1
|
Jeremias G, Muñiz-González AB, Mendes Gonçalves FJ, Martínez-Guitarte JL, Asselman J, Luísa Pereira J. History of exposure to copper influences transgenerational gene expression responses in Daphnia magna. Epigenetics 2024; 19:2296275. [PMID: 38154067 PMCID: PMC10761054 DOI: 10.1080/15592294.2023.2296275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.
Collapse
Affiliation(s)
- Guilherme Jeremias
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana-Belén Muñiz-González
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | | | - José-Luis Martínez-Guitarte
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Sol Dourdin T, Guyomard K, Rabiller M, Houssais N, Cormier A, Le Monier P, Sussarellu R, Rivière G. Ancestors' Gift: Parental Early Exposure to the Environmentally Realistic Pesticide Mixture Drives Offspring Phenotype in a Larger Extent Than Direct Exposure in the Pacific Oyster, Crassostrea gigas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1865-1876. [PMID: 38217500 DOI: 10.1021/acs.est.3c08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 μg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Killian Guyomard
- Ifremer, Plateforme Mollusques Marins Bouin, 85029 Bouin, France
| | | | - Nina Houssais
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Alexandre Cormier
- Ifremer, Service de Bioinformatique de l'Ifremer, 29280 Brest, France
| | - Pauline Le Monier
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Rossana Sussarellu
- Ifremer, Physiologie et Toxines des Microalgues Toxiques, 44311 Cedex 03 Nantes, France
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR7208, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris Cedex, France
- BOREA, UFR des Sciences, Université de Caen-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France
| |
Collapse
|
5
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
6
|
Sol Dourdin T, Rivière G, Cormier A, Di Poi C, Guyomard K, Rabiller M, Akcha F, Bah Sadialiou T, Le Monier P, Sussarellu R. Molecular and phenotypic effects of early exposure to an environmentally relevant pesticide mixture in the Pacific oyster, Crassostrea gigas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121472. [PMID: 36965683 DOI: 10.1016/j.envpol.2023.121472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Early life stages are crucial for organism development, especially for those displaying external fertilization, whose gametes and early stages face environmental stressors such as xenobiotics. The pacific oyster, Crassostrea gigas, is considered a model species in ecotoxicology because of its ecological characteristics (benthic, sessile, filter feeding). So far studies have investigated the impact of xenobiotics at embryotoxic, genotoxic and physiological endpoints, sometimes at the multigenerational scale, highlighting the role of epigenetic mechanisms in transmitting alterations induced by exposure to single xenobiotics. However, to date, little is known about the impact of environmentally-mimicking contaminants cocktails. Thus, we examined the impact of an early exposure to environmentally relevant mixture on the Pacific oyster life history. We studied transcriptomic, epigenetic and physiological alterations induced in oysters exposed to 18 pesticides and metals at environmental concentration (nominal sum concentration: 2.85 μg.L-1, measured sum concentration: 3.74 ± 0.013 μg.L-1) during embryo-larval stage (0-48 h post fertilization, hpf). No significant differences in embryo-larval abnormalities at 24 hpf were observed during larval and spat rearing; the swimming behaviour of exposed individuals was disturbed, while they were longer and heavier at specific time points, and exhibited a lower epinephrine-induced metamorphosis rate as well as a higher survival rate in the field. In addition, RNA-seq analyses of gastrula embryos revealed the differential expression of development-related genes (e.g. Hox orthologues and cell cycle regulators) between control and exposed oysters. Whole-genome DNA methylation analyses demonstrated a significant modification of DNA methylation in exposed larvae marked by a demethylation trend. Those findings suggest that early exposure to an environmentally relevant pesticide mixture induces multi-scale latent effects possibly affecting life history traits in the Pacific oyster.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, Nantes, France.
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National D'Histoire Naturelle (MNHN), Centre National de La Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris, CEDEX, France
| | | | - Carole Di Poi
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), France
| | | | | | - Farida Akcha
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, Nantes, France
| | | | - Pauline Le Monier
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, Nantes, France
| | - Rossana Sussarellu
- Ifremer, Physiologie et Toxines des Microalgues Toxiques, Nantes, France
| |
Collapse
|
7
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
8
|
Šrut M, Sabolić I, Erdelez A, Grbin D, Furdek Turk M, Bakarić R, Peharda M, Štambuk A. Marine Pollutant Tributyltin Affects DNA Methylation and Fitness of Banded Murex ( Hexaplex trunculus) Populations. TOXICS 2023; 11:276. [PMID: 36977041 PMCID: PMC10051066 DOI: 10.3390/toxics11030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Banded murex, Hexaplex trunculus, is a marine gastropod whose reproductive fitness can be severely affected by very low concentrations of antifouling compound tributyltin (TBT). TBT has strong xenoandrogen impacts on snails, causing the development of imposex (e.g., the superimposition of male sexual characteristic in females), thereby affecting the fitness of entire populations. TBT is also known as a DNA-demethylating agent and an obesogenic factor. The aim of this study was to unravel the interactions between TBT bioaccumulation, phenotypic responses, and epigenetic and genetic endpoints in native populations of H. trunculus. Seven populations inhabiting environments along the pollution gradient were sampled in the coastal eastern Adriatic. These included sites of intense marine traffic and boat maintenance activity and sites with low anthropogenic impact. Populations inhabiting intermediately and highly polluted sites exhibited higher TBT burdens, higher incidences of imposex, and higher wet masses of snails than populations in lowly polluted sites. Other morphometric traits and cellular biomarker responses did not show clear differentiation among populations in relation to marine traffic/pollution intensity. An analysis of methylation sensitive amplification polymorphism (MSAP) revealed environmentally driven population differentiation and higher epigenetics than genetic within-population diversity. Moreover, decreases in genome-wide DNA methylation coincided with the imposex level and snail mass, suggesting an epigenetic background of the animal phenotypic response.
