1
|
Zarcero J, Antich A, Rius M, Wangensteen OS, Turon X. A new sampling device for metabarcoding surveillance of port communities and detection of non-indigenous species. iScience 2024; 27:108588. [PMID: 38111684 PMCID: PMC10726295 DOI: 10.1016/j.isci.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
Metabarcoding techniques are revolutionizing studies of marine biodiversity. They can be used for monitoring non-indigenous species (NIS) in ports and harbors. However, they are often biased by inconsistent sampling methods and incomplete reference databases. Logistic constraints in ports prompt the development of simple, easy-to-deploy samplers. We tested a new device called polyamide mesh for ports organismal monitoring (POMPOM) with a high surface-to-volume ratio. POMPOMS were deployed inside a fishing and recreational port in the Mediterranean alongside conventional settlement plates. We also compiled a curated database with cytochrome oxidase (COI) sequences of Mediterranean NIS. COI metabarcoding of the communities settled in the POMPOMs captured a similar biodiversity than settlement plates, with shared molecular operational units (MOTUs) representing ca. 99% of reads. 38 NIS were detected in the port accounting for ca. 26% of reads. POMPOMs were easy to deploy and handle and provide an efficient method for NIS surveillance.
Collapse
Affiliation(s)
- Jesús Zarcero
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Adrià Antich
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
| | - Marc Rius
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park Johannesburg 2006, South Africa
| | - Owen S. Wangensteen
- Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
2
|
Khairulmunir M, Gani M, Karuppannan KV, Mohd-Ridwan AR, Md-Zain BM. High-throughput DNA metabarcoding for determining the gut microbiome of captive critically endangered Malayan tiger ( Pantheratigrisjacksoni) during fasting. Biodivers Data J 2023; 11:e104757. [PMID: 37711366 PMCID: PMC10498273 DOI: 10.3897/bdj.11.e104757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
The Malayan tiger (Pantheratigrisjacksoni) is a critically endangered species native to the Malaysian Peninsula. To imitate wild conditions where tigers do not hunt every day, numerous wildlife sanctuaries do not feed their tigers daily. However, the effects of fasting on the gut microbiota of captive Malayan tigers remains unknown. This study aimed to characterise the gut microbiota of captive Malayan tigers by comparing their microbial communities during fasting versus normal feeding conditions. This study was conducted at the Melaka Zoo, Malaysian Peninsula and involved Malayan tigers fasted every Monday. In total, ten faecal samples of Malayan tiger, two of Bengal tiger (outgroup) and four of lion (outgroup) were collected and analysed for metabarcoding targeting the 16S rRNA V3-V4 region. In total, we determined 14 phyla, 87 families, 167 genera and 53 species of gut microbiome across Malayan tiger samples. The potentially harmful bacterial genera found in this study included Fusobacterium, Bacteroides, Clostridium sensu stricto 1, Solobacterium, Echerichiashigella, Ignatzschineria and Negativibacillus. The microbiome in the fasting phase had a higher composition and was more diverse than in the feeding phase. The present findings indicate a balanced ratio in the dominant phyla, reflecting a resetting of the imbalanced gut microbiota due to fasting. These findings can help authorities in how to best maintain and improve the husbandry and health of Malayan tigers in captivity and be used for monitoring in ex-situ veterinary care unit.
Collapse
Affiliation(s)
- Mohamad Khairulmunir
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600 Bangi, SelangorMalaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600 Bangi, SelangorMalaysia
- Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, Kuala Lumpur, MalaysiaDepartment of Wildlife and National Parks (PERHILITAN), KM 10 Jalan CherasKuala LumpurMalaysia
| | - Kayal Vizi Karuppannan
- Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, Kuala Lumpur, MalaysiaDepartment of Wildlife and National Parks (PERHILITAN), KM 10 Jalan CherasKuala LumpurMalaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, MalaysiaCentre for Pre-University Studies, Universiti Malaysia Sarawak, 94300Kota SamarahanMalaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600 Bangi, SelangorMalaysia
| |
Collapse
|
3
|
Mghili B, De-la-Torre GE, Aksissou M. Assessing the potential for the introduction and spread of alien species with marine litter. MARINE POLLUTION BULLETIN 2023; 191:114913. [PMID: 37068344 DOI: 10.1016/j.marpolbul.2023.114913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
The introduction and transport of marine invasive species into new environments are a great threat to biodiversity and ecosystem services with potential economic repercussions. There are several routes and mechanisms by which alien species are transported and dispersed in the marine environment (shipping, waterways, and aquaculture). Each year, millions of tons of plastic enter the ocean. The presence of floating marine litter in marine environments provides a substrate for marine organisms and may increase the potential for the transport of alien species. Research on the role of marine litter in the introduction of alien marine species has grown exponentially in recent years. In this study, studies examining the transport and dispersal of alien species by marine litter are reviewed. In this review, we identified 67 alien species associated with marine litter. The most recurrent alien phyla found on marine litter are Arthropoda (29 %), Mollusca (23 %), Bryozoa (19 %), Annelida (7 %) and Cnidaria (5 %). Plastic appears to be more efficient in transporting alien species than by natural means. Their characteristics (buoyancy and persistence) allow them to be widely dispersed throughout all ocean compartments. Thus, plastics may act as a primary vector, carrying organisms to remote areas but can also facilitate the secondary spread of alien species between points of invasion. Despite the growing number of studies on this subject, much work remains to be done to understand the roles of plastics in the introduction of alien species and to develop solutions to mitigate the issue.
Collapse
Affiliation(s)
- Bilal Mghili
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Mustapha Aksissou
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| |
Collapse
|
4
|
Colunga-Salas P, Marines-Macías T, Hernández-Canchola G, Barbosa S, Ramírez C, Searle JB, León-Paniagua L. Population genomics reveals differences in genetic structure between two endemic arboreal rodent species in threatened cloud forest habitat. MAMMAL RES 2023. [DOI: 10.1007/s13364-022-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
Genomic tools are now commonly used to assess the genetic diversity and genetic structure of species and populations, and they provide the ability to describe and address the negative effects of population declines and fragmentation. However, such studies are lacking for arboreal mammals despite their contribution to various ecosystem services, especially in uncommon and critically endangered ecosystems such as cloud forests. The aim of this work was to evaluate and compare the genetic diversity and population structure of two endemic arboreal mice from Mexican cloud forests that are associated with areas with different levels of impacts from human activities. We performed genotyping-by-sequencing in 47 Habromys schmidlyi and 17 Reithrodontomys wagneri individuals to evaluate genetic diversity and differentiation. In both species, the genetic diversity was low compared to other cricetid species, and we observed different population structure patterns, potentially linked to the different ecological associations. We detected two genetic groups in H. schmidlyi, that is a territorial species present in areas of low incline, while a single genetic group was found in R. wagneri, which forms family groups in areas with steep slopes. Overall, these results highlight how species’ genetic diversity can be differentially impacted depending on differential ecological associations within the same ecosystem. This information is essential for the development of the adequate conservation and management of these species.
