1
|
Pan Y, Zhao W, Fang JKH, Shi J, Aboraya MH, Li D, Hu M, Wang Y. Polyamide microplastics can mitigate the effects of pathogenic bacterium on the health of marine mussels. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135646. [PMID: 39217938 DOI: 10.1016/j.jhazmat.2024.135646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Vibrio parahaemolyticus and microplastics are prevalent in the ocean. Bacteria attach onto plastic particles, forming harmful biofilms that collectively threaten bivalve health. This study investigates the interaction between polyamide microplastics (PA: particle size 38 ± 12 µm) and V. parahaemolyticus, as well as their combined impact on thick-shelled mussels (Mytilus coruscus). We introduced 1011 CFU/L of V. parahaemolyticus into varying PA concentrations (0, 5, 50, and 500 particles/L) to observe growth over 14 h and biofilm formation after 48 h. Our findings indicate that microplastics suppress biofilm formation and virulence gene expression. Four treatments were established to monitor mussel responses: a control group without PA or V. parahaemolyticus; a group with 50 particles/L PA; a group with 1011 CFU/L V. parahaemolyticus; and a co-exposure group with both 50 particles/L PA and 1011 CFU/L V. parahaemolyticus, over a 14-day experiment. However, combined stress from microplastics and Vibrio led to immune dysregulation in mussels, resulting in intestinal damage and microbiome disruption. Notably, V. parahaemolyticus had a more severe impact on mussels than microplastics alone, yet their coexistence reduced some harmful effects. This study is the first to explore the interaction between microplastics and V. parahaemolyticus, providing important insights for ecological risk assessments.
Collapse
Affiliation(s)
- Yiting Pan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Wenxin Zhao
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China
| | - Jianhang Shi
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Mohamed H Aboraya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; Lingang Special Area Marine Biomedical Innovation Platform, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Gostyukhina OL, Gavruseva TV, Tkachuk AA, Chelebieva ES, Podolskaya MS, Borovkov AB, Bogacheva EA, Lavrichenko DS, Kladchenko ES, Yu AA. How water acidification influences the organism antioxidant capacity and gill structure of Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) at normoxia and hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111682. [PMID: 38908680 DOI: 10.1016/j.cbpa.2024.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Mussels were exposed to a low pH (7.3) under normal dissolved oxygen (DO) conditions (8 mg/L), and hypoxia (2 mg/L) for 8 days, and samples were collected on days 1, 3, 6, and 8 to evaluate dynamic changes of physiological responses. Cytoplasmic concentrations of reactive oxygen species (ROS) and levels of DNA damage were measured in hemocytes, while the activity of catalase (CAT) and superoxide dismutase (SOD) and histopathological changes were assessed in gills. The results revealed that while water acidification did not significantly affect the activity of SOD and CAT in gills under normoxic and hypoxic conditions, there was a trend towards suppression of CAT activity at the end of the experimental period (day 8). Similarly, we did not observe increased formation of ROS in hemocytes or changes in the levels of DNA damage during the experimental period. These results strongly suggest that the oxidative stress response system in mussels is relatively stable to experimental conditions of acidification and hypoxia. Experimental acidification under normoxia and hypoxia caused changes to the structure of the gills, leading to various histopathological alterations, including dilation, hemocyte infiltration into the hemal sinuses, intercellular edema, vacuolization of epithelial cells in gill filaments, lipofuscin accumulation, changes in the shape and adjacent gill filaments, hyperplasia, exfoliation of the epithelial layer, necrosis, swelling, and destruction of chitinous layers (chitinous rods). Most of these alterations were reversible, non-specific changes that represent a general inflammatory response and changes in the morphology of the gill filaments. The dynamics of histopathological alterations suggests an active adaptive response of gills to environmental stresses. Taken together, our data indicate that Mediterranean mussels have a relative tolerance to water acidification and hypoxia at tissue and cellular levels.
Collapse
Affiliation(s)
- O L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - T V Gavruseva
- Laboratory of Aquatic Ecotoxicology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - A A Tkachuk
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - E S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - M S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - A B Borovkov
- Department of Biotechnology and Phytoresources, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - E A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - D S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - E S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia.
| | - Andreyeva A Yu
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| |
Collapse
|
3
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Rare earth elements and warming: Implications for adult mussel health and sperm quality. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106666. [PMID: 39133969 DOI: 10.1016/j.marenvres.2024.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effects of europium (Eu) exposure (10 μg/L), warming (a 4 °C increase), and their combination on Mytilus galloprovincialis. Biochemical and histopathological changes in adult mussels were evaluated after a 28-day exposure period. Additionally, biochemical and physiological alterations in sperm were measured following a 30-min exposure period. The overall responses to each treatment were assessed using the Integrated Biological Response index version 2 (IBRv2). In adult mussels, warming elevated metabolism and activated glutathione S-transferases (GSTs), leading to redox imbalance and cellular damage. Europium exposure alone slightly enhanced metabolism and GSTs activity, resulting in cellular damage and histopathological injuries in digestive tubules. The combined exposure to Eu and warming was the most detrimental treatment for adults, as indicated by the highest IBRv2 value. This treatment slightly increased metabolism and uniquely elevated the activity of antioxidant enzymes, as well as GSTs and carboxylesterases. Despite these responses, they were inadequate to prevent redox imbalance, cellular damage, and histopathological injuries in digestive tubules and gills. Regarding sperm, warming reduced reactive oxygen species (ROS) production but raised lipid peroxidation levels. Sperm exposed to this treatment also increased their oxygen consumption and exhibited reduced velocity. The IBRv2 indicated that Eu was the most harmful treatment for sperm, significantly increasing ROS production and notably decreasing sperm velocity. When combined with warming, Eu elevated superoxide anion (O2-) production, lowered sperm velocity, and increased oxygen consumption. This study underscores the importance of investigating the effects of rare earth elements and their interaction with climate change-related factors.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Zhang J, Wang N, Zhang Z, Gao Y, Dong J, Gao X, Yuan H, Li X. Combined effects of toxic Microcystis aeruginosa and high pH on antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116568. [PMID: 38850693 DOI: 10.1016/j.ecoenv.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Due to increasing anthropogenic perturbation and water eutrophication, cyanobacterial blooms (CYBs) have become a global ecological and environmental problem. Toxic CYBs and elevated pH are considered to be the two key stressors associated with eutrophication in natural waters, particularly in the event of CO2 depletion induced by dense blooms. However, previous research has been focused on investigating the impacts of toxic CYBs or pH changes in isolation, whereas the interactive effects of such stressors on edible bivalves that inhabit CYB waters still lack information. In this study, the combined effects of toxic Microcystis aeruginosa and pH shifts on the antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea were explored. The results showed that the activity of antioxidant enzymes was significantly impacted by the interactive effects between toxic M. aeruginosa exposure and time course, yet pH shifts showed no significant effects on the activities of these antioxidant enzymes, implying that the antioxidant response in C. fluminea was mainly triggered by toxic M. aeruginosa exposure. Toxic M. aeruginosa also induced an increased production of reactive oxygen species and malondialdehyde in treated clams, particularly under high pH settings. The elevated lysosomal enzyme activity helped C. fluminea defend against toxic M. aeruginosa exposure under high pH conditions. The principal component analysis (PCA) and the integrated biomarker response (IBR) results suggested that the treated clams were subjected to the elevated toxicity of toxic M. aeruginosa in conditions of high pH. The heat shock proteins-related genes might be triggered to resist the oxidative damage in treated clams. Moreover, the upregulation of TNF and casp8 genes indicated the potential activation of the caspase8-mediated apoptotic pathway through TNF receptor interaction, potentially resulting in apoptosis. The TUNEL assay results further confirmed that apoptosis appeared in treated clams. These findings improve our understanding of the combined toxicological effects of harmful algae and pH shifts on bivalves, which will provide insights into a comprehensive ecological risk assessment of toxic CYBs to edible bivalve species.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| | - Ning Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaofei Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Huatao Yuan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| |
Collapse
|
5
|
Masanja F, Luo X, Jiang X, Xu Y, Mkuye R, Liu Y, Zhao L. Elucidating responses of the intertidal clam Ruditapes philippinarum to compound extreme oceanic events. MARINE POLLUTION BULLETIN 2024; 204:116523. [PMID: 38815474 DOI: 10.1016/j.marpolbul.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.