Collapse
Affiliation(s)
- Maja Šrut
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria;
| | - Iva Sabolić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| | - Anita Erdelez
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia; (A.E.); (M.P.)
| | - Dorotea Grbin
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| | - Martina Furdek Turk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Robert Bakarić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| | - Melita Peharda
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia; (A.E.); (M.P.)
| | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| |
Collapse
|
9
|
Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J. Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential targets for epigenetic biomarkers? CHEMOSPHERE 2022; 308:136231. [PMID: 36055596 DOI: 10.1016/j.chemosphere.2022.136231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms are moving to the forefront of environmental sciences, as environmentally induced epigenetic changes shape biological responses to chemical contamination. This work focused on Daphnia as a representative of potentially threatened freshwater biota, aiming to gain an insight into the involvement of epigenetic mechanisms in their response and eventual adaptation to metal contamination. Copper-induced DNA methylation changes, their potential transgenerational inheritance, and life-history traits were assessed. Organisms with different histories of past exposure to copper were exposed to toxic levels of the element for one generation (F0) and then monitored for three subsequent unexposed generations (F1, F2, and F3). Overall, methylation changes targeted important genes for counteracting the effects of metals and oxidative stress, including dynein light chain, ribosomal kinase and nuclear fragile X mental retardation-interacting protein. Also, contrasting overall and gene-specific methylation responses were observed in organisms differing in their history of exposure to copper, with different transgenerational methylation responses being also identified among the two groups, without apparent life-history costs. Taken together, these results demonstrate the capacity of copper to promote epigenetic transgenerational inheritance in a manner related explicitly to history of exposure, thereby supporting the development and incorporation of epigenetic biomarkers in risk assessment frameworks.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Telma Veloso
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; CICECO - Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Joana Luísa Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| |
Collapse
|
10
|
Kokhanyuk B, Vántus VB, Radnai B, Vámos E, Kajner G, Galbács G, Telek E, Mészáros M, Deli MA, Németh P, Engelmann P. Distinct Uptake Routes Participate in Silver Nanoparticle Engulfment by Earthworm and Human Immune Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2818. [PMID: 36014683 PMCID: PMC9413649 DOI: 10.3390/nano12162818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The consequences of engineered silver nanoparticle (AgNP) exposure and cellular interaction with the immune system are poorly understood. The immunocytes of the Eisenia andrei earthworm are frequently applied in ecotoxicological studies and possess functional similarity to vertebrate macrophages. Hence, we characterized and compared the endocytosis mechanisms for the uptake of 75 nm AgNPs by earthworm coelomocytes, human THP-1 monocytes, and differentiated THP-1 (macrophage-like) cells. Our results indicate that microtubule-dependent, scavenger-receptor, and PI3K signaling-mediated macropinocytosis are utilized during AgNP engulfment by human THP-1 and differentiated THP-1 cells. However, earthworm coelomocytes employ actin-dependent phagocytosis during AgNPs uptake. In both human and earthworm immunocytes, AgNPs were located in the cytoplasm, within the endo-/lysosomes. We detected that the internalization of AgNPs is TLR/MyD88-dependent, also involving the bactericidal/permeability-increasing protein (BPI) in the case of human immunocytes. The exposure led to decreased mitochondrial respiration in human immunocytes; however, in coelomocytes, it enhanced respiratory parameters. Our findings provide more data about NP trafficking as nano-carriers in the nanomedicine field, as well as contribute to an understanding of the ecotoxicological consequences of nanoparticle exposure.
