasma and primary tumor of BC patients. The study design included two cohorts involving women with locally advanced (LABC) and metastatic breast cancer. Tumor and plasma samples were obtained before and after treatment. We found that miR-200c-3p was significantly higher in the plasma of BC patients compared with the controls. No correlation of age with plasma miR-200c-3p was found for controls or for BC patients. MiR-200c-3p tumor expression was also associated with poor overall survival in LABC patients treated with neoadjuvant chemotherapy, independently of pathological complete response or clinical stage. Our findings suggest that plasmatic miR-200c-3p levels could be useful for BC staging, while the tumor expression of miR-200c-3p might provide further prognostic information beyond residual disease in BC treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Esther Navarro-Manzano
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Ginés Luengo-Gil
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Elisa García-Garre
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Medical School, Universidad Católica San Antonio, 30107 Murcia, Spain
| | - Esmeralda García-Torralba
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
| | - Asunción Chaves-Benito
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
- Department of Pathology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Francisco Ayala de la Peña
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
- Correspondence: ; Tel.: +34-968360900
| |
Collapse
|
23
|
Establishment and Comprehensive Analysis of Underlying microRNA-mRNA Interactive Networks in Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5120342. [PMID: 35310909 PMCID: PMC8930263 DOI: 10.1155/2022/5120342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023]
Abstract
Background The rate of ovarian cancer (OC) is one of the highest in women's reproductive systems. An improperly expressed microRNA (miRNA) has been discovered to have a vital role in the pathophysiology of OC. However, more research into OC's miRNA-message RNA (mRNA) gene interaction network is required. Methods Firstly, the microarray data sets GSE25405 and GSE119055 from the GEO (Gene Expression Omnibus) database were downloaded and then analyzed with the GEO2R tool aiming at identifying DEMs (differential expressed miRNAs) between ovarian malignant tissue and ovarian normal tissue. The whole consistently changed miRNAs were then screened out to be candidate DEMs. For estimating underlying upstream transcription factors, FunRich was employed. miRNet was utilized to determine putative DEMs' downstream target genes. The R program was then used to do the GO annotation as well as the analysis of KEGG pathway enrichment for target genes. The PPI (protein-protein interaction), as well as the DEM-hub gene networks, were created by the Cytoscape software and STRING database. Finally, we chose the GSE74448 dataset to test the precision of hub gene expressions. Results We have screened out six (five upregulated and one downregulated) DEMs. The majority of upregulated and downregulated DEMs are likely regulated by SP1 (specificity protein 1). SP4 (s protein 4), POU2F1 (POU class 2 homeobox 1), MEF2A (myocyte-specific enhancer factor 2A), ARID3A (AT-rich interaction domain 3A), and EGR1 (early growth response 1) can regulate upregulated and downregulated DEMs. We have found 807 target genes (656 upregulated and 151 downregulated DEM), being generally enriched in focal adhesion and proteoglycans in cancer, gastric cancer, hepatocellular carcinoma, as well as breast cancer. The majority of hub genes are projected to be controlled by hsa-miR-429, hsa-miR-140-5p, hsa-miR-199a-5p, and hsa-miR-199a-3p after the DEM-hub gene network was built. VEGFA (vascular endothelial growth factor A), EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), and HIF1A (hypoxia inducible factor 1 subunit alpha) expressions are consistent with the GSE74448 dataset in the first 18 hub genes. Conclusion We have built an underlying miRNA-mRNA interacting network in OC, giving us unparalleled insight into the disease's diagnosis and treatment.
Collapse
|
24
|
Lin CY, Wu RC, Yang LY, Jung SM, Ueng SH, Tang YH, Huang HJ, Tung HJ, Lin CT, Chen HY, Chao A, Lai CH. MicroRNAs as Predictors of Future Uterine Malignancy in Endometrial Hyperplasia without Atypia. J Pers Med 2022; 12:311. [PMID: 35207799 PMCID: PMC8879120 DOI: 10.3390/jpm12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
The histological criteria for classifying endometrial hyperplasia (EH) are based on architectural crowding and nuclear atypia; however, diagnostic agreement among pathologists is poor. We investigated molecular biomarkers of endometrial cancer (EC) risk in women with simple hyperplasia or complex hyperplasia without atypia (SH/CH-nonA). Forty-nine patients with EC preceded by SH/CH-nonA were identified, of which 23 were excluded (15 with complex atypical hyperplasia (CAH), six not consenting, one with a diagnosis <6 months prior, and one lost to follow-up). The EH tissues of these patients were compared with those of patients with SH/CH-nonA that did not progress to EC (control) through microRNA (miRNA) array analysis, and the results were verified in an expanded cohort through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). MiRNA arrays analyses revealed 20 miRNAs that differed significantly (p < 0.05, fold change >4) between the control (n = 12) and case (n = 6) patients. Multiplex RT-qPCR for the 20 miRNAs in the expanded cohort (94 control and 25 case patients) led to the validation of miR-30a-3p (p = 0.0009), miR-141 (p < 0.0001), miR-200a (p < 0.0001), and miR-200b (p < 0.0001) as relevant biomarkers, among which miR-141, miR-200a, and miR-200b regulate the expression of phosphatase and tensin homolog (PTEN). For the prediction of EC, the area under the curve for miR-30a-3p, miR-141, miR-200a, and miR-200b was 0.623, 0.754, 0.783, and 0.704, respectively. The percentage of complete PTEN loss was significantly higher in the case group than in the control group (24% vs. 0%, p < 0.001, Fisher's exact test). A combination of complete PTEN loss and miR-200a provided optimal prediction performance (sensitivity = 0.760; specificity = 1.000; positive predictive value = 1.000; negative predictive value = 0.937; accuracy = 0.947). MiR-30a-3p, miR-141, miR-200a, miR-200b, and complete PTEN loss may be useful tissue biomarkers for predicting EC risk among patients with SH/CH-nonA.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Lan-Yan Yang
- Biostatics Unit, Clinical Trial Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan;
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Jung
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Shir-Hwa Ueng
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Hsiu-Jung Tung
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Cheng-Tao Lin
