1
|
Fan X, Zhang Q, Wu Q. Offshore habitats of endangered large mobile species in the western Yellow Sea: Quality status under shipping pressure. MARINE POLLUTION BULLETIN 2024; 204:116565. [PMID: 38843704 DOI: 10.1016/j.marpolbul.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/17/2024]
Abstract
Increasing shipping pressure (SP) deteriorates offshore habitats of large mobile species (LMS) and invalidates marine conservation systems, while the threat of SP to the survival of LMS is not well understood. Here, for the 16 endangered LMS in the western Yellow Sea, we quantified their habitat quality in specific sea areas and conservation capacity of marine protected areas (MPAs) under SP, based on AIS (Automatic Identification System) data and an overlay analysis method for SP surfaces and LMS habitats. Results indicate that three specific sea areas have partially lost habitat function, and their MPA networks have also lost 66.7 %, 59.1 %, and 9.2 % of conservation capacity, respectively. To prevent the continued degradation and extinction of endangered LMS, urgent rescue efforts are needed. This study highlights the importance of monitoring offshore shipping pressure and LMS habitat quality, and the findings contribute to the adjustment of marine spatial planning and LMS protection strategies.
Collapse
Affiliation(s)
- Xuezhong Fan
- School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China.
| | - Qinglong Zhang
- School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China
| | - Qian Wu
- School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
2
|
Haver SM, Haxel J, Dziak RP, Roche L, Matsumoto H, Hvidsten C, Torres LG. The variable influence of anthropogenic noise on summer season coastal underwater soundscapes near a port and marine reserve. MARINE POLLUTION BULLETIN 2023; 194:115406. [PMID: 37634350 DOI: 10.1016/j.marpolbul.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Monitoring soundscapes is essential for assessing environmental conditions for soniferous species, yet little is known about sound levels and contributors in Oregon coastal regions. From 2017 to 2021, during June-September, two hydrophones were deployed near Newport, Oregon to sample 10-13,000 Hz underwater sound. One hydrophone was deployed near the Port of Newport in a high vessel activity area, and another 17 km north within a protected Marine Reserve. Vessel noise and whale vocalizations were detected at both sites, but whales were recorded on more days at the Marine Reserve. Median sound levels in frequencies related to noise from various vessel types and sizes (50 - 4,000 Hz) were up to 6 dB higher at the Port of Newport, with greater diel variability compared to the Marine Reserve. In addition to documenting summer season conditions in Oregon waters, these results exemplify how underwater soundscapes can differ over short distances depending on anthropogenic activity.
Collapse
Affiliation(s)
- Samara M Haver
- Cooperative Institute for Marine Ecosystems and Resources Studies, Oregon State University, United States of America; Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, United States of America.
| | - Joseph Haxel
- Pacific Northwest National Laboratory, Coastal Sciences Division, United States of America
| | - Robert P Dziak
- NOAA Pacific Marine Environmental Laboratory, United States of America
| | - Lauren Roche
- Cooperative Institute for Marine Ecosystems and Resources Studies, Oregon State University, United States of America
| | | | | | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, United States of America
| |
Collapse
|
3
|
Sweeney SO, Terhune JM, Frouin-Mouy H, Rouget PA. Assessing potential perception of shipping noise by marine mammals in an arctic inlet. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2310. [PMID: 35461473 DOI: 10.1121/10.0009956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Shipping is increasing in Arctic regions, exposing marine mammals to increased underwater noise. Noise analyses often use unweighted broadband sound pressure levels (SPL) to assess noise impacts, but this does not account for the animals' hearing abilities at different frequencies. In 2018 and 2019, noise levels were recorded at five and three sites, respectively, along a shipping route in an inlet of Northern Baffin Island, Canada. Broadband SPLs (10 Hz-25 kHz), unweighted and with auditory weighing functions from three marine mammal groups, were compared between times ore carriers (travelling < 9 knots) were present or absent. Clearly audible distances of shipping noise and exposure durations were estimated for each weighting function relative to vessel direction, orientation, and year. Auditory weighting functions had significant effects on the potential perception of shipping noise. Bowhead whales (Balaena mysticetus) experienced similar SPLs to unweighted levels. Narwhals (Monodon monoceros) and ringed seals (Pusa hispida) experienced lower SPLs. Narwhals were unlikely to clearly perceive shipping noise unless ships were in close proximity (<3 km) and ambient noise levels were low. Detectability propagation models of presumed noise exposure from shipping must be based on the hearing sensitivities of each species group when assessing noise impacts on marine mammals.