Collapse
Affiliation(s)
- Bohdana Kokhanyuk
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Radnai
- Department of Biochemistry and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Eszter Vámos
- Department of Biochemistry and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gyula Kajner
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Elek Telek
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
11
|
Šrut M. Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms. TOXICS 2022; 10:toxics10070406. [PMID: 35878310 PMCID: PMC9323174 DOI: 10.3390/toxics10070406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One of the major emerging concerns within ecotoxicology is the effect of environmental pollutants on epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms regulate gene expression, meaning that the alterations of epigenetic marks can induce long-term physiological effects that can even be inherited across generations. Many invertebrate species have been used as models in environmental epigenetics, with a special focus on DNA methylation changes caused by environmental perturbations (e.g., pollution). Among soil organisms, earthworms are considered the most relevant sentinel organisms for anthropogenic stress assessment and are widely used as standard models in ecotoxicological testing of soil toxicity. In the last decade, several research groups have focused on assessing the impact of environmental stress on earthworm epigenetic mechanisms and tried to link these mechanisms to the physiological effects. The aim of this review is to give an overview and to critically examine the available literature covering this topic. The high level of earthworm genome methylation for an invertebrate species, responsiveness of epigenome to environmental stimuli, availability of molecular resources, and the possibility to study epigenetic inheritance make earthworms adequate models in environmental epigenomics. However, there are still many knowledge gaps that need to be filled in, before we can fully explore earthworms as models in this field. These include detailed characterization of the methylome using next-generation sequencing tools, exploration of multigenerational and transgenerational effects of pollutants, and information about other epigenetic mechanisms apart from DNA methylation. Moreover, the connection between epigenetic effects and phenotype has to be further explored.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Aigner GP, Pittl V, Fiechtner B, Egger B, Šrut M, Höckner M. Common mechanisms cannot explain time- and dose-dependent DNA methylation changes in earthworms exposed to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151468. [PMID: 34742794 DOI: 10.1016/j.scitotenv.2021.151468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
DNA hypermethylation caused by environmental pollutants like cadmium (Cd) has already been demonstrated in many invertebrates, including earthworms. However, the exact epigenetic mechanisms that drive this hypermethylation are largely unknown and even basic DNA methylation and demethylation processes are hardly characterized. Therefore, we used an important bioindicator, the earthworm Lumbricus terrestris, as a model organism to determine time- and dose-dependent effects of Cd on global and gene-specific DNA methylation and its underlying mechanisms. We revealed Cd-induced adenine and cytosine hypermethylation using specific antibodies in dot blots and found that the methylation level of adenine compared to cytosine changed even to a bigger extent. However, the levels of hydroxymethylated cytosine did not differ between treatment groups. General methylation and demethylation components like methyltransferases (DNMT1 and 3), and ten-eleven translocation (TET) genes were confirmed in L. terrestris by quantitative RealTime PCR. However, neither gene expression, nor DNMT and TET enzyme activity showed significant differences in the Cd exposure groups. Using bisulfite conversion and sequencing, gene body methylation (gbm) of metallothionein 2 (MT2), one of the most important detoxification proteins, was characterized. Cd-dependent changes in MT2 gbm could, however, not be correlated to MT2 gene activity evaluated by quantitative RealTime PCR. Future directions as well as missing links are discussed in the present study hinting towards the importance of studying epigenetic marks and mechanistic insights in a broad variety of species to deepen our knowledge on the effects of changing environmental conditions.
Collapse
Affiliation(s)
- Gerhard P Aigner
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Verena Pittl
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Birgit Fiechtner
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Bernhard Egger
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Maja Šrut
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Iannello M, Mezzelani M, Dalla Rovere G, Smits M, Patarnello T, Ciofi C, Carraro L, Boffo L, Ferraresso S, Babbucci M, Mazzariol S, Centelleghe C, Cardazzo B, Carrer C, Varagnolo M, Nardi A, Pittura L, Benedetti M, Fattorini D, Regoli F, Ghiselli F, Gorbi S, Bargelloni L, Milan M. Long-lasting effects of chronic exposure to chemical pollution on the hologenome of the Manila clam. Evol Appl 2021; 14:2864-2880. [PMID: 34950234 PMCID: PMC8674894 DOI: 10.1111/eva.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to pollutants affects natural populations, creating specific molecular and biochemical signatures. In the present study, we tested the hypothesis that chronic exposure to pollutants might have substantial effects on the Manila clam hologenome long after removal from contaminated sites. To reach this goal, a highly integrative approach was implemented, combining transcriptome, genetic and microbiota analyses with the evaluation of biochemical and histological profiles of the edible Manila clam Ruditapes philippinarum, as it was transplanted for 6 months from the polluted area of Porto Marghera (PM) to the clean area of Chioggia (Venice lagoon, Italy). One month post-transplantation, PM clams showed several modifications to its resident microbiota, including an overrepresentation of the opportunistic pathogen Arcobacter spp. This may be related to the upregulation of several immune genes in the PM clams, potentially representing a host response to the increased abundance of deleterious bacteria. Six months after transplantation, PM clams demonstrated a lower ability to respond to environmental/physiological stressors related to the summer season, and the hepatopancreas-associated microbiota still showed different compositions among PM and CH clams. This study confirms that different stressors have predictable effects in clams at different biological levels and demonstrates that chronic exposure to pollutants leads to long-lasting effects on the animal hologenome. In addition, no genetic differentiation between samples from the two areas was detected, confirming that PM and CH clams belong to a single population. Overall, the obtained responses were largely reversible and potentially related to phenotypic plasticity rather than genetic adaptation. The results here presented will be functional for the assessment of the environmental risk imposed by chemicals on an economically important bivalve species.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Marica Mezzelani
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Morgan Smits
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Luciano Boffo
- Associazione “Vongola Verace di Chioggia”ChioggiaItaly
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Claudio Carrer
- c/o Magistrato alle Acque di Venezia Ufficio Tecnico Antinquinamento Laboratorio CSMOPadovaItaly
| | | | - Alessandro Nardi
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Lucia Pittura
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Maura Benedetti
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Daniele Fattorini
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Francesco Regoli
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Stefania Gorbi
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Massimo Milan
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| |
Collapse
|
14
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Intergenerational Patterns of DNA Methylation in Procambarus clarkii Following Exposure to Genotoxicants: A Conjugation in Past Simple or Past Continuous? TOXICS 2021; 9:toxics9110271. [PMID: 34822662 PMCID: PMC8618669 DOI: 10.3390/toxics9110271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Epigenome is susceptible to modulation by environmental pressures—namely, through alterations in global DNA methylation, impacting the organism condition and, ultimately, reverberating on the phenotype of the subsequent generations. Hence, an intergenerational study was conducted, aiming to clarify the influence of genotoxicants on global DNA methylation of the crayfish Procambarus clarkii. Two subsequent generations were exposed to the herbicide penoxsulam (Px; 23 µg·L−1) and to the genotoxicant model ethyl methanesulfonate (EMS; 5 mg·L−1). Px did not induce changes in DNA methylation of adult crayfish (F0). However, the hypomethylation occurring in unexposed F1 juveniles demonstrated that the history of exposure per se can modulate epigenome. In F1 descendants of the Px-exposed group, methylome (hypermethylated) was more affected in males than in females. EMS-induced hypomethylation in adult females (F0), also showed gender specificity. In addition, hypomethylation was also observed in the unexposed F1 crayfish, indicating an intergenerational epigenetic effect. The modulatory role of past exposure to penoxsulam or to EMS also showed a dependency on the crayfish developmental stage. Overall, this research revealed that indirect experiences (events occurring in a predecessor generation) can have an impact even greater than direct experiences (present events) on the epigenetic dynamics.