Collapse
Affiliation(s)
| | - Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoyan Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Liu
- Pearl Oyster Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Science and Technology Innovation Center of Marine Invertebrates, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
6
|
Signorini SG, Munari M, Federico L, Farè F, Fontana M, Caruso D, Freitas R, Paciello S, D'Aniello I, Gambi MC, Della Torre C. Living under natural conditions of ocean acidification entails energy expenditure and oxidative stress in a mussel species. MARINE POLLUTION BULLETIN 2024; 203:116470. [PMID: 38728956 DOI: 10.1016/j.marpolbul.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO2 vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.10, 7.7 and up to <7.4). Untargeted metabolomics and biochemical endpoints related to energetic metabolism, oxidative stress/damage, neurotoxicity and immune defense were analyzed. Corrosion of the valves occurred at low pH. A separation of the metabolome was observed along the pH gradient. Metabolites belonging to amino acids, nucleosides, lipids and organic osmolytes were significantly reduced in the organisms from the most acidified sites. The content of reactive oxygen species and the activity of glutathione peroxidase were reduced in organisms from the acidified sites compared to ambient pH, and no oxidative damage was induced. Overall results suggested the presence of an energy cost underpinning long-term survival in acidified conditions for this species.
Collapse
Affiliation(s)
- Silvia Giorgia Signorini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | - Lorenzo Federico
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fiorenza Farè
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Manuela Fontana
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy; Department of Pharmacological and Molecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rosa Freitas
- CESAM - Centre of Marine and Environmental Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sofia Paciello
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Ilaria D'Aniello
- Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | | | - Camilla Della Torre
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
7
|
Montúfar-Romero M, Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C. Hypoxia in the Blue Mussel Mytilus chilensis Induces a Transcriptome Shift Associated with Endoplasmic Reticulum Stress, Metabolism, and Immune Response. Genes (Basel) 2024; 15:658. [PMID: 38927594 PMCID: PMC11203016 DOI: 10.3390/genes15060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The increase in hypoxia events, a result of climate change in coastal and fjord ecosystems, impacts the health and survival of mussels. These organisms deploy physiological and molecular responses as an adaptive mechanism to maintain cellular homeostasis under environmental stress. However, the specific effects of hypoxia on mussels of socioeconomic interest, such as Mytilus chilensis, are unknown. Using RNA-seq, we investigated the transcriptomic profiles of the gills, digestive gland, and adductor muscle of M. chilensis under hypoxia (10 days at 2 mg L-1) and reoxygenation (10 days at 6 mg L-1). There were 15,056 differentially expressed transcripts identified in gills, 11,864 in the digestive gland, and 9862 in the adductor muscle. The response varied among tissues, showing chromosomal changes in Chr1, Chr9, and Chr10 during hypoxia. Hypoxia regulated signaling genes in the Toll-like, mTOR, citrate cycle, and apoptosis pathways in gills, indicating metabolic and immunological alterations. These changes suggest that hypoxia induced a metabolic shift in mussels, reducing reliance on aerobic respiration and increasing reliance on anaerobic metabolism. Furthermore, hypoxia appeared to suppress the immune response, potentially increasing disease susceptibility, with negative implications for the mussel culture industry and natural bed populations. This study provides pivotal insights into metabolic and immunological adaptations to hypoxia in M. chilensis, offering candidate genes for adaptive traits.
Collapse
Affiliation(s)
- Milton Montúfar-Romero
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Biotecnology Center, Universidad de Concepción, Concepción 4030000, Chile
- Instituto Público de Investigación de Acuicultura y Pesca (IPIAP), Guayaquil 090314, Ecuador
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Biotecnology Center, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (D.V.-M.)
- Biotecnology Center, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
8
|
Jiang N, Chang X, Huang W, Khan FU, Fang JKH, Hu M, Xu EG, Wang Y. Physiological response of mussel to rayon microfibers and PCB's exposure: Overlooked semi-synthetic micropollutant? JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134107. [PMID: 38554520 DOI: 10.1016/j.jhazmat.2024.134107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Rayon microfibers, micro-sized semi-synthetic polymers derived from cellulose, have been frequently detected and reported as "micropollutants" in marine environments. However, there has been limited research on their ecotoxicity and combined effects with persistent organic pollutants (POPs). To address these knowledge gaps, thick-shell mussels (Mytilus coruscus) were exposed to rayon microfibers at 1000 pieces/L, along with polychlorinated biphenyls (PCBs) at 100 and 1000 ng/L for 14 days, followed by a 7-day recovery period. We found that rayon microfibers at the environmentally relevant concentration exacerbated the irreversible effects of PCBs on the immune and digestive systems of mussels, indicating chronic and sublethal impacts. Furthermore, the results of 16 s rRNA sequencing demonstrated significant effects on the community structure, species richness, and diversity of the mussels' intestinal microbiota. The branching map analysis identified the responsive bacteria to rayon microfibers and PCBs belonging to the Proteobacteria, Actinobacteriota, and Bacteroidota phyla. Despite not being considered a conventional plastic, the extensive and increasing use of rayon fibers, their direct toxicological effects, and their interaction with POPs highlight the need for urgent attention, investigation, and regulation to address their contribution to "micropollution".
