1
|
Zhang D, Chen Q, Xu T, Yin D. Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. J Environ Sci (China) 2025; 151:387-409. [PMID: 39481947 DOI: 10.1016/j.jes.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Micro(nano)plastics, as an emerging environmental pollutant, are gradually discovered in hyporheic zones and groundwater worldwide. Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater, together with the influence of their properties and effects of environmental factors on their transport. However, the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation. To provide systematic theoretical support for that, this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system, provides a comprehensive introduction of their sources and fate, and classifies the transport mechanisms into mechanical transport, physicochemical transport and biological processes assisted transport from the perspectives of mechanical stress, physicochemical reactions, and bioturbation, respectively. Ultimately, this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater, the microorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation. Overall, this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
Collapse
Affiliation(s)
- Dongming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Rangel-Buitrago N, Galgani F, Nicoll K, Neal WJ. Rethinking geological concepts in the age of plastic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175366. [PMID: 39127201 DOI: 10.1016/j.scitotenv.2024.175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
This paper attempts to reevaluate traditional geological classifications from sedimentology to stratigraphy as well as the concept of the Holocene/Anthropocene epochs, characterized by the widespread integration of plastics into sedimentary environments. This paper presents a set of novel insights into the interactions between synthetic materials and natural geological processes. We illustrate how plastics not only disrupt sedimentary dynamics and alter the composition of rocks and soils, creating new forms of pollution and also pose escalated threats to marine biodiversity through altered erosion, transport, and deposition patterns. We highlight the emerging role of plastics as distinctive stratigraphic markers, providing a different perspective on human environmental impacts. This analysis challenges the traditional perception of rocks as solely natural, inorganic formations and highlights the critical need for interdisciplinary approaches that meld geology, chemistry, and environmental science. The document calls for intensified research to develop effective strategies for managing these impacts and promotes innovative conservation techniques that address both the symptoms and sources of plastic pollution.
Collapse
Affiliation(s)
- Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia.
| | - Francois Galgani
- Unité Ressources marines en Polynésie Francaise, Institut français de Recherche Pour l'Exploitation de la Mer (Ifremer), BP 49, Vairao, Tahiti, French Polynesia
| | - Kathleen Nicoll
- Department of Geography, The University of Utah, 260 Central Campus Dr #4625, Salt Lake City, UT 84112, USA
| | - William J Neal
- Department of Geology, Grand Valley State University, Seymour K. & Esther R. Padnos Hall of Science 213A, Allendale, MI, USA
| |
Collapse
|
3
|
Takeda H, Isobe A. Quantification of ocean microplastic fragmentation processes in the Sea of Japan using a combination of field observations and numerical particle tracking model experiments. MARINE POLLUTION BULLETIN 2024; 208:117032. [PMID: 39348747 DOI: 10.1016/j.marpolbul.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
This study estimated the fragmentation rate of microplastics (MiPs) in the Sea of Japan by analyzing MiP size over time following their generation from macroplastics (MaPs). A 5-year particle-tracking model was used to simulate the MaP and MiP motions driven by ocean currents, Stokes drift, the windage of MaPs, beaching, re-drifting, the conversion process from MaPs to MiPs, and the removal of MiPs from the upper ocean. MiP sizes decreased downstream in the Tsushima Current flowing northeastward. The highest correlation between MiP size and elapsed time occurred in the simulation where MiP fragmentation also occurred in the ocean, at 20 % of the rate on beaches. The apparent fragmentation rate in nature was estimated to approximately 1.0 mm/100 days. This study demonstrated that incorporating spatiotemporal information from the simulation into observed size results could further our understanding of fragmentation of MiPs degraded in marine environments.
Collapse
Affiliation(s)
- Hiroki Takeda
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan.
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
4
|
Al-Darraji A, Oluwoye I, Lagat C, Tanaka S, Barifcani A. Erosion of rigid plastics in turbid (sandy) water: quantitative assessment for marine environments and formation of microplastics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1847-1858. [PMID: 39221511 DOI: 10.1039/d4em00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mechanical degradation (erosion) of plastics in the marine environment has been reported in many literature studies but without quantitative information. This type of degradation is crucial as it accounts for most of the initial microplastic products, in marine environments (e.g., rivers and oceans). Here, we quantify the erosion of plastics by water-borne sediments under typical perpendicular water velocities and sand loads of turbid rivers and coastal oceans. Polypropylene (PP) shows the highest response to water-borne erosion, with a surface degradation rate of 5160 μm per year (4.44 mg per mm2 per year), compared with high-density polyethylene (HDPE) with a degradation rate of 1874 μm per year (1.79 mg per mm2 per year), resulting in the formation of microplastics (MPs). The rate of formation of such microplastic particles (>10 μm), as characterised by a laser direct infrared (LDIR) chemical imaging system, amounts to 669 particles per mm2 per year for PP and 187 particles per mm2 per year for HDPE, exhibiting average particle sizes of 60 μm and 23 μm in the same order. Furthermore, surface microscopy provided valuable insights into the dominant erosion mechanisms, revealing three distinct zones and the surface features reveal the brittle erosion behaviours. These results will enable a better assessment of degradation and lifetime prediction of plastics in turbid rivers and coastal oceans, allowing precise estimation of the rate of formation of MPs.
Collapse
Affiliation(s)
- Ali Al-Darraji
- Discipline of Chemical Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Western Australia, Australia.
| | - Ibukun Oluwoye
- Curtin Corrosion Centre, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Australia.
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Christopher Lagat
- Discipline of Petroleum Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Western Australia, Australia
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Ahmed Barifcani
- Discipline of Petroleum Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Western Australia, Australia
| |
Collapse
|
5
|
Cheung CKH, Not C. Early signs of plastic degradation and fragmentation: A 40-day study in marine environments. MARINE POLLUTION BULLETIN 2024; 207:116809. [PMID: 39126776 DOI: 10.1016/j.marpolbul.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Conventional plastics are widely present in the ocean as marine plastic debris. This in-situ study investigates the degradability and fragmentation of seven common conventional plastics (PET, PVC, PS, EPS, PP, HDPE, and LDPE) in natural marine environments over a 40-day period. All plastics showed significant chemical changes and oscillating plastic oxidation levels, indicating the synergistic processes of oxidation and removal of oxidation products. Polystyrenes and polymers with heteroatoms showed the largest degradation potentials, while pure polyolefins exhibited the highest fragmentation risks. SEM images suggest potentials of EPS and pure polyolefins in generating microplastic fragments, and polymers with heteroatoms in generating nanoplastic fragments. PS did not exhibit any surface degradation signs, potentially due to enhanced crystallinity through oxidation. The findings highlight the need for reduced usage of EPS and pure polyolefins which are commonly applied as disposable utensils and food packaging, and prioritized cleanup of these polymers to reduce microplastic pollution in the environment.
Collapse
Affiliation(s)
- Coco Ka Hei Cheung
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Christelle Not
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Fetisov S, Esiukova E, Lobchuk O, Chubarenko I. Abundance and mass of plastic litter on sandy shore: Contribution of stormy events. MARINE POLLUTION BULLETIN 2024; 207:116911. [PMID: 39241369 DOI: 10.1016/j.marpolbul.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The accumulation of marine litter on beaches has a detrimental impact on the environment, human health, and recreational activities. A total of 116 monitoring surveys were conducted along the shore of the Kaliningrad region between 2019 and 2023. Sampling of anthropogenic and plastic litter (>0.5 cm) was carried out under various meteorological conditions on eight sandy beaches. The greatest abundance and mass of plastic marine litter (mean ± SE: 13.75 ± 8.61 items/m2 and 19.97 ± 5.92 gDW/m2, correspondingly) were observed in the aftermath of storms within beach-cast accumulation stains at the shoreline, where it was intermixed with organic debris. This is two orders of magnitude greater than the plastic litter contamination obtained using the OSPAR methodology at the same beach during fine weather (0.11 ± 0.01 items/m2, 0.33 ± 0.02 gDW/m2). The results suggest that the most effective strategy for beach cleaning is to implement it in the post-storm period.
Collapse
Affiliation(s)
- Sergei Fetisov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia.
| | - Elena Esiukova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia
| | - Olga Lobchuk
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia
| | - Irina Chubarenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia
| |
Collapse
|
7
|
Cordova MR, Kelly MR, Hafizt M, Wibowo SPA, Ulumuddin YI, Purbonegoro T, Yogaswara D, Kaisupy MT, Subandi R, Sani SY, Thompson RC, Jobling S. From riverbank to the sea: An initial assessment of plastic pollution along the Ciliwung River, Indonesia. MARINE POLLUTION BULLETIN 2024; 206:116662. [PMID: 38991608 DOI: 10.1016/j.marpolbul.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
This study presents the first comprehensive analysis of anthropogenic debris on the riverbanks of the Ciliwung River, covering upstream to downstream areas. The mean of debris found in each measurement was 32.79 ± 15.38 items/m2 with a weight of 106.00 ± 50.23 g/m2. Plastic debris accounted for over 50 % of all litter items identified and represents 55 % by weight, signifying a significantly high prevalence compared to global studies examining litter along riverbanks. The majority of the plastics found originated from Single-use applications and were predominantly made from Styrofoam. This investigation demonstrated the importance of actions to reduce single use applications and to improve waste management strategies. This can be achieved through proactive initiatives coupled with adaptable approaches, such as implementing effective urban planning and enhancing waste collection capacity.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia.
