1
|
Ju YR, Chen CF, Lim YC, Tsai CY, Chen CW, Dong CD. Developing ecological risk assessment of metals released from sediment based on sediment quality guidelines linking with the properties: A case study for Kaohsiung Harbor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158407. [PMID: 36075416 DOI: 10.1016/j.scitotenv.2022.158407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to introduce sediment properties (total organic carbon (TOC), acid-volatile sulfides (AVS), particle size distribution) into sediment quality guideline-based risk quotients to assess the potential toxicity of metals (Ni, Cu, Zn, Cr, Cd, and Pb) released from sediments. Sediment was collected at three times points in 20 sampling sites in Kaohsiung Harbor. The Microtox® toxicity test was used to assess the sediment toxicity and the relationship between sediment toxicity and risk quotient estimated based on the metal concentration was constructed. To improve the toxicity prediction and modify the risk quotient according to the sediment properties, stepwise multiple linear regression (MLR) models that have been tested over wide ranges of TOC, AVS, and particle size distribution to determine the key sediment properties. Common multimetal indices, including the pollution load index, modified degree of contamination index, Nemerow pollution index, potential ecological risk index, and total toxic risk index, were compared with sediment toxicity to evaluate the degrees of correlation. By modifying the relationship between metal toxicity and the risk quotient by including TOC and AVS, the prediction showed that sediments in Kaohsiung Harbor were generally of slight acute toxicity to acute toxicity to organisms, with sampling sites near an industrial zone showing a higher probability of high acute toxicity. In particular, the acute risk of adverse effects on aquatic organisms from sediments in the Salt River estuary was significantly higher than that at other sites, which was consistent with the results of assessment based on the multimetal indices. This study suggests that the MLR-based approach may facilitate the adoption of updated site-specific metals standards that more accurately account for the parameters affecting metal bioavailability than metal concentration standard alone.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chuan-Yi Tsai
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
2
|
Gao X, Song J, Li X, Yuan H, Zhao J, Xing Q, Li P. Sediment quality of the Bohai Sea and the northern Yellow Sea indicated by the results of acid-volatile sulfide and simultaneously extracted metals determinations. MARINE POLLUTION BULLETIN 2020; 155:111147. [PMID: 32310103 DOI: 10.1016/j.marpolbul.2020.111147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The surface sediments from the Bohai Sea (BS) and the northern Yellow Sea (NYS) were analyzed for acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) to assess the sediment quality. The results indicated that >60% of the samples were found to have possible adverse effects on aquatic life in the BS based on the difference between the concentrations of AVS ([AVS]) and SEM ([SEM]), and the corresponding percentage in the NYS was <25%. Nevertheless, there was no indication of adverse effects for all the BS and the NYS samples when the total organic carbon (TOC) concentration was introduced in the sediment quality evaluation with [AVS] and [SEM]. The grain size composition, TOC, water content and pH all had significant influence on the distribution of [SEM] and the [SEM]/[AVS] ratios; while, in contrast, the distribution of [AVS] could be mainly determined by the redox condition of sediment.
Collapse
Affiliation(s)
- Xuelu Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.
| | - Jinming Song
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuegang Li
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Huamao Yuan
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Qianguo Xing
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Peimiao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| |
Collapse
|
3
|
Arfaeinia H, Fazlzadeh M, Taghizadeh F, Saeedi R, Spitz J, Dobaradaran S. Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:496-506. [PMID: 30472474 DOI: 10.1016/j.ecoenv.2018.11.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Phthalate acid esters (PAEs) are widely used as plasticizers in various plastic products and have aroused considerable concern over their ubiquitous presence and potentially hazardous effects on the environment. This research provides the first data on PAEs distribution in the sediments of northern part of the Persian Gulf. To determine the concentration of 16 PAEs, 26 samples of sediments were collected from industrial stations (IS), urban stations (US), agricultural stations (AGS), and natural field stations (NS) from Asalouyeh Harbor coasts from Nov 2016 to Jan 2017. The mean values of Ʃ16PAEs in the samples taken from IS, AGS, US, and NS were 78.08, 11.69, 46.56, and 5.180 µg/g, respectively. The results indicated that the mean concentrations of Ʃ16PAEs in the samples taken from IS and AGS areas were significantly higher (p < 0.05) than the ones taken from US and NS areas. The order of PAEs concentrations in sediment samples were as di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and di-n-octyl phthalate (DnOP), respectively. DEHP was detected in all collected samples and the mean ± SD of its concentration in the IS, US, AGS, and NS regions were as 28.15 ± 4.9, 4.040 ± 0.53, 11.58 ± 1.2, and 1.780 ± 0.78 µg/g, respectively. The major sources of PAEs in the sediments collected from the study region were associated with the industrial and agricultural activities. The findings of this study indicated that the sediments of the Asalouyeh coasts are heavily contaminated with PAEs. They have shown potential ecotoxicological effects on the aquatic organisms and benthic. Therefore, more attention should be paid to prediction of the marine ecosystem in this region by the authorities.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Taghizadeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörg Spitz
- Akademie für menschliche Medizin GmbH, Krauskopfallee 27, 65388 Schlangenbad, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, Iran.