Collapse
Affiliation(s)
- Ningjin Jiang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xueqing Chang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
9
|
Prakash S, Kumar A. Influencing intertidal food web: Implications of ocean acidification on the physiological energetics of key species the 'wedge' clam Donax faba. MARINE POLLUTION BULLETIN 2024; 202:116366. [PMID: 38621355 DOI: 10.1016/j.marpolbul.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Ocean acidification has become increasingly severe in coastal areas. It poses emerging threats to coastal organisms and influences ecological functioning. Donax faba, a dominant clam in the intertidal zone of the Bay of Bengal, plays an important role in the coastal food web. This clam has been widely consumed by the local communities and also acts as a staple diet for shorebirds and crustaceans. In this paper, we investigated how acidified conditions will influence the physiology, biochemical constituents, and energetics of Donax faba. Upon incubation for 2 months in lowered pH 7.7 ± 0.05 and control 8.1 ± 0.05 conditions, we found a delayed growth in the acidified conditions followed by decrease in calcium ions in the clam shell. Although not significant, we found the digestive enzymes showed a downward trend. Total antioxidant was significantly increased in the acidified condition compared to the control. Though not significant, the expression level of MDA and antioxidant enzymes (SOD, CAT, GST, GPX, and APX) showed increasing trend in acidified samples. Among nutrients such as amino acids and fatty acids, there was no significant difference between treatments, however, showed a downward trend in the acidified conditions compared to control. Among the minerals, iron and zinc showed significant increase in the acidified conditions. The above results suggest that the clam growth, and physiological energetics may have deleterious effects if exposed for longer durations at lowered pH condition thereby affecting the organisms involved in the coastal food web.
Collapse
Affiliation(s)
- S Prakash
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram 623526, Tamil Nadu India.
| | - Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram 623526, Tamil Nadu India.
| |
Collapse
|
10
|
Ding R, Yang R, Fu Z, Zhao W, Li M, Yu G, Ma Z, Bai Z. Response of antioxidation and immunity to combined influences of pH and ammonia nitrogen in the spotted babylon ( Babylonia areolata). Heliyon 2024; 10:e29205. [PMID: 38638986 PMCID: PMC11024560 DOI: 10.1016/j.heliyon.2024.e29205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Spotted babylon were exposed to three different pH levels (7.0, 8.0 and 9.0) and four different concentrations of ammonia nitrogen (0.02, 1.02, 5.10 and 10.20 mg/L) in seawater to determine their acute toxicity and physiological responses to environmental fluctuation. The study evaluated four antioxidant enzymes: catalase (CAT), alkaline, superoxide dismutase (SOD), peroxidase (POD) and glutathione peroxidase (GSH-PX), and two immunoenzymes: acid phosphatase (ACP) and phosphatase (AKP). Over time, the immunoenzyme activity was significantly affected by pH and ammonia nitrogen concentration. After being exposed to pH and ammonia nitrogen, the spotted babylon showed signs of unresponsiveness to external stimuli, reduced vitality, slow movement, and an inability to maintain an upright position. Over time, the spotted babylon exhibited a trend of increasing and then decreasing GSH-PX, CAT, and SOD activities to adapt to the changing environment and enhance its immunity. On the contrary, the POD and ACP activities exhibited a decreasing trend initially, followed by an increasing trend over time and the AKP activity showed a gradual increase with time. The combined effect of pH and ammonia was found to be stronger than the effect of either factor alone. The interaction between pH and ammonia increased the activity of the spotted babylon antioxidant enzymes, induced oxidative stress, and reduced the ability of the spotted babylon's non-specific immune system to reverse it. Thus, the reverse-back of the spotted babylon was higher when pH and ammonia stress were dual than when pH or ammonia were single-factor stresses. The study results will establish a theoretical basis for analyzing the risk of multiple factors to the spotted babylon, and also enrich the basic information about the shellfish immune system.
Collapse
Affiliation(s)
- Ruixia Ding
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wang Zhao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Zemin Bai
- Yazhou Bay Agriculture and Aquaculture Co., Ltd., Sanya 572025, China
| |
Collapse
|
11
|
Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Yuan X, Zhao J. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115806. [PMID: 38091672 DOI: 10.1016/j.ecoenv.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The increasing prevalence of antibiotics in seawater across global coastal areas, coupled with the ocean acidification induced by climate change, present a multifaceted challenge to marine ecosystems, particularly impacting the key physiological processes of marine organisms. Apoptosis is a critical adaptive response essential for maintaining cellular homeostasis and defending against environmental threats. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on apoptosis and the underlying mechanisms in hemocytes of A. irradians irradians were determined through flow cytometry analysis, comet assay, oxidative stress biomarkers analysis, and transcriptome analysis. Results showed that apoptosis could be triggered by either AM exposure or OA exposure, but through different pathways. Exposure to AM leads to mitochondrial dysfunction and oxidative damage, which in turn triggers apoptosis via a series of cellular events in both intrinsic and extrinsic pathways. Conversely, while OA exposure similarly induced apoptosis, its effects are comparatively subdued and are predominantly mediated through the intrinsic pathway. Additionally, the synergistic effects of AM and OA exposure induced pronounced mitochondrial dysfunction and oxidative damages in the hemocytes of A. irradians irradians. Despite the evident cellular distress and the potential initiation of apoptotic pathways, the actual execution of apoptosis appears to be restrained, which might be attributed to an energy deficit within the hemocytes. Our findings underscore the constrained tolerance capacity of A. irradians irradians when faced with multiple environmental stressors, and shed light on the ecotoxicity of antibiotic pollution in the ocean under prospective climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Ke Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiutang Yuan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
12
|
Servetto N, Ruiz MB, Martínez M, Harms L, de Aranzamendi MC, Alurralde G, Giménez D, Abele D, Held C, Sahade R. Molecular responses to ocean acidification in an Antarctic bivalve and an ascidian. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166577. [PMID: 37633374 DOI: 10.1016/j.scitotenv.2023.166577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, a result that differ from the general trend, which describes a higher impact on calcifying species. This calls for discussion of potential effects on non-calcifying species, such as ascidians, a diverse and abundant group that form extended three-dimensional clusters in shallow waters and shelf areas in the Southern Ocean.