| | - Max R Kelly
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Muhammad Hafizt
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Sofia Yuniar Sani
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Susan Jobling
- Environmental Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Partnership for Plastics in Indonesian Societies (PISCES) Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
8
|
Rahman E, BinAhmed S, Keyes P, Alberg C, Godfreey-Igwe S, Haugstad G, Xiong B. Nanoscale Abrasive Wear of Polyethylene: A Novel Approach To Probe Nanoplastic Release at the Single Asperity Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13845-13855. [PMID: 38874627 DOI: 10.1021/acs.est.3c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
There is a growing concern that nanoplastic pollution may pose planetary threats to human and ecosystem health. However, a quantitative and mechanistic understanding of nanoplastic release via nanoscale mechanical degradation of bulk plastics and its interplay with photoweathering remains elusive. We developed a lateral force microscope (LFM)-based nanoscratch method to investigate mechanisms of nanoscale abrasive wear of low-density polyethylene (LDPE) surfaces by a single sand particle (simulated by a 300 nm tip) under environmentally relevant load, sliding motion, and sand size. For virgin LDPE, we found plowing as the dominant wear mechanism (i.e., deformed material pushed around the perimeter of scratch). After UVA-weathering, the wear mechanism of LDPE distinctively shifted to cutting wear (i.e., deformed material detached and pushed to the end of scratch). The shift in the mechanism was quantitatively described by a new parameter, which can be incorporated into calculating the NP release rate. We determined a 10-fold higher wear rate due to UV weathering. We also observed an unexpected resistance to initiate wear for UV-aged LDPE, likely due to nanohardness increase induced by UV. For the first time, we report 0.4-4 × 10-3 μm3/μm sliding distance/μN applied load as an initial approximate nanoplastic release rate for LDPE. Our novel findings reveal nanoplastic release mechanisms in the environment, enabling physics-based prediction of the global environmental inventory of nanoplastics.
Collapse
Affiliation(s)
- Ehsanur Rahman
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Sara BinAhmed
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Claire Alberg
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Stacy Godfreey-Igwe
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, Minnesota 55455, United States
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Chaisrikhwun B, Balani MJD, Ekgasit S, Xie Y, Ozaki Y, Pienpinijtham P. A green approach to nanoplastic detection: SERS with untreated filter paper for polystyrene nanoplastics. Analyst 2024; 149:4158-4167. [PMID: 39010793 DOI: 10.1039/d4an00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Plastic pollution at the nanoscale continues to pose adverse effects on environmental sustainability and human health. However, the detection of nanoplastics (NPLs) remains challenging due to limitations in methodology and instrumentation. Herein, a "green approach" for surface-enhanced Raman spectroscopy (SERS) was exploited to detect polystyrene nanospheres (PSNSs) in water, employing untreated filter paper and a simple syringe-filtration set-up. This SERS protocol not only enabled the filtration of nano-sized PSNSs, which are smaller than the pore size of the ordinary filter paper, but also offered SERS enhancement by utilizing quasi-spherical-shaped silver nanoparticles (AgNPs) as the SERS-active substrate. The filtering of NPLs was accomplished by adding an aggregating agent to the nanoparticle mixture, which caused the aggregation of NPLs and AgNPs, resulting in a larger cluster and more hot spots for SERS detection. The optimal aggregating agent and its concentration, as well as the volume ratio between the AgNPs and NPLs, were also optimized. This SERS method successfully detected and quantified PSNSs of various sizes (i.e., 100, 300, 460, 600, and 800 nm) down to a limit of detection (LOD) of about 0.31 μg mL-1. The method was also validated against the presence of several interferents (i.e., salts, sugars, amino acids, and surfactants) and was proven practical, as evidenced by the detection of 800nm PSNSs in drinking and tap water (LODs of 1.47 and 1.55 μg mL-1, respectively).
Collapse
Affiliation(s)
- Boonphop Chaisrikhwun
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mary Jane Dacillo Balani
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sanong Ekgasit
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Barthelemy N, Mermillod-Blondin F, Krause S, Simon L, Mimeau L, Devers A, Vidal JP, Datry T. The Duration of Dry Events Promotes PVC Film Fragmentation in Intermittent Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12621-12632. [PMID: 38954776 DOI: 10.1021/acs.est.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion. This study shows that PVC film fragmentation increases with drying duration through an increase in the abundance and size of formed MPs as well as mass loss from the initial plastic item, with significant differences for drying durations >50% of the experiment duration. The average abundance of formed MPs in treatments exposed to severe drying duration was almost two times higher than in treatments nonexposed to drying. Based on these results, we developed as a proof of concept an Intermittence-Based Plastic Fragmentation Index that may provide insights into plastic fragmentation occurring in river catchments experiencing large hydrological variability. The present study suggests that flow intermittence occurring in rivers and streams can lead to increasing plastic fragmentation, unraveling new insights into plastic pollution in freshwater systems.
Collapse
Affiliation(s)
- Nans Barthelemy
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne F-69622, France
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | | | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Laurent Simon
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne F-69622, France
| | - Louise Mimeau
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Alexandre Devers
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Jean-Philippe Vidal
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| | - Thibault Datry
- Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, INRAE, Villeurbanne 69625, France
| |
Collapse
|
11
|
Parolini M, Romano A. Geographical and ecological factors affect microplastic body burden in marine fish at global scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124121. [PMID: 38723708 DOI: 10.1016/j.envpol.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Microplastic (MP) contamination has been identified as a worrisome environmental issue at the global level. Fish are the taxonomic group more extensively investigated to assess MP contamination in marine environment. A large variability in MP bioaccumulation (i.e., body burden) was reported in fish but to date there is a dearth of information concerning the drivers underlying this process. The present systematic review aimed at summarizing the results of the scientific literature on MP body burden in the digestive tract of marine fish to quantitatively shed light on the contribution of different geographical (i.e., latitudinal origin of the sample, distance from the coastline and field- or marked-collected) and ecological (i.e., trophic strategy, milieu, and body size) factors driving bioaccumulation. The mean (±SE) MPs/individual was 4.13 ± 2.87, and the mean MPs/ww (i.e., MPs/g) was 5.92 ± 0.94. Overall, MP abundance expressed as MPs/individual of fish from tropical areas was significantly higher compared to the other latitudinal bands, with species sampled close to the coastline that accumulated a larger number of MPs compared to those collected offshore. Neither the trophic strategy, nor the milieu and the market or field origin of fish explained the MP body burden. However, fish body size resulted as a determinant of MP body burden (as MPs/individual), with small fish accumulating a lower amount of MPs compared to larger ones. Qualitatively, but not statistically significant, similar results were generally obtained for MPs/ww, except for an opposite, and significant, variation according to species body size. Our findings showed that geographical, rather than ecological factors represent the main drivers of MP body burden in marine fish, suggesting that environmental variables and/or local pollution sources mainly contribute to explaining the large variability underlying the ingestion and bioaccumulation processes of these contaminants.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| |
Collapse
|
12
|
Markić A, Iveša N, Budiša A, Kovačić I, Burić P, Pustijanac E, Buršić M, Banai B, Legin DP, Palatinus A, Tutman P. Fragmented marine plastics as the prevalent litter type on a small island beach in the Adriatic. MARINE POLLUTION BULLETIN 2024; 203:116467. [PMID: 38744047 DOI: 10.1016/j.marpolbul.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
The issue of plastic pollution has dramatically intensified in the recent years. Our study investigates extensive plastic contamination of a sandy beach on a small Adriatic island. The beach was sampled on three occasions, in 2013, 2020 and 2022, using 1 m2 quadrats placed along the lower and upper strandlines, resulting in average litter concentrations of 385 ± 106, 1095 ± 522 and 129 ± 37 item m-2, respectively. The lower size limit of collected litter was 1 mm, thus including large microplastics. Plastic fragments (49-74 %) and plastic pellets (15 %-37 %) were predominant litter categories. The proportion of fragments is significantly higher during the tourist season with a more intensive cleaning regime (April-October), as opposed to the off-season (November-March). Fisheries and aquaculture litter was identified as a relevant source of pollution. More research is needed in the future into the microplastics smaller than 1 mm.
Collapse
Affiliation(s)
- Ana Markić
- MoreSe, Non-profit organisation, Franje Iskre 4, 52210 Rovinj, Croatia; Blue Spark, Environmental Consultancy, Put za Marleru 20, 52204 Ližnjan, Croatia.
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Andrea Budiša
- MoreSe, Non-profit organisation, Franje Iskre 4, 52210 Rovinj, Croatia; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| | - Ines Kovačić
- Faculty of Educational Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Benjamin Banai
- Banai Analitika, obrt za obradu podataka, vl. Benjamin Banai, Josipa Jurja Strossmayera 341, Osijek, Croatia
| | - Dora Pokas Legin
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Andreja Palatinus
- Poslovno svetovanje, Andreja Palatinus s.p., Pot v dolino 3C, 1261 Ljubljana, Slovenia
| | - Pero Tutman
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštovića 63, 21000 Split, Croatia
| |
Collapse
|
13
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
14
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
15
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
16
|
Mosquera-Ortega M, Rodrigues de Sousa L, Susmel S, Cortón E, Figueredo F. When microplastics meet electroanalysis: future analytical trends for an emerging threat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5978-5999. [PMID: 37921647 DOI: 10.1039/d3ay01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Microplastics are a major modern challenge that must be addressed to protect the environment, particularly the marine environment. Microplastics, defined as particles ≤5 mm, are ubiquitous in the environment. Their small size for a relatively large surface area, high persistence and easy distribution in water, soil and air require the development of new analytical methods to monitor their presence. At present, the availability of analytical techniques that are easy to use, automated, inexpensive and based on new approaches to improve detection remains an open challenge. This review aims to outline the evolution and novelties of classical and advanced methods, in particular the recently reported electroanalytical detectors, methods and devices. Among all the studies reviewed here, we highlight the great advantages of electroanalytical tools over spectroscopic and thermal analysis, especially for the rapid and accurate detection of microplastics in the sub-micron range. Finally, the challenges faced in the development of automated analytical methods are discussed, highlighting recent trends in artificial intelligence (AI) in microplastics analysis.
