1
|
Rodil R, Villaverde-de-Sáa E, Cobas J, Quintana JB, Cela R, Carro N. Legacy and emerging pollutants in marine bivalves from the Galician coast (NW Spain). ENVIRONMENT INTERNATIONAL 2019; 129:364-375. [PMID: 31150978 DOI: 10.1016/j.envint.2019.05.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The presence of pollutants in estuary and oceanic systems is a global problem and a serious concern to human and environmental health. Usually, environmental monitoring studies consider classical persistent organic pollutants (POPs). However, the lists of POPs keep continuously growing and new POPs and other emerging pollutants should be considered in new monitoring programs. So, this study aimed to investigate the distribution and profile of classical POPs (polychlorinated biphenyl (PCBs), organochlorine pesticides (OCPs), and polycyclic aromatic hydrocarbons (PAHs)), new POPs and emerging pollutants (polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), novel halogenated flame retardants (NFRs) and UV filters) in bivalve mollusc samples (both raft-cultivated and wild mussel, Mytilus galloprovincialis; cockle, Cerestoderma edule; and clam, Ruditapes descussatus) collected in nine Galician Rias during the period February 2012 to February 2013. A predominance of PAHs (6.8-317 ng/g dry weight (dw)) followed by PCBs (0.47-261 ng/g dw), UV filters (1.4-157 ng/g dw), PFCs (0.53-62 ng/g dw), OCPs (0.07-29 ng/g dw), PBDEs (0.31-6.6 ng/g dw) and NFRs (0.07-3.2 ng/g dw) was found in the studied bivalves, being the UV filter octocrylene the compound found at the highest concentration (141 ng/g dw in a cockle sample), while the PAHs chrysene and benzo(b)fluoranthene were the compounds with the highest average concentration (20 and 14 ng/g dw, respectively). Inter-species, temporal and geographical variations on pollutants concentration were assessed by multifactorial analysis of variance. Statistically significant differences among the type of mollusc were observed for levels of organochlorinated and organobrominated pollutants considered (PCBs, OCPs and PBDEs), which were detected at higher concentrations in wild mussel. On the other hand, the main PFCs and UV filters showed a higher detection frequency in cockle samples. Location played significant role for PAHs, PCBs and the main PBDEs, being the most polluted rias those more industrialized and populated, i.e. A Coruña, Ferrol and/or Vigo. Finally, sampling timepoint was also a significant factor for most of the families considered but with different profiles. Thus, PAHs and PCBs showed higher concentrations in both February 2012 and 2013 and lower in August 2012, while the main PBDEs were measured at higher concentrations in November 2012 and lower in February 2012; and the main NFRs, PFCs and UV filters were present at lower levels in February 2013.
Collapse
Affiliation(s)
- Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain.
| | - Eugenia Villaverde-de-Sáa
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Julio Cobas
- INTECMAR (Technological Institute for the Monitoring of the Marine Environment in Galicia), Peirao de Vilaxoán S/N, 36611 Vilagarcía de Arousa, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Nieves Carro
- INTECMAR (Technological Institute for the Monitoring of the Marine Environment in Galicia), Peirao de Vilaxoán S/N, 36611 Vilagarcía de Arousa, Spain.