Collapse
|
5
|
Nasir MH, Bhassu S, Mispan MS, Bakar SA, Jing KJ, Omar H. Molecular Identification and Genetic Variation of Rattus Species From Oil Palm Plantations of Malaysia Based on Mitochondrial Cytochrome Oxidase Subunit I (COI) Gene Sequences. Zoolog Sci 2022; 39:554-561. [PMID: 36495490 DOI: 10.2108/zs210093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Rats (Rattus species) are the most notorious vertebrate pests in Malaysian oil palm plantations. Although many studies have been conducted on Asian rats, little attention has been paid to their species composition and phylogenetic relationships in oil palm plantations in Peninsular Malaysia. We determined the mitochondrial cytochrome oxidase subunit I (COI) gene sequence (708 bp) for 216 individual rats collected from five oil palm plantations in Peninsular Malaysia. Phylogenetic analysis in conjunction with comparison with sequences from the nucleotide sequence database revealed five distinct lineages in the Malaysian oil plantations: Rattus tiomanicus, Rattus argentiventer, Rattus exulans, Rattus tanezumi, and a taxon corresponding to the Malayan house rat, which was most frequently observed (∼50%). The last taxon has traditionally been classified as a synonym of Rattus rattus (Rattus rattus diardii) or Rattus tanezumi, but our phylogenetic analysis placed it as an independent lineage, which is not particularly closely related to R. rattus or R. tanezumi, and which we refer to as Rattus diardii. The construction of the network showed that there is considerable genetic variation within the lineages of R. diardii and R tiomanicus, suggesting that these two species are native to the Malay Peninsula.
Collapse
Affiliation(s)
- Mohamad Harris Nasir
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Centre for Biotechnology in Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Centre for Biotechnology in Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sazaly Abu Bakar
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khoo Jing Jing
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hasmahzaiti Omar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia, .,Centre for Biotechnology in Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Museum of Zoology (Block J14), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Vargas-Rivas AG, Barba-Macias E, Sánchez AJ, Castellanos-Morales G. Lack of mtDNA genetic diversity despite phenotypic variation and environmental heterogeneity in the exotic suckermouth armored catfish (Pterygoplichthys pardalis). Biol Invasions 2022. [DOI: 10.1007/s10530-022-02961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Pagenkopp Lohan KM, Darling JA, Ruiz GM. International shipping as a potent vector for spreading marine parasites. DIVERS DISTRIB 2022; 28:1922-1933. [PMID: 38269301 PMCID: PMC10807284 DOI: 10.1111/ddi.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Aim The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 μm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 μm dataset). Results In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 μm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.
Collapse
Affiliation(s)
| | - John A. Darling
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Durham, North Carolina, USA
| | - Gregory M. Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
8
|
Harper KE, Scheinberg LA, Boyer KE, Sotka EE. Global distribution of cryptic native, introduced and hybrid lineages in the widespread estuarine amphipod Ampithoe valida. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Couton M, Lévêque L, Daguin-Thiébaut C, Comtet T, Viard F. Water eDNA metabarcoding is effective in detecting non-native species in marinas, but detection errors still hinder its use for passive monitoring. BIOFOULING 2022; 38:367-383. [PMID: 35575060 DOI: 10.1080/08927014.2022.2075739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Marinas are high-priority targets for marine non-indigenous species (NIS), where they compose a large portion of the biofouling communities. The practicality of water samples collection makes environmental DNA (eDNA) metabarcoding an interesting tool for routine NIS surveys. Here the effectiveness of water-eDNA-metabarcoding to identify biofouling NIS, in 10 marinas from western France, was examined. Morphological identification of specimens collected in quadrats brought out 18 sessile benthic NIS beneath floating pontoons. Water-eDNA-metabarcoding detected two thirds of them, failing to detect important NIS. However, sampling and bioinformatics filtering steps can be optimized to identify more species. In addition, this method allowed the detection of additional NIS from neighboring micro-habitats. Caution should, however, be taken when reporting putative novel NIS, because of errors in species assignment. This work highlights that water-eDNA-metabarcoding is effective for active (targeted) NIS surveys and could be significantly improved for its further use in marine NIS passive surveys.
Collapse
Affiliation(s)
- Marjorie Couton
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Laurent Lévêque
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Claire Daguin-Thiébaut
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Thierry Comtet
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
10
|
Holman LE, Parker-Nance S, de Bruyn M, Creer S, Carvalho G, Rius M. Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210025. [PMID: 35067092 PMCID: PMC8784926 DOI: 10.1098/rstb.2021.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species' range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
Collapse
Affiliation(s)
- Luke E Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Shirley Parker-Nance
- Zoology Department, Institute for Coastal and Marine Research Nelson Mandela University Ocean Sciences Campus, Gqeberha (Port Elizabeth), South Africa.,South African Environmental Observation Network (SAEON) Elwandle Coastal Node, Nelson Mandela University Ocean Sciences Campus, Gqeberha (Port Elizabeth), South Africa
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia.,Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Gary Carvalho
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
11
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
12
|
Van den Bulcke L, De Backer A, Ampe B, Maes S, Wittoeck J, Waegeman W, Hostens K, Derycke S. Towards harmonization of DNA metabarcoding for monitoring marine macrobenthos: the effect of technical replicates and pooled DNA extractions on species detection. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.71107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA-based monitoring methods are potentially faster and cheaper compared to traditional morphological benthic identification. DNA metabarcoding involves various methodological choices which can introduce bias leading to a different outcome in biodiversity patterns. Therefore, it is important to harmonize DNA metabarcoding protocols to allow comparison across studies and this requires a good understanding of the effect of methodological choices on diversity estimates. This study investigated the impact of DNA and PCR replicates on the detection of macrobenthos species in locations with high, medium and low diversity. Our results show that two to three DNA replicates were needed in locations with a high and medium diversity to detect at least 80% of the species found in the six DNA replicates, while three to four replicates were needed in the location with low diversity. In contrast to general belief, larger body size or higher abundance of the species in a sample did not increase its detection prevalence among DNA replicates. However, rare species were less consistently detected across all DNA replicates of the location with high diversity compared to locations with less diversity. Our results further show that pooling of DNA replicates did not significantly alter diversity patterns, although a small number of rare species was lost. Finally, our results confirm high variation in species detection between PCR replicates, especially for the detection of rare species. These results contribute to create reliable, time and cost efficient metabarcoding protocols for the characterization of macrobenthos.