Collapse
Affiliation(s)
- Mónica Mosquera-Ortega
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Basic Science Department, Faculty Regional General Pacheco, National Technological University, Argentina
| | - Lucas Rodrigues de Sousa
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiania, Brazil
| | - Sabina Susmel
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Department of Biosciences and Bioengineering, Indian Institute of Technology at Guwahati, Assam, India
| | - Federico Figueredo
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
| |
Collapse
|
17
|
Pellegrini C, Saliu F, Bosman A, Sammartino I, Raguso C, Mercorella A, Galvez DS, Petrizzo A, Madricardo F, Lasagni M, Clemenza M, Trincardi F, Rovere M. Hotspots of microplastic accumulation at the land-sea transition and their spatial heterogeneity: The Po River prodelta (Adriatic Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164908. [PMID: 37385497 DOI: 10.1016/j.scitotenv.2023.164908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Deltas are the locus of river-borne sediment accumulation, however, their role in sequestering plastic pollutants is still overlooked. By combining geomorphological, sedimentological, and geochemical analyses, which include time-lapse multibeam bathymetry, sediment provenance, and μFT-IR analyses, we investigate the fate of plastic particles after a river flood event providing an unprecedented documentation of the spatial distribution of sediment as well as of microplastics (MPs), including particles fibers, and phthalates (PAEs) abundances in the subaqueous delta. Overall sediments are characterized by an average of 139.7 ± 80 MPs/kg d.w., but display spatial heterogeneity of sediment and MPs accumulation: MPs are absent within the active sandy delta lobe, reflecting dilution by clastic sediment (ca. 1.3 Mm3) and sediment bypass. The highest MP concentration (625 MPs/kg d.w.) occurs in the distal reaches of the active lobe where flow energy dissipates. In addition to MPs, cellulosic fibers are relevant (of up to 3800 fibers/kg d.w.) in all the analyzed sediment samples, and dominate (94 %) with respect to synthetic polymers. Statistically significant differences in the relative concentration of fiber fragments ≤0.5 mm in size were highlighted between the active delta lobe and the migrating bedforms in the prodelta. Fibers were found to slightly follow a power law size distribution coherent with a one-dimensional fragmentation model and thus indicating the absence of a size dependent selection mechanism during burial. Multivariate statistical analysis suggests traveling distance and bottom-transport regime as the most relevant factors controlling particle distribution. Our findings suggest that subaqueous prodelta should be considered hot spots for the accumulation of MPs and associated pollutants, albeit the strong lateral heterogeneity in their abundances reflects changes in the relative influence of fluvial and marine processes.
Collapse
Affiliation(s)
- C Pellegrini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy.
| | - F Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - A Bosman
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Geologia Ambientale e Geoingegneria (IGAG), Italy
| | - I Sammartino
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - C Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - A Mercorella
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - D S Galvez
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - A Petrizzo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - F Madricardo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - M Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - M Clemenza
- INFN Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - F Trincardi
- Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente (DSSTTA), Rome, Italy
| | - M Rovere
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| |
Collapse
|
18
|
Nuamah F, Tulashie SK, Debrah JS, Pèlèbè ROE. Microplastics in the Gulf of Guinea: An analysis of concentrations and distribution in sediments, gills, and guts of fish collected off the coast of Ghana. ENVIRONMENTAL RESEARCH 2023; 234:116567. [PMID: 37422113 DOI: 10.1016/j.envres.2023.116567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Microplastics (MPs, <5 mm) accumulate in marine environments, impacting marine organism health. This study examined MPs in sediment and two pelagic fish species (S. maderensis and I. africana) in Ghana's Gulf of Guinea. The study found an average concentration of 0.144 ± 0.061 items/g (dry weight) in the sediment, with pellets and transparent particles being the most common types. The concentration of MPs in contaminated fish ranged from 8.35 to 20.95, with fibers and pellets being the most abundant plastic-type in fish. Individual organ concentrations of MPs varied. In fish gills, concentrations ranged from 1 to 26 MPs/individual for I. africana and 1-22 MPs/individual for S. maderensis. Concentrations in the fish guts ranged from 1 to 29 MPs/individual for I. africana and 2-24 MPs/individual for S. maderensis. Results from the study highlight the importance of both gills and guts as important organs in terms of microplastic contamination and emphasize the significance of monitoring microplastic contamination in fish gills and guts. This offers valuable insight into the impact of MPs on the marine environment and human health.
Collapse
Affiliation(s)
- Francis Nuamah
- Centre for Coastal Management (Africa Centre of Excellence in Coastal Resilience, ACECoR), University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Chemistry Department, Industrial Chemistry Unit, Cape Coast, Ghana
| | - Samuel Kofi Tulashie
- Centre for Coastal Management (Africa Centre of Excellence in Coastal Resilience, ACECoR), University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Chemistry Department, Industrial Chemistry Unit, Cape Coast, Ghana.
| | - Joseph Sefah Debrah
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Biological Sciences, Department of Fisheries and Aquatic Sciences, Ghana
| | - Rodrigue Orobiyi Edéya Pèlèbè
- Centre for Coastal Management (Africa Centre of Excellence in Coastal Resilience, ACECoR), University of Cape Coast, Cape Coast, Ghana; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), Faculty of Agronomy, University of Parakou, Parakou, Benin
| |
Collapse
|
19
|
Lee AG, Kang S, Yoon HJ, Im S, Oh SJ, Pak YK. Polystyrene Microplastics Exacerbate Systemic Inflammation in High-Fat Diet-Induced Obesity. Int J Mol Sci 2023; 24:12421. [PMID: 37569796 PMCID: PMC10419071 DOI: 10.3390/ijms241512421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Microplastics (MPs) are recognized as environmental pollutants with potential implications for human health. Considering the rapid increase in obesity rates despite stable caloric intake, there is a growing concern about the link between obesity and exposure to environmental pollutants, including MPs. In this study, we conducted a comprehensive investigation utilizing in silico, in vitro, and in vivo approaches to explore the brain distribution and physiological effects of MPs. Molecular docking simulations were performed to assess the binding affinity of three plastic polymers (ethylene, propylene, and styrene) to immune cells (macrophages, CD4+, and CD8+ lymphocytes). The results revealed that styrene exhibited the highest binding affinity for macrophages. Furthermore, in vitro experiments employing fluorescence-labeled PS-MPs (fPS-MPs) of 1 μm at various concentrations demonstrated a dose-dependent binding of fPS-MPs to BV2 murine microglial cells. Subsequent oral administration of fPS-MPs to high-fat diet-induced obese mice led to the co-existence of fPS-MPs with immune cells in the blood, exacerbating impaired glucose metabolism and insulin resistance and promoting systemic inflammation. Additionally, fPS-MPs were detected throughout the brain, with increased activation of microglia in the hypothalamus. These findings suggest that PS-MPs significantly contribute to the exacerbation of systemic inflammation in high-fat diet-induced obesity by activating peripheral and central inflammatory immune cells.
Collapse
Affiliation(s)
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
| | - Hye Ji Yoon
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
| | - Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447,Republic of Korea; (S.I.); (S.J.O.)
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447,Republic of Korea; (S.I.); (S.J.O.)
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447,Republic of Korea; (S.I.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Li J, Wang Q, Cui M, Yu S, Chen X, Wang J. Release characteristics and toxicity assessment of micro/nanoplastics from food-grade nonwoven bags. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163642. [PMID: 37100154 DOI: 10.1016/j.scitotenv.2023.163642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Micro/nanoplastic (M/NP) contamination in food has become a global concern. Food-grade polypropylene (PP) nonwoven bags, which are widely used to filter food residues, are considered environmentally friendly and nontoxic. However, the emergence of M/NPs has forced us to re-examine the use of nonwoven bags in cooking as plastic contact with hot water leads to M/NP release. To evaluate the release characteristics of M/NPs, three food-grade PP nonwoven bags of different sizes were boiled in 500 mL water for 1 h. Micro-Fourier transform infrared spectroscopy and Raman spectrometer confirmed that the leachates were released from the nonwoven bags. After boiling once, a food-grade nonwoven bag can release 0.12-0.33 million MPs (>1 μm) and 17.6-30.6 billion NPs (<1 μm), equivalent to a mass of 2.25 - 6.47 mg. Number of M/NPs released is independent of nonwoven bag size; however, it decreases with increasing cooking times. M/NPs are primarily produced from easily breakable PP fibers, and they are not released into the water at once. Adult zebrafish (Danio rerio) were cultured in filtered distilled water without released M/NPs and in water containing 14.4 ± 0.8 mg L-1 released M/NPs for 2 and 14 days, respectively. To evaluate the toxicity of the released M/NPs on the gills and liver of zebrafish, several oxidative stress biomarkers (i.e., reactive oxygen species, glutathione, superoxide dismutase, catalase, and malonaldehyde) were measured. The ingestion of the released M/NPs by zebrafish induces oxidative stress in the gills and liver, depending on the exposure time. Food-grade plastics, such as nonwoven bags, should be used with caution in daily cooking because they release large amounts of M/NPs when heated, which can threaten human health.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Xuehai Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| |
Collapse
|
21
|
Isa V, Becchi A, Napper IE, Ubaldi PG, Saliu F, Lavorano S, Galli P. Effects of polypropylene nanofibers on soft corals. CHEMOSPHERE 2023; 327:138509. [PMID: 36996920 DOI: 10.1016/j.chemosphere.2023.138509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Current information regarding the effects of both micro- and nano-plastic debris on coral reefs is limited; especially the toxicity onto corals from nano-plastics originating from secondary sources such as fibers from synthetic fabrics. Within this study, we exposed the alcyonacean coral Pinnigorgia flava to different concentrations of polypropylene secondary nanofibers (0.001, 0.1, 1.0 and 10 mg/L) and then assayed mortality, mucus production, polyps retraction, coral tissue bleaching, and swelling. The assay materials were obtained by artificially weathering non-woven fabrics retrieved from commercially available personal protective equipment. Specifically, polypropylene (PP) nanofibers displaying a hydrodynamic size of 114.7 ± 8.1 nm and a polydispersity index (PDI) of 0.431 were obtained after 180 h exposition in a UV light aging chamber (340 nm at 0.76 Wˑm-2ˑnm-1). After 72 h of PP exposure no mortality was observed but there were evident stress responses from the corals tested. Specifically, the application of nanofibers at different concentrations caused significant differences in mucus production, polyps retraction and coral tissue swelling (ANOVA, p < 0.001, p = 0.015 and p = 0.015, respectively). NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) at 72 h resulted 0.1 mg/L and 1 mg/L, respectively. Overall, the study indicates that PP secondary nanofibers can cause adverse effects on corals and could potentially act as a stress factor in coral reefs. The generality of the method of producing and assaying the toxicity of secondary nanofibers from synthetic textiles is also discussed.