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Hsuan-Yu Chen
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Angel Chao
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| |
Collapse
|
25
|
Liu D, Gao S, Zhai Y, Yang X, Zhai G. Research progress of tumor targeted drug delivery based on PD-1/PD-L1. Int J Pharm 2022; 616:121527. [DOI: 10.1016/j.ijpharm.2022.121527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
26
|
Rogers CJ, Kyubwa EM, Lukaszewicz AI, Yamada-Hanff J, Starbird MA, Miller TA, Phelps AA, Wallack S, Mahendra S, Thrall K, Menon N. Identification of miRNA Associated with Reduced Survival after Whole-Thorax Lung Irradiation in Non-Human Primates. Radiat Res 2021; 196:510-522. [PMID: 33857299 DOI: 10.1667/rade-20-00031.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Thoracic exposure to ionizing radiation can lead to delayed injuries to the heart and lung that are serious and even life-threatening. These injuries are difficult to predict since they manifest over many weeks and months. To identify noninvasive, tissue-specific biomarkers for the early detection of late radiation injury, circulating microRNA (miRNA) levels were measured in non-human primates (NHP, Macaca mulatta) that received a single exposure of whole-thorax lung irradiation (WTLI) at a dose likely to result in 20% or 75% mortality within 180 days (9.8 or 10.7 Gy). Animals were observed for 270 days after WTLI. Approximately 58% of 9.8 Gy WTLI animals (7 of 12) and 94% of 10.7 Gy WTLI animals (15 out of 16) did not survive to the primary end point. Evidence of pulmonary fibrosis/pneumonitis was observed in all animals. Animals that received 10.7 Gy WTLI experienced more severe and early-onset pneumonitis, as indicated by reduced aerated lung volume, high non-sedated respiratory rate, earlier and more frequent dexamethasone treatments, and evidence of onset of heart disease. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days postirradiation, before the manifestation of symptoms, and included miRNA sequences known to regulate pathways associated with pulmonary fibrosis (TGF-β/SMAD signaling) and pneumonitis/inflammation (p53 signaling). The abundance of several circulating miRNA differentially expressed at day 6 or 15, such as miR-199a-3p and miR-25-3p, correlated with statistically significant differences in survival. This study supports the hypothesis that it is feasible to use plasma miRNA profiles to identify individuals at high risk of organ-specific late radiation injury. These miRNA profiles could improve radiation oncology clinical practice and serve as biomarkers to predict who might develop late complications in the aftermath of a radiological or nuclear (RAD-NUC) incident.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seth Wallack
- Veterinary Imaging Center of San Diego, San Diego, California 92111
| | | | - Karla Thrall
- Altasciences Preclinical Seattle LLC, Everett, Washington 98203
| | | |
Collapse
|
27
|
Otmani K, Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front Oncol 2021; 11:708765. [PMID: 34722255 PMCID: PMC8554338 DOI: 10.3389/fonc.2021.708765] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that have been identified as important posttranscriptional regulators of gene expression. miRNAs production is controlled at multiple levels, including transcriptional and posttranscriptional regulation. Extensive profiling studies have shown that the regulation of mature miRNAs expression plays a causal role in cancer development and progression. miRNAs have been identified to act as tumor suppressors (TS) or as oncogenes based on their modulating effect on the expression of their target genes. Upregulation of oncogenic miRNAs blocks TS genes and leads to tumor formation. In contrast, downregulation of miRNAs with TS function increases the translation of oncogenes. Several miRNAs exhibiting TS properties have been studied. In this review we focus on recent studies on the role of TS miRNAs in cancer cells and the tumor microenvironment (TME). Furthermore, we discuss how TS miRNA impacts the aggressiveness of cancer cells, with focus of the mechanism that regulate its expression. The study of the mechanisms of miRNA regulation in cancer cells and the TME may paved the way to understand its critical role in the development and progression of cancer and is likely to have important clinical implications in a near future. Finally, the potential roles of miRNAs as specific biomarkers for the diagnosis and the prognosis of cancer and the replacement of tumor suppressive miRNAs using miRNA mimics could be promising approaches for cancer therapy.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Jules Bordet Institute, Université libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
28
|
Záveský L, Jandáková E, Weinberger V, Hanzíková V, Slanař O, Kohoutová M. Ascites in ovarian cancer: MicroRNA deregulations and their potential roles in ovarian carcinogenesis. Cancer Biomark 2021; 33:1-16. [PMID: 34511487 DOI: 10.3233/cbm-210219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ovarian cancer comprises the most lethal gynecologic malignancy and is accompanied by the high potential for the incidence of metastasis, recurrence and chemotherapy resistance, often associated with a formation of ascitic fluid. The differentially expressed ascites-derived microRNAs may be linked to ovarian carcinogenesis. The article focuses on a number of miRNAs that share a common expression pattern as determined by independent studies using ascites samples and with regard to their functions and outcomes in experimental and clinical investigations.Let-7b and miR-143 have featured as tumor suppressors in ovarian cancer, which is in line with data on other types of cancer. Although two miRNAs, i.e. miR-26a-5p and miR-145-5p, act principally as tumor suppressor miRNAs, they occasionally exhibit oncogenic roles. The performance of miR-95-3p, upregulated in ascites, is open to debate given the current lack of supportive data on ovarian cancer; however, data on other cancers indicates its probable oncogenic role. Different findings have been reported for miR-182-5p and miR-200c-3p; in addition to their presumed oncogenic roles, contrasting findings have indicated their ambivalent functions. Further research is required for the identification and evaluation of the potential of specific miRNAs in the diagnosis, prediction, treatment and outcomes of ovarian cancer patients.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic.,Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Veronika Hanzíková
- Faculty Transfusion Center, General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Wang WB, Ren P, Ren FH, Huang M, Cheng X. Circ_0000526 Blocks the Progression of Breast Cancer by Sponging miR-492. Cancer Biother Radiopharm 2021; 36:467-476. [PMID: 32391718 DOI: 10.1089/cbr.2019.3513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Wen-Bin Wang