Collapse
Affiliation(s)
- Samuel O Sweeney
- Golder Associates Ltd., Victoria, British Columbia, V9A 0B7, Canada
| | - John M Terhune
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | | | | |
Collapse
|
4
|
Ainslie MA, Martin SB, Trounce KB, Hannay DE, Eickmeier JM, Deveau TJ, Lucke K, MacGillivray AO, Nolet V, Borys P. International harmonization of procedures for measuring and analyzing of vessel underwater radiated noise. MARINE POLLUTION BULLETIN 2022; 174:113124. [PMID: 34915419 DOI: 10.1016/j.marpolbul.2021.113124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
The habitat of the endangered southern resident killer whale (SRKW) overlaps major international shipping lanes near the Port of Vancouver, British Columbia. Shipping is a dominant source of underwater noise, which can hinder SRKW key life functions. To reduce environmental pressure on the SRKWs, Vancouver Fraser Port Authority offers incentives for quieter ships. However, the absence of a widely accepted underwater radiated noise (URN) measurement procedure hinders the determination of relative quietness. We review URN measurement procedures, summarizing results to date from two Canadian-led projects aimed at improving harmonization of shallow-water URN measurement procedures: One supports the International Organization for Standardization (ISO) in the development of a URN measurement standard; the other supports the alignment of URN measurement procedures developed by ship classification societies. Weaknesses in conventional shallow-water URN metrics are identified, and two alternative metrics proposed. Optimal shallow-water measurement geometry is identified.
Collapse
Affiliation(s)
- Michael A Ainslie
- JASCO Applied Sciences (Deutschland) GmbH, Mergenthaler Allee 15-21, 65760 Eschborn, Hesse, Germany.
| | - S Bruce Martin
- JASCO Applied Sciences (Canada) Ltd, 202-32 Troop Avenue, Dartmouth, NS B3B 1Z1, Canada
| | - Krista B Trounce
- Vancouver Fraser Port Authority, 100 The Pointe, 999 Canada Place, Vancouver, BC V6C 3T4, Canada
| | - David E Hannay
- JASCO Applied Sciences (Canada) Ltd, 2305-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Justin M Eickmeier
- SLR Consulting (Canada) Ltd., 100 Stone Road West, Suite 201, Guelph, BC N1G 5L3, Canada
| | - Terry J Deveau
- JASCO Applied Sciences (Canada) Ltd, 202-32 Troop Avenue, Dartmouth, NS B3B 1Z1, Canada
| | - Klaus Lucke
- JASCO Applied Sciences (Australia) Pty Ltd, 1/14 Hook Street, Capalaba, Queensland 4157, Australia
| | | | - Veronique Nolet
- Transport Canada, Innovation Centre, 330 Sparks Street, Ottawa, ON K1A 0N5, Canada
| | - Pablo Borys
- JASCO Applied Sciences (Canada) Ltd, 202-32 Troop Avenue, Dartmouth, NS B3B 1Z1, Canada
| |
Collapse
|
5
|
Lo CF, Nielsen KA, Ashe E, Bain DE, Mendez-Bye A, Reiss SA, Bogaard LT, Collins MS, Williams R. Measuring speed of vessels operating around endangered southern resident killer whales (Orcinus orca) in Salish Sea critical habitat. MARINE POLLUTION BULLETIN 2022; 174:113301. [PMID: 35090284 DOI: 10.1016/j.marpolbul.2021.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 11/02/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Motorized vessels are a major source of anthropogenic noise and can have adverse effects on species relying on sound for communication and feeding. Monitoring noise levels received by endangered southern resident killer whales (SRKWs) requires knowing the number, distance, and speed of surrounding vessels, including small boats that do not have Automatic Identification Systems (AIS). A method for estimating their speed is required to predict received noise levels and compliance with vessel regulations. We compared theodolite and photogrammetry methods to estimate the number, distance, and speed of vessels in SRKW Salish Sea summertime critical habitat. By treating AIS as "truth", we found photogrammetry-derived ranges and speeds were more variable than theodolite estimates. Error in photogrammetry-derived speeds increased with range. Overall, we found time saved in the field using photogrammetry was more than offset by long analysis time. Theodolite data were relatively easy to collect, and produced accurate and precise results.