Collapse
Affiliation(s)
- Valerio Isa
- Earth and Environmental Science Department, University of Milano Bicocca, MI, 20126, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, GE, 16128, Italy
| | - Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, MI, 20126, Italy
| | - Imogen Ellen Napper
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake's Circus, Plymouth, PL4 8AA, UK
| | - Paolo Giuseppe Ubaldi
- Earth and Environmental Science Department, University of Milano Bicocca, MI, 20126, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, MI, 20126, Italy.
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, GE, 16128, Italy
| | - Paolo Galli
- Earth and Environmental Science Department, University of Milano Bicocca, MI, 20126, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; University of Dubai, Dubai, P.O. Box 14143, United Arab Emirates
| |
Collapse
|
22
|
Okubo R, Yamamoto A, Kurima A, Sakabe T, Ide Y, Isobe A. Estimation of the age of polyethylene microplastics collected from oceans: Application to the western North Pacific Ocean. MARINE POLLUTION BULLETIN 2023; 192:114951. [PMID: 37172339 DOI: 10.1016/j.marpolbul.2023.114951] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
The knowledge of microplastic (MP) age could aid the deduction of the origin and fate of a fragment carried by ocean currents over long time periods and distances. The present study developed a novel method to estimate the age of MPs (i.e., UV radiation exposure time) using the oxidation level of polyethylene (i.e., carbonyl index) from infrared spectrometry, ultraviolet erythemal radiation (UVER) data, and ambient seawater temperatures. Accelerated and outdoor exposure experiments were conducted to establish relationships among the temporally integrated UVER, ambient temperature, and carbonyl index. Thereafter, the age of MPs was computed, with Miyakojima Island serving as the reference location. The estimated ages of MPs collected from the western North Pacific Ocean ranged from 1 to 3 years, and those MPs from nearshore waters ranged from 0 to 5 years.
Collapse
Affiliation(s)
- Rie Okubo
- Platform Laboratory for Science & Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji-shi, Shizuoka 416-8501, Japan.
| | - Aguru Yamamoto
- Platform Laboratory for Science & Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji-shi, Shizuoka 416-8501, Japan
| | - Akihiro Kurima
- Platform Laboratory for Science & Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji-shi, Shizuoka 416-8501, Japan
| | - Terumi Sakabe
- Platform Laboratory for Science & Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji-shi, Shizuoka 416-8501, Japan
| | - Youichiroh Ide
- Circular Economy Project, Emerging IT Dept. Informatics Initiative Digital Value Co-Creation, Asahi Kasei Corporation, Yurakucho, Chiyoda- Ku, Tokyo 100-0006, Japan
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan
| |
Collapse
|
23
|
Wang L, Bank MS, Rinklebe J, Hou D. Plastic-Rock Complexes as Hotspots for Microplastic Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7009-7017. [PMID: 37010423 DOI: 10.1021/acs.est.3c00662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Michael S Bank
- Institute of Marine Research, Bergen NO-5817, Norway
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Lenz M, Brennecke D, Haeckel M, Knickmeier K, Kossel E. Spatio-temporal variability in the abundance and composition of beach litter and microplastics along the Baltic Sea coast of Schleswig-Holstein, Germany. MARINE POLLUTION BULLETIN 2023; 190:114830. [PMID: 36989596 DOI: 10.1016/j.marpolbul.2023.114830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Abundance and composition of beach litter and microplastics (20-5000 μm, excluding fibres) were assessed in spring and autumn 2018 at various beaches along the Baltic Sea coast of Schleswig-Holstein, Northern Germany. The beach litter survey followed the OSPAR guidelines, while microplastics were extracted from sediment samples using density separation and were then identified with Raman μ-spectroscopy. We observed seasonality in the abundance and composition, but not in the mass of beach litter. The median microplastic abundance was 2 particles per 500 g of dry sediment in spring as well as in autumn, while six different synthetic polymers (PE, PP, PS, PET, PVC, POM) were detected. We found no correlation between the abundances of beach litter and microplastics. Our data represent the first systematic co-assessment of macro- and micro beach litter along the Baltic Sea coast of Schleswig-Holstein.
Collapse
Affiliation(s)
- Mark Lenz
- Marine Ecology Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Dennis Brennecke
- Kiel Science Factory, Leibniz Institute for Science and Mathematics Education (IPN) and Kiel University, Am Botanischen Garten 16i, 24118 Kiel, Germany
| | - Matthias Haeckel
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Katrin Knickmeier
- Kiel Science Factory, Leibniz Institute for Science and Mathematics Education (IPN) and Kiel University, Am Botanischen Garten 16i, 24118 Kiel, Germany
| | - Elke Kossel
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| |
Collapse
|
25
|
Vladimir M, Tatiana R, Evgeniy S, Veerasingam S, Bagaev A. Vertical and seasonal variations in biofilm formation on plastic substrates in coastal waters of the Black Sea. CHEMOSPHERE 2023; 317:137843. [PMID: 36657584 DOI: 10.1016/j.chemosphere.2023.137843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/16/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Plastic contamination of the marine environment is an increasing concern worldwide. Therefore, it is important to understand the kinetics of biofilms on plastics to study their behavior, fate, and transport pathways in the ocean. In this study, the vertical and seasonal variations in biofouling formation on transparent polyethylene terephthalate (PET) plastic fragments in the Southwest Crimea coastal waters of the Black Sea were investigated. Biofilms were identified in the transient light as 'dark spots' on the plastic surface, for which the numbers, size, and area were measured using specialized software. The rate of biofouling in the surface water layer was lower than those found in the middle and near-bottom water column, which could be due to a damaging effect of turbulent mixing on the biofilm. The highest rates of biofouling and diverse community were observed during the summer. The epibiotic assembly was represented by diatoms (11 taxa), dinoflagellates (3 taxa), green algae, filamentous cyanobacteria, small flagellates, and ciliates. Significant differences between the biofouling rates observed in different seasons made it difficult to estimate the period of time the plastic substrate has been in the marine environment. It was proposed to use the green alga Phycopeltis arundinacea (Montgn) De Tender et al., 2015 as a bioindicator to study the age of the biofouling community. Discoid thalli were identified at all stages of colonization of the plastic fragments in different seasons. Results obtained in this study demonstrate that biofouling organisms may be good model organisms in revealing age of biofilm formation and longevity of plastic debris in the ocean. Consequently, it is proposed that such biofouling organisms could be used as target species to monitor the biodegradation of plastic debris.
Collapse
Affiliation(s)
- Mukhanov Vladimir
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, 2, Nakhimov Av., Sevastopol, Russia
| | - Rauen Tatiana
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, 2, Nakhimov Av., Sevastopol, Russia
| | - Sakhon Evgeniy
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, 2, Nakhimov Av., Sevastopol, Russia
| | | | - Andrei Bagaev
- Marine Hydrophysical Institute, 2, Kapitanskaya Str., Sevastopol, Russia.
| |
Collapse
|
26
|
Park TJ, Kim MK, Lee SH, Kim MJ, Lee YS, Lee BM, Seong KS, Park JH, Zoh KD. Temporal and spatial distribution of microplastic in the sediment of the Han River, South Korea. CHEMOSPHERE 2023; 317:137831. [PMID: 36640985 DOI: 10.1016/j.chemosphere.2023.137831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Sediments are sinks for microplastics (MPs) in freshwater environments. It is, therefore, necessary to investigate the occurrence and fate of accumulated MPs in the sediments, which pose a risk to aquatic organisms. We conducted the first comprehensive investigation of MPs in riverine sediment in South Korea to examine the temporal and spatial distribution of MPs in the sediment at the two main branches and downstream of the Han River. The average abundance of MPs over all sites was 0.494 ± 0.280 particles/g. Spatially, the MP abundance at three sites in the North Han River (0.546 ± 0.217 particles/g) was higher than those in the South Han River (0.383 ± 0.145 particles/g) and downstream of the Han River (0.417 ± 0.114 particles/g). The abundances of MPs before dams at two upstream sites were significantly higher than that at other sites because of the slow river flow velocity attributed to the artificial structure. The abundance of MPs after the mosoon season (October, 0.600 ± 0.357 particles/g) was higher than that before the mosoon season (April, 0.389 ± 0.099 particles/g). The most common polymer types observed were polyethylene (>38%) and polypropylene (>24%). Irrespective of the location and season, greater than 93% of MPs identified were fragments, and the remaining were fibers. The concentrations of TOC, TN, and TP in the sediment were positively correlated with MP abundance. MP abundance was also positively correlated with clay and silt fractions of the sediment; however, it was negatively correlated with sand fraction. This study provides a basis for the management of MP pollution by offering findings related to critical factors influencing MP abundance in sediment.