- Department of Thyroid and Breast Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Ping Ren
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Fei-hua Ren
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ming Huang
- Department of Thyroid and Breast Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Xing Cheng
- Department of Thyroid and Breast Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
30
|
Qiu Z, Wang L, Liu H. Hsa_circ_0001982 promotes the progression of breast cancer through miR-1287-5p/MUC19 axis under hypoxia. World J Surg Oncol 2021; 19:161. [PMID: 34082777 PMCID: PMC8176694 DOI: 10.1186/s12957-021-02273-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background Breast cancer (BC) is the most commonly malignant tumor among women worldwide. Many studies have reported that circular RNAs (circRNAs) were participated in the regulation of multiple cancers development. However, the mechanism underlying hsa_circ_0001982 in breast cancer development is still unclear. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the levels of circ_0001982, microRNA-1287-5p (miR-1287-5p), and mucin 19 (MUC19) in BC tissues and cells under hypoxia. Moreover, glycolysis was evaluated by glucose consumption, lactic acid production, and hexokinase II (HK2) protein levels. The protein levels of cyclin D1, proliferating cell nuclear antigen (PCNA), and HK2 were determined by western blot assay. Cell proliferation, migration, and invasion were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-h-tetrazolium bromide (MTT) and transwell assays, respectively. The relationship between miR-1287-5p and circ_0001982 or MUC19 was predicted using starbase v3.0 or Targetscan, and verified by dual-luciferase reporter assay and RNA binding protein immunoprecipitation (RIP) assay. The xenograft model in nude mice was established to examine the effect of circ_0001982 in vivo. Results The levels of circ_0001982 and MUC19 were upregulated, while miR-1287-5p was downregulated in BC tissues and cells under hypoxia. Knockdown of circ_0001982 hindered glycolysis, cell viability, migration, and invasion of BC cells under hypoxia. Mechanistic studies discovered that circ_0001982 could act as a sponge for miR-1287-5p to enhance MUC19 expression in BC cells. In addition, circ_0001982 silencing reduced xenograft tumor growth by regulating miR-1287-5p/MUC19 axis. Conclusion Circ_0001982 affected BC cells glycolysis, proliferation, migration, and invasion through miR-1287-5p/MUC19 axis under hypoxia.
Collapse
Affiliation(s)
- Zhimin Qiu
- Department of Breast Cancer, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ling Wang
- Department of Nursing, Jiangxi Health Vocational College, Nanchang, Jiangxi, China
| | - Huaidong Liu
- Department of Oncology, Huaian Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, No. 62 Huaihai South Road, Huai'an City, Jiangsu, China.
| |
Collapse
|
31
|
Dika E, Broseghini E, Porcellini E, Lambertini M, Riefolo M, Durante G, Loher P, Roncarati R, Bassi C, Misciali C, Negrini M, Rigoutsos I, Londin E, Patrizi A, Ferracin M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis 2021; 12:473. [PMID: 33980826 PMCID: PMC8115306 DOI: 10.1038/s41419-021-03764-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Collapse
Affiliation(s)
- Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roberta Roncarati
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
- CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Cosimo Misciali
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Annalisa Patrizi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
32
|
Wen B, Zhu R, Jin H, Zhao K. Differential expression and role of miR-200 family in multiple tumors. Anal Biochem 2021; 626:114243. [PMID: 33964251 DOI: 10.1016/j.ab.2021.114243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 01/02/2023]
Abstract
microRNA (miRNA) can maintain the homeostasis of the human by participating in the regulation of cell proliferation, apoptosis, differentiation, and metabolism. During the entire stage of tumorigenesis, miRNA can maintain the heterogeneity of cancer stem cells by regulating the formation and metastasis of the tumor, which leads to chemotherapy resistance. miR-200 family consists of five members, which can regulate the proliferation, invasion, and migration of cancer cells by inhibiting the transcription of downstream genes (including zinc finger E-box binding homeobox 1 and 2, E-cadherin, N-cadherin, transforming growth factor-β, and cancer stem cell related-proteins). Meanwhile, Long non-coding RNA can bind to miR-200s to regulate the proliferation and apoptosis of cancer cells. Besides, the expression of the miR-200 family can affect the mechanism of chemotherapy resistance.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Rong Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
33
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. Targeting microRNAs by curcumin: implication for cancer therapy. Crit Rev Food Sci Nutr 2021; 62:7718-7729. [PMID: 33905266 DOI: 10.1080/10408398.2021.1916876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In spite of all the investigations in the past 20 years that established a great body of knowledge in cancer therapy, utilizing some elderly methods such as plant compound administration might still be useful. Curcumin is a bioactive polyphenol, which has many anticancer properties but its capability in modulating miRNA expression has opened new doors in the field of cancer-targeted therapy. MiRNAs are a class of small noncoding RNAs that are able to regulate gene expression and signaling. In addition, some other effects of these RNAs such as modulating cell differentiation and regulation of cell cycle have made miRNAs great candidates for personalized cancer treatment. In this review, we try to find some answers to the questions on how curcumin exerts its impacts on cancer hallmarks through miRNAs and whether chemotherapy can be replaced by this beneficial plant compound.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Liang XL, Wang YL, Wang PR. MiR-200a with CDC7 as a direct target declines cell viability and promotes cell apoptosis in Wilm's tumor via Wnt/β-catenin signaling pathway. Mol Cell Biochem 2021; 476:2409-2420. [PMID: 33599894 DOI: 10.1007/s11010-021-04090-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