Collapse
Affiliation(s)
- Catherine F Lo
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA.
| | | | - Erin Ashe
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA; Oceans Research and Conservation Association / ORCA, Pearse Island Box 193 Alert Bay BC V0N 1A0 Canada
| | - David E Bain
- Orca Conservancy, P.O. Box 16628, Seattle, WA 98116, USA
| | | | | | - Laura T Bogaard
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA
| | | | - Rob Williams
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA; Oceans Research and Conservation Association / ORCA, Pearse Island Box 193 Alert Bay BC V0N 1A0 Canada
| |
Collapse
|
6
|
Pine MK, Wilson L, Jeffs AG, McWhinnie L, Juanes F, Scuderi A, Radford CA. A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges. GLOBAL CHANGE BIOLOGY 2021; 27:4839-4848. [PMID: 34254409 DOI: 10.1111/gcb.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution.
Collapse
Affiliation(s)
- Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Louise Wilson
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Andrew G Jeffs
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Lauren McWhinnie
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
- Department of Geography, University of Victoria, Victoria, BC, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Alessia Scuderi
- Marine and Environmental Science Faculty, University of Cádiz, Cádiz, Spain
- Association Nereide, Cádiz, Spain
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oceanic acoustic environments are dynamic, shaped by the spatiotemporal variability in transmission losses and sound propagation pathways of natural and human-derived noise sources. Here we used recordings of an experimental noise source combined with transmission loss modeling to investigate changes in the received levels of vessel noise over space and time as a result of natural water column variability. Recordings were made in the Juan de Fuca Strait, on the west coast of Vancouver Island, a biologically productive coastal region that hosts several cetacean species. Significant variability in noise levels was observed due to changing water masses, tied to seasonal temperature variation and, on a finer scale, tidal movements. Comparisons of interpreted received noise levels through the water column indicated that vessel noise recorded by bottom-stationed monitoring devices might not accurately represent those received by whales in near-surface waters. Vertical and temporal differences of 3–5 dB were commonly observed in both the recorded and modeled data. This has implications in estimating the success of noise mitigation measures, and our understanding of the change in sound fields experienced by target species for conservation.
Collapse
|
8
|
Burnham RE, Vagle S, O'Neill C. Spatiotemporal patterns in the natural and anthropogenic additions to the soundscape in parts of the Salish Sea, British Columbia, 2018-2020. MARINE POLLUTION BULLETIN 2021; 170:112647. [PMID: 34175695 DOI: 10.1016/j.marpolbul.2021.112647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Passive acoustic recorders were deployed over two years (February 2018-March 2020) in the Salish Sea to monitor the underwater soundscape. Seasonal cycles and differences between the open Strait of Juan de Fuca and protected inner waterways were pervasive during this period. A comparison between natural and human-derived noise demonstrated the impact of anthropogenic activities on the sound field. Elevated ambient noise levels during winter resulted predominantly from greater sea states and storm events. Abiotic additions were defined through correlations to wind speed, wave and precipitation measures. Vessel noise was a pervasive anthropogenic addition; commercial vessel noise was consistently present, whereas smaller vessels showed weekly and diurnal patterns, especially during the summer when their presence increased. A better understanding of the different soundscape constituents, and when each dominates, is crucial to understanding the human impact on underwater ecosystems and the organisms within them, leading to more effective mitigation measures.