| |
Collapse
|
4
|
Distribution and Risk Assessment of Heavy Metals in Sediment from Bohai Bay, China. MINERALS 2019. [DOI: 10.3390/min9020111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sediment core and porewater samples from the Western coastal tidal flat in Bohai Bay, China, were collected for meals and physical-chemical properties analysis. The vertical distribution characteristics of eight metals along the core was investigated based on 137Cs and 210Pb radionuclide dating. The chemical fractions of six metals (Cu, Pb, Zn, Ni, Mn and Cd) were also measured based on the modified European Community Bureau of Reference (BCR) sequential extraction procedures to better understand the mobility and bioavailability of these metals in the sediment. In addition, geoaccumulation index (Igeo) and risk assessment code (RAC) are used to assess risk status of these metals in the environment. 210Pb measurement indicates a sedimentation rate of about −1.87 cm∙year−1. The metals Cu, Zn, Pb and Ni show similar vertical distributions throughout the core, while Mn and Cd show different distribution patterns. Ni, Cu, Pb and Zn are strongly associated with the residual fraction while Mn and Cd are dominant in the acid-soluble fraction. According to the estimated diffusive fluxes, the Zn ions were the most mobilized, followed by Cu, Ni, Pb, and to a lesser extent Cd. The result of Igeo shows that Ni in sediments does not reflect any pollution, and Cu, Pb and Zn are in a level from unpolluted to modest polluted throughout the core. Mn and Cd have obvious anthropogenic sources. Based on the RAC, Cd and Mn pose a high to very high risk to the local environment, respectively, due to the significant percentage of exchangeable fraction. Clay content is significantly positively correlated with Ni, Cu, Al and Fe, and Cu, Pb, Zn and Ni might originate from the same sources or be influenced by similar geochemical processes. River runoff and atmospheric deposition are important sources for heavy metals, and since 1998, domestic sewage discharge might have had an important influence on the source of heavy metals (except for Cd and Mn).
Collapse
|
5
|
Kulkarni R, Deobagkar D, Zinjarde S. Metals in mangrove ecosystems and associated biota: A global perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:215-228. [PMID: 29448175 DOI: 10.1016/j.ecoenv.2018.02.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Mangrove forests prevalent along the intertidal regions of tropical and sub-tropical coastlines are inimitable and dynamic ecosystems. They protect and stabilize coastal areas from deleterious consequences of natural disasters such as hurricanes and tsunamis. Although there are reviews on ecological aspects, industrial uses of mangrove-associated microorganisms and occurrence of pollutants in a region-specific manner, there is no exclusive review detailing the incidence of metals in mangrove sediments and associated biota in these ecosystems on a global level. In this review, mangrove forests have been classified in a continent-wise manner. Most of the investigations detail the distribution of metals such as zinc, chromium, arsenic, copper, cobalt, manganese, nickel, lead and mercury although in some cases levels of vanadium, strontium, zirconium and uranium have also been studied. Seasonal, tidal, marine, riverine, and terrestrial components are seen to influence occurrence, speciation, bioavailability and fate of metals in these ecosystems. In most of the cases, associated plants and animals also accumulate metals to different extents and are of ecotoxicological relevance. Levels of metals vary in a region specific manner and there is disparity in the pollution status of different mangrove areas. Protecting these vulnerable ecosystems from metal pollutants is important from environmental safety point of view.