MiR-200a acts as a key role in tumor malignant progression. This work purposed to assess the function of miR-200a in Wilm's tumor. Based on bioinformatics analysis, the expression, prognostic value and related pathways of miR-200a and CDC7 (a potential downstream molecule of miR-200a) in Wilm's tumor were analyzed. qRT-PCR was conducted to confirm the miR-200a level in Wilm's tumor cells. The luciferase reporter assay was carried out to verify the binding of miR-200a to 3'-UTR of CDC7. Then, the impacts of miR-200a and CDC7 on cell viability and apoptosis were measured using CCK-8 and flow cytometry assays. Also, western blot was applied to measure the expression of CDC7 as well as Wnt/β-catenin signaling pathway-related proteins and apoptosis proteins. Herein, we revealed that miR-200a was lowly expressed in Wilm's tumor tissues and cells and the low miR-200a expression is closely bound up with death and poor outcomes. Moreover, miR-200a directly targeted and inhibited CDC7 in Wilm's tumor cells. Biological function experiments illustrated that overexpression of miR-200a reduced the viability and elevated the apoptosis of Wilm's tumor cells, while overexpression of CDC7 reversed the inhibitory impact of miR-200a on cell viability and the promoting impact of miR-200a on cell apoptosis. Besides, we revealed that miR-200a/CDC7 axis can decrease the expression of β-Catenin, Cyclin D1 and C-Myc as well as the phosphorylation of GSK-3β, thus inhibiting the Wnt/β-catenin signaling pathway. Furthermore, blocking the Wnt/β-catenin signaling pathway caused an increase on cell apoptosis, while overexpression of CDC7 can reverse these impacts. Collectively, miR-200a/CDC7 axis involved in regulating the malignant phenotype of Wilm's tumor through Wnt/β-catenin signaling pathway, which provides a theoretical basis for targeted molecular therapy of Wilm's tumor.
Collapse
Affiliation(s)
- Xiu-Ling Liang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China.,Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| | - Yu-Long Wang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China
| | - Pei-Rong Wang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China.
| |
Collapse
|
35
|
Fontana A, Barbano R, Dama E, Pasculli B, Rendina M, Morritti MG, Melocchi V, Castelvetere M, Valori VM, Ravaioli S, Bravaccini S, Ciuffreda L, Graziano P, Maiello E, Copetti M, Fazio VM, Esteller M, Bianchi F, Parrella P. Combined analysis of miR-200 family and its significance for breast cancer. Sci Rep 2021; 11:2980. [PMID: 33536459 PMCID: PMC7859396 DOI: 10.1038/s41598-021-82286-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
While the molecular functions of miR-200 family have been deeply investigated, a role for these miRNAs as breast cancer biomarkers remains largely unexplored. In the attempt to clarify this, we profiled the miR-200 family members expression in a large cohort of breast cancer cases with a long follow-up (H-CSS cohort) and in TCGA-BRCA cohort. Overall, miR-200 family was found upregulated in breast tumors with respect to normal breast tissues while downregulated in more aggressive breast cancer molecular subtypes (i.e. Luminal B, HER2 and triple negative), consistently with their function as repressors of the epithelial-to-mesenchymal transition (EMT). In particular miR-141-3p was found differentially expressed in breast cancer molecular subtypes in both H-CSS and TCGA-BRCA cohorts, and the combined analysis of all miR-200 family members demonstrated a slight predictive accuracy on H-CSS cancer specific survival at 12 years (survival c-statistic: 0.646; 95%CI 0.538–0.754).
Collapse
Affiliation(s)
- Andrea Fontana
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Biostatistica, San Giovanni Rotondo, FG, Italy
| | - Raffaela Barbano
- Laboratorio Di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy
| | - Elisa Dama
- Cancer Biomarkers Lab, ISBREMIT, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Barbara Pasculli
- Laboratorio Di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy
| | - Michelina Rendina
- Laboratorio Di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Morritti
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Valentina Melocchi
- Cancer Biomarkers Lab, ISBREMIT, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Marina Castelvetere
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, San Giovanni Rotondo, FG, Italy
| | - Vanna Maria Valori
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Sara Ravaioli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sara Bravaccini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luigi Ciuffreda
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Chirurgia Senologica, San Giovanni Rotondo, FG, Italy
| | - Paolo Graziano
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, San Giovanni Rotondo, FG, Italy
| | - Evaristo Maiello
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Biostatistica, San Giovanni Rotondo, FG, Italy
| | - Vito Michele Fazio
- Laboratorio Di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Fabrizio Bianchi
- Cancer Biomarkers Lab, ISBREMIT, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Paola Parrella
- Laboratorio Di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
36
|
Cong J, Gong J, Yang C, Xia Z, Zhang H. MiR-200c/FUT4 axis prevents the proliferation of colon cancer cells by downregulating the Wnt/β-catenin pathway. BMC Cancer 2021; 21:2. [PMID: 33397320 PMCID: PMC7784291 DOI: 10.1186/s12885-020-07670-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNA (miR)-200c has been widely reported to be involved in colon cancer progress. However, the mechanisms of miR-200c in regulating tumor metastasis and growth remain to be fully elucidated. This study aimed to investigate the mechanism of miR-200c targets fucosyltransferase 4 (FUT4) on the proliferation of colon cancer. METHODS The miR-200c and FUT4 mRNA levels in LoVo and SW480 cells were measured by real-time quantitative polymerase chain reaction. Further, miR-200c mimic, FUT4 siRNA and FUT4 mimic were transfected into cells, separately. Cell counting kit-8, plate colony formation and transwell assays were used to analyse the cells biological behaviour.. Immunofluorescence was used to analyse the Ki-67 expression Moreover, the Wnt/β-catenin pathway-related proteins were detected by western blots. A double luciferase experiment was performed to confirm the relationship between miR-200c and FUT4. In vivo, tumour growth and Wnt/β-catenin pathway-related proteins were also analysed. RESULTS In vitro, the expression of miR-200c and FUT4 were negatively correlated in LoVo and SW480 cells (correlation coefficients were - 0.9046 and - 0.9236, respectively). MiR-200c overexpression inhibited the proliferation, migration and invasion of LoVo and SW480 cells by downregulating FUT4. The Ki67-positive cells and Wnt/β-catenin signalling pathway-related proteins were reduced in the miR-200c overexpression and FUT4 silencing groups. A dual luciferase reporting system identified FUT4 as the target of miR-200c. The results in vivo were further confirmed the foundation of cells study. CONCLUSIONS In summary, miR-200c overexpression inhibits proliferation of colon cancer targeting FUT4 to downregulate the Wnt/β-catenin pathway, which promises molecular targets to inhibit metastasis for colon cancer therapy.