Collapse
|
16
|
Acute benzo[a]pyrene exposure induced oxidative stress, neurotoxicity and epigenetic change in blood clam Tegillarca granosa. Sci Rep 2021; 11:18744. [PMID: 34548601 PMCID: PMC8455545 DOI: 10.1038/s41598-021-98354-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The blood clam (Tegillarca granosa) is being developed into a model bivalve mollusc for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of 10 and 100 μg/L Bap exposure on the blood clams under laboratory conditions, as well as the potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin–eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of the blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2′-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed the blood clam. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in the blood clam possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.
Collapse
|
17
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuan Meng
- State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Guangzhou, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
18
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
19
|
Akcha F, Barranger A, Bachère E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8266-8280. [PMID: 33052562 DOI: 10.1007/s11356-020-11021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important agricultural activities and presence of several exoreic catchment areas that vehicle pesticides up to coastal waters, impacting non-target marine species. Several ecotoxicology questions remain to be addressed concerning the long-term effects of chronic pesticide exposure and the mechanisms involved in adaptation to chemical stress. In the present study, we brought new insights on the genetic and epigenetic effects of the herbicide diuron in oyster genitors. During gametogenesis, we exposed Crassostrea gigas to environmentally realistic herbicide concentrations (0.2-0.3 μg L-1 during two 7-day periods at half-course and end of gametogenesis). Diuron exposure was shown to decrease global DNA methylation and total methyltransferase activity in whole oyster tissue; this is consistent with the previous observation of a significant decrease in DNMT1 gene expression. Diuron effect seemed to be tissue-specific; hypermethylation was detected in the digestive gland, whereas diuron exposure had no effect on gill and gonad tissue. The genotoxicity of diuron was confirmed by the detection of one adduct in gonad DNA. By using in vitro approaches and human DNMT1 (DNMT1 has not been purified yet in bivalves), the presence of DNA lesions (adduct, 8-oxodGuo) was shown to interfere with DNMT1 activity, indicating a complex interaction between DNA damage and DNA methylation. Based on our results, we propose mechanisms to explain the effect of diuron exposure on DNA methylation, a widespread epigenetic mark.
Collapse
Affiliation(s)
- Farida Akcha
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France.
| | - Audrey Barranger
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions Hosts Pathogens Environment, UPVD, CNRS, University of Montpellier, CC 80, 34095, Montpellier, France
| |
Collapse
|
20
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105217. [PMID: 33276167 DOI: 10.1016/j.marenvres.2020.105217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122, NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
21
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105214. [PMID: 33221553 DOI: 10.1016/j.marenvres.2020.105214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
22
|
Nielsen ES, Henriques R, Beger M, Toonen RJ, von der Heyden S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 2020; 20:121. [PMID: 32938400 PMCID: PMC7493327 DOI: 10.1186/s12862-020-01679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species' potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). RESULTS Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. CONCLUSION The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.,Technical University of Denmark, National Institute of Aquatic Resources, Section for Marine Living Resources, Velsøvej 39, 8600, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
23
|
Clark MS, Peck LS, Arivalagan J, Backeljau T, Berland S, Cardoso JCR, Caurcel C, Chapelle G, De Noia M, Dupont S, Gharbi K, Hoffman JI, Last KS, Marie A, Melzner F, Michalek K, Morris J, Power DM, Ramesh K, Sanders T, Sillanpää K, Sleight VA, Stewart-Sinclair PJ, Sundell K, Telesca L, Vendrami DLJ, Ventura A, Wilding TA, Yarra T, Harper EM. Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biol Rev Camb Philos Soc 2020; 95:1812-1837. [PMID: 32737956 DOI: 10.1111/brv.12640] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO3 crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO3 precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (~29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes for in situ localization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that the Lsdia1 gene sets shell chirality in Lymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Jaison Arivalagan
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France.,Proteomics Center of Excellence, Northwestern University, 710 N Fairbanks Ct, Chicago, IL, U.S.A
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium.,Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Sophie Berland
- UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Joao C R Cardoso
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Carlos Caurcel
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Gauthier Chapelle
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Michele De Noia
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany.,Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Karim Gharbi
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Joseph I Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Kim S Last
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kati Michalek
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - James Morris
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Deborah M Power
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Trystan Sanders
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kirsikka Sillanpää