Collapse
|
13
|
Zangaro F, Saccomanno B, Tzafesta E, Bozzeda F, Specchia V, Pinna M. Current limitations and future prospects of detection and biomonitoring of NIS in the Mediterranean Sea through environmental DNA. NEOBIOTA 2021. [DOI: 10.3897/neobiota.70.71862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biodiversity of the Mediterranean Sea is currently threatened by the introduction of Non-Indigenous Species (NIS). Therefore, monitoring the distribution of NIS is of utmost importance to preserve the ecosystems. A promising approach for the identification of species and the assessment of biodiversity is the use of DNA barcoding, as well as DNA and eDNA metabarcoding. Currently, the main limitation in the use of genomic data for species identification is the incompleteness of the DNA barcode databases. In this research, we assessed the availability of DNA barcodes in the main reference libraries for the most updated inventory of 665 confirmed NIS in the Mediterranean Sea, with a special focus on the cytochrome oxidase I (COI) barcode and primers. The results of this study show that there are no barcodes for 33.18% of the species in question, and that 45.30% of the 382 species with COI barcode, have no primers publicly available. This highlights the importance of directing scientific efforts to fill the barcode gap of specific taxonomic groups in order to help in the effective application of the eDNA technique for investigating the occurrence and the distribution of NIS in the Mediterranean Sea.
Collapse
|
14
|
Cahill AE, Breen CJ, Corona‐Avila I, Cortes CA, Hernandez R, Jost S, Ruger BLK, Stander RMH, Tran BV. Diversity and composition of macroinvertebrate communities in a rare inland salt marsh. Ecol Evol 2021; 11:14351-14365. [PMID: 34765111 PMCID: PMC8571600 DOI: 10.1002/ece3.8222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Inland salt marshes are rare habitats in the Great Lakes region of North America, formed on salt deposits from the Silurian period. These patchy habitats are abiotically stressful for the freshwater invertebrates that live there, and provide an opportunity to study the relationship between stress and diversity. We used morphological and COI metabarcoding data to assess changes in diversity and composition across both space (a transect from the salt seep to an adjacent freshwater area) and time (three sampling seasons). Richness was significantly lower at the seep site with both datatypes, while metabarcoding data additionally showed reduced richness at the freshwater transect end, consistent with a pattern where intermediate levels of stress show higher diversity. We found complementary, rather than redundant, patterns of community composition using the two datatypes: not all taxa were equally sequenced with the metabarcoding protocol. We identified taxa that are abundant at the salt seep of the marsh, including biting midges (Culicoides) and ostracods (Heterocypris). We conclude that (as found in other studies) molecular and morphological work should be used in tandem to identify the biodiversity in this rare habitat. Additionally, salinity may be a driver of community membership in this system, though further ecological research is needed to rule out alternate hypotheses.
Collapse
Affiliation(s)
| | | | | | | | | | - Saige Jost
- Biology DepartmentAlbion CollegeAlbionMichiganUSA
| | | | | | - Bach V. Tran
- Biology DepartmentAlbion CollegeAlbionMichiganUSA
| |
Collapse
|
15
|
Use of environmental DNA in early detection of Mnemiopsis leidyi in UK coastal waters. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
First Record of Colonial Ascidian, Botrylloides diegensis Ritter and Forsyth, 1917 (Ascidiacea, Stolidobranchia, Styelidae), in South Korea. WATER 2021. [DOI: 10.3390/w13162164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Botrylloides species are important members of the fouling community colonizing artificial substrates in harbors and marinas. During monitoring in 2017–2020 of non-indigenous species in Korea, one colonial ascidian species was distinctly different from other native colonial ascidians, such as B. violaceus and Botryllus schlosseri, in South Korea. This species was identified as B. diegensis. DNA barcodes with mitochondrial COI were used to identify one-toned and two-toned colonies of B. diegensis. Intraspecific variations between Korean and other regions of B. diegensis from the NCBI ranged from 0.0% to 1.3%. The Korean B. diegensis was clearly distinct from other species of Botrylloides at 15.8–24.2%. In phylogenetic analysis results, Korean B. diegensis was established as a single clade with other regions of B. diegensis and was clearly distinct from Korean B. violaceus. After reviewing previous monitoring data, it was found that two-toned B. diegensis was already found in six harbors by July 2017. It has now spread into 14 harbors along the coastal line of South Korea. This means that B. diegensis might have been introduced to South Korea between 1999 and 2016.
Collapse
|
17
|
Occhipinti-Ambrogi A. Biopollution by Invasive Marine Non-Indigenous Species: A Review of Potential Adverse Ecological Effects in a Changing Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4268. [PMID: 33920576 PMCID: PMC8074152 DOI: 10.3390/ijerph18084268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Biopollution by alien species is considered one of the main threats to environmental health. The marine environment, traditionally less studied than inland domains, has been the object of recent work that is reviewed here. Increasing scientific evidence has been accumulated worldwide on ecosystem deterioration induced by the development of massive non-indigenous population outbreaks in many coastal sites. Biopollution assessment procedures have been proposed, adopting criteria already used for xenochemical compounds, adjusting them to deal with alien species invasions. On the other hand, prevention and mitigation measures to reduce biopollution impact cannot always mimic the emission countermeasures that have been successfully applied for chemical pollutants. Nevertheless, in order to design comprehensive water-quality criteria, risk assessment and management strategies, based on scientific knowledge, have been developed in a similar way as for chemical pollution. The Mediterranean Sea is a well-known case of alien species invasion, mainly linked to the opening of the Suez Canal. Non-indigenous species have caused well-documented changes in many coastal ecosystems, favoured by concomitant changes induced by global warming and by the heavy load of nutrients and pollutants by various anthropogenic activities. Naval commercial traffic and leisure boats are among the most active vectors of spread for alien species inside the Mediterranean, and also towards other ocean regions. The scientific evidence gathered and summarized in this review suggests that effective management actions, under a precautionary approach, should be put in place in order to control introductions of species in new areas. These management measures are already established in international treaties and national legislations, but should be enforced to prevent the disruption of the dynamic ecological equilibria in the receiving environment and to control the direct adverse effects of alien species.
Collapse
Affiliation(s)
- Anna Occhipinti-Ambrogi
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant'Epifanio, 14, 27100 Pavia, Italy
| |
Collapse
|
18
|
Lee AL, Capa M, Dafforn KA, Hutchings PA, Murray A. New records of non-indigenous Branchiomma and Parasabella species (Sabellidae: Annelida) in South Australia highlight the continuing challenges for sabellid taxonomy. J NAT HIST 2021. [DOI: 10.1080/00222933.2020.1862334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Aria L. Lee
- Evolution and Ecology Research Centre, University of New South Wales, Kensington, Australia
- Sydney Institute of Marine Sciences, Mosman, Australia
| | - María Capa
- Department of Biology, University of the Balearic Islands, Palma, Spain
| | - Katherine A. Dafforn
- Sydney Institute of Marine Sciences, Mosman, Australia
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, Australia
| | - Pat A. Hutchings
- Department of Marine Invertebrates, Australian Museum Research Institute, Sydney, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, Australia
| | - Anna Murray
- Department of Marine Invertebrates, Australian Museum Research Institute, Sydney, Australia
| |
Collapse
|
19
|
Hoffman JC, Meredith C, Pilgrim E, Trebitz A, Hatzenbuhler C, Kelly JR, Peterson G, Lietz J, Okum S, Martinson J. Comparison of Larval Fish Detections Using Morphology-Based Taxonomy versus High-Throughput Sequencing for Invasive Species Early Detection. CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES. JOURNAL CANADIEN DES SCIENCES HALIEUTIQUES ET AQUATIQUES 2021; 78:752-764. [PMID: 35619733 PMCID: PMC9132201 DOI: 10.1139/cjfas-2020-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
When first introduced, invasive species typically evade detection; DNA barcoding coupled with high-throughput sequencing (HTS) may be more sensitive and accurate than morphology-based taxonomy, and thereby improve invasive (or rare) species detection. We quantified the relative error of species detection between morphology-based and HTS-based taxonomic identification of ichthyoplankton collections from the Port of Duluth, Minnesota, an aquatic non-native species introduction 'hot-spot' in the Laurentian Great Lakes. We found HTS-based taxonomy identified 28 species and morphology-based taxonomy 30 species, of which 27 were common to both. Among samples, 76% of family-level taxonomic assignments agreed; however, only 42% of species assignments agreed. Most errors were attributed to morphology-based taxonomy, whereas HTS-based taxonomy error was low. For this study system, for most non-native fishes, the detection probability by randomized survey for larvae was similar to that by a survey that is optimized for non-native species early detection of juveniles and adults. We conclude that classifying taxonomic errors by comparing HTS results against morphology-based taxonomy is an important step toward incorporating HTS-based taxonomy into biodiversity surveys.