Collapse
Affiliation(s)
- Tae-Jin Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment Seoul National University, Seoul, South Korea
| | - Seung-Hyun Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, South Korea
| | - Mun-Ju Kim
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, South Korea
| | - Young-Sun Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, South Korea
| | - Bo-Mi Lee
- Han River Environment Research Center, National Institute of Environmental Research, Gyeonggi Province, South Korea
| | - Ki-Seon Seong
- Han River Environment Research Center, National Institute of Environmental Research, Gyeonggi Province, South Korea
| | - Ji-Hyoung Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, South Korea
| | - Kyung-Duk Zoh
- Institute of Health & Environment Seoul National University, Seoul, South Korea.
| |
Collapse
|
27
|
Saliu F, Lasagni M, Andò S, Ferrero L, Pellegrini C, Calafat A, Sanchez-Vidal A. A baseline assessment of the relationship between microplastics and plasticizers in sediment samples collected from the Barcelona continental shelf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36311-36324. [PMID: 36547830 DOI: 10.1007/s11356-022-24772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
It has been suggested that the seafloor may be a sink for the plastic debris that enters the ocean. Therefore, the collection of data in the seafloor sediments regarding the co-presence of microplastics (MPs) and contaminants associated to plastic is considered a relevant topic. However, the number of studies addressing their possible correlation in this environment is still limited, and very little is known about the mechanisms that determine the release of plastic additives from plastic items. Starting from this basis, we investigated the presence of MPs and eleven phthalic acid esters (PAEs) in the continental shelf offshore Barcelona. Following a shelf-slope continuum approach, we sampled sediments from five stations, and we performed analysis by means of infrared micro spectroscopy (µFTIR) and liquid chromatography tandem mass spectrometry (LC-MS/MS). MPs were found to range from 62.0 to 931.1 items/kg d.w. with maximum concentration in the submarine canyon Besòs and at the highest depth. Moreover, different trends in the size distribution of fibers and non-fibers were observed, indicating the occurrence of a size dependent selection mechanism during transport and accumulation. PAEs resulted comprised between 1.35 to 2.41 mg/kg with Di(2-ethylhexyl)phthalate (DEHP) the most abundant congeners (1.04 mg/kg). Statistical analysis revealed no correlation between the Σ11PAEs and the total MPs concentration, but correlation between DEHP and fibers (σ = 0.667, p = 0,037), that resulted both correlated to the distance to the coast (ρ = 0.941 with p = 0,008 and ρ = 0.673 with p = 0.035, respectively).
Collapse
Affiliation(s)
- Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy.
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Sergio Andò
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Luca Ferrero
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Claudio Pellegrini
- Consiglio Nazionale Delle Ricerche (CNR), Istituto Di Scienze Marine (ISMAR), Venice, Italy
| | - Antoni Calafat
- Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Anna Sanchez-Vidal
- Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
28
|
Akkan T, Gedik K, Mutlu T. Protracted dynamicity of microplastics in the coastal sediment of the Southeast Black Sea. MARINE POLLUTION BULLETIN 2023; 188:114722. [PMID: 36860017 DOI: 10.1016/j.marpolbul.2023.114722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
This study provided the first evaluation of microplastic abundance, features, risk assessment, and decade-changing status in sediment along the southeastern Black Sea coast. Sediment samples were collected from thirteen stations in the Southeast Black Sea in 2012 and 2022. >70 % of the detected microplastics had a length of up to 2.5 mm and consisted of fragments and fibers in shape. The average microplastic abundance in the sediment samples was 108 MP/kg. The composition in the sediment (particles/kg) was dominated by polyethylene (PE) (44.9 %), polyethylene terephthalate (PET) (27.2 %), and polypropylene PP (15.2 %). Remarkable results for contamination factors, polymeric risk assessment and contamination risk indices. The sharp rise in MPS highlighted the heavily populated stations and stream discharge locations. The data shed light on anthropogenic and basal microplastic pollution in the Southeast Black Sea, assisting in developing effective policies for preserving and managing the Black Sea environment.
Collapse
Affiliation(s)
- Tamer Akkan
- Giresun University, Arts and Science Faculty, Biology Department, Giresun, Turkiye.
| | - Kenan Gedik
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Rize, Turkiye
| | - Tanju Mutlu
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Rize, Turkiye
| |
Collapse
|
29
|
Campanale C, Savino I, Massarelli C, Uricchio VF. Fourier Transform Infrared Spectroscopy to Assess the Degree of Alteration of Artificially Aged and Environmentally Weathered Microplastics. Polymers (Basel) 2023; 15:polym15040911. [PMID: 36850194 PMCID: PMC9961336 DOI: 10.3390/polym15040911] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Fourier transform infrared (FTIR) is a spectroscopy technique widely used to identify organic materials. It has recently gained popularity in microplastic (MP) pollution research to determine the chemical composition of unknown plastic fragments. However, it could also be used to evaluate the degree of ageing of MPs collected from the environment. In this context, the principal aim of our research has been to qualitatively evaluate the natural weathering of environmental MPs collected in an Italian freshwater body (the Ofanto River) using ATR-FTIR technology. Furthermore, we compared environmental particles to weathered artificial MPs under controlled light and temperature conditions and to unaltered pristine materials to assess the results. FTIR spectra were acquired using a Nicolet Summit FTIR (ThermoFisher Scientific) equipped with an Everest ATR with a diamond Crystal plate and a DTGS KBr detector (wavenumber range 4000-500 cm-1, 32 scans per spectrum, spectral resolution of 4 cm-1). The degree of ageing was assessed using three different indexes known to be related to changes in MPs: Carbonyl Index (CI), Hydroxyl Index (HI), and Carbon-Oxygen Index (COI). The overall results showed that the regions reflecting changes (hydroxyl groups, peaks from 3100 to 3700 cm-1, alkenes or carbon double bonds, 1600 and 1680 cm-1, and carbonyl groups, 1690 and 1810 cm-1) appeared significantly modified in artificial and natural weathered particles compared to the pristine materials. The indexes calculated for polymers degraded under the artificial photo and thermo ageing conditions displayed a general tendency to increase with the time in contact with irradiation time. Particular enhancements of CI of PS fragment and PE pellet, HI of PE and PS fragments and PE pellet, and COI of PS fragment were observed. Otherwise, the following incubation of the same particles at a constant temperature of 45 °C did not further affect the chemical composition of the particles. Moreover, new unique peaks were also observed in the freshwater particles, almost all in the fingerprint region (1500-500 cm-1). Differences in CI, HI, and COI were evidenced among the different morphological MP shapes. On the one hand, the CI calculated for the environmental PE pellets showed values ranging from 0.05 to 0.26 with a mean value of 0.17 ± 0.10. Most samples (57%) presented a CI with values between 0.16 and 0.30. On the other hand, fragments presented slicer modifications in the carbonyl region with CI values lower than pellets (0.05 ± 0.05). This index helps evaluate the degradation of PE MPs by UV light, increasing with enhancing residence time in the environment. Conversely, fragments showed greater values of HI (5.90 ± 2.57) and COI (1.04 ± 0.48) than pellets, as well as lines, which presented the maximum value of HI (11.51). HI is attributed to the bond vibrations of hydroxyl, carboxyl, or phenol groups. In contrast, COI is frequently attributed to the vibrations of C_O bonds found in carbohydrates, alkanes, secondary alcohols, and ketones. In conclusion, our results showed characteristics spectra acquired from environmental particles compared to pristine and artificial aged ones. The interpretation of our main results emphasizes the need to conduct ecotoxicological experimental studies using naturally weathered particles due to the unicity of their properties, which are more helpful for understanding microplastic pollution effects.
Collapse
|
30
|
Harikrishnan T, Janardhanam M, Sivakumar P, Sivakumar R, Rajamanickam K, Raman T, Thangavelu M, Muthusamy G, Singaram G. Microplastic contamination in commercial fish species in southern coastal region of India. CHEMOSPHERE 2023; 313:137486. [PMID: 36513204 DOI: 10.1016/j.chemosphere.2022.137486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Due to its potential impact on food safety and human health, commercial species that have been contaminated with microplastics (MPs) are drawing more attention on a global scale. This study investigated the possibility of MPs contamination in different marine fish species with substantial commercial value that was captured off the south coast of India, from Adyar and Ennore regions. Over the course of six months, from October 2019 to March 2020, 220 fish were examined. It was discovered that the gills and guts had accumulated more numbers of MPs (1115 MPs) of which 68% were fibres and fragments. The commercial fish samples contained an average of 3.2-7.6 MPs per fish. Greater MPs pollution is seen in the Ennore regions. The prevalence of MPs was observed in carnivorous and planktivorous fish collected from both the sites. Fish guts contained the most MPs, according to the data. Pelagic fish accounted for the least amount of MPs, followed by mid- and demersal fish. Four different types of polymers were also identified in the present study: polyethylene, polypropylene, polystyrene, and polyamide. These results clearly showed the degree of microplastic contamination in fish tissues from the south Indian coastal regions of Adyar and Ennore. These results we hope will create a baseline data for MPs contamination in commercial fish species. The presence of MPs in the fish could have detrimental effects both on the environment and human health and thus comprehensive steps are required to prevent plastic pollution of the environment in south India's coastal region.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Madhuvandhi Janardhanam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Priya Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Rekha Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Krishnamurthy Rajamanickam
- PG and Research Department of Zoology and Aquaculture, Government Arts College for Men (Autonomous), (Affiliated to University of Madras), Chennai, 600 035, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai, 600 004, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech & Dept PolymerNano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India.