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | | | - Kristina Sundell
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Luca Telesca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| | - David L J Vendrami
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Alexander Ventura
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Tejaswi Yarra
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K.,Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| |
Collapse
|
24
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
25
|
Fallet M, Luquet E, David P, Cosseau C. Epigenetic inheritance and intergenerational effects in mollusks. Gene 2019; 729:144166. [PMID: 31678264 DOI: 10.1016/j.gene.2019.144166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
Recent insights in evolutionary biology have shed light on epigenetic variation that interacts with genetic variation to convey heritable information. An important characteristic of epigenetic changes is that they can be produced in response to environmental cues and passed on to later generations, potentially facilitating later genetic adaptation. While our understanding of epigenetic mechanisms in vertebrates is rapidly growing, our knowledge about invertebrates remains lower, or is restricted to model organisms. Mollusks in particular, are a large group of invertebrates, with several species important for ecosystem function, human economy and health. In this review, we attempt to summarize the literature on epigenetic and intergenerational studies in mollusk species, with potential importance for adaptive evolution. Our review highlights that two molecular bearers of epigenetic information, DNA methylation and histone modifications, are key features for development in mollusk species, and both are sensitive to environmental conditions to which developing individuals are exposed. Further, although studies are still scarce, various environmental factors (e.g. predator cues, chemicals, parasites) can induce intergenerational effects on the phenotype (life-history traits, morphology, behaviour) of several mollusk taxa. More work is needed to better understand whether environmentally-induced changes in DNA methylation and histone modifications have phenotypic impacts, whether they can be inherited through generations and their role in intergenerational effects on phenotype. Such work may bring insights into the potential role of epigenetic in adaptation and evolution in mollusks.
Collapse
Affiliation(s)
- Manon Fallet
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Emilien Luquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Patrice David
- CEFE, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, IRD, EPHE, Montpellier, France
| | - Céline Cosseau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France.
| |
Collapse
|
26
|
Nash S, Johnstone J, Rahman MS. Elevated temperature attenuates ovarian functions and induces apoptosis and oxidative stress in the American oyster, Crassostrea virginica: potential mechanisms and signaling pathways. Cell Stress Chaperones 2019; 24:957-967. [PMID: 31363994 PMCID: PMC6717220 DOI: 10.1007/s12192-019-01023-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Global climate change is predicted to intensify thermal stress in marine and coastal organisms, affecting their development, growth, and reproductive functions. In this study, we performed histological observations on ovarian development, immunohistochemical analyses of ovarian heat shock protein-70 (HSP70), nitrotyrosine protein (NTP, an indicator of reactive nitrogen species (RNS)), and dinitrophenyl protein (DNP, an indicator of protein oxidation) expressions, in situ TUNEL assay for cellular apoptosis, biochemical analyses of ovarian caspase-3/7 activity and protein carbonyl (PC, a measure of reactive oxygen species (ROS)) contents, nitrate/nitrite (NOx) levels, and extrapallial fluid (EPF, an important body fluid) pH in the American oyster, Crassostrea virginica. Oysters were exposed to medium (28 °C) and high (32 °C) temperatures under controlled laboratory conditions for 1 week. Oysters exposed to higher temperatures significantly decreased the number and diameter of eggs, and EPF protein concentrations compared with controls (24 °C). In contrast, EPF pH, ovarian HSP70 mRNA levels, and protein expression were increased after heat exposure, consistent with increased ovarian apoptosis. The enhanced apoptosis in ovaries was associated with increased ovarian caspase-3/7 activity, PC contents, NOx levels, and NTP and DNP expressions in heat-exposed oysters. Collectively, these results suggest that higher temperatures drastically increase RNS and ROS levels, increasing incidence of apoptosis and subsequently reducing ovarian functions in oysters.
Collapse
Affiliation(s)
- Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA.
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA.
| |
Collapse
|
27
|
Johnstone J, Nash S, Hernandez E, Rahman MS. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. MARINE ENVIRONMENTAL RESEARCH 2019; 149:40-49. [PMID: 31150926 DOI: 10.1016/j.marenvres.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Increasing seawater temperature affects growth, reproduction and development in marine organisms. In this study, we examined the effects of elevated temperatures on reproductive functions, heat shock protein 70 (HSP70) and nitrotyrosine protein (NTP, an indicator of reactive nitrogen species) expressions, protein carbonyl (PC, an indicator of oxidative stress) contents, cellular apoptosis, and coelomic fluid (CF) conditions in Atlantic sea urchin. Sea urchins were housed in six aquaria with control (24 °C) and elevated temperatures (28 °C and 32 °C) for a 7-day period. After exposure, sea urchins exhibited decreased percentages of gametes (eggs/sperm), as well as increased HSP70 and NTP expressions in eggs and spermatogenic cells, increased gonadal apoptosis, and decreased CF pH compared to controls. PC contents were also significantly increased in gonadal tissues at higher temperatures. These results suggest that elevated temperature acidifies CF, increases oxidative stress and gonadal apoptosis, and results in impairment of reproductive functions in sea urchins.