Collapse
Affiliation(s)
- Joel Christopher Hoffman
- US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Christy Meredith
- Montana Department of Environmental Quality, 1520 E. 6th Avenue, Helena, Montana, 59601, USA
| | - Erik Pilgrim
- US Environmental Protection Agency Office of Research and Development, Watershed and Ecosystem Characterization Division, 26 West Martin Luther King Dr, Cincinnati, Ohio, 45268, USA
| | - Anett Trebitz
- US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Chelsea Hatzenbuhler
- Badger Technical Services c/o US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - John Russell Kelly
- US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Gregory Peterson
- US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Julie Lietz
- US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Sara Okum
- US Environmental Protection Agency Office of Research and Development, Watershed and Ecosystem Characterization Division, 26 West Martin Luther King Dr, Cincinnati, Ohio, 45268, USA
| | - John Martinson
- US Environmental Protection Agency Office of Research and Development, Great Lakes Toxicology and Ecology Division, 26 West Martin Luther King Dr, Cincinnati, Ohio, 45268, USA
| |
Collapse
|
20
|
Boissin E, Neglia V, Baksay S, Micu D, Bat L, Topaloglu B, Todorova V, Panayotova M, Kruschel C, Milchakova N, Voutsinas E, Beqiraj S, Nasto I, Aglieri G, Taviani M, Zane L, Planes S. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Sci Rep 2020; 10:21624. [PMID: 33303767 PMCID: PMC7730386 DOI: 10.1038/s41598-020-77742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/16/2020] [Indexed: 11/21/2022] Open
Abstract
To better predict population evolution of invasive species in introduced areas it is critical to identify and understand the mechanisms driving genetic diversity and structure in their native range. Here, we combined analyses of the mitochondrial COI gene and 11 microsatellite markers to investigate both past demographic history and contemporaneous genetic structure in the native area of the gastropod Tritia neritea, using Bayesian skyline plots (BSP), multivariate analyses and Bayesian clustering. The BSP framework revealed population expansions, dated after the last glacial maximum. The haplotype network revealed a strong geographic clustering. Multivariate analyses and Bayesian clustering highlighted the strong genetic structure at all scales, between the Black Sea and the Adriatic Sea, but also within basins. Within basins, a random pattern of genetic patchiness was observed, suggesting a superimposition of processes involving natural biological effects (no larval phase and thus limited larval dispersal) and putative anthropogenic transport of specimens. Contrary to the introduced area, no isolation-by-distance patterns were recovered in the Mediterranean or the Black Seas, highlighting different mechanisms at play on both native and introduced areas, triggering unknown consequences for species’ evolutionary trajectories. These results of Tritia neritea populations on its native range highlight a mixture of ancient and recent processes, with the effects of paleoclimates and life history traits likely tangled with the effects of human-mediated dispersal.
Collapse
Affiliation(s)
- Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Valentina Neglia
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Sandra Baksay
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire Evolution & Diversite Biologique, University TOULOUSE III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Dragos Micu
- Romanian Waters National Authority, 127 Mircea cel Batran Blvd., 900592, Constanţa, Romania
| | - Levent Bat
- Department of Hydrobiology, Sinop University Faculty of Fisheries, 57000, Sinop, Turkey
| | - Bulent Topaloglu
- Faculty of Aquatic Sciences, Istanbul University, Ordu St No: 8, 34134, Istanbul, Turkey
| | - Valentina Todorova
- Institute of Oceanology-BAS (IO-BAS), P.O. Box 152, 9000, Varna, Bulgaria
| | - Marina Panayotova
- Institute of Oceanology-BAS (IO-BAS), P.O. Box 152, 9000, Varna, Bulgaria
| | - Claudia Kruschel
- University of Zadar, Ul. Mihovila Pavlinovića, 23000, Zadar, Croatia
| | - Nataliya Milchakova
- Institute of Biology of the Southern Seas, 2 Nakhimov Ave., Sevastopol, Russia, 299011
| | - Emanuela Voutsinas
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavyssos, Greece
| | - Sajmir Beqiraj
- Faculty of Natural Sciences, Department of Biology, University of Tirana, Bulevardi "Zogu I Parë", 25/1, 1001, Tiranë, Albania
| | - Ina Nasto
- Department of Biology, Faculty of Technical Sciences, Vlora University, 9401, Vlora, Albania
| | - Giorgio Aglieri
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 28, 90123, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy
| | - Marco Taviani
- Institute of Marine Sciences (ISMAR), CNR, via Gobetti 101, 40129, Bologna, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.,Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Lorenzo Zane
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy.,Dipartimento di Biologia, Università di Padova, via U. Bassi/58B, 35121, Padua, Italy
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| |
Collapse
|
21
|
Stampar SN, Gamero-Mora E, Maronna MM, Fritscher JM, Oliveira BSP, Sampaio CLS, Morandini AC. The puzzling occurrence of the upside-down jellyfish Cassiopea (Cnidaria: Scyphozoa) along the Brazilian coast: a result of several invasion events? ZOOLOGIA 2020. [DOI: 10.3897/zoologia.37.e50834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The massive occurrence of jellyfish in several areas of the world is reported annually, but most of the data come from the northern hemisphere and often refer to a restricted group of species that are not in the genus Cassiopea. This study records a massive, clonal and non-native population of Cassiopea and discusses the possible scenarios that resulted in the invasion of the Brazilian coast by these organisms. The results indicate that this jellyfish might have invaded the Brazilian coast multiple times.