Collapse
Affiliation(s)
- Rasika Kulkarni
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Deepti Deobagkar
- Indian Space Research Organization Cell, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
6
|
Costa-Böddeker S, Hoelzmann P, Thuyên LX, Huy HD, Nguyen HA, Richter O, Schwalb A. Ecological risk assessment of a coastal zone in Southern Vietnam: Spatial distribution and content of heavy metals in water and surface sediments of the Thi Vai Estuary and Can Gio Mangrove Forest. MARINE POLLUTION BULLETIN 2017; 114:1141-1151. [PMID: 27773532 DOI: 10.1016/j.marpolbul.2016.10.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Enrichment of heavy metals was assessed in the Thi Vai Estuary and in the Can Gio Mangrove Forest (SE, Vietnam). Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn contents in water and in sediments were measured. Total organic carbon, nitrogen, phosphorus and C/N ratios were determined. Cu and Cr values were higher than threshold effect level of toxicity, while Ni exceeded probable effect level, indicating the risk of probable toxicity effects. Enrichment factors (EF), contamination factor (CF) and Geo-accumulation index (I-geo) were determined. CF reveals moderate to considerable pollution with Cr and Ni. EF suggests anthropogenic sources of Cr, Cu and Ni. I-geo indicates low contamination with Co, Cu and Zn and moderate contamination with Cr and Ni. Overall metal contents were lower than expected for this highly industrialized region, probably due to dilution, suggesting that erosion rates and hydrodynamics may also play a role in metal contents distribution.
Collapse
Affiliation(s)
- Sandra Costa-Böddeker
- Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany.
| | - Philipp Hoelzmann
- Institut für Geographische Wissenschaften, Physische Geographie, Freie Universität Berlin, Malteserstr 74-100 12249, Berlin.
| | - Lê Xuân Thuyên
- Faculty of Biology - Biotechnology, Vietnam National University Ho Chi Minh City-University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam.
| | - Hoang Duc Huy
- Faculty of Biology - Biotechnology, Vietnam National University Ho Chi Minh City-University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam.
| | - Hoang Anh Nguyen
- Institut für Geoökologie, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany.
| | - Otto Richter
- Institut für Geoökologie, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany.
| | - Antje Schwalb
- Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany.
| |
Collapse
|
7
|
Arfaeinia H, Nabipour I, Ostovar A, Asadgol Z, Abuee E, Keshtkar M, Dobaradaran S. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9871-9890. [PMID: 26856868 DOI: 10.1007/s11356-016-6189-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Sediment samples from the coastal area of Asaluyeh harbor were collected during autumn and spring 2015. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) were measured to assess the sediment quality and potential ecological risks. The average concentrations (and relative standard deviation (RSD)) of AVS in the industrial sediments were 12.32 μmol/g (36.91) and 6.34 μmol/g (80.05) in autumn and spring, respectively, while in the urban area, these values were 0.44 μmol/g (123.50) and 0.31 μmol/g (160.0) in autumn and spring, respectively. The average concentrations of SEM (and RSD) in the industrial sediments were 15.02 μmol/g (14.38) and 12.34 μmol/g (20.65) in autumn and spring, respectively, while in the urban area, these values were 1.10 μmol/g (43.03) and 1.06 μmol/g (55.59) in autumn and spring, respectively. Zn was the predominant component (34.25-86.24 %) of SEM, while the corresponding value for Cd, much more toxic ingredient, was less than 1 %. Some of the coastal sediments in the harbor of Asaluyeh (20 and 47 % in autumn and spring, respectively) had expected adverse biological effects based on the suggested criterion by United States Environmental Protection Agency (USEPA), while most stations (80 and 53 % in autumn and spring, respectively) had uncertain adverse effects.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Environmental Health Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Ostovar
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Asadgol
- Environmental Health Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Abuee
- Environmental Health Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mozhgan Keshtkar
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
- Systems Environmental Health, Oil, Gas and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
8
|
He P, Li L, Liu J, Bai Y, Fang X. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea. FEMS Microbiol Lett 2016; 363:fnw086. [DOI: 10.1093/femsle/fnw086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
|
9
|
Blewett TA, Smith DS, Wood CM, Glover CN. Mechanisms of Nickel Toxicity in the Highly Sensitive Embryos of the Sea Urchin Evechinus chloroticus, and the Modifying Effects of Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1595-1603. [PMID: 26730609 DOI: 10.1021/acs.est.5b05626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A 96 h toxicity test showed that the embryos of the New Zealand sea urchin (Evechinus chloroticus) are the most sensitive of all studied marine species to waterborne nickel (Ni), with the EC50 for the development of fully formed pluteus larvae found to be 14 μg L(-1). Failure to develop a standard larval shape suggested skeletal impairment. Whole body ions (Na, Mg) increased with Ni exposure and calcium influx was depressed. The effects of natural organic matter (NOM) on Ni accumulation and toxicity were also examined in three different seawater sources (nearshore, offshore, and near the outlet of a "brown water" stream). At low dissolved organic carbon (DOC) concentrations the brown water NOM was protective against Ni toxicity, however at higher DOC concentrations it exacerbated developmental toxicity in the presence of Ni. These results show that sea urchin development is highly sensitive to Ni via a mechanism that involves ionoregulatory disturbance, and that Ni toxicity is influenced by environmental factors such as NOM. These data will be critical for the development of water quality guidelines for Ni in the marine environment.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biology, McMaster University , Hamilton, Ontario L8S 4K1, Canada