Collapse
Affiliation(s)
- Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Eleazar Hernandez
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
28
|
Todd PA, Heery EC, Loke LHL, Thurstan RH, Kotze DJ, Swan C. Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. OIKOS 2019. [DOI: 10.1111/oik.05946] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Todd
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Eliza C. Heery
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Lynette H. L. Loke
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Ruth H. Thurstan
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, Univ. of Exeter Penryn UK
| | - D. Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Univ. of Helsinki Lahti Finland
| | - Christopher Swan
- Dept of Geography & Environmental Systems, Univ. of Maryland Baltimore County Baltimore MD USA
| |
Collapse
|
29
|
Im J, Chatterjee N, Choi J. Genetic, epigenetic, and developmental toxicity of Chironomus riparius raised in metal-contaminated field sediments: A multi-generational study with arsenic as a second challenge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:789-797. [PMID: 30978541 DOI: 10.1016/j.scitotenv.2019.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Ecotoxicity tests conducted under well-controlled lab conditions often do not reflect the real environmental conditions. To this end, we designed an ecotoxicity test using an aquatic midge, Chironomus riparius, raised in metal-contaminated field sediments (MCFS), which reflect the real environmental conditions, for five consecutive generations (F0-F4) followed by a toxic response to arsenic exposure (as a second challenge). The toxic responses (i.e. DNA damage, DNA methylation, stress response gene expression, and mortality) were compared to those organisms reared in lab sediments (LS). Under the MCFS condition, increased adult emergence was observed for the second and third generations (F1 and F2), while a decreased tendency was evident thereafter (F3 and F4) compared to that of F0. When comparing C. riparius raised in MCFS or LS exposed to arsenic, increased sensitivity (declined survival) was observed in the larvae from F2. However, that tendency was not present in F4 of the MCFS midges, indicating a possible physiological adaptation. Increased DNA damage was observed in the MCFS-exposed organisms (F0, F2, and F4) compared to the those exposed to LS, particularly at F0. Arsenic exposure induced hypermethylation at F0 and, in contrast, hypomethylation at the later generations (F2, F4) in the MCFS-exposed organisms. Global DNA methylation results were supported by the expression of genes involved in enzymatic methylation. Moreover, alterations in oxidative stress related to gene expression showed that significant oxidative stress and perturbation of glutathione reserves occurred under the MCFS and the subsequent arsenic exposure conditions. Overall, our results suggest that multigenerational rearing under MCFS conditions resulted in physiological adaptation of C. riparius to metal exposure, specifically at later generations, which in turn modulated its response to arsenic stress through possible genetic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
30
|
Chatterjee N, Choi S, Kwon OK, Lee S, Choi J. Multi-generational impacts of organic contaminated stream water on Daphnia magna: A combined proteomics, epigenetics and ecotoxicity approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:217-224. [PMID: 30893634 DOI: 10.1016/j.envpol.2019.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to elucidate the mechanisms of organismal sensitivity and/or physiological adaptation in the contaminated water environment. Multigenerational cultures (F0, F1, F2) of Daphnia magna in collected stream water (OCSW), contaminated with high fecal coliform, altered the reproductive scenario (changes in first brood size timing, clutch numbers, clutch size etc.), compromised fitness (increase hemoglobin, alteration in behavior), and affected global DNA methylation (hypermethylation) without affecting survival. Using proteomics approach, we found 288 proteins in F0 and 139 proteins in F2 that were significantly differentially upregulated after OCSW exposure. The individual protein expressions, biological processes and molecular functions were mainly related to metabolic processes, development and reproduction, transport (protein/lipid/oxygen), antioxidant activity, increased globin and S-adenosylmethionine synthase protein level etc., which was further found to be connected to phenotype-dependent endpoints. The proteomics pathway analysis evoked proteasome, chaperone family proteins, neuronal disease pathways (such as, Parkinson's disease) and apoptosis signaling pathways in OCSW-F0, which might be the cause of behavioral and developmental alterations in OCSW-F0. Finally, chronic multigenerational exposure to OCSW exhibited slow physiological adaptation in most of the measured effects, including proteomics analysis, from the F0 to F2 generations. The common upregulated proteins in both generations (F0 & F2), such as, globin, vitellinogen, lipid transport proteins etc., were possibly play the pivotal role in the organism's physiological adaptation. Taken together, our results, obtained with a multilevel approach, provide new insight of the molecular mechanism in fecal coliform-induced phenotypic plasticity in Daphnia magna.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea
| | - Suhyon Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea.