Collapse
|
22
|
Bailey SA, Brown L, Campbell ML, Canning-Clode J, Carlton JT, Castro N, Chinho P, Chan FT, Creed JC, Curd A, Darling J, Fofonoff P, Galil BS, Hewitt CL, Inglis GJ, Keith I, Mandrak NE, Marchini A, McKenzie CH, Occhipinti-Ambrogi A, Ojaveer H, Pires-Teixeira LM, Robinson TB, Ruiz GM, Seaward K, Schwindt E, Son MO, Therriault TW, Zhan A. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. DIVERS DISTRIB 2020; 26:1780-1797. [PMID: 36960319 PMCID: PMC10031752 DOI: 10.1111/ddi.13167] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: The introduction of aquatic non-indigenous species (ANS) has become a major driver for global changes in species biogeography. We examined spatial patterns and temporal trends of ANS detections since 1965 to inform conservation policy and management. Location: Global. Methods: We assembled an extensive dataset of first records of detection of ANS (1965–2015) across 49 aquatic ecosystems, including the (a) year of first collection, (b) population status and (c) potential pathway(s) of introduction. Data were analysed at global and regional levels to assess patterns of detection rate, richness and transport pathways. Results: An annual mean of 43 (±16 SD) primary detections of ANS occurred–one new detection every 8.4 days for 50 years. The global rate of detections was relatively stable during 1965–1995, but increased rapidly after this time, peaking at roughly 66 primary detections per year during 2005–2010 and then declining marginally. Detection rates were variable within and across regions through time. Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS were likely introduced as stowaways in ships’ ballast water or biofouling, although direct evidence is typically absent. Main conclusions: This synthesis highlights the magnitude of recent ANS detections, yet almost certainly represents an underestimate as many ANS go unreported due to limited search effort and diminishing taxonomic expertise. Temporal rates of detection are also confounded by reporting lags, likely contributing to the lower detection rate observed in recent years. There is a critical need to implement standardized, repeated methods across regions and taxa to improve the quality of global-scale comparisons and sustain core measures over longer time-scales. It will be fundamental to fill in knowledge gaps given that invasion data representing broad regions of the world's oceans are not yet readily available and to maintain knowledge pipelines for adaptive management.
Collapse
Affiliation(s)
- Sarah A. Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Burlington, ON, Canada
| | | | - Marnie L. Campbell
- School of Life and Environmental Science, Deakin University, Geelong, Vic., Australia
| | - João Canning-Clode
- MARE – Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Madeira Island, Portugal
- Smithsonian Environm Res Ctr, Edgewater, MD, USA
| | - James T. Carlton
- Maritime Studies Program, Williams College – Mystic Seaport, Mystic, CT, USA
| | - Nuno Castro
- MARE – Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Madeira Island, Portugal
| | - Paula Chinho
- Faculdade de Ciências, MARE – Marine and Environmental Sciences Centre, Universidade de Lisboa, Lisbon, Portugal
| | - Farrah T. Chan
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Burlington, ON, Canada
| | - Joel C. Creed
- Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amelia Curd
- Ifremer, DYNECO, Centre Ifremer de Bretagne, Plouzané, France
| | - John Darling
- Center for Environmental Measurement & Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Bella S. Galil
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Chad L. Hewitt
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Graeme J. Inglis
- National Institute of Water & Atmospheric Research Ltd., Christchurch, New Zealand
| | - Inti Keith
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Galapagos, Ecuador
| | | | - Agnese Marchini
- Department of Earth & Environmental Sciences, University of Pavia, Pavia, Italy
| | - Cynthia H. McKenzie
- Northwest Atlantic Fisheries Centre, Fisheries & Oceans Canada, St John's, NL, Canada
| | | | - Henn Ojaveer
- Pärnu College, University of Tartu, Pärnu, Estonia
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Larissa M. Pires-Teixeira
- Faculdade de Ciências, MARE – Marine and Environmental Sciences Centre, Universidade de Lisboa, Lisbon, Portugal
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamara B. Robinson
- Department of Botany and Zoology, Centre for Invasion Biology, Stellenbosch University, Stellenboch, South Africa
| | - Gregory M. Ruiz
- Center for Environmental Measurement & Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kimberley Seaward
- National Institute of Water & Atmospheric Research Ltd., Christchurch, New Zealand
| | - Evangelina Schwindt
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Argentina
| | - Mikhail O. Son
- Institute of Marine Biology, NAS of Ukraine, Odessa, Ukraine
| | | | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Antich A, Palacín C, Cebrian E, Golo R, Wangensteen OS, Turon X. Marine biomonitoring with eDNA: Can metabarcoding of water samples cut it as a tool for surveying benthic communities? Mol Ecol 2020; 30:3175-3188. [PMID: 32974967 DOI: 10.1111/mec.15641] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
In the marine realm, biomonitoring using environmental DNA (eDNA) of benthic communities requires destructive direct sampling or the setting-up of settlement structures. Comparatively much less effort is required to sample the water column, which can be accessed remotely. In this study we assess the feasibility of obtaining information from the eukaryotic benthic communities by sampling the adjacent water layer. We studied two different rocky-substrate benthic communities with a technique based on quadrat sampling. We also took replicate water samples at four distances (0, 0.5, 1.5, and 20 m) from the benthic habitat. Using broad range primers to amplify a ca. 313 bp fragment of the cytochrome oxidase subunit I gene, we obtained a total of 3,543 molecular operational taxonomic units (MOTUs). The structure obtained in the two environments was markedly different, with Metazoa, Archaeplastida and Stramenopiles being the most diverse groups in benthic samples, and Hacrobia, Metazoa and Alveolata in the water. Only 265 MOTUs (7.5%) were shared between benthos and water samples and, of these, 180 (5.1%) were identified as benthic taxa that left their DNA in the water. Most of them were found immediately adjacent to the benthos, and their number decreased as we moved apart from the benthic habitat. It was concluded that water eDNA, even in the close vicinity of the benthos, was a poor proxy for the analysis of benthic structure, and that direct sampling methods are required for monitoring these complex communities via metabarcoding.
Collapse
Affiliation(s)
- Adrià Antich
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | - Cruz Palacín
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, and Research Institute of Biodiversity (IRBIO), Barcelona, Spain
| | - Emma Cebrian
- Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Raül Golo
- Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Owen S Wangensteen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Xavier Turon
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| |
Collapse
|
24
|
Azevedo J, Antunes JT, Machado AM, Vasconcelos V, Leão PN, Froufe E. Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach. Sci Rep 2020; 10:13461. [PMID: 32778680 PMCID: PMC7417558 DOI: 10.1038/s41598-020-70307-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Marine biofouling remains an unsolved problem with a serious economic impact on several marine associated industries and constitutes a major vector for the spread of non-indigenous species (NIS). The implementation of biofouling monitoring programs allows for better fouling management and also for the early identification of NIS. However, few monitoring studies have used recent methods, such as metabarcoding, that can significantly enhance the detection of those species. Here, we employed monthly monitoring of biofouling growth on stainless steel plates in the Atlantic Port of Leixões (Northern Portugal), over one year to test the effect of commercial anti-corrosion paint in the communities. Fouling organisms were identified by combining morpho-taxonomy identification with community DNA metabarcoding using multiple markers (16S rRNA, 18S rRNA, 23S rRNA, and COI genes). The dominant colonizers found at this location were hard foulers, namely barnacles and mussels, while other groups of organisms such as cnidarians, bryozoans, and ascidians were also abundant. Regarding the temporal dynamics of the fouling communities, there was a progressive increase in the colonization of cyanobacteria, green algae, and red algae during the sampled period with the replacement of less abundant groups. The tested anticorrosion paint demonstrated to have a significant prevention effect against the biofouling community resulting in a biomass reduction. Our study also reports, for the first time, 29 NIS in this port, substantiating the need for the implementation of recurring biofouling monitoring programs in ports and harbours.