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, 600106, Tamil Nadu, India.
| |
Collapse
|
31
|
Jansen MAK, Barnes PW, Bornman JF, Rose KC, Madronich S, White CC, Zepp RG, Andrady AL. The Montreal Protocol and the fate of environmental plastic debris. Photochem Photobiol Sci 2023:10.1007/s43630-023-00372-x. [PMID: 36705849 DOI: 10.1007/s43630-023-00372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Microplastics (MPs) are an emerging class of pollutants in air, soil and especially in all aquatic environments. Secondary MPs are generated in the environment during fragmentation of especially photo-oxidised plastic litter. Photo-oxidation is mediated primarily by solar UV radiation. The implementation of the Montreal Protocol and its Amendments, which have resulted in controlling the tropospheric UV-B (280-315 nm) radiation load, is therefore pertinent to the fate of environmental plastic debris. Due to the Montreal Protocol high amounts of solar UV-B radiation at the Earth's surface have been avoided, retarding the oxidative fragmentation of plastic debris, leading to a slower generation and accumulation of MPs in the environment. Quantifying the impact of the Montreal Protocol in reducing the abundance of MPs in the environment, however, is complicated as the role of potential mechanical fragmentation of plastics under environmental mechanical stresses is poorly understood.
Collapse
Affiliation(s)
- M A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland.
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | - K C Rose
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - C C White
- Exponent, Inc, Bowie, MD, 20715, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Marchesi C, Rani M, Federici S, Alessandri I, Vassalini I, Ducoli S, Borgese L, Zacco A, Núñez-Delgado A, Bontempi E, Depero LE. Quantification of ternary microplastic mixtures through an ultra-compact near-infrared spectrometer coupled with chemometric tools. ENVIRONMENTAL RESEARCH 2023; 216:114632. [PMID: 36347397 DOI: 10.1016/j.envres.2022.114632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous distribution of plastics and microplastics (MPs) and their resistance to biological and chemical decay is adversely affecting the environment. MPs are considered as emerging contaminants of concern in all the compartments, including terrestrial, aquatic, and atmospheric environments. Efficient monitoring, detection, and removal technologies require reliable methods for a qualitative and quantitative analysis of MPs, considering point-of-need testing a new evolution and a great trend at the market level. In the last years, portable spectrometers have gained popularity thanks to the excellent capability for fast and on-site measurements. Ultra-compact spectrometers coupled with chemometric tools have shown great potential in the polymer analysis, showing promising applications in the environmental field. Nevertheless, systematic studies are still required, in particular for the identification and quantification of fragments at the microscale. This study demonstrates the proof-of-concept of a Miniaturized Near-Infrared (MicroNIR) spectrometer coupled with chemometrics for the quantitative analysis of ternary mixtures of MPs. Polymers were chosen representing the three most common polymers found in the environment (polypropylene, polyethene, and polystyrene). Daily used plastic items were mechanically fragmented at laboratory scale mimicking the environmental breakdown process and creating "true-to-life" MPs for the assessment of analytical methods for MPs identification and quantification. The chemical nature of samples before and after fragmentation was checked by Raman spectroscopy. Sixty three different mixtures were prepared: 42 for the training set and 21 for the test set. Blends were investigated by the MicroNIR spectrometer, and the dataset was analysed using Principal Component Analysis (PCA) and Partial Least Square (PLS) Regression. PCA score plot showed a samples distribution consistent with their composition. Quantitative analysis by PLS showed the great capability prediction of the polymer's percentage in the mixtures, with R2 greater than 0.9 for the three analytes and a low and comparable Root-Mean Square Error. In addition, the developed model was challenged with environmental weathered materials to validate the system with real plastic pollution. The findings show the feasibility of employing a portable tool in conjunction with chemometrics to quantify the most abundant forms of MPs found in the environment.
Collapse
Affiliation(s)
- Claudio Marchesi
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy
| | - Monika Rani
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy.
| | - Ivano Alessandri
- Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy; Department of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Irene Vassalini
- Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy; Department of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Serena Ducoli
- Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy; Department of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy
| | - Annalisa Zacco
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytech. School, Univ. Santiago de Compostela, Campus Univ, Lugo, Spain
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy
| | - Laura E Depero
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali (INSTM), 50121, Firenze, Italy
| |
Collapse
|
33
|
Effect of microplastic aging degree on filter cake formation and membrane fouling characteristics in ultrafiltration process with pre-coagulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Cohen N, Radian A. Microplastic Textile Fibers Accumulate in Sand and Are Potential Sources of Micro(nano)plastic Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17635-17642. [PMID: 36475681 DOI: 10.1021/acs.est.2c05026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Agricultural soils have been identified as sinks for microplastic fibers; however, little information is available on their long-term fate in these soils. In this study, polyester and nylon fibers were precisely cut to relevant environmental lengths, using novel methodology, and their behavior in sand columns was studied at environmental concentration. The longer fibers (>50 μm) accumulated in the upper layers of the sand, smaller fibers were slightly more mobile, and nylon showed marginally higher mobility than polyester. Previous studies have overlooked changes in microplastic morphology due to transport in soil. Our study is the first to show that fibers exhibited breakage, peeling, and thinning under flow conditions in soil, releasing smaller, more mobile fragments. Furthermore, the peelings exhibited different adsorption properties compared to the core fiber. This suggests that microplastic fibers can become a source of smaller micro(nano)plastics and potential vectors for certain molecules, risking continuous contamination of nearby soils, surfaces, and groundwater.
Collapse
Affiliation(s)
- Nirrit Cohen
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
35
|
Andrady AL, Barnes PW, Bornman JF, Gouin T, Madronich S, White CC, Zepp RG, Jansen MAK. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158022. [PMID: 35970458 PMCID: PMC9765214 DOI: 10.1016/j.scitotenv.2022.158022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 05/26/2023]
Abstract
Understanding the fate of plastics in the environment is of critical importance for the quantitative assessment of the biological impacts of plastic waste. Specially, there is a need to analyze in more detail the reputed longevity of plastics in the context of plastic degradation through oxidation and fragmentation reactions. Photo-oxidation of plastic debris by solar UV radiation (UVR) makes material prone to subsequent fragmentation. The fragments generated following oxidation and subsequent exposure to mechanical stresses include secondary micro- or nanoparticles, an emerging class of pollutants. The paper discusses the UV-driven photo-oxidation process, identifying relevant knowledge gaps and uncertainties. Serious gaps in knowledge exist concerning the wavelength sensitivity and the dose-response of the photo-fragmentation process. Given the heterogeneity of natural UV irradiance varying from no exposure in sediments to full UV exposure of floating, beach litter or air-borne plastics, it is argued that the rates of UV-driven degradation/fragmentation will also vary dramatically between different locations and environmental niches. Biological phenomena such as biofouling will further modulate the exposure of plastics to UV radiation, while potentially also contributing to degradation and/or fragmentation of plastics independent of solar UVR. Reductions in solar UVR in many regions, consequent to the implementation of the Montreal Protocol and its Amendments for protecting stratospheric ozone, will have consequences for global UV-driven plastic degradation in a heterogeneous manner across different geographic and environmental zones. The interacting effects of global warming, stratospheric ozone and UV radiation are projected to increase UV irradiance at the surface in localized areas, mainly because of decreased cloud cover. Given the complexity and uncertainty of future environmental conditions, this currently precludes reliable quantitative predictions of plastic persistence on a global scale.
Collapse
Affiliation(s)
- A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | - T Gouin
- TG Environmental Research, Sharnbrook, Bedfordshire, UK
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
36
|
Chubarenko I, Lazaryuk A, Orlova T, Lobchuk O, Raguso C, Zyubin A, Lasagni M, Saliu F. Microplastics in the first-year sea ice of the Novik Bay, Sea of Japan. MARINE POLLUTION BULLETIN 2022; 185:114236. [PMID: 36257245 DOI: 10.1016/j.marpolbul.2022.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sea ice is heavily contaminated with microplastics particles (MPs, <5 mm). First-year sea ice cores (38-41 cm thick) were taken in the beginning of spring in a narrow populated bay of the Sea of Japan. Two ice cores were examined (layer-by-layer, excluding surface) for MPs content: one using μ-FTIR for 25-300 μm (SMPs), and another one - with visual+Raman identification for 300-5000 μm particles (LMPs). The integral (25-5000 μm) bulk mean abundance of MPs was found to be 428 items/L of meltwater, with fibers making 19 % in SMPs size range and 59 % in LMPs. Integral mean mass of MPs was estimated in 34.6 mg/L, with 99.6 % contribution from fragments of LMPs. Comparison with simple fragmentation models confirms deficit of SMPs (especially of fibers in size range 150-300 μm), suggested to result from their leakage with brine. Multivariate statistical analysis indicates strong positive correlation of large fiber (>300 μm) counts and ice salinity.
