1
|
Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
2
|
Olivares-Rubio HF, Salazar-Coria L, Romero-López JP, Domínguez-López ML, García-Latorre EA, Vega-López A. Fatty acid metabolism and brain mitochondrial performance of juvenile Nile tilapia (Oreochromis niloticus) exposed to the water-accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110624. [PMID: 32302862 DOI: 10.1016/j.ecoenv.2020.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/18/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Crude oil and its derivatives are still the primary source of energy for humankind. However, during its transportation and treatment, spills of this resource can occur in aquatic environments. Nile tilapia is one of the most globally widespread fish species. This species is even found in brackish water due to its tolerance to salinity and pollution. In this study, the performance of brain cells (mitochondrial membrane potential [ΔΨm], calcium [Ca2+] and O2 and H2O2 levels) exposed to crude oil was assessed. In addition, fatty acid metabolism (cholesterol concentration and fatty acid synthase [FAS], acyl CoA-oxidase [AOX] and catalase [CAT] activities) in the brain, heart, liver and intestine of Nile tilapia exposed to the water-accommodated fraction (WAF) of 0.01, 0.1 or 1 g/L Maya crude oil (MCO) for 96 h were evaluated. After exposure, in brain cells, there were only increases in ROS and slight reductions in ΔΨm. Exposure to WAF of MCO induced and increased the levels of cholesterol and altered FAS and AOX activities in all examined tissues. The brain is the most susceptible organ to alterations in the activity of fatty acid metabolic enzymes and cholesterol levels relative to the heart, liver and intestine. The correlation between inhibition of the activity of CAT and AOX suggests a possible reduction in the proliferation and size of peroxisomes. Most biomarkers were significantly altered in the brains of Nile tilapia exposed to the WAF containing 1 g/L MCO in comparison to the control.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico; Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, Mexico
| | - Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico; Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano Del Petróleo, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, CP 07730, Ciudad de México, Mexico
| | - J Pablo Romero-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - María Lilia Domínguez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - Ethel A García-Latorre
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico.
| |
Collapse
|
3
|
Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J. Ecotoxicity of phenol and cresols to aquatic organisms: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:441-456. [PMID: 29655160 DOI: 10.1016/j.ecoenv.2018.03.089] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 05/16/2023]
Abstract
With the development of industrial production and continuous demand for chemicals, a large volume of wastewater containing phenols was discharged into the aquatic environment. Moreover, chemical leakage further increased the emission of phenols into aquatic systems. Phenol and its methylated derivative (cresols) were selected due to their extensive use in industry and ecotoxicity to freshwater and marine organisms. This review focused on the ecotoxicity of phenol and m-, o-, and p-cresol on aquatic systems. The mechanism of action of phenols was also discussed. The aim of this literature review was to summarise the knowledge of the behaviour, and toxicity on marine and freshwater organisms, of phenols as well as to try to select a series of sensitive biomarkers suitable for ecotoxicological assessment and environmental monitoring in aquatic environments.
Collapse
Affiliation(s)
- Weiyan Duan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, Shandong Province, PR China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, PR China.
| | - Hongwu Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, Shandong Province, PR China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Oceanic Administration of China, Beijing, PR China
| | - Guoshan Wang
- National Marine Hazard Mitigation Service, State Oceanic Administration of China, Beijing, PR China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Oceanic Administration of China, Beijing, PR China
| |
Collapse
|
4
|
Olivares-Rubio HF, Salazar-Coria L, Nájera-Martínez M, Godínez-Ortega JL, Vega-López A. Lipid metabolism and pro-oxidant/antioxidant balance of Halamphora oceanica from the Gulf of Mexico exposed to water accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:840-851. [PMID: 28968937 DOI: 10.1016/j.ecoenv.2017.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Diatoms play key roles in primary production and carbon fixation at a global scale and in some cases these species live on marine ecosystems impacted by crude oil (CO) spills. Halamphora oceanica, a new diatom species from the Southwest of the Gulf of Mexico was isolated and cultured in the laboratory and was exposed to water accommodated fraction (WAF) of different Maya CO loads at 0.01, 0.1, 1 and 10g/L by 96h. A battery of biomarkers involved in oxidative stress (O2•, H2O2, TBARS, ROOH, RC=O, SOD, CAT, GPx), biotransformation and conjugation (total CYP450 activity and GST) moreover fatty acid (FA) metabolism (FA levels, fatty-acid synthase and acyl-CoA oxidase) were measured. Obtained results suggest that increases of PAHs in the medium (below to EC50) acts as external forces able to turn-on regulatory mechanisms on H. oceanica involved in both, on the PAHs uptake and changing its aerobic metabolism to anaerobic metabolism. However, the growth of this microalgae species evaluated as chlorophyll "a" and pheophytin levels increased as the WAF concentration indicating that PAHs and other hydrosoluble hydrocarbons were used as carbon and energy sources by unidentified enzymes not evaluated in the current study. Our hypothesis was also corroborated by IBRv2. In the current study, we suppose the change from aerobic to anaerobic metabolism as a strategy for Halamphora oceanica survival exposed to petroleum hydrocarbons.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - José Luis Godínez-Ortega
- Universidad Nacional Autónoma de México, Instituto de Biología, Apdo. postal 70-233, 04510 México D.F., Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico.