| |
Collapse
|
31
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
32
|
Rodriguez‐Casariego JA, Ladd MC, Shantz AA, Lopes C, Cheema MS, Kim B, Roberts SB, Fourqurean JW, Ausio J, Burkepile DE, Eirin‐Lopez JM. Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis. Ecol Evol 2018; 8:12193-12207. [PMID: 30598811 PMCID: PMC6303763 DOI: 10.1002/ece3.4678] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7-week-long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post-translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont-driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Javier A. Rodriguez‐Casariego
- Environmental Epigenetics Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Mark C. Ladd
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Andrew A. Shantz
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Christian Lopes
- Seagrass Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Manjinder S. Cheema
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Bohyun Kim
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Steven B. Roberts
- School of Aquatic and Fishery ScienceUniversity of WashingtonSeattleWashington
| | - James W. Fourqurean
- Seagrass Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Juan Ausio
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Deron E. Burkepile
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Jose M. Eirin‐Lopez
- Environmental Epigenetics Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| |
Collapse
|
33
|
Lee SW, Chatterjee N, Im JE, Yoon D, Kim S, Choi J. Integrated approach of eco-epigenetics and eco-metabolomics on the stress response of bisphenol-A exposure in the aquatic midge Chironomus riparius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:111-116. [PMID: 30041127 DOI: 10.1016/j.ecoenv.2018.06.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 05/18/2023]
Abstract
The stress response mechanisms of Bisphenol A (BPA), an endocrine disrupting compound, remain to be elucidated. In this study, we explored the effects of BPA on the non-biting midge Chironomus riparius through basic ecotoxicity assays, DNA damage (comet assay), eco-epigenetics (global DNA and histone methylations) and non-targeted global metabolomics (NMR based) approaches. The reproduction failure, increase in DNA damage, global DNA hyper-methylation, and increased global histone modification (H3K36) status were evident due to BPA exposure at 10% lethal concentration (LC10: 1 mg/L, based on 48 h acute toxicity). Moreover, non-targeted global metabolomics followed by pathway analysis identified alterations of energy metabolism, amino acids, and methionine metabolisms etc. Most importantly, we found a potential cross-talk between altered epigenetics and metabolites, such as, increase in methionine and o-phosphocholine metabolites corresponds with the phenomena of global hyper-methylation in DNA and H3K36 mark. Overall, our results suggests that the crosstalk of global metabolomics and epigenetic modification was fundamental of the underlying mechanisms in BPA-induced stress response in C. riparius.
Collapse
Affiliation(s)
- Si-Won Lee
- School of Environmental Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Jeong-Eun Im
- School of Environmental Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Dahye Yoon
- Department of Chemistry, Center for Proteom Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteom Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul 130-743, Republic of Korea.
| |
Collapse
|
34
|
Vaughn CC, Hoellein TJ. Bivalve Impacts in Freshwater and Marine Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062703] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bivalve molluscs are abundant in marine and freshwater ecosystems and perform important ecological functions. Bivalves have epifaunal or infaunal lifestyles but are largely filter feeders that couple the water column and benthos. Bivalve ecology is a large field of study, but few comparisons among aquatic ecosystems or lifestyles have been conducted. Bivalves impact nutrient cycling, create and modify habitat, and affect food webs directly (i.e., prey) and indirectly (i.e., movement of nutrients and energy). Materials accumulated in soft tissue and shells are used as environmental monitors. Freshwater mussel and oyster aggregations in rivers and estuaries are hot spots for biodiversity and biogeochemical transformations. Historically, human use includes food, tools, currency, and ornamentation. Bivalves provide direct benefits to modern cultures as food, building materials, and jewelry and provide indirect benefits by stabilizing shorelines and mitigating nutrient pollution. Research on bivalve-mediated ecological processes is diverse, and future synthesis will require collaboration across conventional disciplinary boundaries.
Collapse
Affiliation(s)
- Caryn C. Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Timothy J. Hoellein
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60660, USA
| |
Collapse
|
35
|
Chatterjee N, Gim J, Choi J. Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018015-0. [PMID: 30286591 PMCID: PMC6182246 DOI: 10.5620/eht.e2018015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
Epigenetics, potentially heritable changes in genome function that occur without alterations to DNA sequence, is an important but understudied component of ecotoxicology studies. A wide spectrum of environmental challenge, such as temperature, stress, diet, toxic chemicals, are known to impact on epigenetic regulatory mechanisms. Although the role of epigenetic factors in certain biological processes, such as tumourigenesis, has been heavily investigated, in ecotoxicology field, epigenetics still have attracted little attention. In ecotoxicology, potential role of epigenetics in multi- and transgenerational phenomenon to environmental stressors needs to be unrevealed. Natural variation in the epigenetic profiles of species in responses to environmental stressors, nature of dose-response relationships for epigenetic effects, and how to incorporate this information into ecological risk assessment should also require attentions. In this review, we presented the available information on epigenetics in ecotoxicological context. For this, we have conducted a systemic review on epigenetic profiling in response to environmental stressors, mostly chemical exposure, in model organisms, as well as, in ecotoxicologically relevant wildlife species.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jiwan Gim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
36
|
Ardura A, Clusa L, Zaiko A, Garcia-Vazquez E, Miralles L. Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels. Sci Rep 2018; 8:10793. [PMID: 30018391 PMCID: PMC6050280 DOI: 10.1038/s41598-018-29181-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels' species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants.
Collapse
Affiliation(s)
- Alba Ardura
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain.