Collapse
Affiliation(s)
- N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.
| | - M B Ruiz
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany; Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - M Martínez
- Universidad de la Republica, Montevideo, Uruguay
| | - L Harms
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - G Alurralde
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden; Baltic Marine Environment Protection Commission HELCOM, Helsinki FI-00160, Finland
| | - D Giménez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - D Abele
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - C Held
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.
| |
Collapse
|
13
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
14
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Gadolinium accumulation and its biochemical effects in Mytilus galloprovincialis under a scenario of global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116120-116133. [PMID: 37910362 PMCID: PMC10682062 DOI: 10.1007/s11356-023-30439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 μg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Kim MJ, Kim JA, Lee DW, Park YS, Kim JH, Choi CY. Oxidative Stress and Apoptosis in Disk Abalone ( Haliotis discus hannai) Caused by Water Temperature and pH Changes. Antioxidants (Basel) 2023; 12:antiox12051003. [PMID: 37237869 DOI: 10.3390/antiox12051003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Ocean warming and acidification can induce oxidative stress in marine species, resulting in cellular damage and apoptosis. However, the effects of pH and water temperature conditions on oxidative stress and apoptosis in disk abalone are poorly understood. This study investigated, for the first time, the effects of different water temperatures (15, 20, and 25 °C) and pH levels (7.5 and 8.1) on oxidative stress and apoptosis in disk abalone by estimating levels of H2O2, malondialdehyde (MDA), dismutase (SOD), catalase (CAT), and the apoptosis-related gene caspase-3. We also visually confirmed apoptotic effects of different water temperatures and pH levels via in situ hybridization and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The levels of H2O2, MDA, SOD, CAT, and caspase-3 increased under low/high water temperature and/or low pH conditions. Expression of the genes was high under high temperature and low pH conditions. Additionally, the apoptotic rate was high under high temperatures and low pH conditions. These results indicate that changes in water temperature and pH conditions individually and in combination trigger oxidative stress in abalone, which can induce cell death. Specifically, high temperatures induce apoptosis by increasing the expression of the apoptosis-related gene caspase-3.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Dae-Won Lee
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, SunMoon University, Asan 31460, Republic of Korea
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
16
|
Zhou Y, Jin Q, Xu H, Wang Y, Li M. Chronic nanoplastic exposure induced oxidative and immune stress in medaka gonad. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161838. [PMID: 36716889 DOI: 10.1016/j.scitotenv.2023.161838] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastic (NP) pollution is a global issue because of its widespread occurrence and potential toxicity. Many studies have investigated the impacts of the short-term toxicity of NPs on organisms. Until now, only a few studies have assessed the toxicological effects of prolonged exposure to NPs at low concentrations in fish. In this study, the effects of NPs (nano-polystyrene microspheres, diameter: 100 nm) on immune and oxidative stress response, histopathology, and survival in medaka were evaluated. The effects of different concentrations (0, 10, 104, and 106 particles/L) of nanoplastics were studied in medaka Oryzias latipes after 3 months of exposure. Lysozyme enzyme activity, oxidative stress-related biomarkers (i.e., superoxide dismutase, catalase, and glutathione peroxidase), and malondialdehyde levels were decreased under NP exposure. The gonadal histology showed that high NP exposure (106 particles/L) inhibited the process of spermatogenesis and oogenesis processes, implying delayed maturation of the gonad. Furthermore, the IBR and PCA analysis revealed the potential biotoxicity of NPs and the total survival rate of medaka was significantly reduced due to the long-term exposure to NPs. Overall, prolonged exposure to low concentrations of NPs is harmful to the health of medaka gonads. In the long run, this may threaten the fish reproduction and population, suggesting the need for long-term toxicological studies to predict the aquatic animal health in nature.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Qian Jin
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Haijing Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
17
|
The influence of ocean acidification and warming on responses of Scylla serrata to oil pollution: An integrated biomarker approach. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110847. [PMID: 36921914 DOI: 10.1016/j.cbpb.2023.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Anthropogenic activities primarily combustion of fossil fuel is the prime cause behind the increased concentration of CO2 into the atmosphere. As a consequence, marine environments are anticipated to experience shift towards lower pH and elevated temperatures. Moreover, since the industrial revolution the growing demand for petroleum-based products has been mounting up worldwide leading to severe oil pollution. Sundarbans estuarine system (SES) is experiencing ocean warming, acidification as well as oil pollution from the last couple of decades. Scylla serrata is one of the most commercially significant species for aquaculture in coastal areas of Sundarbans. Thus, the prime objective of this study is to delineate whether exposure under ocean warming and acidification exacerbates effect of oil spill on oxidative stress of an estuarine crab S. serrata. Animals were separately exposed under current and projected climate change scenario for 30 days. After this half animals of each treatment were exposed to oil spill conditions for 24 h. Oxidative stress status superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lipid peroxidation (LPO level) and DNA damage (Comet assay) were measured. Augmented antioxidant and detoxification enzyme activity was noted except for SOD but failed to counteract LPO and DNA damage. The present results clearly highlighted the detrimental combined effect of OWA and pollution on oxidative stress status of crabs that might potentially reduce its population and affect the coastal aquaculture in impending years.
Collapse
|
18
|
Belivermiş M, Kılıç Ö, Gezginci-Oktayoglu S, Sezer N, Demiralp S, Şahin B, Dupont S. Physiological and gene expression responses of the mussel Mytilus galloprovincialis to low pH and low dissolved oxygen. MARINE POLLUTION BULLETIN 2023; 187:114602. [PMID: 36652859 DOI: 10.1016/j.marpolbul.2023.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The prevalence and frequency of hypoxia events have increased worldwide over the past decade as a consequence of global climate change and coastal biological oxygen depletions. On the other hand, anthropogenic emissions of CO2 and consequent accumulation in the sea surface result in a perturbation of the seawater carbonate system, including a decrease in pH, known as ocean acidification. While the effect of decreases in pH and dissolved oxygen (DO) concentration is better understood, their combined effects are still poorly resolved. Here, we exposed adult mussels (Mytilus galloprovincialis) to two pHs (8.27 and 7.63) and DO concentrations (7.65 and 2.75 mg L-1) over 17 days in a full-factorial design. These levels correspond to extremes of the present natural variability and are relevant in the context of ocean acidification and hypoxia. No mortality was observed during the experiment. However, sublethal effects were observed for clearance and oxygen consumption rates, as well as total haemocytes count and haemocytes viability and gene expression in mussels exposed to the combination of low pH and low DO. Respiration and excretion rates were not significantly impacted by low pH and DO, alone or in combination. Overall, low pH alone led to a decrease in all tested physiological parameters while low DO alone led to a decline in clearance rate, haemocyte parameters and an increase in carbohydrate content. Both parameters led to up- or down-regulation of most of the selected genes. Not surprisingly, the combined effect of low pH and low DO could not be predicted by a simple arithmetic additive response at the effect level, highlighting more complex and non-linear effects.