| |
Collapse
|
5
|
Hylland K, Burgeot T, Martínez-Gómez C, Lang T, Robinson CD, Svavarsson J, Thain JE, Vethaak AD, Gubbins MJ. How can we quantify impacts of contaminants in marine ecosystems? The ICON project. MARINE ENVIRONMENTAL RESEARCH 2017; 124:2-10. [PMID: 26612182 DOI: 10.1016/j.marenvres.2015.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
An international workshop on marine integrated contaminant monitoring (ICON) was organised to test a framework on integrated environmental assessment and simultaneously assess the status of selected European marine areas. Biota and sediment were sampled in selected estuarine, inshore and offshore locations encompassing marine habitats from Iceland to the Spanish Mediterranean. The outcome of the ICON project is reported in this special issue as method-oriented papers addressing chemical analyses, PAH metabolites, oxidative stress, biotransformation, lysosomal membrane stability, genotoxicity, disease in fish, and sediment assessment, as well as papers assessing specific areas. This paper provides a background and introduction to the ICON project, by reviewing how effects of contaminants on marine organisms can be monitored and by describing strategies that have been employed to monitor and assess such effects. Through the ICON project we have demonstrated the use of an integrating framework and gleaned more knowledge than ever before in any single field campaign about the impacts contaminants may have in European marine areas.
Collapse
Affiliation(s)
- Ketil Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway.
| | - Thierry Burgeot
- IFREMER, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, B.P. 21105, 44311 Nantes Cédex 03, France
| | - Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), Oceanographic Centre of Murcia, Varadero 1, PO Box 22, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Thomas Lang
- Thünen Institute of Fisheries Ecology, Deichstr. 12, 27472 Cuxhaven, Germany
| | - Craig D Robinson
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Jörundur Svavarsson
- University of Iceland, Askja - Natural Science Building, Sturlugata 7, 101 Reykjavík, Iceland
| | - John E Thain
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - A Dick Vethaak
- Deltares, Marine and Coastal Systems, P.O. Box 177, 2600 MH, Delft, The Netherlands; VU University Amsterdam, Amsterdam Global Change Institute, Institute for Environmental Studies, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matthew J Gubbins
- IFREMER, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, B.P. 21105, 44311 Nantes Cédex 03, France
| |
Collapse
|
6
|
Olivares-Rubio HF, Vega-López A. Fatty acid metabolism in fish species as a biomarker for environmental monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:297-312. [PMID: 27453357 DOI: 10.1016/j.envpol.2016.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| |
Collapse
|
7
|
Jensen LK, Halvorsen E, Song Y, Hallanger IG, Hansen EL, Brooks SJ, Hansen BH, Tollefsen KE. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:585-601. [PMID: 27484140 DOI: 10.1080/15287394.2016.1171988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the Barents Sea region new petroleum fields are discovered yearly and extraction of petroleum products is expected to increase in the upcoming years. Despite enhanced technology and stricter governmental legislation, establishment of the petroleum industry in the Barents Sea may potentially introduce a new source of contamination to the area, as some discharges of produced water will be allowed. Whether the presence of produced water poses a risk to the Arctic marine life remains to be investigated. The aim of this study was to examine effects of exposure to several compounds found in produced water-a mixture of selected organic compounds (APW), radium-226 ((226)Ra), barium (Ba), and a scale inhibitor-on the copepod species Calanus finmarchicus. Experiments were performed using exposure concentrations at realistic levels based on those detected in the vicinity of known discharge points. The influence of lethal and sublethal effects on early life stages was determined and significantly lower survival in the APW exposure groups was found. In the Ba treatment the life stage development did not proceed to the same advanced stages as observed in the control (filtered sea water). The scale inhibitor and (226)Ra treatments showed no significant difference from control. In addition, adult females were exposed to APW, (226)Ra, and a mixture of the two. Both individual-level effects (egg production and feeding) and molecular-level effects (gene expression) were assessed. On the individual level endpoints, only treatments including APW produced an effect compared to control. However, on the molecular level the possibility that also (226)Ra induced toxicologically relevant effects cannot be ruled out.