| | - Laura Clusa
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Marine Research Institute, Klaipeda University, H. Manto 84, Klaipeda, 92294, Lithuania
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| | - Laura Miralles
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| |
Collapse
|
37
|
Beal A, Rodriguez-Casariego J, Rivera-Casas C, Suarez-Ulloa V, Eirin-Lopez JM. Environmental Epigenomics and Its Applications in Marine Organisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Evolutionary Toxicology as a Tool to Assess the Ecotoxicological Risk in Freshwater Ecosystems. WATER 2018. [DOI: 10.3390/w10040490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Wong JM, Johnson KM, Kelly MW, Hofmann G. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential
p
CO
2
levels. Mol Ecol 2018; 27:1120-1137. [DOI: 10.1111/mec.14503] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Juliet M. Wong
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| | - Kevin M. Johnson
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Morgan W. Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
40
|
Leonardo S, Toldrà A, Rambla-Alegre M, Fernández-Tejedor M, Andree KB, Ferreres L, Campbell K, Elliott CT, O'Sullivan CK, Pazos Y, Diogène J, Campàs M. Self-assembled monolayer-based immunoassays for okadaic acid detection in seawater as monitoring tools. MARINE ENVIRONMENTAL RESEARCH 2018; 133:6-14. [PMID: 29174400 DOI: 10.1016/j.marenvres.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Rapid and cost-effective methods to monitor the presence of diarrhetic shellfish poisoning (DSP) toxins in seawater samples in an easy and reliable manner are required to protect human health and avoid economic losses to shellfish industry. Immunoassays for the detection of okadaic acid (OA) and dinophysistoxin-1 and dinophysistoxin-2 are developed by immobilising OA on self-assembled monothiols or dithiols in an ordered and oriented way, providing an effective limit of detection of ∼1 ng OA equiv./mL seawater. The immunoassays are applied to the analysis of the particulate fraction of seawater samples from two Catalan harbours (NW Mediterranean) and samples collected periodically from the Galician Rias (E Atlantic), as well as a reference mussel sample. Results are in agreement with LC-MS/MS and the certified values. OA concentration in seawater correlates with Dinophysis cell abundance, with a 1-2 weeks lag. The immunoassays provide powerful high-throughput analytical methods potentially applicable as alternative monitoring tools.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Anna Toldrà
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | | | - Karl B Andree
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Laura Ferreres
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys, 23, 08010 Barcelona, Spain
| | - Yolanda Pazos
- INTECMAR, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
41
|
Holt WV. Exploitation of Non-mammalian Model Organisms in Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:155-173. [DOI: 10.1007/978-3-319-62414-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Rivera-Casas C, Gonzalez-Romero R, Garduño RA, Cheema MS, Ausio J, Eirin-Lopez JM. Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs. Front Physiol 2017; 8:490. [PMID: 28848447 PMCID: PMC5550673 DOI: 10.3389/fphys.2017.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics) stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE), genome walking and quantitative PCR (qPCR) experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation) by incorporating the study of structural elements modulating chromatin dynamics.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie UniversityHalifax, NS, Canada
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| |
Collapse
|
43
|
Gonzalez-Romero R, Suarez-Ulloa V, Rodriguez-Casariego J, Garcia-Souto D, Diaz G, Smith A, Pasantes JJ, Rand G, Eirin-Lopez JM. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:196-204. [PMID: 28315825 DOI: 10.1016/j.aquatox.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.
Collapse
Affiliation(s)
- Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Victoria Suarez-Ulloa
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Javier Rodriguez-Casariego
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Daniel Garcia-Souto
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gabriel Diaz
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Abraham Smith
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Juan Jose Pasantes
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gary Rand
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA.
| |
Collapse
|
44
|
Šrut M, Drechsel V, Höckner M. Low levels of Cd induce persisting epigenetic modifications and acclimation mechanisms in the earthworm Lumbricus terrestris. PLoS One 2017; 12:e0176047. [PMID: 28426746 PMCID: PMC5398608 DOI: 10.1371/journal.pone.0176047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Toxic effects of cadmium (Cd), a common soil pollutant, are still not very well understood, particularly in regard to its epigenetic impact. Therefore, the aim of this study was to assess DNA methylation changes and their persistence in the earthworm Lumbricus terrestris upon chronic low dose Cd exposure using methylation sensitive amplification polymorphism (MSAP). Moreover, the biomarker response and fitness of the earthworms, as well as the expression of detoxification-related genes (metallothionein (MT) and phytochelatin synthase (PCS)) was evaluated. Low levels of Cd caused an increase in genome-wide DNA methylation, which remained partly modified, even after several months of recovery in unpolluted soil. Increased cellular stress seemed to decrease after two weeks of exposure whereas fitness parameters remained unaffected by Cd, probably as a result from the activation of detoxification mechanisms like the expression of MTs. Interestingly, even though the level of Cd exposure was very low, MT expression levels indicate the development of acclimation mechanisms. Taken together, this study demonstrates that acclimation, as well as epigenetic modifications can occur already in moderately polluted environments. In addition, these effects can have long-lasting impacts on key species of soil invertebrates and might persist long after the actual heavy metal challenge has passed.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Victoria Drechsel
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Center for Molecular Biosciences, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Martina Höckner
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Center for Molecular Biosciences, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
45
|
Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep 2017; 7:42193. [PMID: 28205577 PMCID: PMC5311950 DOI: 10.1038/srep42193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.
Collapse
|
46
|
Rivera-Casas C, González-Romero R, Vizoso-Vazquez Á, Cheema MS, Cerdán ME, Méndez J, Ausió J, Eirin-Lopez JM. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus. Biochem Cell Biol 2016; 94:480-490. [DOI: 10.1139/bcb-2016-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Rodrigo González-Romero
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Ángel Vizoso-Vazquez
- Exprela Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña E15071, Spain
| | - Manjinder S. Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - M. Esperanza Cerdán
- Exprela Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña E15071, Spain
| | - Josefina Méndez
- Xenomar Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña E15071, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Jose M. Eirin-Lopez
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|