- Department of Chemistry Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - D Scott Smith
- Department of Chemistry Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - Chris M Wood
- Department of Biology, McMaster University , Hamilton, Ontario L8S 4K1, Canada
- Department of Zoology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Chris N Glover
- School of Biological Sciences, University of Canterbury , Christchurch, New Zealand
- Faculty of Science and Technology, Athabasca University , Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
10
|
Gao L, Gao B, Wei X, Zhou H, Xu D, Wang Y. Assessment of metal toxicity and development of sediment quality guidelines using the equilibrium partitioning model for the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17577-17585. [PMID: 26141978 DOI: 10.1007/s11356-015-4959-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The impoundment of the Three Gorges Reservoir (TGR) in China influences the quality of the water supply. Surface sediment samples from the TGR mainstream and three tributaries were collected. Acid volatile sulfide (AVS), simultaneously extractable metals (SEMs), and the fraction of organic carbon (f(oc)) were used to assess the toxicity of heavy metals. Sediment quality guidelines (SQGs) were established using the equilibrium partitioning approach. The results showed that the surface sediments were found to be oxic or suboxic. AVS concentrations in sediments were relatively low, below SEM concentrations. The [SEM] - [AVS] model indicated that all sediments possibly have adverse effects on aquatic life. However, ([SEM] - [AVS])/f(oc) predicted no adverse biological effects in some areas of the Meixi and Caotang Rivers, while adverse effects to aquatic life were uncertain for the other sediments. The partitioning coefficients, water quality criteria, and residual metals in the sediments were the main factors influencing the SQGs for the TGR, while the metals bound to AVS had a negligible effect. The normalized TGR SQGs were all much higher than the existing standards except for cadmium and copper. The differences might be attributed to the approaches used for derivation of SQGs and the physical and chemical characteristics of the sediments.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Xin Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huaidong Zhou
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
11
|
Chai M, Shen X, Li R, Qiu G. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis. MARINE POLLUTION BULLETIN 2015; 97:431-439. [PMID: 26028168 DOI: 10.1016/j.marpolbul.2015.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/17/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments.
Collapse
Affiliation(s)
- Minwei Chai
- Key Laboratory for Urban Habitat Environment Science and Technology, School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaoxue Shen
- Key Laboratory for Urban Habitat Environment Science and Technology, School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Ruili Li
- Key Laboratory for Urban Habitat Environment Science and Technology, School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| | - Guoyu Qiu
- Key Laboratory for Urban Habitat Environment Science and Technology, School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| |
Collapse
|
12
|
Xu G, Liu J, Pei S, Gao M, Hu G, Kong X. Sediment properties and trace metal pollution assessment in surface sediments of the Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11634-47. [PMID: 25847442 DOI: 10.1007/s11356-015-4393-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/17/2015] [Indexed: 05/22/2023]
Abstract
Spatial distribution, ecological risk, pollutant source, and transportation of trace metals in surface sediments, as well as the sediment properties, were analyzed in this study to assess the pollution status of trace metal in the Laizhou Bay, China. Results of provenance analyses indicate that surface sediments were primarily from weathering products carried by the surrounding short rivers and partially from loess matters carried by the Yellow River. Variations of trace metal concentrations were mostly controlled by the accumulation of weathering products, organic matters, and the hydrodynamics. Geoaccumulation index suggests that no Cr pollution occurred in the study area, and Cu, Pb, and Zn pollutions appeared only at a few stations. Comparatively, Cd and As pollutions were at noticeably weak to moderate level at many stations. The combination of six trace metals in this study had a 21% probability of being toxic in our study area based on sediment quality guidelines. Enrichment factors (EFs) and statistical analyses indicate that Cu, Pb, and Zn were primarily derived from the natural process of weathering. By contrast, Cd, As, and Cr (especially Cd and As) were provided by the anthropogenic activities to a large extent. Due to the dilution of coarse-grained sediments, there was even no contamination at some of stations that were obviously influenced by humans. Based on the current study of transportation process of fine-grained sediments in combination with the spatial distribution of EFs, it is found that the migration of anthropogenic trace metals was mainly controlled by the tide in the Laizhou Bay. The study suggests that an effective strategies and remedial measures should be designed and undertaken to prevent further anthropogenic Cd and As pollutions in this area in the future.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao, 266071, China
| | | | | | | | | | | |
Collapse
|