Collapse
Affiliation(s)
- R E Burnham
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, V8L 4B2, Canada.
| | - S Vagle
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, V8L 4B2, Canada
| | - C O'Neill
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, V8L 4B2, Canada
| |
Collapse
|
9
|
Holt MM, Tennessen JB, Hanson MB, Emmons CK, Giles DA, Hogan JT, Ford MJ. Vessels and their sounds reduce prey capture effort by endangered killer whales (Orcinus orca). MARINE ENVIRONMENTAL RESEARCH 2021; 170:105429. [PMID: 34333339 DOI: 10.1016/j.marenvres.2021.105429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Vessel traffic is prevalent throughout marine environments. However, we often have a limited understanding of vessel impacts on marine wildlife, particularly cetaceans, due to challenges of studying fully-aquatic species. To investigate vessel and acoustic effects on cetacean foraging behavior, we attached suction-cup sound and movement tags to endangered Southern Resident killer whales in their summer habitat while collecting geo-referenced proximate vessel data. We identified prey capture dives using whale kinematic signatures and found that the probability of capturing prey increased as salmon abundance increased, but decreased as vessel speed increased. When vessels emitted navigational sonar, whales made longer dives to capture prey and descended more slowly when they initiated these dives. Finally, whales descended more quickly when noise levels were higher and vessel approaches were closer. These findings advance a growing understanding of vessel and sound impacts on marine wildlife and inform efforts to manage vessel impacts on endangered populations.
Collapse
Affiliation(s)
- Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Jennifer B Tennessen
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA; Lynker Technologies, Leesburg, VA, USA
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Deborah A Giles
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA; Present address: University of Washington, Friday Harbor Laboratories, Friday Harbor, WA, USA
| | | | - Michael J Ford
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
10
|
Drackett L, Dragićević S. Suitability Analysis of Acoustic Refugia for Endangered Killer Whales (Orcinus orca) Using the GIS-based Logic Scoring of Preference Method. ENVIRONMENTAL MANAGEMENT 2021; 68:262-278. [PMID: 34019115 DOI: 10.1007/s00267-021-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
An emerging priority in marine noise pollution research is identifying marine "acoustic refugia" where noise levels are relatively low and good-quality habitat is available to acoustically sensitive species. The endangered Southern Resident population of killer whales (Orcinus orca) that inhabits the transboundary Salish Sea in Canada and the USA are affected by noise pollution. Geographic Information Systems (GIS) and spatial multicriteria evaluation (MCE) methods have been used to operationalize suitability analysis in ecology and conservation for site selection problems. However, commonly used methods lack the ability to represent complex logical relationships between input criteria. Therefore, the objective of this study is to apply a more advanced MCE method, known as Logic Scoring of Preference (LSP), to identify acoustic refugia for killer whales in the Salish Sea. This GIS-based LSP-MCE approach considers multiple input criteria by combining input data representing killer whale habitat requirements with noise pollution and other factors to identify suitable acoustic refugia. The results indicate the locations of suitable acoustic refugia and how they are affected by noise pollution from marine vessels in three scenarios developed to represent different levels of vessel traffic. Identifying acoustic refugia can contribute to efforts to reduce the effect of marine noise pollution on killer whale populations by highlighting high-priority areas in which to implement policies such as traffic-limiting measures or marine protected areas. Moreover, the proposed LSP-MCE procedure combines criteria in a stepwise manner that can support environmental management decision-making processes and can be applied to other marine suitability analysis contexts.
Collapse
Affiliation(s)
- Logan Drackett
- Spatial Analysis and Modeling Laboratory, Department of Geography, Simon Fraser University, Burnaby, BC, Canada
| | - Suzana Dragićević
- Spatial Analysis and Modeling Laboratory, Department of Geography, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
11
|
Nikolich K, Halliday WD, Pine MK, Cox K, Black M, Morris C, Juanes F. The sources and prevalence of anthropogenic noise in Rockfish Conservation Areas with implications for marine reserve planning. MARINE POLLUTION BULLETIN 2021; 164:112017. [PMID: 33517084 DOI: 10.1016/j.marpolbul.2021.112017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Underwater noise pollution is a recognized threat to marine life. In British Columbia, Canada, Pacific rockfish (Sebastes spp.) were historically overfished, prompting the establishment of Rockfish Conservation Areas (RCAs). However, there are no restrictions prohibiting vessel transits in RCAs. We hypothesized that RCAs do not protect rockfish from sub-lethal harm from noise. We compared noise levels at three RCAs with adjacent unprotected reference sites from August 2018-June 2019. While RCAs had lower levels of noise overall than reference sites, this trend was inconsistent; some RCA sites had higher levels of noise during certain time periods than non-RCA sites. A vessel noise detector was the best predictor of noise level over three frequency bands (20-100 Hz, 100-1000 Hz, 1-10 kHz), and predicted sound levels which could mask rockfish communication. We conclude that RCAs do not reliably protect rockfish from noise pollution, and recommend further study into potential impacts on stock recovery.