Collapse
Affiliation(s)
- Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Türkiye.
| | - Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Türkiye
| | - Selda Gezginci-Oktayoglu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Türkiye
| | - Narin Sezer
- Head of Medical Services and Techniques Department, Medical Laboratory Techniques Program, Istanbul Arel University, 34295 Sefaköy, Istanbul, Türkiye
| | - Selcan Demiralp
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Berna Şahin
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Sam Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, 45178 Fiskebäckskil, Sweden; International Atomic Energy Agency, Environment Laboratories, 98000, Principality of Monaco, Monaco
| |
Collapse
|
19
|
Wang X, Zhang Q, Zhang T, Shao S, Wang Q, Dong Z, Zhao J. Evaluation of antioxidant capacity and digestive enzyme activities in Mytilus galloprovincialis exposed to nanoplastics under different patterns of hypoxia. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105849. [PMID: 36565507 DOI: 10.1016/j.marenvres.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In the marine environment, plastic pollution may occur simultaneously with hypoxia. However, current ecological risk assessments of nanoplastics have rarely considered the impact of additional environmental factors, such as hypoxia. In this study, we investigated the effect of polystyrene nanospheres (PS-NPs) on the digestive performance (antioxidant system and digestive enzymes) of mussels Mytilus galloprovincialis under different patterns of hypoxia (normoxia, constant hypoxia, and fluctuating hypoxia). The result showed that PS-NPs caused oxidative damage in the digestive glands of mussels, while all patterns of hypoxia exacerbated this oxidative damage. Activities of four digestive enzymes (α-amylase, cellulase, trypsin, and lipase) were examined. Among these, the activity of the α-amylase was inhibited by PS-NPs, and the inhibition was aggravated by all the hypoxia patterns. The cellulase activity and trypsin activity was enhanced by PS-NPs, and the increase was further stimulated by hypoxia. Lipase activity was not affected by PS-NPs alone, but significant inhibition was detected after the coexposure to PS-NPs and hypoxia. Conclusively, the combined stress of hypoxia and nanoplastics can significantly affect the digestive performance of mussels and may alter the mussel nutrient uptake strategy. Our work has provided new insight into the ecological risk assessment of plastics under global climate change.
Collapse
Affiliation(s)
- Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shengyuan Shao
- Yantai Institute of China Agricultural University, Yantai, Shandong, 264670, PR China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
20
|
Tao W, Ou J, Wu D, Zhang Q, Han X, Xie L, Li S, Zhang Y. Heat wave induces oxidative damage in the Chinese pond turtle (Mauremys reevesii) from low latitudes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1053260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IntroductionGlobal warming has led to frequent heat waves, causing global organisms to face severe survival challenges. However, the way in which heat waves threaten the fitness and survival of animals remains largely unclear. Oxidative damage and immunity are widely considered the link between heat waves and threats to animals.MethodsTo evaluate the oxidative damage caused by heat waves and to reveal the physiological resistance to heat waves by the antioxidant defense of animals from different latitudes, we exposed both high-latitude (Zhejiang) and low-latitude (Hainan) populations of Chinese pond turtle (Mauremys reevesii) to simulate heat waves and a moderate thermal environment for 1 week, respectively. Next, we compared the oxidative damage by malondialdehyde (MDA) and antioxidant capacity by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC) in the liver tissues and evaluated the innate immunity by serum complement protein levels (C3, C4) and lysozyme activity in plasma of turtles.Results and discussionWe found that heat waves significantly increased the content of MDA and the activity of CAT, whereas it decreased the activity of SOD, T-AOC, and GSH/GSSG in turtles from low latitudes. Furthermore, heat waves increased CAT activity but decreased GSH/GSSG in turtles from high latitudes. Although the turtles from high latitudes had higher levels of innate immunity, the heat waves did not affect the innate immunity of C3, C4, or lysozyme in either population. These results indicate that the low-latitude population suffered higher oxidative damage with lower antioxidant capacities. Therefore, we predict that Chinese pond turtles from low latitudes may be more vulnerable to heat waves caused by climate warming. This study reveals the physiological and biochemical resistance to heat waves in Chinese pond turtles from different latitudes and highlights the importance of integrative determination of fitness-related responses in evaluating the vulnerability of ectotherms from different latitudes to climate warming.
Collapse
|
21
|
Thangal SH, Muralisankar T, Anandhan K, Gayathri V, Yogeshwaran A. Effect of CO 2 driven ocean acidification on the mud crab Scylla serrata instars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119995. [PMID: 36007788 DOI: 10.1016/j.envpol.2022.119995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The decreasing ocean pH seems to adversely affect marine organisms, including crustaceans, which leads to potential threats to seafood safety. The present investigation evaluated the effect of seawater acidification on the edible marine mud crab Scylla serrata instars. The experimental setup was designed using a multi-cell cage based system assembled with 20 pre holed PVC pipes containing 20 individual crabs to avoid cannibalism. The crab instars were exposed to CO2 driven acidified seawater at pH 7.8 (IPCC forecast pH at the end of the 21st century), 7.6, 7.4, 7.2, and 7.0 for 60 days. The crabs reared in seawater without acidification at pH 8.2 served as control. The present study revealed a notable decrease in survival, feed intake, growth, molting, tissue biochemical constituents, minerals, chitin, and alkaline phosphatase in S. serrata instar reared in acidified seawater, denotes the adverse effect of seawater acidification on crabs. The significant elevations in antioxidants, lipid peroxidation, and metabolic enzymes in all acidified seawater compared to ambient pH indicates the physiological stress of the crabs' instars. The changes in the metabolic enzymes reveal the metabolism of protein and glucose for additional energy required by the crabs to tolerate the acidic stress. Hence, the present study provides insight into the seawater acidification can adversely affect the crab S. serrata.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| | - Krishnan Anandhan
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Velusamy Gayathri
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Arumugam Yogeshwaran
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| |
Collapse
|
22
|
Deconinck A, Willett CS. Hypoxia tolerance, but not low pH tolerance, is associated with a latitudinal cline across populations of Tigriopus californicus. PLoS One 2022; 17:e0276635. [PMID: 36301968 PMCID: PMC9612455 DOI: 10.1371/journal.pone.0276635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Intertidal organisms must tolerate daily fluctuations in environmental parameters, and repeated exposure to co-occurring conditions may result in tolerance to multiple stressors correlating. The intertidal copepod Tigriopus californicus experiences diurnal variation in dissolved oxygen levels and pH as the opposing processes of photosynthesis and cellular respiration lead to coordinated highs during the day and lows at night. While environmental parameters with overlapping spatial gradients frequently result in correlated traits, less attention has been given to exploring temporally correlated stressors. We investigated whether hypoxia tolerance correlates with low pH tolerance by separately testing the hypoxia and low pH stress tolerance separately of 6 genetically differentiated populations of T. californicus. We independently checked for similarities in tolerance for each of the two stressors by latitude, sex, size, and time since collection as predictors. We found that although hypoxia tolerance correlated with latitude, low pH tolerance did not, and no predictor was significant for both stressors. We concluded that temporally coordinated exposure to low pH and low oxygen did not result in populations developing equivalent tolerance for both. Although climate change alters several environmental variables simultaneously, organisms' abilities to tolerate these changes may not be similarly coupled.