Collapse
Affiliation(s)
- Jinchun Cong
- Department of General Surgery, Shengjing Hospital China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jian Gong
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuanjia Yang
- Department of General Surgery, Shengjing Hospital China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhixiu Xia
- Department of General Surgery, Shengjing Hospital China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
37
|
Chen S, Zhang J, Chen Q, Cheng J, Chen X, Mao Y, Chen W, Liu C, Wu H, Lv Y, Lin Y. MicroRNA-200a and microRNA-141 have a synergetic effect on the suppression of epithelial-mesenchymal transition in liver cancer by targeting STAT4. Oncol Lett 2020; 21:137. [PMID: 33552256 PMCID: PMC7798046 DOI: 10.3892/ol.2020.12398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding small RNAs that target specific messenger RNAs to inhibit protein translation. miR-200a and miR-141 function as tumor suppressors by targeting STAT4. These two miRNAs belong to the same family, and their expression is often decreased in various cancer types, but are located on different chromosomes of the human genome. The present study showed that the expression levels of miR-141 and miR-200a in serum and cells of liver cancer are significantly downregulated. The expression levels of miR-141 and miR-200a are closely associated with clinicopathological features of liver cancer, especially metastasis and invasion. It is first reported that STAT4 is the new common target gene of miR-141 and miR-200a. In the present study, miR-141 and miR-200a were confirmed to inhibit the expression of E-cadherin and vimentin synergistically during epithelial-mesenchymal transition to regulate the proliferation, migration and invasion of liver cancer cells by targeting STAT4. Simultaneous overexpression of miR-200a and miR-141 resulted in stronger effects compared with each miRNA alone. In addition, overexpression of STAT4 significantly reversed the tumor suppressive roles of miR-200a and miR-141 in liver cancer cells. These findings enrich the tumor suppressor mechanisms of the miR-200 family, and may also provide new experimental and theoretical basis for the use of miRNAs for early diagnosis, prognosis and thorough treatment of liver cancer.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingjun Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qiudan Chen
- Department of Central Laboratory, Clinical Laboratory, Jingan District Central Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Juan Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xiaotong Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yuan Lv
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yong Lin
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
38
|
Potential Diagnostic and Prognostic Utility of miR-141, miR-181b1, and miR-23b in Breast Cancer. Int J Mol Sci 2020; 21:ijms21228589. [PMID: 33202602 PMCID: PMC7697480 DOI: 10.3390/ijms21228589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
miRNAs, a group of short noncoding RNAs, are key regulators of fundamental cellular processes and signaling pathways. Dysregulation of miRNA expression with known oncogenic or tumor suppressor functions has been associated with neoplastic transformation. Numerous studies have reported dysregulation of miRNA-141, miR-181b1, and miR-23b in a wide range of malignancies, including breast cancer. To the best of our knowledge, no previous study had demonstrated the expression of miR-141-3p, miR-181b1-5p, and miR-23b-3p in different histological grades and molecular subtypes of breast cancer. Here, we identified differential expression of these three miRNAs in breast cancer tissues compared with benign breast fibroadenomas. In addition, high expression levels of miR-141-3p and miR-181b1-5p are strongly associated with aggressive breast carcinomas. We also confirmed the clinical potential of using the three miRNAs individually or combined as diagnostic and prognostic markers in breast cancer. Using bioinformatics analyses, we identified 23 hub genes of these three miRNAs which are involved in key signaling pathways in breast cancer. Furthermore, the KM plotter online database analysis demonstrates the association between elevated expression of miR-141 and miR-181b and shorter overall survival of breast cancer patients. Together, our data suggest an oncogenic role of the studied miRNAs and highlight their molecular roles and potential clinical applications in breast cancer.