| |
Collapse
|
2
|
Dallarés S, Montemurro N, Pérez S, Rodríguez-Sanchez N, Solé M. Preliminary results on the uptake and biochemical response to water-exposure of Tamiflu® (oseltamivir phosphate) in two marine bivalves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:75-85. [PMID: 30669952 DOI: 10.1080/15287394.2018.1562393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tamiflu® (oseltamivir phosphate, OST) is an antiviral drug used for the pandemic treatment of avian influenza but few data are available regarding its toxicity. It should be noted that acute adverse responses are not likely to occur due to low environmental presence of this drug. Nonetheless, water concentration levels of this compound may reach the µg/L range under influenza episodes. Bivalves are reliable sentinels of chemical exposure due to their low metabolism; however, biotransformation of drugs does occur in these aquatic invertebrates. Two species of bivalves, namely mussels Mytilus galloprovincialis and clams Ruditapes philippinarum, were exposed for 48 h to 100 µg/L OST. Hemolymph from control and treated bivalves was withdrawn and the presence of OST and its metabolite oseltamivir carboxylate (OST-C) determined by LC-MS/MS. Gills and digestive gland were excised from control and exposed bivalves and carboxylesterase (CE) activities measured using different substrates. In addition, antioxidant defences and lipid peroxidation levels were determined. Higher metabolism of OST seemed to occur in mussels, since both OST and OST-C were found in hemolymph, whereas in clams only the parent compound was detected. In contrast, biomarker responses were more evident in exposed clams which indicate that this species may be considered as more sensitive to OST exposure. CE-related activities successfully reflected OST exposure, with substrates 1-naphthyl acetate (1NA) and 1-naphthyl butyrate (1NB) displaying the highest sensitivity in the two bivalve species. Data thus indicate the usefulness of CE-related activities as biomarkers for OST exposure in bivalves.
Collapse
Affiliation(s)
- Sara Dallarés
- a Institute of Marine Sciences (ICM-CSIC) , Barcelona , Spain
| | - Nicola Montemurro
- b Institute for Environmental Assessment and Water Research (IDAEA-CSIC) , Barcelona , Spain
| | - Sandra Pérez
- b Institute for Environmental Assessment and Water Research (IDAEA-CSIC) , Barcelona , Spain
| | | | - Montserrat Solé
- a Institute of Marine Sciences (ICM-CSIC) , Barcelona , Spain
| |
Collapse
|
3
|
Solé M, Rivera-Ingraham G, Freitas R. The use of carboxylesterases as biomarkers of pesticide exposure in bivalves: A methodological approach. Comp Biochem Physiol C Toxicol Pharmacol 2018; 212:18-24. [PMID: 29902568 DOI: 10.1016/j.cbpc.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 12/13/2022]
Abstract
Bivalves are worldwide sentinels of anthropogenic pollution. The inclusion of biomarker responses in chemical monitoring is a recommended practise that has to overcome some difficulties. One of them is the time frame between sample collection and sample processing in order to ensure the preservation of enzymatic activities. In the present study, three bivalve species of commercial interest (mussel, Mytilus galloprovincialis, razor shell, Solen marginatus, and cockle, Cerastoderma edule) were processed within <2 h after being retrieved from their natural habitat, and 24 h after being transported in air under cold conditions (6-8 °C) to laboratory facilities. The enzymatic activities were compared in the three species submitted to both conditions revealing no differences in terms of carboxylesterase dependent activities (CEs) using different substrates: p-nitrophenyl acetate (pNPA), p-nitrophenyl butyrate (pNPB), 1-naphthyl acetate (1-NA), 1-naphthyl butyrate (1-NB) and 2-naphthyl acetate (2-NA). In mussels, three tissues were selected (haemolymph, gills and digestive gland). For comparative purposes, in razor shell and cockle only digestive gland was considered as it is the main metabolic organ. Baseline enzymatic activities for CEs were characterised in the digestive gland of the three bivalves using four out of the five selected CE substrates as well as the kinetic parameters (Vmax and Km) and catalytic efficiency. The in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon was also calculated. IC50 values (pM-nM range) were lower than those obtained for vertebrate groups which suggest that bivalves have high protection efficiency against this pesticide as well as species dependent particularities.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Ambrosio L, Russo R, Salzano AM, Serpe FP, Ariano A, Tommasi ND, Piaz FD, Severino L. Accumulation of Polychlorinated Biphenyls in Mussels: A Proteomic Study. J Food Prot 2018; 81:316-324. [PMID: 29369691 DOI: 10.4315/0362-028x.jfp-17-148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are environmental pollutants of industrial origin that can contaminate food, mainly food of animal origin. Although production of PCBs has been banned in many countries since the 1980s, they are still present in the environment and are considered dangerous pollutants for human health. In fact, they can bioaccumulate in living organisms such as marine organisms because of their chemical and physical properties. New analytical approaches are useful to monitor the presence of such contaminants in seafood products and in the environment. In this work, we evaluate changes in protein expression of Mytilus galloprovincialis (Lam.) experimentally exposed to a PCB mixture and identify chemically specific protein expression signatures by using a proteomic approach. In particular, we identify 21 proteins whose levels of expression are sensibly modified after 3 weeks of exposure. The present work shows that a proteomic approach can be a useful tool to study alterations of protein expression in mussels exposed to PCBs and represents a first step toward the development of screening protocols to be used for biomonitoring surveys of fishery products.