Collapse
Affiliation(s)
- Aimee Deconinck
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher S. Willett
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
23
|
Borges FO, Sampaio E, Santos CP, Rosa R. Impacts of Low Oxygen on Marine Life: Neglected, but a Crucial Priority for Research. THE BIOLOGICAL BULLETIN 2022; 243:104-119. [PMID: 36548969 DOI: 10.1086/721468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractGlobal ocean O2 content has varied significantly across the eons, both shaping and being shaped by the evolutionary history of life on planet Earth. Indeed, past O2 fluctuations have been associated with major extinctions and the reorganization of marine biota. Moreover, its most recent iteration-now anthropogenically driven-represents one of the most prominent challenges for both marine ecosystems and human societies, with ocean deoxygenation being regarded as one of the main drivers of global biodiversity loss. Yet ocean deoxygenation has received far less attention than concurrent environmental variables of marine climate change, namely, ocean warming and acidification, particularly in the field of experimental marine ecology. Together with the lack of consistent criteria defining gradual and acute changes in O2 content, a general lack of multifactorial studies featuring all three drivers and their interactions prevents an adequate interpretation of the potential effects of extreme and gradual deoxygenation. We present a comprehensive overview of the interplay between O2 and marine life across space and time and discuss the current knowledge gaps and future steps for deoxygenation research. This work may also contribute to the ongoing call for an integrative perspective on the combined effects of these three drivers of change for marine organisms and ecosystems worldwide.
Collapse
|
24
|
He G, Zou J, Liu X, Liang F, Liang J, Yang K, Masanja F, Xu Y, Zheng Z, Deng Y, Zhao L. Assessing the impact of atmospheric heatwaves on intertidal clams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156744. [PMID: 35716751 DOI: 10.1016/j.scitotenv.2022.156744] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Heatwaves have become more frequent and intense in the last two decades, resulting in detrimental effects on marine bivalves and ecosystems they sustain. Intertidal clams inhabit the most physiologically challenging habitats in coastal areas and live already near their thermal tolerance limits. However, whether and to what extent atmospheric heatwaves affect intertidal bivalves remain poorly understood. Here, we investigated physiological responses of the Manila clam, Ruditapes philippinarum, to heatwaves at air temperature regimes of 40 °C and 50 °C occurring frequently and occasionally at the present day in the Beibu Gulf, South China Sea. With the increasing intensity of heatwaves and following only two days of aerial exposure, Manila clams suffered 100 % mortality at 50 °C, indicating that they succumb to near future heatwaves, although they survived under various scenarios of moderate heatwaves. The latter is couched in energetic terms across levels of biological organization. Specifically, Manila clams acutely exposed to heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance, such as increasing activities of SOD, CAT, MDA, and AKP, and expression of HSP70. These strategies occur likely at the expense of fitness-related functions, as best exemplified by significant depressions in activities of enzymes (NKA, CMA, and T-ATP) and expression levels of genes (PT, KHK, CA, CAS, TYR, TNF-BP, and OSER). When heatwaves occurred again, Manila clams can respond and acclimate to thermal stress by implementing a suite of more ATP-efficient and less energy-costly compensatory mechanisms at various levels of biological organization. It is consequently becoming imperative to uncover underlying mechanisms responsible for such positive response and rapid acclimation to recurrent heatwaves.
Collapse
Affiliation(s)
- Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jie Zou
- Guangxi Institute of Oceanology Co., Ltd, Guangxi Academy of Sciences, Beihai, China
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Feilong Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Ke Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Laboratory of Marine Ecological Early Warning and Monitoring, Zhanjiang, China.
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
25
|
Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J. Single and combined ecotoxicological effects of ocean warming, acidification and lanthanum exposure on the surf clam (Spisula solida). CHEMOSPHERE 2022; 302:134850. [PMID: 35551939 DOI: 10.1016/j.chemosphere.2022.134850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Lanthanum (La) is one of the most abundant emergent rare earth elements. Its release into the environment is enhanced by its use in various industrial applications. In the aquatic environment, emerging contaminants are one of the stressors with the ability to compromise the fitness of its inhabitants. Warming and acidification can also affect their resilience and are another consequence of the growing human footprint on the planet. However, from information gathered in the literature, a study on the effects of ocean warming, acidification, and their interaction with La was never carried out. To diminish this gap of knowledge, we explored the effects, combined and as single stressors, of ocean warming, acidification, and La (15 μg L-1) accumulation and elimination on the surf clam (Spisula solida). Specimens were exposed for 7 days and depurated for an additional 7-day period. Furthermore, a robust set of membrane-associated, protein, and antioxidant enzymes and non-enzymatic biomarkers (LPO, HSP, Ub, SOD, CAT, GPx, GST, TAC) were quantified. Lanthanum was bioaccumulated after just one day of exposure, in both control and climate change scenarios. A 7-day depuration phase was insufficient to achieve control values and in a warming scenario, La elimination was more efficient. Biochemical response was triggered, as highlighted by enhanced SOD, CAT, GST, and TAC levels, however as lipoperoxidation was observed it was insufficient to detoxify La and avoid damage. The HSP was largely inhibited in La treatments combined with warming and acidification. Concomitantly, lipoperoxidation was highest in clams exposed to La, warming, and acidification combined. The results highlight the toxic effects of La on this bivalve species and its enhanced potential in a changing world.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rui Oliveira
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Inês João Ferreira
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Fátima Gil
- Aquário Vasco da Gama, Rua Direita Do Dafundo, 1495-718, Cruz Quebrada, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Pedro Ré
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Mário Diniz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry / Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
26
|
Wei S, Xie Z, Liu C, Sokolova I, Sun B, Mao Y, Xiong K, Peng J, Fang JKH, Hu M, Wang Y. Antioxidant response of the oyster Crassostrea hongkongensis exposed to diel-cycling hypoxia under different salinities. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105705. [PMID: 35863129 DOI: 10.1016/j.marenvres.2022.105705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Intertidal and estuarine bivalves are adapted to fluctuating environmental conditions but the cellular adaptive mechanisms under combined stress scenarios are not well understood. The Hong Kong oysters Crassostrea hongkongensis experience periodic hypoxia/reoxygenation and salinity fluctuations during tidal cycles and extreme weather, which can negatively affect the respiratory organs (gills) involved in oxygen uptake and transport. We determined the effects of periodic hypoxia under different salinities on the oxidative stress response in Hong Kong oysters. Oxidative stress parameters (activities of superoxide dismutase (SOD), and catalase (CAT), tissue levels of malondialdehyde (MDA) and protein carbonyl content (PCC)) were determined in the gills of oysters exposed to diel-cycling hypoxia (hypoxia at night: 12h at 2 mg/L, reoxygenation: 12h at 6 mg/L) and normal dissolved oxygen (DO) (6 mg/L) under three salinities (10, 25, and 35‰) for 28 days. Oxygen regime in combination with salinity changes had significant interactive effects on all studied parameters except SOD. Salinity, DO and their interactions increased PCC after 14 and 28 days of exposure, and the combination of hypoxia/reoxygenation and decreased salinity showed the most severe effect. MDA content of the gills increased only after the long-term (28 days) exposure in decreased or increased salinity under normal DO treatments, showing PCC was more sensitive than MDA as biomarker of oxidative stress. Low salinity suppressed SOD activity regardless of the DO, whereas hypoxia induced SOD responses. CAT activities decreased significantly under high salinity with hypoxia/reoxygenation conditions. Our findings highlighted that periodic hypoxia/reoxygenation with salinity change induced antioxidant responses, which can impact the health of Hong Kong oyster C. hongkongensis and prolonged salinity stress may be one reason for the mortality during its aquaculture process.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunhua Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Bingyan Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Xiong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
27
|
Zhang T, Li X, Cao R, Zhang Q, Qu Y, Wang Q, Dong Z, Zhao J. Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153780. [PMID: 35176363 DOI: 10.1016/j.scitotenv.2022.153780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
To accurately predict the fitness of marine ectotherms under the climate change scenarios, interactive effects from multiple environmental stressors should be considered, such as ocean acidification (OA), ocean warming (OW) and diurnal temperature cycling (DTC). In this work, we evaluated and compared the antioxidant capacity and metabolism homeostasis of two sea urchins, viz. the temperate species Strongylocentrotus intermedius and the tropical species Tripneustes gratilla, in response to oceanic conditions under a climate change scenario. The two species were treated separately/jointly by acidic (pH 7.6), thermal (ambient temperature + 3 °C), and temperature fluctuating (5 °C fluctuations daily) seawater for 28 days. The activities of antioxidant enzymes (catalase and superoxide dismutase) and the cellular energy allocation in the urchins' gonads were assessed subsequently. Results showed that exposure to OA, OW, and DTC all induced antioxidant responses associated with metabolism imbalance in both S. intermedius and T. gratilla. The physiological adjustments and energy strategies towards exposure of OA, OW, and DTC are species specific, perhaps owing to the different thermal acclimation of species from two latitudes. Moreover, decrease of cellular energy allocation were detected in both species under combined OA, OW, and DTC conditions, indicating unsustainable bioenergetic states. The decrease of cellular energy allocation is weaker in T. gratilla than in S. intermedius, implying higher acclimation capacity to maintain the energy homeostasis in tropical urchins. These results suggest that climate change might affect the population replenishment of the two sea urchins species, especially for the temperate species.
Collapse
Affiliation(s)
- Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
28
|
Prakash S, Kumar A, Okla MK, Ahmad AL, Abbas ZK, Al-Ghamdi AA, Beemster G, AbdElgawad H. Physiological responses of the symbiotic shrimp Ancylocaris brevicarpalis and its host sea anemone Stichodactyla haddoni to ocean acidification. MARINE POLLUTION BULLETIN 2022; 175:113287. [PMID: 35114544 DOI: 10.1016/j.marpolbul.2021.113287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In this study, the physiology of symbiotic 'peacock-tail' shrimp Ancylocaris brevicarpalis and its host 'Haddon's carpet' sea anemone Stichodactyla haddoni were tested under lowered pH (7.7) and control (8.1) conditions. The biochemical responses such as digestive enzyme (AP), organic acids (lactate and succinate), oxidative damages (MDA), antioxidants metabolites/enzymes (ASC, GSH, SOD, CAT, APX, GPX, GR, POX, and PHOX), and detoxification enzyme (GST) were measured. The AP showed insignificantly reduced values in both the organisms in lowered pH conditions compared to control indicating the effect of abiotic stress. The hierarchical clustering analysis indicated low MDA in sea anemone can be explained by higher POX, APX, GR, ASC, and GSH levels compared to shrimps. However, the detoxification enzyme GST showed less activity in sea anemones compared to shrimps. The results suggest that A. brevicarpalis and sea anemone S. haddoni may have deleterious effects when exposed to short-term acidification stress.
Collapse
Affiliation(s)
- Sanjeevi Prakash
- Centre for Climate Change Studies, Sathybama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram 623526, Tamil Nadu, India.
| | - Amit Kumar
- Centre for Climate Change Studies, Sathybama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram 623526, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - ALhimadi Ahmad
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gerrit Beemster
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium
| | - Hamada AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
29
|
Baag S, Mandal S. Combined effects of ocean warming and acidification on marine fish and shellfish: A molecule to ecosystem perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149807. [PMID: 34450439 DOI: 10.1016/j.scitotenv.2021.149807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
30
|
Gopi N, Rekha R, Vijayakumar S, Liu G, Monserrat JM, Faggio C, Nor SAM, Vaseeharan B. Interactive effects of freshwater acidification and selenium pollution on biochemical changes and neurotoxicity in Oreochromis mossambicus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109161. [PMID: 34375731 DOI: 10.1016/j.cbpc.2021.109161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/01/2022]
Abstract
Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 μg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.
Collapse
Affiliation(s)
- Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India; Marine College, Shandong University, Weihai 264209, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - José Maria Monserrat
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Aquacultura, Rio Grande, RS, Brazil
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
31
|
Xu Y, Zhang Y, Liang J, He G, Liu X, Zheng Z, Le DQ, Deng Y, Zhao L. Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure. MARINE POLLUTION BULLETIN 2021; 173:112932. [PMID: 34534933 DOI: 10.1016/j.marpolbul.2021.112932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Marine heatwaves (MHWs) have occurred with increasing duration, frequency and intensity in the past decade in the South China Sea, posing serious threats to marine ecosystems and fisheries. However, the impact of MHWs on marine bivalves - one of the most ecologically and economically important fauna in coastal ecosystems - remains largely unknown. Here, we investigated physiological responses of the pearl oyster, Pinctada maxima inhabiting a newly identified climate change hotspot (Beibu Gulf, South China Sea) to short-lasting and repeatedly-occurring MHWs scenarios. Following 3-day exposure to short-lasting MHWs scenarios with water temperature rapidly arising from 24 °C to 28 °C, 32 °C and 36 °C, respectively, mortality rates of pearl oysters increased, and especially they suffered 100% mortality at 36 °C. Activities of enzymes including acid phosphatase (ACP), alkaline phosphatase (AKP), glutathione (GSH) and level of malondialdehyde (MDA) increased significantly with increasing intensity and duration of MHWs, indicating thermal stress responses. When exposed to repeatedly-occurring MHWs scenarios, mortality rates of pearl oysters increased slightly, and thermal stress responses were alleviated, as exemplified by significant decreases in ACP, AKP, GSH and MDA activities compared with those during short-lasting MHWs scenarios, demonstrating the potential of P. maxima to acclimate rapidly to MHWs. These findings advance our understanding of how marine bivalves respond to MHWs scenarios varying in duration, frequency, and intensity.