Collapse
|
39
|
Feliciano A, González L, Garcia-Mayea Y, Mir C, Artola M, Barragán N, Martín R, Altés A, Castellvi J, Benavente S, Ramón Y Cajal S, Espinosa-Bravo M, Cortés J, Rubio IT, LLeonart ME. Five microRNAs in Serum Are Able to Differentiate Breast Cancer Patients From Healthy Individuals. Front Oncol 2020; 10:586268. [PMID: 33224883 PMCID: PMC7670964 DOI: 10.3389/fonc.2020.586268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 01/15/2023] Open
Abstract
Breast cancer is the cancer with the most incidence and mortality in women. microRNAs are emerging as novel prognosis/diagnostic tools. Our aim was to identify a serum microRNA signature useful to predict cancer development. We focused on studying the expression levels of 30 microRNAs in the serum of 96 breast cancer patients vs. 92 control individuals. Bioinformatic studies provide a microRNA signature, designated as a predictor, based on the expression levels of five microRNAs. Then, we tested the predictor in a group of 60 randomly chosen women. Lastly, a proteomic study unveiled the overexpression and downregulation of proteins differently expressed in the serum of breast cancer patients vs. that of control individuals. Twenty-six microRNAs differentiate cancer tissue from healthy tissue, and 16 microRNAs differentiate the serum of cancer patients from that of the control group. The tissue expression of miR-99a, miR-497, miR-362, and miR-1274, and the serum levels of miR-141 correlated with patient survival. Moreover, the predictor consisting of miR-125b, miR-29c, miR-16, miR-1260, and miR-451 was able to differentiate breast cancer patients from controls. The predictor was validated in 20 new cases of breast cancer patients and tested in 60 volunteer women, assigning 11 out of 60 women to the cancer group. An association of low levels of miR-16 with a high content of CD44 protein in serum was found. Circulating microRNAs in serum can represent biomarkers for cancer prediction. Their clinical relevance and the potential use of the predictor here described are discussed.
Collapse
Affiliation(s)
- Andrea Feliciano
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lucila González
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Artola
- Primary Care Center CAP-Vallcarca-Sant Gervasi, Barcelona, Spain
| | - Nieves Barragán
- Primary Care Center CAP-Vallcarca-Sant Gervasi, Barcelona, Spain
| | - Remedios Martín
- Primary Care Center CAP-Vallcarca-Sant Gervasi, Barcelona, Spain
| | - Anna Altés
- Primary Care Center CAP-Vallcarca-Sant Gervasi, Barcelona, Spain
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Benavente
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Javier Cortés
- Institute of Breast Cancer, Quiron Group, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Isabel T Rubio
- Breast Surgical Oncology, University of Navarra Clinic, Madrid, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, Madrid, Spain
| |
Collapse
|
40
|
Dong L, Zhang L, Liu H, Xie M, Gao J, Zhou X, Zhao Q, Zhang S, Yang J. Circ_0007331 knock-down suppresses the progression of endometriosis via miR-200c-3p/HiF-1α axis. J Cell Mol Med 2020; 24:12656-12666. [PMID: 32960511 PMCID: PMC7686986 DOI: 10.1111/jcmm.15833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is considered a benign gynaecological disease with cancer-like characterizations, which has a high incidence among women of reproductive age. However, this disease has so far lacked timely diagnosis and effective treatment owing to its unclear aetiology. In this study, we identified aberrant high expression of circ_0007331 in ectopic endometrial cells by comparing the endometrial samples from patients with and without endometriosis. Further functional experiments revealed that circ_0007331 knock-down effectively suppressed the viability, proliferation and invasive capacity of ectopic endometrial cells. Additionally, we attempted to define the molecular mechanism of circ_0007331 in the initiation and progression of endometriosis. Circ_0007331 acted as a miRNA sponge for miR-200c-3p to indirectly regulate the function of HIF-1α, which plays a key role in the local angiogenesis and hypoxic mechanisms of ectopic endometrium. A final in vivo experiment confirmed that circ_0007331 knock-down could suppress the development of endometriosis through down-regulating the expression of HIF-1α. Collectively, we preliminarily characterized the role and possible insights of circ_0007331/miR-200c-3p/HIF-1α axis in the proliferation and invasion of ectopic endometrial cells. We hope that by exploring the potential function and molecular mechanism of circ_0007331, we can increase our biological insight into the pathogenesis of endometriosis, which will bring the new ways for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Lan Dong
- Department of GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lu Zhang
- Department of ObstetricsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Liu
- Department of GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Meiting Xie
- Department of ObstetricsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Gao
- Ultrasound Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoyan Zhou
- Ultrasound Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qinghong Zhao
- Ultrasound Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Silin Zhang
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Yang
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
41
|
Falzone L, Grimaldi M, Celentano E, Augustin LSA, Libra M. Identification of Modulated MicroRNAs Associated with Breast Cancer, Diet, and Physical Activity. Cancers (Basel) 2020; 12:cancers12092555. [PMID: 32911851 PMCID: PMC7564431 DOI: 10.3390/cancers12092555] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Healthy diet and physical activity are able to induce beneficial molecular modifications that have been associated with a lower risk of breast cancer (BC) incidence and a better prognosis for BC patients. Although the beneficial effects of healthy lifestyle have been described, the beneficial epigenetic modifications induced by dietary and exercise intervention in BC patients have not been elucidated yet. On these bases, the aim of the present study was to computationally identify microRNAs (miRNAs) strictly associated with BC progression and with dietary and exercise interventions. Through several computational approaches, a set of miRNAs modulated by diet and exercise and useful as diagnostic and prognostic biomarkers for BC was identified. The results obtained represent the starting point for further validation analyses performed on BC patients undergoing lifestyle interventions to propose the miRNAs here identified as novel biomarkers for BC management. Abstract Background: Several studies have shown that healthy lifestyles prevent the risk of breast cancer (BC) and are associated with better prognosis. It was hypothesized that lifestyle strategies induce microRNA (miRNA) modulation that, in turn, may lead to important epigenetic modifications. The identification of miRNAs associated with BC, diet, and physical activity may give further insights into the role played by lifestyle interventions and their efficacy for BC patients. To predict which miRNAs may be modulated by diet and physical activity in BC patients, the analyses of different miRNA expression datasets were performed. Methods: The GEO DataSets database was used to select miRNA expression datasets related to BC patients, dietary interventions, and physical exercise. Further bioinformatic approaches were used to establish the value of selected miRNAs in BC development and prognosis. Results: The analysis of datasets allowed the selection of modulated miRNAs associated with BC development, diet, and physical exercise. Seven miRNAs were also associated with the overall survival of BC patients. Conclusions: The identified miRNAs may play a role in the development of BC and may have a prognostic value in patients treated with integrative interventions including diet and physical activity. Validation of such modulated miRNAs on BC patients undergoing lifestyle strategies will be mandatory.