Collapse
Affiliation(s)
- Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge T Antunes
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| | - Elsa Froufe
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| |
Collapse
|
25
|
Browett SS, O'Meara DB, McDevitt AD. Genetic tools in the management of invasive mammals: recent trends and future perspectives. Mamm Rev 2020. [DOI: 10.1111/mam.12189] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Browett
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford M5 4WTUK
| | - Denise B. O'Meara
- Molecular Ecology Research Group Eco‐Innovation Research Centre School of Science and Computing Waterford Institute of Technology Waterford Ireland
| | - Allan D. McDevitt
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford M5 4WTUK
| |
Collapse
|
26
|
Le Cam S, Daguin‐Thiébaut C, Bouchemousse S, Engelen AH, Mieszkowska N, Viard F. A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity. Evol Appl 2020; 13:500-514. [PMID: 32431732 PMCID: PMC7045713 DOI: 10.1111/eva.12837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).
Collapse
Affiliation(s)
- Sabrina Le Cam
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | - Claire Daguin‐Thiébaut
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | - Sarah Bouchemousse
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | | | - Nova Mieszkowska
- Marine Biological Association of the U.K. (MBA)PlymouthUK
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Frédérique Viard
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| |
Collapse
|
27
|
Reed EMX, Serr ME, Maurer AS, Burford Reiskind MO. Gridlock and beltways: the genetic context of urban invasions. Oecologia 2020; 192:615-628. [PMID: 32056021 DOI: 10.1007/s00442-020-04614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/30/2020] [Indexed: 01/16/2023]
Abstract
The rapid expansion of urban land across the globe presents new and numerous opportunities for invasive species to spread and flourish. Ecologists historically rejected urban ecosystems as important environments for ecology and evolution research but are beginning to recognize the importance of these systems in shaping the biology of invasion. Urbanization can aid the introduction, establishment, and spread of invaders, and these processes have substantial consequences on native species and ecosystems. Therefore, it is valuable to understand how urban areas influence populations at all stages in the invasion process. Population genetic tools are essential to explore the driving forces of invasive species dispersal, connectivity, and adaptation within cities. In this review, we synthesize current research about the influence of urban landscapes on invasion genetics dynamics. We conclude that urban areas are not only points of entry for many invasive species, they also facilitate population establishment, are pools for genetic diversity, and provide corridors for further spread both within and out of cities. We recommend the continued use of genetic studies to inform invasive species management and to understand the underlying ecological and evolutionary processes governing successful invasion.
Collapse
Affiliation(s)
- E M X Reed
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - M E Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - A S Maurer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - M O Burford Reiskind
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
28
|
Huhn M, Madduppa HH, Khair M, Sabrian A, Irawati Y, Anggraini NP, Wilkinson SP, Simpson T, Iwasaki K, Setiamarga DHE, Dias PJ. Keeping up with introduced marine species at a remote biodiversity hotspot: awareness, training and collaboration across different sectors is key. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Casso M, Turon X, Pascual M. Single zooids, multiple loci: independent colonisations revealed by population genomics of a global invader. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02069-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Rech S, Thiel M, Borrell Pichs YJ, García-Vazquez E. Travelling light: Fouling biota on macroplastics arriving on beaches of remote Rapa Nui (Easter Island) in the South Pacific Subtropical Gyre. MARINE POLLUTION BULLETIN 2018; 137:119-128. [PMID: 30503417 DOI: 10.1016/j.marpolbul.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 05/21/2023]
Abstract
Marine anthropogenic debris was sampled from two beaches on the remote South Pacific island Rapa Nui (Easter Island). Abundance, composition, and the attached fouling assemblages on stranded litter were analysed. Most litter (n = 172 items found) was composed of plastic material, and 34% of all litter items were fouled. The main fouling species was the encrusting bryozoan Jellyella eburnea. Transporting vectors were exclusively made from plastics and were mainly small items and fragments, probably stemming from the South Pacific Subtropical Gyre. We present the first report of Planes major, Halobates sericeus, and Pocillopora sp. on anthropogenic litter in the South Pacific.
Collapse
Affiliation(s)
- Sabine Rech
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Martin Thiel
- Universidad Católica del Norte, Coquimbo, Chile; Millennium Nucleus of Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | | | - Eva García-Vazquez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
31
|
Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci Rep 2018; 8:16290. [PMID: 30389965 PMCID: PMC6215007 DOI: 10.1038/s41598-018-34541-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022] Open
Abstract
Marine infrastructure can favor the spread of non-indigenous marine biofouling species by providing a suitable habitat for them to proliferate. Cryptic organisms or those in early life stages can be difficult to distinguish by conventional morphological taxonomy. Molecular tools, such as metabarcoding, may improve their detection. In this study, the ability of morpho-taxonomy and metabarcoding (18S rRNA and COI) using three reference databases (PR2, BOLD and NCBI) to characterize biodiversity and detect non-indigenous species (NIS) in biofouling was compared on 60 passive samplers deployed over summer and winter in a New Zealand marina. Highest resolution of metazoan taxa was identified using 18S rRNA assigned to PR2. There were higher assignment rates to NCBI reference sequences, but poorer taxonomic identification. Using all methods, 48 potential NIS were identified. Metabarcoding detected the largest proportion of those NIS: 77% via 18S rRNA/PR2 and NCBI and 35% via COI/BOLD and NCBI. Morpho-taxonomy detected an additional 14% of all identified NIS comprising mainly of bryozoan taxa. The data highlight several on-going challenges, including: differential marker resolution, primer biases, incomplete sequence reference databases, and variations in bioinformatic pipelines. Combining morpho-taxonomy and molecular analysis methods will likely enhance the detection of NIS from complex biofouling.