Collapse
Affiliation(s)
- Louise Kiel Jensen
- a Norwegian Radiation Protection Authority , FRAM-High North Research Centre on Climate and the Environment , Tromsø , Norway
- e CERAD Centre of Excellence in Environmental Radioactivity , Ås, Norway
| | - Elisabeth Halvorsen
- b Department for Arctic and Marine Biology , UiT The Arctic University of Norway , Tromsø , Norway
| | - You Song
- c Norwegian Institute for Water Research , Oslo , Norway
| | - Ingeborg G Hallanger
- b Department for Arctic and Marine Biology , UiT The Arctic University of Norway , Tromsø , Norway
| | - Elisabeth Lindbo Hansen
- d Department of Research , Norwegian Radiation Protection Authority , Østerås , Norway
- e CERAD Centre of Excellence in Environmental Radioactivity , Ås, Norway
| | | | - Bjørn Henrik Hansen
- f SINTEF Materials and Chemistry, Environmental Technology , Trondheim , Norway
| | - Knut Erik Tollefsen
- c Norwegian Institute for Water Research , Oslo , Norway
- e CERAD Centre of Excellence in Environmental Radioactivity , Ås, Norway
- g Department for Environmental Sciences, Faculty of Environmental Science & Technology , Norwegian University of Life Sciences (NMBU) , Ås , Norway
| |
Collapse
|
8
|
Houde M, Giraudo M, Douville M, Bougas B, Couture P, De Silva AO, Spencer C, Lair S, Verreault J, Bernatchez L, Gagnon C. A multi-level biological approach to evaluate impacts of a major municipal effluent in wild St. Lawrence River yellow perch (Perca flavescens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:307-318. [PMID: 25137380 DOI: 10.1016/j.scitotenv.2014.07.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 05/23/2023]
Abstract
The development of integrated ecotoxicological approaches is of great interest in the investigation of global concerns such as impacts of municipal wastewater effluents on aquatic ecosystems. The objective of this study was to investigate the effects of a major wastewater municipal effluent on fish using a multi-level biological approach, from gene transcription and enzyme activities to histological changes. Yellow perch (Perca flavescens) were selected based on their wide distribution, their commercial and recreational importance, and the availability of a customized microarray. Yellow perch were sampled upstream of a major municipal wastewater treatment plant (WWTP) and 4 km and 10 km downstream from its point of discharge in the St. Lawrence River (Quebec, Canada). Concentrations of perfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and metals/trace elements in whole body homogenates were comparable to those from other industrialized regions of the world. Genomic results indicated that the transcription level of 177 genes was significantly different (p<0.024) between exposed and non-exposed fish. Among these genes, 38 were found to be differentially transcribed at both downstream sites. Impacted genes were associated with biological processes and molecular functions such as immunity, detoxification, lipid metabolism/energy homeostasis (e.g., peroxisome proliferation), and retinol metabolism suggesting impact of WWTP on these systems. Moreover, antioxidant enzyme activities were more elevated in perch collected at the 4 km site. Biomarkers of lipid metabolism, biosynthetic activity, and aerobic capacities were significantly lower (p<0.05) in fish residing near the outfall of the effluent. Histological examination of the liver indicated no differences between sites. Correlations between PFAS, PBDE, and metal/trace element tissue concentrations and markers of peroxisomal proliferation, oxidative stress, and retinoid metabolism were found at the gene and cellular levels. Present results suggest that relating transcriptomic analyses to phenotypic responses is important to better understand impacts of environmental contamination on wild fish populations.