Collapse
Affiliation(s)
- Luca Falzone
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| | - Maria Grimaldi
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Egidio Celentano
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Livia S. A. Augustin
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| |
Collapse
|
42
|
Yoshida K, Yokoi A, Kato T, Ochiya T, Yamamoto Y. The clinical impact of intra- and extracellular miRNAs in ovarian cancer. Cancer Sci 2020; 111:3435-3444. [PMID: 32750177 PMCID: PMC7541008 DOI: 10.1111/cas.14599] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer due to lack of early screening methods and acquired drug resistance. MicroRNAs (miRNAs) are effective post‐transcriptional regulators that are transferred by extracellular vesicles, such as exosomes. Numerous studies have revealed that miRNAs are differentially expressed in epithelial ovarian cancer and act either as oncogenes or tumor suppressor genes. Cancer cells secrete exosomes containing miRNAs, which exert various effects on the components of the tumor microenvironment, including cancer‐associated fibroblasts, macrophages, and adipocytes. Conversely, cancer cells also receive exosomes from these cells. As a result of cell‐to‐cell communication, epithelial ovarian cancer acquires a more aggressive phenotype and resistance to multiple drugs. In addition, some circulating miRNAs are protected from RNase degradation in the peripheral blood and can be potential non‐invasive biomarkers. In particular, the combination of several circulating miRNAs enhances the accuracy of cancer screening. Likewise, comprehensive analyses revealed specific miRNA signatures in non‐epithelial ovarian tumors and several miRNAs contributing to alterations of carcinogenic pathways. Overall, miRNAs play a crucial role in ovarian cancer progression. In this review, we discuss the emerging roles of intra‐ and extracellular miRNAs in ovarian cancers. In the near future, miRNAs will be practical biomarkers and computational deep learning will help in the clinical application of miRNAs. Moreover, miRNAs are potential therapeutic targets and agents, and there are ongoing clinical trials of miRNA replacement therapy. Therefore, accelerating research on miRNA might improve the prognosis of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
43
|
Ethyl Acetate Fraction from Hedyotis diffusa plus Scutellaria barbata Exerts Anti-Breast Cancer Effect via miR-200c-PDE7B/PD-L1-AKT/MAPK Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3587095. [PMID: 32922506 PMCID: PMC7453271 DOI: 10.1155/2020/3587095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Background Hedyotis diffusa (HD) Willd. and Scutellaria barbata (SB) D. Don in different ratios have been frequently used to treat various cancers in clinical Traditional Chinese Medicine prescriptions. However, the optimal ratio, active fraction, and molecular mechanisms associated with the anti-breast cancer role of this herbal couplet have not been elaborated. Methods To screen out the optimal ratio of this herbal couplet, we compare aqueous extracts of HD, SB, or HD plus SB in different weight ratios (HS11, HS12, HS21) for their anticancer effects on murine breast cancer 4T1 cells in vitro and in vivo. EA11, the ethyl acetate fraction from HS11 (the aqueous extract of the couplet at an equal weight ratio), is further assessed for its antiproliferative effect as well as the antitumorigenic impact with the aid of immunocompetent mice. Colony formation, flow cytometry, western blot, ELISA, and qRT-PCR are used to elucidate mechanisms underlying EA11-led effects. Results HS11 presents the most potential suppression of 4T1 cell proliferation and tumor growth among these aqueous extracts. The comparison results show that EA11 is more effective than HS11 in vitro and in vivo. EA11 inhibits colony formation and induces apoptosis in a concentration-dependent manner. EA11 reduces the protein expressions of PDE7B, PD-L1, β-catenin, and cyclin D1 while elevating the concentration of cellular cAMP and miR-200c expression in 4T1 cells. Additionally, EA11 exerts its anticancer effect partially via the inactivation of MAPK and AKT signaling pathways. Conclusions This study implicates that EA11 prevents breast tumor development by interfering with the miR-200c-PDE7B/PD-L1-AKT/MAPK axis. EA11 may represent a potential therapeutic candidate for breast cancer.
Collapse
|
44
|
The Role of miR-375-3p and miR-200b-3p in Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:ijms21145151. [PMID: 32708220 PMCID: PMC7404198 DOI: 10.3390/ijms21145151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Deregulated microRNA (miRNA) expression profiles and their contribution to carcinogenesis have been observed in virtually all types of human cancer. However, their role in the pathogenesis of rare mesenchymal gastrointestinal stromal tumors (GISTs) is not well defined, yet. In this study, we aimed to investigate the role of two miRNAs strongly downregulated in GIST—miR-375-3p and miR-200b-3p—in the pathogenesis of GIST. To achieve this, miRNA mimics were transfected into GIST-T1 cells and changes in the potential target gene mRNA and protein expression, as well as alterations in cell viability, migration, apoptotic cell counts and direct miRNA–target interaction, were evaluated. Results revealed that overexpression of miR-375-3p downregulated the expression of KIT mRNA and protein by direct binding to KIT 3′UTR, reduced GIST cell viability and migration rates. MiR-200b-3p lowered expression of ETV1 protein, directly targeted and lowered expression of EGFR mRNA and protein, and negatively affected cell migration rates. To conclude, the present study identified that miR-375-3p and miR-200b-3p have a tumor-suppressive role in GIST.
Collapse
|
45
|
Rogers CJ, Lukaszewicz AI, Yamada-Hanff J, Micewicz ED, Ratikan JA, Starbird MA, Miller TA, Nguyen C, Lee JT, Olafsen T, Iwamoto KS, McBride WH, Schaue D, Menon N. Identification of miRNA signatures associated with radiation-induced late lung injury in mice. PLoS One 2020; 15:e0232411. [PMID: 32392259 PMCID: PMC7213687 DOI: 10.1371/journal.pone.0232411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-β/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.