Collapse
|
32
|
DNA barcodes of Antipode marine invertebrates in Bay of Biscay and Gulf of Lion ports suggest new biofouling challenges. Sci Rep 2018; 8:16214. [PMID: 30385812 PMCID: PMC6212436 DOI: 10.1038/s41598-018-34447-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/17/2018] [Indexed: 11/08/2022] Open
Abstract
Marine biological invasions threaten global biodiversity nowadays. In this article, we have studied fouling communities from 10 port areas of south Bay of Biscay (Atlantic Ocean) and Gulf of Lion (Mediterranean Sea). A total of 834 individuals were genetically barcoded and corresponded to 95 different species. A total of 76 native species 8 genera and 1 family were identified, 58 from the Bay of Biscay and 23 from the Gulf of Lion. Furthermore, 19 species were identified as non-indigenous or cryptogenic (18 from the Bay of Biscay and 4 from the Gulf of Lion). We found a high proportion of Antipode non-indigenous species (NIS) that represented the 19.3% of all sampled individuals and the 54.21% of NIS specimens of this study. A framework for inference of donor regions based on a phylogenetic screening of genetic sequences was proposed as a proof of concept and tested, as well as models for the relationship between NIS introductions, maritime imports and distance to NIS native range and inferred donor areas. Consistent generalized linear models (GLM) with positive association between NIS genetic diversity and distance, not with maritime growth weight imports, strongly suggest that distant NIS could pose higher invasion risk than closer species. Selection for wider tolerance ranges during the long travel -direct or stepwise, as well as environmental similarity between donor and receiving regions, may explain these results.
Collapse
|
33
|
Guzinski J, Ballenghien M, Daguin‐Thiébaut C, Lévêque L, Viard F. Population genomics of the introduced and cultivated Pacific kelp Undaria pinnatifida: Marinas-not farms-drive regional connectivity and establishment in natural rocky reefs. Evol Appl 2018; 11:1582-1597. [PMID: 30344629 PMCID: PMC6183462 DOI: 10.1111/eva.12647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 01/03/2023] Open
Abstract
Ports and farms are well-known primary introduction hot spots for marine non-indigenous species (NIS). The extent to which these anthropogenic habitats are sustainable sources of propagules and influence the evolution of NIS in natural habitats was examined in the edible seaweed Undaria pinnatifida, native to Asia and introduced to Europe in the 1970s. Following its deliberate introduction 40 years ago along the French coast of the English Channel, this kelp is now found in three contrasting habitat types: farms, marinas and natural rocky reefs. In the light of the continuous spread of this NIS, it is imperative to better understand the processes behind its sustainable establishment in the wild. In addition, developing effective management plans to curtail the spread of U. pinnatifida requires determining how the three types of populations interact with one another. In addition to an analysis using microsatellite markers, we developed, for the first time in a kelp, a ddRAD-sequencing technique to genotype 738 individuals sampled in 11 rocky reefs, 12 marinas, and two farms located along ca. 1,000 km of coastline. As expected, the RAD-seq panel showed more power than the microsatellite panel for identifying fine-grained patterns. However, both panels demonstrated habitat-specific properties of the study populations. In particular, farms displayed very low genetic diversity and no inbreeding conversely to populations in marinas and natural rocky reefs. In addition, strong, but chaotic regional genetic structure, was revealed, consistent with human-mediated dispersal (e.g., leisure boating). We also uncovered a tight relationship between populations in rocky reefs and those in nearby marinas, but not with nearby farms, suggesting spillover from marinas into the wild. At last, a temporal survey spanning 20 generations showed that wild populations are now self-sustaining, albeit there was no evidence for local adaptation to any of the three habitats. These findings highlight that limiting the spread of U. pinnatifida requires efficient management policies that also target marinas.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
- Laboratory Evolutionary Biology and Ecology of Algae (UMI 3614 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Marion Ballenghien
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Claire Daguin‐Thiébaut
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Laurent Lévêque
- Fédération de Recherche (FR 2424 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Frédérique Viard
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| |
Collapse
|
34
|
Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P, Boggero A, Borja A, Bouchez A, Cordier T, Domaizon I, Feio MJ, Filipe AF, Fornaroli R, Graf W, Herder J, van der Hoorn B, Iwan Jones J, Sagova-Mareckova M, Moritz C, Barquín J, Piggott JJ, Pinna M, Rimet F, Rinkevich B, Sousa-Santos C, Specchia V, Trobajo R, Vasselon V, Vitecek S, Zimmerman J, Weigand A, Leese F, Kahlert M. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1295-1310. [PMID: 29801222 DOI: 10.1016/j.scitotenv.2018.05.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 05/05/2023]
Abstract
The bioassessment of aquatic ecosystems is currently based on various biotic indices that use the occurrence and/or abundance of selected taxonomic groups to define ecological status. These conventional indices have some limitations, often related to difficulties in morphological identification of bioindicator taxa. Recent development of DNA barcoding and metabarcoding could potentially alleviate some of these limitations, by using DNA sequences instead of morphology to identify organisms and to characterize a given ecosystem. In this paper, we review the structure of conventional biotic indices, and we present the results of pilot metabarcoding studies using environmental DNA to infer biotic indices. We discuss the main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices. We present some future developments to fully exploit the potential of metabarcoding data and improve the accuracy and precision of their analysis. We also propose some recommendations for the future integration of DNA metabarcoding to routine biomonitoring programs.
Collapse
Affiliation(s)
- Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Mary Kelly-Quinn
- School of Biology & Environmental Science, University College Dublin, Ireland
| | - Florian Altermatt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland(;) Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Pedro Beja
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-601 Vairão, Portugal; CEABN/InBIO-Centro de Estudos Ambientais 'Prof. Baeta Neves', Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Angela Boggero
- LifeWatch, Italy and CNR-Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Angel Borja
- AZTI, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain
| | - Agnès Bouchez
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Tristan Cordier
- Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Isabelle Domaizon
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Maria Joao Feio
- Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Department of Life Sciences, University of Coimbra, Portugal
| | - Ana Filipa Filipe
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-601 Vairão, Portugal; CEABN/InBIO-Centro de Estudos Ambientais 'Prof. Baeta Neves', Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Riccardo Fornaroli
- University of Milano Bicocca, Department of Earth and Environmental Sciences(DISAT), Piazza della Scienza 1,20126 Milano, Italy
| | - Wolfram Graf
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), 1180 Vienna, Austria
| | - Jelger Herder
- RAVON, Postbus 1413, Nijmegen 6501 BK, The Netherlands
| | | | - J Iwan Jones
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Marketa Sagova-Mareckova
- Crop Research Institute, Epidemiology and Ecology of Microorganisms, Drnovska 507, 16106 Praha 6, Czechia
| | - Christian Moritz
- ARGE Limnologie GesmbH, Hunoldstraße 14, 6020 Innsbruck, Austria
| | - Jose Barquín
- Environmental Hydraulics Institute "IHCantabria", Universidad de Cantabria, C/ Isabel Torres n°15, Parque Científico y Tecnológico de Cantabria, 39011 Santander, Spain
| | - Jeremy J Piggott
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland; Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Maurizio Pinna
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Frederic Rimet
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Buki Rinkevich
- Israel Oceanographic and Limnological Research, Tel- Shikmona, Haifa 31080, Israel
| | - Carla Sousa-Santos
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Rosa Trobajo
- IRTA, Institute of Agriculture and Food Research and Technology, Marine and Continental Waters Program, Carretera Poble Nou Km 5.5, E-43540 St. Carles de la Ràpita, Catalonia, Spain
| | - Valentin Vasselon
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Simon Vitecek
- Department of Limnology and Bio-Oceanography, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jonas Zimmerman
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany
| | - Alexander Weigand
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitaetsstrasse 5, 45141 Essen, Germany; Musée National d'Histoire Naturelle, 25 Rue Münster, 2160 Luxembourg, Luxembourg
| | - Florian Leese
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Maria Kahlert
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, PO Box 7050, SE - 750 07 Uppsala, Sweden
| |
Collapse
|
35
|
Ojaveer H, Galil BS, Carlton JT, Alleway H, Goulletquer P, Lehtiniemi M, Marchini A, Miller W, Occhipinti-Ambrogi A, Peharda M, Ruiz GM, Williams SL, Zaiko A. Historical baselines in marine bioinvasions: Implications for policy and management. PLoS One 2018; 13:e0202383. [PMID: 30114232 PMCID: PMC6095587 DOI: 10.1371/journal.pone.0202383] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human-mediated introduction of marine non-indigenous species is a centuries- if not millennia-old phenomenon, but was only recently acknowledged as a potent driver of change in the sea. We provide a synopsis of key historical milestones for marine bioinvasions, including timelines of (a) discovery and understanding of the invasion process, focusing on transfer mechanisms and outcomes, (b) methodologies used for detection and monitoring, (c) approaches to ecological impacts research, and (d) management and policy responses. Early (until the mid-1900s) marine bioinvasions were given little attention, and in a number of cases actively and routinely facilitated. Beginning in the second half of the 20th century, several conspicuous non-indigenous species outbreaks with strong environmental, economic, and public health impacts raised widespread concerns and initiated shifts in public and scientific perceptions. These high-profile invasions led to policy documents and strategies to reduce the introduction and spread of non-indigenous species, although with significant time lags and limited success and focused on only a subset of transfer mechanisms. Integrated, multi-vector management within an ecosystem-based marine management context is urgently needed to address the complex interactions of natural and human pressures that drive invasions in marine ecosystems.