Collapse
Affiliation(s)
- Letizia Ambrosio
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.]).,2 Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; and
| | - Rosario Russo
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| | - Anna Maria Salzano
- 3 Institute for Animal Production System in Mediterranean Environment, CNR, Via Argine 1085, 80147, Napoli, Italy
| | - Francesco Paolo Serpe
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| | - Andrea Ariano
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| | - Nunziatina De Tommasi
- 2 Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; and
| | - Fabrizio Dal Piaz
- 2 Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; and
| | - Lorella Severino
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| |
Collapse
|
5
|
Rodríguez-González N, González-Castro MJ, Beceiro-González E, Muniategui-Lorenzo S. Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in marine sediments. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Rodríguez-González N, Uzal-Varela R, González-Castro MJ, Muniategui-Lorenzo S, Beceiro-González E. Reliable methods for determination of triazine herbicides and their degradation products in seawater and marine sediments using liquid chromatography-tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7764-7775. [PMID: 28127690 DOI: 10.1007/s11356-017-8389-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 05/26/2023]
Abstract
Triazines and their degradation products are transported to the aquatic environment, and once there, the probability to reach the marine environment is very high. In this paper, solid phase extraction (SPE) and extraction by matrix solid phase dispersion (MSPD) to analyse nine triazines (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) and eight degradation products (desethylatrazine, desethyldesisopropylatrazine, desethyl-2-hydroxyatrazine, desethylterbuthylazine, desisopropylatrazine, desisopropyl-2-hydroxyatrazine, 2-hydroxyatrazine and 2-hidroxyterbuthylazine) in seawater and marine sediments samples were used. The analysis was carried out using liquid chromatography with tandem mass spectrometry (LC-ESI-MS/MS). The methods were optimized and validated to achieve a selective and sensitive determination of the analytes from different sample, regardless of its complexity. Under the optimum conditions, the proposed methods provided adequate limits of quantification (0.05-0.45 μg L-1 and 0.23-4.26 μg kg-1 in seawater and marine sediments, respectively). Intra- and inter-day relative standard deviation were below 1.41% for all compounds. Recoveries were evaluated, and acceptable values that ranged from 87.5-99.4 and 60.9-99.7% for the seawater and sediment samples, respectively, were obtained. The proposed methods were applied to the analysis of the target compounds in seawater samples and marine sediments from a coastal area of Galicia (NW of Spain).
Collapse
Affiliation(s)
- N Rodríguez-González
- Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus da Coruña, 15071, A Coruña, Spain
| | - R Uzal-Varela
- Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus da Coruña, 15071, A Coruña, Spain
| | - M J González-Castro
- Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus da Coruña, 15071, A Coruña, Spain
| | - S Muniategui-Lorenzo
- Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus da Coruña, 15071, A Coruña, Spain
| | - E Beceiro-González
- Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus da Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
7
|
Lee CC, Hsu YC, Kao YT, Chen HL. Health risk assessment of the intake of butyltin and phenyltin compounds from fish and seafood in Taiwanese population. CHEMOSPHERE 2016; 164:568-575. [PMID: 27632793 DOI: 10.1016/j.chemosphere.2016.08.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Organotin compounds have been applied as stabilizers for PVCs, fungicides, and pesticides, those can enter water systems through antifouling paints on ships as well as from diverse industrial and agricultural processes. This study aims to monitor the background levels of six organotins in 200 fishery products. In the current study, the high organotin levels are over tolerable average residue levels in Taiwan. Phenyltins (PTs) levels in fish and seafood are higher than butyltins (BTs). Risk assessment showed that 95% upper confidence limits of the hazard index (HI) of organotins were almost all over 1, indicating that there are probability of health impacts for organotin consumption in Taiwanese consumers. Those who consume higher amounts of seafood and fishery may be at a higher risk of health issues, but the data indicate that organotin levels have become controlled in recent years as compared with health risk data published in 2006.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan; Environmental Trace Toxic Substances Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chen Hsu
- Food and Drug Administration, Ministry of Health and Welfare, Executive Yuan, Taiwan
| | - Yi-Ting Kao
- Food and Drug Administration, Ministry of Health and Welfare, Executive Yuan, Taiwan
| | - Hsiu-Ling Chen
- Institute of Occupational Safety and Hazard Prevention, Hung Kuang University, Taichung, Taiwan.