Collapse
Affiliation(s)
| | | | | | - Ewa D. Micewicz
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | - Christine Nguyen
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jason T. Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - William H. McBride
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Naresh Menon
- ChromoLogic LLC, Monrovia, California, United States of America
| |
Collapse
|
46
|
Liu P, Chen S, Huang Y, Xu S, Song H, Zhang W, Sun N. LINC00667 promotes Wilms' tumor metastasis and stemness by sponging miR-200b/c/429 family to regulate IKK-β. Cell Biol Int 2020; 44:1382-1393. [PMID: 32129525 DOI: 10.1002/cbin.11334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/01/2020] [Indexed: 12/17/2022]
Abstract
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR-200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR-200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real-time polymerase chain reaction revealed that the expression of miR-200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit-8 assay revealed that cell viability was reduced by overexpressing miR-200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR-200b/c/429 overexpression. Sphere-forming and western blot assays demonstrated that miR-200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor-κB (NF-κB) pathway was confirmed to be associated with Wilms' tumor progression; miR-200b/c/429 overexpression inactivated NF-κB pathway as miR-200b/c/429 was identified to target IκB kinase β (IKK-β), an NF-κB pathway-related gene. Moreover, miR-200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR-200b/c/429 to regulate IKK-β expression and then activated NF-κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK-β could reverse the effect of miR-200b/c/429 inhibition on the progression of sh-LINC00667-transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR-200b/c/429 family to regulate IKK-β.
Collapse
Affiliation(s)
- Pei Liu
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Shuofan Chen
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Yangyue Huang
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Shuai Xu
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Hongcheng Song
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Weiping Zhang
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Ning Sun
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| |
Collapse
|
47
|
Zhang X, Yu X, Zhao Z, Yuan Z, Ma P, Ye Z, Guo L, Xu S, Xu L, Liu T, Liu H, Yu S. MicroRNA-429 inhibits bone metastasis in breast cancer by regulating CrkL and MMP-9. Bone 2020; 130:115139. [PMID: 31706051 DOI: 10.1016/j.bone.2019.115139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Bone metastasis is common in late-stage breast cancer patients and leads to skeletal-related events that affect the quality of life and decrease survival. Numerous miRNAs have been confirmed to be involved in metastatic breast cancer, such as the miR200 family. Our previous study identified microRNA-429 (miR-429) as a regulatory molecule in breast cancer bone metastasis. However, the effects of miR-429 and its regulatory axis in the metastatic breast cancer bone microenvironment have not been thoroughly investigated. We observed a positive correlation between miR-429 expression in clinical tissues and the bone metastasis-free interval and a negative correlation between miR-429 expression and the degree of bone metastasis. We cultured bone metastatic MDA-MB-231 cells and used conditioned medium (CM) to detect the effect of miR-429 on osteoblast and osteoclast cells in vitro. We constructed an orthotopic bone destruction model and a left ventricle implantation model to examine the effect of miR-429 on the metastatic bone environment in vivo. The transfection experiments showed that the expression levels of V-crk sarcoma virus CT10 oncogene homolog-like (CrkL) and MMP-9 were negatively regulated by miR-429. The in vitro coculture experiments showed that miR-429 promoted osteoblast differentiation and that CrkL promoted osteoclast differentiation. The two animal models showed that miR-429 diminished local bone destruction and distant bone metastasis but CrkL enhanced these effects. Furthermore, CrkL and MMP-9 expression decreased simultaneously in response to increased miR-429 expression. These findings further reveal the possible mechanism and effect of the miR-429/CrkL/MMP-9 regulatory axis in the bone microenvironment in breast cancer bone metastasis.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiying Yu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenguo Zhao
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhennan Yuan
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiqing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhibin Ye
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Liping Guo
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songfeng Xu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libin Xu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanmei Liu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
48
|
Yang Y, Qin X, Meng X, Zhu X, Zhang X, Li Y, Zhang Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019; 11:v11111025. [PMID: 31694166 PMCID: PMC6893480 DOI: 10.3390/v11111025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious transboundary viral diseases of small ruminants. Host microRNA (miRNA) expression patterns may change in response to virus infection, and it mainly works as a post-transcriptional moderator in gene expression and affects viral pathogenesis and replication. In this study, the change of miRNA expression profile in peripheral blood lymphocyte (PBMC) from sheep inoculated with PPR vaccine virus in vivo as well as primary sheep testicular (ST) cells inoculated with PPR vaccine virus in vitro were determined via deep sequencing technology. In PBMC cells, 373 and 115 differentially expressed miRNAs (DEmiRNAs) were identified 3 days and 5 days post inoculated (dpi), respectively. While, 575 DEmiRNAs were identified when comparing miRNA profiles on 5 dpi with 3 dpi. Some of the DEmiRNAs were found to change significantly via time-course during PPR vaccine virus inoculated. Similarly, in ST cells, 136 DEmiRNAs were identified at 3 dpi in comparison with mock-inoculation. A total of 12 DEmiRNAs were validated by real-time quantitative PCR (RT-qPCR). The oar-miR-150, oar-miR-370-3p and oar-miR-411b-3p were found common differentially expressed in both PPR vaccine virus-inoculated PBMC cells and ST cells. Targets prediction and functional analysis of the DEmiRNAs uncovered mainly gathering in antigen processing and presentation pathways, protein processing in endoplasmic reticulum pathways and cell adhesion molecules pathways. Our study supplies information about the DEmiRNAs in PPR vaccine virus-inoculated PBMC cells and ST cells, and provides clues for further understanding the function of miRNAs in PPR vaccine virus replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmin Li
- Correspondence: ; Tel.: +86-0931-8374622
| | | |
Collapse
|