Collapse
Affiliation(s)
- Irina Chubarenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Lazaryuk
- Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, Russia
| | - Tatiana Orlova
- Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
| | - Olga Lobchuk
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Clarissa Raguso
- Earth and Environmental Science Department (DISAT), University of Milano Bicocca, Piazza Della Scienza 1, 20126 Milano, Italy
| | - Andrey Zyubin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Marina Lasagni
- Earth and Environmental Science Department (DISAT), University of Milano Bicocca, Piazza Della Scienza 1, 20126 Milano, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department (DISAT), University of Milano Bicocca, Piazza Della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
37
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
38
|
Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Li F, Ni Y, Cong J, Shen C, Ji P, Wang H, Yin L, Xu C. Wiping conditions and fabric properties influenced the microfiber shedding from non-woven products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1855-1866. [PMID: 36125181 DOI: 10.1039/d2em00292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disposable wipes and masks have come to be considered as underestimated sources of microfiber generation since the emergence of COVID-19. However, research into the creation of microfibers due to wiping with these non-woven products is scarce, and the potential effects of fabric properties on shedding behavior are unclear. This study investigated microfiber release from 7 wet wipes, 5 dry wipes, and 4 masks in response to the use of simulated daily wiping conditions on artificial skin. The dry wipes (77-568 p per sheet) shed more microfibers than the wet ones (21-190 p per sheet) after 2, 10, or 50 wiping cycles under a 9.8 N wiping force. In addition, an average of 56 microfibers could be released from per gram of wipe, and each square centimeter of wipe could release about 1.18 microfibers during wiping. Masks shed fewer microfibers than wipes due to the excellent shedding resistance of spunbond nonwoven fabrics and the strengthened mechanical properties granted by bonding points. Cellulose, polyethylene terephthalate (PET), and polypropylene (PP) were the major polymers in the microfibers shed by wipes, and the microfibers from masks were all PP. With regard to the influencing factors, the number of microfibers shed from wipes was positively associated with the number of wiping cycles (r = 0.983 and 0.960, p < 0.01) and wiping force (r = 0.980, p < 0.05), while it was negatively correlated with the moisture content (r = -0.992, p < 0.01). Interestingly, a stronger fiber entanglement degree in the wipes significantly improved the resistance to microfiber generation (r = -0.664, p < 0.05). The results highlighted for the first time that the bending coefficient (β = -5.05; 95% CI: -7.71, -2.40; p = 0.002) and fiber extraction force (β = -0.077; 95% CI: -0.123, -0.030; p = 0.005) significantly reduced the tendency for microfiber shedding. Although the number of microfibers shed from wiping was lower than those from domestic washing, there is still an urgent need to control the microfiber shedding tendencies of non-woven products through improving the manufacturing processes.
Collapse
Affiliation(s)
- Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yifan Ni
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Junhao Cong
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Peng Ji
- College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Huaping Wang
- College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Lanjun Yin
- Shenzhen Purcotton Technology Co., Ltd, Shenzhen, 518053, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
40
|
Isachenko I, Chubarenko I. Transport and accumulation of plastic particles on the varying sediment bed cover: Open-channel flow experiment. MARINE POLLUTION BULLETIN 2022; 183:114079. [PMID: 36058180 DOI: 10.1016/j.marpolbul.2022.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Contamination of sea bottom sediments by microplastics is widely confirmed, but the reasons for its patchiness remain poorly understood. Laboratory experiments are reported where combined sets of various plastic particles, different by shape, size, density, and flexibility, were transported by the step-wise increasing open-channel flow over the bottom covered with natural sediment of increasing grain size. For every particular flow velocity, observations revealed the recurrent formation of relatively narrow retention areas, where plastic particles lingered for some time in their motion. These areas follow the line of change of the sediment type from finer to coarser grains. It is shown that contact friction drives the retention of a particle at finer sediments, while particle/sediment-grain interaction becomes of importance when particles and sediment grains are of similar sizes. The presence of this effect can be expected for a relatively wide range of natural conditions.
Collapse
Affiliation(s)
- Igor Isachenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovski prospect, Moscow 117997, Russia; Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia.
| | - Irina Chubarenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovski prospect, Moscow 117997, Russia
| |
Collapse
|
41
|
Jarosz K, Janus R, Wądrzyk M, Wilczyńska-Michalik W, Natkański P, Michalik M. Airborne Microplastic in the Atmospheric Deposition and How to Identify and Quantify the Threat: Semi-Quantitative Approach Based on Kraków Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12252. [PMID: 36231552 PMCID: PMC9564561 DOI: 10.3390/ijerph191912252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Airborne microplastic is an emerging and widespread pollutant yet is still under-characterised and insufficiently understood. Detailed description of microplastic air pollution is crucial as it has been identified in human lungs and remote locations, highlighting the atmosphere as a medium of MP dispersion and transportation. The lack of standardization of methods for measuring and further monitoring of microplastic pollution is an obstacle towards assessment of health risks. Since the first recognition of MP presence in the atmosphere of Krakow in 2019, this research was conducted to further characterise and develop the methods for qualitative and quantitative analysis of airborne microplastic (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR); pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS); scanning electron microscopy-energy dispersive spectroscopy SEM-EDS) and pre-treatment of samples. The data were gathered in seven cycles from June 2019 to February 2020. The methods used in the study allowed the identification and analysis of the changing ratio of the different types of synthetic polymers identified in the atmospheric fallout (low-density polyethylene, nylon-66, polyethylene, polyethylene terephthalate, polypropylene and polyurethane). Observations of interactions between microplastic particles and the environment were conducted with analyses of surface changes due to degradation. Different phases attached to the microplastics surfaces, with some of the inorganic contaminants transported on these surfaces determined also to be of anthropogenic origin. The methodology proposed in this study allows further characterisation of microplastic from multiple locations to provide highly comparable data, leading to identification of the sources of this phenomenon, as well as seasonal changes.
Collapse
Affiliation(s)
- Kinga Jarosz
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| | - Rafał Janus
- Faculty of Energy and Fuels, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mariusz Wądrzyk
- Faculty of Energy and Fuels, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Piotr Natkański
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Marek Michalik
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| |
Collapse
|
42
|
Ding R, Ouyang F, Peng D, You J, Ding L, Ouyang Z, Liu P, Guo X. A case study of distribution and characteristics of microplastics in surface water and sediments of the seas around Shenzhen, southern coastal area of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156063. [PMID: 35597363 DOI: 10.1016/j.scitotenv.2022.156063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), known to cause environmental pollution, is attracting a growing attention worldwide owing to their extensive existence and potential risks to biota. The marginal sea areas are suspected to be especially susceptible to MPs pollution. Unfortunately, data on MPs in the surface water and sediments ecosystems are still limited, particularly in the southern coastal areas of China. The study was successfully utilized to explore the distribution and characteristics of MPs below 5 mm collected from 14 sites in the seas around Shenzhen, a typical special economic zone of China. MPs were detected in both surface water and sediments with concentrations ranging from 3.8 to 7.8 items per liter and 2.6 × 103 to 10.0 × 103 items per kilogram, respectively. The highest abundance of MPs appeared in S5/S9 and S14 in surface water and sediments, respectively. Fiber and film with small particle size (<0.5 mm) were identified as typical and abundant MPs type among all samples. In addition, polyethylene (PE) was considered as dominant forms of MPs in surface water and sediment samples. Results from this study indicated a positive correlation with abundance of MPs and urbanization rate, which also showed an evident difference of MPs in different urban functional areas. Based on the types and quantity of detected MPs, we assessed the risk of MPs pollution in this study area, and the ecological risk category of MPs was at a high level. Importantly, our work might be employed as a potential information so as to better understand MPs pollution, source tracing and ecological risk assessment, which enhances the possibility of achieving effective control and supervision of MPs pollution in southern coastal aera of China.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Fan Ouyang
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China.
| | - Jia You
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
43
|
Wu X, Liu P, Zhao X, Wang J, Teng M, Gao S. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129287. [PMID: 35714544 DOI: 10.1016/j.jhazmat.2022.129287] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution in global sediment has been intensely studied and recognized as the ultimate sink for residual MPs in terrestrial and aquatic ecosystems. During MP long-term retention in sediments, plastic-degrading bacteria (i.e., Flavobacteriaceae, Bacillus, Rhodobacteraceae, and Desulfobacteraceae) can utilize those MPs as their carbon and energy sources through enzyme (hydrolase and oxidoreductase) reactions, which further alter or transform high molecular weight MP polymers into lower molecular weight biodegradation byproducts (i.e., monomers and oligomers) and release toxic additives. In other words, MPs can act as durable substrates for plastic-degrading bacteria in sediments. However, to date, the biodegradation rates of MPs in sediment environments are still poorly understood due to their limited degradation efficiency. Herein, we review the enzyme-induced biodegradation processes of MPs in sediment environments, which is important for accessing the alteration of MP properties and their potential ecological risks after undergoing long-term weathering processes. In addition, the factors associated with the MP properties (polymer type, molecular weight, crystallinity, and hydrophobicity) and sediment conditions (sediment type, temperature, pH, salinity, and oxygen content) that influence plastic degradation processes are also reviewed. The mechanisms may relate to the MP properties and sediment conditions that can influence microbial abundance, enzyme concentrations, and enzyme activities, thus altering MP biodegradation ratios. We anticipate that the observations reviewed in this study will pose a new issue to better understand the formation process, fate, and potential ecological risks associated with aged MPs in sediment environments.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
44
|
Yao Z, Seong HJ, Jang YS. Environmental toxicity and decomposition of polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113933. [PMID: 35930840 DOI: 10.1016/j.ecoenv.2022.113933] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In the more than 100 years since the invention of plastics, various plastic polymers have been developed that exhibit different characteristics and have been widely used in production and life. In 2020 alone, nearly 400 million tons of plastics were produced globally. However, while plastic such as polyethylene brings us convenience, it also threatens environmental sustainability and human health. Due to insufficient recycling efficiency, millions of tons of polyethylene pollutants accumulate in terrestrial or marine environments each year. Polyethylene is elastic, chemically stable, and non-biodegradable, and the traditional disposal methods include landfilling and incineration. These methods are costly, unsustainable, and further increase the burden on the environment. Therefore, recent research has increasingly focused on the biodegradation of polyethylene. In this work, we briefly summarized polyethylene's properties and environmental toxicity. We also reviewed the recent advances in the biodegradation of polyethylene with a summary of traditional abiotic methods. Finally, we proposed a brief research direction in polyethylene study with the aspect of environmental toxicology and industrial applications of decomposition technology.