Collapse
Affiliation(s)
- Magali Houde
- Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Maeva Giraudo
- Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Mélanie Douville
- Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Bérénice Bougas
- Institut de biologie intégrative et des systèmes, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6, Canada; Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Amila O De Silva
- Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada.
| | - Christine Spencer
- Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada.
| | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages, Université de Montréal, C.P. 5000, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| | - Louis Bernatchez
- Institut de biologie intégrative et des systèmes, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | - Christian Gagnon
- Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| |
Collapse
|
9
|
Bakke T, Klungsøyr J, Sanni S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. MARINE ENVIRONMENTAL RESEARCH 2013; 92:154-69. [PMID: 24119441 DOI: 10.1016/j.marenvres.2013.09.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 05/21/2023]
Abstract
Operational discharges of produced water and drill cuttings from offshore oil and gas platforms are a continuous source of contaminants to continental shelf ecosystems. This paper reviews recent research on the biological effects of such discharges with focus on the Norwegian Continental Shelf. The greatest concern is linked to effects of produced water. Alkylphenols (AP) and polyaromatic hydrocarbons (PAH) from produced water accumulate in cod and blue mussel caged near outlets, but are rapidly metabolized in cod. APs, naphtenic acids, and PAHs may disturb reproductive functions, and affect several chemical, biochemical and genetic biomarkers. Toxic concentrations seem restricted to <2 km distance. At the peak of discharge of oil-contaminated cuttings fauna disturbance was found at more than 5 km from some platforms, but is now seldom detected beyond 500 m. Water-based cuttings may seriously affect biomarkers in filter feeding bivalves, and cause elevated sediment oxygen consumption and mortality in benthic fauna. Effects levels occur within 0.5-1 km distance. The stress is mainly physical. The risk of widespread, long term impact from the operational discharges on populations and the ecosystem is presently considered low, but this cannot be verified from the published literature.
Collapse
Affiliation(s)
- Torgeir Bakke
- Norwegian Institute for Water Research, Gaustadalleen 21, NO-0349 Oslo, Norway.
| | | | | |
Collapse
|
10
|
Ruiz P, Ortiz-Zarragoitia M, Orbea A, Theron M, Le Floch S, Cajaraville MP. Responses of conventional and molecular biomarkers in turbot Scophthalmus maximus exposed to heavy fuel oil no. 6 and styrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 116-117:116-128. [PMID: 22483509 DOI: 10.1016/j.aquatox.2012.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/17/2012] [Accepted: 02/05/2012] [Indexed: 05/31/2023]
Abstract
Several accidental spills in European coastal areas have resulted in the release of different toxic compounds into the marine environment, such as heavy fuel oil type no. 6 in the "Erika" and "Prestige" oil spills and the highly toxic styrene after the loss of the "Ievoli Sun". There is a clear need to develop tools that might allow assessing the biological impact of these accidental spills on aquatic organisms. The aim of the present study was to determine the short-term effects and recovery after exposure of juvenile fish (Scophthalmus maximus) to heavy fuel oil no. 6 and styrene by using a battery of molecular, cell and tissue level biomarkers. Turbots were exposed to styrene for 7 days and to the diluted soluble fraction of the oil (10%) for 14 days, and then allowed to recover in clean seawater for the same time periods. cyp1a1 transcript was overexpressed in turbots after 3 and 14 days of exposure to heavy fuel oil, whereas ahr transcription was not modulated after heavy fuel oil and styrene exposure. pparα transcription level was significantly up-regulated after 3 days of treatment with styrene. Liver activity of peroxisomal acyl-CoA oxidase (AOX) was significantly induced after 14 days of oil exposure, but it was not affected by styrene. Hepatocyte lysosomal membrane stability (LMS) was significantly reduced after exposure to both treatments, indicating that the tested compounds significantly impaired fish health. Both AOX and LMS values returned to control levels after the recovery period. No differences in gamete development were observed between fuel- or styrene- exposed fish and control fish, and vitellogenin plasma levels were low, suggesting no xenoestrogenic effects of fuel oil or styrene. While styrene did not cause any increase in the prevalence of liver histopathological alterations, prevalence of extensive cell vacuolization increased after exposure to heavy fuel oil for 14 days. In conclusion, the suite of selected biomarkers proved to be useful to determine the early impact of and recovery from exposure to tested compounds in turbot.
Collapse
Affiliation(s)
- Pamela Ruiz
- Laboratory of Cell Biology and Histology, Faculty of Science and Technology, University of the Basque Country, Sarriena z/g, E- 48940 Leioa, Basque Country, Spain
| | | | | | | | | | | |
Collapse
|