Collapse
Affiliation(s)
- Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Dung Quang Le
- Institute for Circular Economy Development, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
32
|
He G, Liu X, Xu Y, Liang J, Deng Y, Zhang Y, Zhao L. Repeated exposure to simulated marine heatwaves enhances the thermal tolerance in pearl oysters. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105959. [PMID: 34500377 DOI: 10.1016/j.aquatox.2021.105959] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
In an era of unprecedented climate change, marine heatwaves (MHWs) are projected to increase in frequency, intensity, and duration, severely affecting marine organisms and fisheries and causing profound ecological and socioeconomic impacts. However, very little is known about effects of MHWs on ecologically and economically important bivalve species. Here, we investigate how pearl oysters, Pinctada maxima (Jameson), respond to MHWs under various simulated scenarios. Acute 3-day exposure to MHWs, mimicked by increasing the ambient seawater temperature from 24°C to 28°C, 32°C, and 36°C, respectively, induced significant changes (initially sustained increase and late decrease) in activities of antioxidant enzymes (GSH-Px, SOD, CAT, MDA, and T-AOC) and biomineralizaiton-related enzymes (AKP and ACP). Likewise, energy-metabolizing enzymes (NKA, CMA, and T-ATP) showed remarkable acute responses, with significant increases occurring at the beginning and end of thermal exposure. Following repeated exposure to MHWs, without exception, acute responses of assayed enzymes to MHWs were significantly alleviated, implying that pearl oysters have the ability to implement more efficient and less costly energy-utilizing strategies to compensate for thermal stress induced physiological interferences. These findings indicate that marine bivalves can respond plastically and acclimate rapidly to MHWs and pave the way for predicting the fate of this important taxonomic groups in rapidly changing oceans.
Collapse
Affiliation(s)
- Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Department of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
33
|
Thangal SH, Nivetha M, Muttharasi C, Anandhan K, Muralisankar T. Effects of acidified seawater on biological and physiological responses of Artemia franciscana. MARINE POLLUTION BULLETIN 2021; 169:112476. [PMID: 34062325 DOI: 10.1016/j.marpolbul.2021.112476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification is becoming a potential threat to marine animals. The present study investigated the effect of seawater acidification on Artemia franciscana. A. franciscana cysts were allowed to hatch at different pH levels of pH 8.2 (control), 7.8, and 6.8. After 48 h incubation, the hatching percentage was significantly reduced in acidified seawater compared to that in control. Further, the hatched Artemia nauplii from each pH treatment were transferred to freshly acidified seawater for chronic study for 15 days. At the end of the experiment, survival, growth, and biochemical constituents were significantly decreased in Artemia at pH 7.8 and 6.8 compared to that in control, which indicates the adverse effects of acidified seawater on Artemia. The antioxidants, lipid peroxidation, and metabolic enzymes were significantly elevated in A. franciscana exposed to acidified seawater compared to that in control, which shows oxidative and metabolic stress on A. franciscana under acidified environment.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Muthusamy Nivetha
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Chandrasekaran Muttharasi
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Krishnan Anandhan
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
34
|
Andreyeva AY, Gostyukhina OL, Kladchenko ES, Vodiasova EA, Chelebieva ES. Acute hypoxic exposure: Effect on hemocyte functional parameters and antioxidant potential in gills of the pacific oyster, Crassostrea gigas. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105389. [PMID: 34171591 DOI: 10.1016/j.marenvres.2021.105389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalve mollusks are frequently subjected to fluctuations of dissolved oxygen concentration in the environment which can represent a significant threat to bivalve antioxidant status. In this work the effects of hypoxia on hemocyte reactive oxygen species (ROS) production and level of mitochondrial potential as well as the activity and expression level of catalase (CAT) and superoxide dismutase (SOD) in gills of Crassostrea gigas were investigated after 24 h and 72 h exposure. 24 h hypoxia promoted an increase of mitochondrial membrane potential in agranulocytes and induced ROS accumulation in granulocytes. 72 h exposure substantially decreased hemocyte mitochondrial potential and intracellular ROS level in all hemocyte types. No significant changes in the activity of CAT in gills were observed following both 24 h and 72 h exposure periods compared to control. SOD activity in gills decreased after 72 h exposure to hypoxia but did not change under 24 h hypoxia. Significant up-regulation of SOD gene and no changes in expression level of CAT were observed in all experimental groups. The results indicate an overall shift in antioxidant status in gills and hemocytes of the Pacific oyster that may act as compensatory mechanisms to maintain redox homeostasis after a short-term (24 h) exposure and represent the occurrence of oxidative stress conditions at the end of 72 h hypoxia.
Collapse
Affiliation(s)
- A Y Andreyeva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - O L Gostyukhina
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Kladchenko
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E A Vodiasova
- Marine Biodiversity and Functional Genomics Laboratory, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Chelebieva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia.
| |
Collapse
|
35
|
Vieira HC, Rodrigues ACM, Pires SFS, Oliveira JMM, Rocha RJM, Soares AMVM, Bordalo MD. Ocean Warming May Enhance Biochemical Alterations Induced by an Invasive Seaweed Exudate in the Mussel Mytilus galloprovincialis. TOXICS 2021; 9:121. [PMID: 34071183 PMCID: PMC8229087 DOI: 10.3390/toxics9060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Ocean warming and biological invasions are among the most pervasive factors threatening coastal ecosystems with a potential to interact. Ongoing temperature rise may affect physiological and cellular mechanisms in marine organisms. Moreover, non-indigenous species spread has been a major challenge to biodiversity and ecosystem functions and services. The invasive red seaweed Asparagopsis armata has become successfully established in Europe. Its exudate has been considered deleterious to surrounding native species, but no information exists on its effect under forecasted temperature increase. This study evaluated the combined effects of temperature rise and A. armata exudate exposure on the native mussel Mytilus galloprovincialis. Oxidative stress, neurophysiological and metabolism related biomarkers were evaluated after a 96 h-exposure to exudate (0% and 2%) under present (20 °C) and warming (24 °C) temperature scenarios. Short-term exposure to A. armata exudate affected the oxidative stress status and neurophysiology of the mussels, with a tendency to an increasing toxic action under warming. Significant oxidative damage at protein level was observed in the digestive gland and muscle of individuals exposed simultaneously to the exudate and temperature rise. Thus, under a climate change scenario, it may be expected that prolonged exposure to the combined action of both stressors may compromise M. galloprovincialis fitness and survival.
Collapse
Affiliation(s)
- Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (J.M.M.O.); (R.J.M.R.); (A.M.V.M.S.); (M.D.B.)
| | | | | | | | | | | | | |
Collapse
|