Collapse
Affiliation(s)
- Zhuang Yao
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon Jeong Seong
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
45
|
Hadiuzzaman M, Salehi M, Fujiwara T. Plastic litter fate and contaminant transport within the urban environment, photodegradation, fragmentation, and heavy metal uptake from storm runoff. ENVIRONMENTAL RESEARCH 2022; 212:113183. [PMID: 35390300 DOI: 10.1016/j.envres.2022.113183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
A significant portion of urban litter is plastic which contaminates the environment and threatens ecological safety. The conversion of plastic litter into small fragments called microplastics (MPs) intensifies their critical risks by facilitating their transport and altering their physicochemical features. This study focuses on low density polyethylene (LDPE) and polyethylene terephthalate (PET) as the main components of urban litter. The photodegradation of LDPE and PET MPs due to the accelerated weathering experiments is investigated through surface chemistry and morphology analysis. The influence of MPs' photodegradation on their fragmentation behavior is evaluated through the innovative accelerated mechanical weathering experiments that simulated the abrasion of MPs with the road deposits. Furthermore, the role of MPs as the vehicles to transport the heavy metals from the urban environment to the water resources is evaluated by studying the kinetics of lead (Pb) uptake by new and weathered MPs in synthetic stormwater. The surface morphology investigation revealed the formation of crazes and the crack networks onto the MPs due to the weathering experiments. The surface chemistry analysis revealed the generation of several oxidized carbon surface functional groups onto the photodegraded MPs and their increased susceptibility to fragmentation due to the abrasion with the road deposits. The photodegradation increased the Pb accumulation onto the LDPE and PET MPs from 467 μg/m2 and 21 μg/m2 to 2290 μg/m2 and 725 μg/m2, after five days of metal exposure. The fundamental knowledge developed in this research provides a better conceptual understanding of the mechanisms controlling MPs persistence and contaminant transport within the urban environment, which is crucial to estimate their negative impacts on the ecosystem.
Collapse
Affiliation(s)
- Md Hadiuzzaman
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA.
| | - Tomoko Fujiwara
- Department of Chemistry, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
46
|
Müller AK, Brehm J, Völkl M, Jérôme V, Laforsch C, Freitag R, Greiner A. Disentangling biological effects of primary nanoplastics from dispersion paints' additional compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113877. [PMID: 35849903 DOI: 10.1016/j.ecoenv.2022.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Microplastic particles (MP) and nanoplastic particles (NP) as persistent anthropogenic pollutants may impact environmental and human health. A relevant potential source of primary MP and NP is water-based dispersion paint which are commonly used in any household. Given the worldwide high application volume of dispersion paint and their diverse material composition MP and NP may enter the environment with unforeseeable consequences. In order to understand the relevance of these MP and NP from paint dispersion we investigated the components of two representative wall paints and analyzed their composition in detail. The different paint components were then investigated for their impact on the model organism Daphnia magna and on a murine cell line. Plastic NP, dissolved polymers, titanium dioxide NPs, and calcium carbonate MPs demonstrated adverse effects in both biological test systems, indicating detrimental consequences of several typical components of wall paints upon release into the environment. The outcome of this study may form the basis for the evaluation of impact on other organisms, environmental transport and impact, other related technical materials and for the development of strategies for the prevention of potential detrimental effects on organisms.
Collapse
Affiliation(s)
- Ann-Kathrin Müller
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Julian Brehm
- Department of Animal Ecology I and BayCEER, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Völkl
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Valérie Jérôme
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, D-95440 Bayreuth, Germany.
| | - Ruth Freitag
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, D-95440 Bayreuth, Germany.
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
47
|
Pfohl P, Wagner M, Meyer L, Domercq P, Praetorius A, Hüffer T, Hofmann T, Wohlleben W. Environmental Degradation of Microplastics: How to Measure Fragmentation Rates to Secondary Micro- and Nanoplastic Fragments and Dissociation into Dissolved Organics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11323-11334. [PMID: 35902073 PMCID: PMC9387529 DOI: 10.1021/acs.est.2c01228] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Understanding the environmental fate of microplastics is essential for their risk assessment. It is essential to differentiate size classes and degradation states. Still, insights into fragmentation and degradation mechanisms of primary and secondary microplastics into micro- and nanoplastic fragments and other degradation products are limited. Here, we present an adapted NanoRelease protocol for a UV-dose-dependent assessment and size-selective quantification of the release of micro- and nanoplastic fragments down to 10 nm and demonstrate its applicability for polyamide and thermoplastic polyurethanes. The tested cryo-milled polymers do not originate from actual consumer products but are handled in industry and are therefore representative of polydisperse microplastics occurring in the environment. The protocol is suitable for various types of microplastic polymers, and the measured rates can serve to parameterize mechanistic fragmentation models. We also found that primary microplastics matched the same ranking of weathering stability as their corresponding macroplastics and that dissolved organics constitute a major rate of microplastic mass loss. The results imply that previously formed micro- and nanoplastic fragments can further degrade into water-soluble organics with measurable rates that enable modeling approaches for all environmental compartments accessible to UV light.
Collapse
Affiliation(s)
- Patrizia Pfohl
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, Vienna 1030, Austria
| | - Marion Wagner
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Lars Meyer
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Prado Domercq
- Department
of Environmental Science, Stockholm University, Stockholm 10691, Sweden
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1090 GE, Netherlands
| | - Thorsten Hüffer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Research
Platform Plastics in the Environment and Society (PLENTY), University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Research
Platform Plastics in the Environment and Society (PLENTY), University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Wendel Wohlleben
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
- . Tel.: +49 621 6095339
| |
Collapse
|
48
|
Wu X, Zhao X, Chen R, Liu P, Liang W, Wang J, Teng M, Wang X, Gao S. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. WATER RESEARCH 2022; 221:118825. [PMID: 35949074 DOI: 10.1016/j.watres.2022.118825] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
According to extensive in situ investigations, the microplastics (MPs) determined in current wastewater treatment plants (WWTPs) are mostly aged, with roughened surfaces and varied types of oxygen-containing functional groups (i.e., carbonyl and hydroxyl). However, the formation mechanism of aged MPs in WWTPs is still unclear. This paper systematically reviewed MP fragmentation and generation mechanisms in WWTPs at different treatment stages. The results highlight that MPs are prone to undergo physical abrasion, biofouling, and chemical oxidation-associated weathering in WWTPs at different treatment stages and can be further decomposed into smaller secondary MPs, including in nanoplastics (less than 1000 nm or 100 nm in size), suggesting that WWTPs can act as a formation source for MPs in aquatic environments. Sand associated mechanical crashes in the primary stage, microbes in active sewage sludge-related biodegradation in the secondary stage, and oxidant-relevant chemical oxidation processes (light photons, Cl2, and O3) in the tertiary stage are the dominant causes of MP formation in WWTPs. For MP formation mechanisms in WWTPs, external environmental forces (shear and stress forces, UV radiation, and biodegradation) can first induce plastic chain scission, destroy the plastic molecular arrangement, and create abundant pores and cracks on the MP surface. Then, the physicochemical properties (modulus of elasticity, tensile strength and elongation at break) of MPs shift consequently and finally breakdown into smaller secondary MPs or nanoscale plastics. Overall, this review provides new insights to better understand the formation mechanism, occurrence, fate, and adverse effects of aged microplastics/nanoplastics in current WWTPs.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
49
|
Baseline Marine Litter Surveys along Vietnam Coasts Using Citizen Science Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14094919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marine litter is a significant threat to the marine environment, human health, and the economy. In this study, beach litter surveys along Vietnamese coasts were conducted in a local context to quantify and characterize marine litter using the modified GESAMP marine litter monitoring guideline. A total of 21,754 items weighing 136,820.2 g was recorded across 14 surveys from September 2020 to January 2021. Plastic was the most abundant type of litter by both quantity (20,744 items) and weight (100,371.2 g). Fishing gear 1 (fishing plastic rope, net pieces, fishing lures and lines, hard plastic floats) and soft plastic fragments were the most frequently observed items (17.65% and 17.24%, respectively). This study not only demonstrates the abundance and composition of marine litter in Vietnam, it also provides valuable information for the implementation of appropriate preventive measures, such as the redesign of collection, reuse, and recycling programs, and informs policy and priorities, with a focus on action and investment in Vietnam. Moreover, insights from this study indicate that citizen science is a useful approach for collecting data on marine litter in Vietnam.
Collapse
|
50
|
Seasonal Distribution, Composition, and Inventory of Plastic Debris on the Yugang Park Beach in Zhanjiang Bay, South China Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084886. [PMID: 35457751 PMCID: PMC9032269 DOI: 10.3390/ijerph19084886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Plastic debris contamination in marine environments is a global problem that poses a considerable threat to the sustainability and health of coastal ecosystems. Marine beaches, as the key zones where terrestrial plastic debris reach coastal waters, are faced with the increasing pressures of human activities. In this study, we explored the distribution, composition, and inventory of plastic debris over seasonal and tidal zones at the Yugang Park Beach (YPB) in Zhanjiang Bay, South China Sea, to provide a baseline for plastic debris on a marine beach. The results showed mean abundance of plastic debris in summer (6.00 ± 2.10 items/m2) was significantly greater than that in winter (3.75 ± 2.12 items/m2). In addition, the composition of plastic debris ranged in size mainly from 1 to 5 mm and 0.5 to 2.5 cm in winter and summer, respectively. In terms of composition, white plastic debris was the most common (81.1%), and foam was the most abundant (64.4%). Moreover, there was a significant relationship between the abundance of plastic debris and sand grain size fraction (p < 0.05), implying the abundances of microplastic debris were more easily impacted by sand grain size (>2 mm). In total inventory, there were about 1.18 × 105 and 2.95 × 105 items of plastic debris on the YPB in winter and summer, respectively. The tidal variation and human activities are responsible for the plastic debris accumulation. This study provided a method to quantify the inventory of plastic debris on a beach and could be helpful to consider regional tidal variations and critical source areas for effective plastic debris clean-up.
Collapse
|