Collapse
Affiliation(s)
- Katrina Nikolich
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada.
| | - William D Halliday
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada; Wildlife Conservation Society Canada, Victoria, British Columbia, Canada
| | - Matthew K Pine
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada
| | - Kieran Cox
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada; Hakai Institute, Calvert Island, British Columbia, Canada
| | - Morgan Black
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada; Hakai Institute, Calvert Island, British Columbia, Canada
| | - Corey Morris
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Francis Juanes
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
12
|
Acoustic Characteristics of Small Research Vessels. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8120970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vessel noise is an acute and chronic stressor of a wide variety of marine fauna. Understanding, modelling and mitigating the impacts of this pollutant requires quantification of acoustic signatures for various vessel classes for input into propagation models and at present there is a paucity of such data for small vessels (<25 m). Our study provides this information for three small vessels (<6 m length and 30, 90 and 180 hp engines). The closest point of approach was recorded at various ranges across a flat, ≈10 m deep sandy lagoon, for multiple passes at multiple speeds (≈5, 10, 20, 30 km h−1) by each vessel at Lizard Island, Great Barrier Reef, Australia. Radiated noise levels (RNLs) and environment-affected source levels (ASLs) determined by linear regression were estimated for each vessel and speed. From the slowest to fastest speeds, median RNLs ranged between 153.4 and 166.1 dB re 1 µPa m, whereas ASLs ranged from 146.7 to 160.0 dB re 1 µPa m. One-third octave band-level RNLs are provided for each vessel–speed scenario, together with their interpolated received levels with range. Our study provides data on source spectra of small vessels to assist in understanding and modelling of acoustic exposure experienced by marine fauna.
Collapse
|
13
|
Farcas A, Powell CF, Brookes KL, Merchant ND. Validated shipping noise maps of the Northeast Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139509. [PMID: 32485453 DOI: 10.1016/j.scitotenv.2020.139509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Underwater noise pollution from shipping is globally pervasive and has a range of adverse impacts on species which depend on sound, including marine mammals, sea turtles, fish, and many invertebrates. International bodies including United Nations agencies, the Arctic Council, and the European Union are beginning to address the issue at the policy level, but better evidence is needed to map levels of underwater noise pollution and the potential benefits of management measures such as ship-quieting regulations. Crucially, corroboration of noise maps with field measurements is presently lacking, which undermines confidence in their application to policymaking. We construct a computational model of underwater noise levels in the Northeast Atlantic using Automatic Identification System (AIS) ship-tracking data, wind speed data, and other environmental parameters, and validate this model against field measurements at 4 sites in the North Sea. Overall, model predictions of the median sound level were within ±3 dB for 93% of the field measurements for one-third octave frequency bands in the range 125 Hz-5 kHz. Areas with median noise levels exceeding 120 dB re 1 μPa and 20 dB above modelled natural background sound were predicted to occur in the Dover Strait, the Norwegian trench, near to several major ports, and around offshore infrastructure sites in the North Sea. To our knowledge, this is the first study to quantitatively validate large-scale modelled noise maps with field measurements at multiple sites. Further validation will increase confidence in deeper waters and during winter months. Our results highlight areas where anthropogenic pressure from shipping noise is greatest and will inform the management of shipping noise in the Northeast Atlantic. The good agreement between measurements and model gives confidence that models of shipping noise can be used to inform future policy and management decisions to address shipping noise pollution.
Collapse
Affiliation(s)
- Adrian Farcas
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, Suffolk, UK.
| | - Claire F Powell
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | | | - Nathan D Merchant
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| |
Collapse
|
14
|
|