| |
Collapse
|
8
|
Milun V, Lušić J, Despalatović M. Polychlorinated biphenyls, organochlorine pesticides and trace metals in cultured and harvested bivalves from the eastern Adriatic coast (Croatia). CHEMOSPHERE 2016; 153:18-27. [PMID: 27010163 DOI: 10.1016/j.chemosphere.2016.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Polychlorinated biphenyls, organochlorine pesticides and trace metals were determined in tissues of bivalve molluscs (Mytilus galloprovincialis, Ostrea edulis, Venus verrucosa, Arca noae and Callista chione), collected from 11 harvesting and 2 cultured locations along the eastern Adriatic coast, in May and November 2012. Concentrations (ng g(-1) dry weight) of organochlorines ranged from 1.53 to 21.1 for PCBs and 0.68 to 5.21 for p,p'-DDTs. HCB, lindane, heptachlor and aldrin-like compounds were found in lower levels or were not detected. Metal concentrations (mg kg(-1) dry weight) ranged from 0.23 to 4.03 for Cd, 0.87-3.43 for Cr, 3.69-202.3 for Cu, 0.06-0.26 for HgT, 0.62-9.42 for Ni, 0.95-4.64 for Pb, and 55.76-4010.3 for Zn. Established organochlorine and trace metal levels were lower than the maximum allowable levels in seafood set by the European Commission.
Collapse
Affiliation(s)
- Vesna Milun
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000, Split, P.O. Box 500, Croatia
| | - Jelena Lušić
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000, Split, P.O. Box 500, Croatia.
| | - Marija Despalatović
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000, Split, P.O. Box 500, Croatia
| |
Collapse
|
9
|
Velez C, Freitas R, Soares A, Figueira E. Bioaccumulation patterns, element partitioning and biochemical performance of Venerupis corrugata from a low contaminated system. ENVIRONMENTAL TOXICOLOGY 2016; 31:569-583. [PMID: 25410524 DOI: 10.1002/tox.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The current study reports metals and arsenic (As) concentrations present in sediments and in the native clam Venerupis corrugata, collected in the Ria de Aveiro, one of the most important aquatic systems of the Portuguese coast with high biodiversity and socio-economic value. Because of its ecological importance in its habitat, and being one of the most exploited bivalve mollusks in Portugal, several biochemical biomarkers were evaluated in order to illustrate the species status when under environmental conditions. The concentration of metals and As in the sediments showed an increase of contamination among areas (areas A-E). The results proved higher bioaccumulation in organisms from the area less contaminated (area A, BAF > 1). The concentration of metals and As was predominant (63.4%) in the insoluble fraction of clams. The biochemical evaluation evidenced an increase of oxidative stress in organisms from the most (D and E) and the less (area A) contaminated areas, demonstrated by higher LPO levels, CAT, and GSHt activities at these areas and the increase of methalotionines (MTs) along the concentration gradient. This suggests a preventive mechanism in order to protect cells against pollutants (metals and As).
Collapse
Affiliation(s)
- Catia Velez
- Departmento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departmento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu Soares
- Departmento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Departmento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Rodríguez-González N, González-Castro M, Beceiro-González E, Muniategui-Lorenzo S. Development of a Matrix Solid Phase Dispersion methodology for the determination of triazine herbicides in mussels. Food Chem 2015; 173:391-6. [DOI: 10.1016/j.foodchem.2014.09.153] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 11/17/2022]
|