Collapse
Affiliation(s)
- Henn Ojaveer
- Estonian Marine Institute, University of Tartu, Pärnu, Estonia
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - James T. Carlton
- Maritime Studies Program of Williams College and Mystic Seaport, Mystic, Connecticut, United States of America
| | - Heidi Alleway
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | | | - Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Whitman Miller
- Marine Invasion Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | | | | | - Gregory M. Ruiz
- Marine Invasion Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Susan L. Williams
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, California, United States of America
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| |
Collapse
|
36
|
Bista I, Carvalho GR, Tang M, Walsh K, Zhou X, Hajibabaei M, Shokralla S, Seymour M, Bradley D, Liu S, Christmas M, Creer S. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol Ecol Resour 2018; 18:1020-1034. [PMID: 29667329 DOI: 10.1111/1755-0998.12888] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023]
Abstract
New applications of DNA and RNA sequencing are expanding the field of biodiversity discovery and ecological monitoring, yet questions remain regarding precision and efficiency. Due to primer bias, the ability of metabarcoding to accurately depict biomass of different taxa from bulk communities remains unclear, while PCR-free whole mitochondrial genome (mitogenome) sequencing may provide a more reliable alternative. Here, we used a set of documented mock communities comprising 13 species of freshwater macroinvertebrates of estimated individual biomass, to compare the detection efficiency of COI metabarcoding (three different amplicons) and shotgun mitogenome sequencing. Additionally, we used individual COI barcoding and de novo mitochondrial genome sequencing, to provide reference sequences for OTU assignment and metagenome mapping (mitogenome skimming), respectively. We found that, even though both methods occasionally failed to recover very low abundance species, metabarcoding was less consistent, by failing to recover some species with higher abundances, probably due to primer bias. Shotgun sequencing results provided highly significant correlations between read number and biomass in all but one species. Conversely, the read-biomass relationships obtained from metabarcoding varied across amplicons. Specifically, we found significant relationships for eight of 13 (amplicons B1FR-450 bp, FF130R-130 bp) or four of 13 (amplicon FFFR, 658 bp) species. Combining the results of all three COI amplicons (multiamplicon approach) improved the read-biomass correlations for some of the species. Overall, mitogenomic sequencing yielded more informative predictions of biomass content from bulk macroinvertebrate communities than metabarcoding. However, for large-scale ecological studies, metabarcoding currently remains the most commonly used approach for diversity assessment.
Collapse
Affiliation(s)
- Iliana Bista
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Gary R Carvalho
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| | - Min Tang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kerry Walsh
- Environment Agency, Horizon House, Bristol, UK
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China
| | - Mehrdad Hajibabaei
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Shadi Shokralla
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Mathew Seymour
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| | | | - Shanlin Liu
- Natural History Museum of Denmark, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | | | - Simon Creer
- School of Biological Sciences, Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| |
Collapse
|
37
|
Darling JA, Carlton JT. A Framework for Understanding Marine Cosmopolitanism in the Anthropocene. FRONTIERS IN MARINE SCIENCE 2018; 5:293. [PMID: 31019910 PMCID: PMC6475922 DOI: 10.3389/fmars.2018.00293] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent years have witnessed growing appreciation for the ways in which human-mediated species introductions have reshaped marine biogeography. Despite this we have yet to grapple fully with the scale and impact of anthropogenic dispersal in both creating and determining contemporary distributions of marine taxa. In particular, the past several decades of research on marine biological invasions have revealed that broad geographic distributions of coastal marine organisms-historically referred to simply as "cosmopolitanism"-may belie complex interplay of both natural and anthropogenic processes. Here we describe a framework for understanding contemporary cosmopolitanism, informed by a synthesis of the marine bioinvasion literature. Our framework defines several novel categories in an attempt to provide a unified terminology for discussing cosmopolitan distributions in the world's oceans. We reserve the term eucosmopolitan to refer to those species for which data exist to support a true, natural, and prehistorically global (or extremely broad) distribution. While in the past this has been the default assumption for species observed to exhibit contemporary cosmopolitan distributions, we argue that given recent advances in marine invasion science this assignment should require positive evidence. In contrast, neocosmopolitan describes those species that have demonstrably achieved extensive geographic ranges only through historical anthropogenic dispersal, often facilitated over centuries of human maritime traffic. We discuss the history and human geography underpinning these neocosmopolitan distributions, and illustrate the extent to which these factors may have altered natural biogeographic patterns. We define the category pseudocosmopolitan to encompass taxa for which a broad distribution is determined (typically after molecular investigation) to reflect multiple, sometimes regionally endemic, lineages with uncertain taxonomic status; such species may remain cosmopolitan only so long as taxonomic uncertainty persists, after which they may splinter into multiple geographically restricted species. We discuss the methods employed to identify such species and to resolve both their taxonomic status and their biogeographic histories. We argue that recognizing these different types of cosmopolitanism, and the important role that invasion science has played in understanding them, is critically important for the future study of both historical and modern marine biogeography, ecology, and biodiversity.
Collapse
Affiliation(s)
- John A. Darling
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - James T. Carlton
- Maritime Studies Program, Williams College-Mystic Seaport, Mystic, CT, United States
- Department of Biology, Williams College, Williamstown, MA, United States
| |
Collapse
|