1
|
Li W, Zu B, Li L, Li J, Li J, Xiang Q. Microplastics are effective carriers of bisphenol A and facilitate its escape from wastewater treatment systems. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1811-1820. [PMID: 39212253 DOI: 10.1039/d4em00297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs) pollution is a major issue in aquatic environments. Wastewater treatment plants are significant point sources of MPs, which may also be carriers of organic pollutants. We analyzed MP number, shape, color, and polymer type distribution in sewage wastewater treatment plants. The potential of MPs to act as carriers for typical organic pollutants in sewage, such as bisphenol A (BPA), was also assessed. The predominant MPs in the influent were fibers, primarily transparent and black in color, and composed of polyethylene, polypropylene, and polystyrene. During wastewater treatment, the concentration of MPs decreased from 10.89 items per L in the influent to 0.89 items per L in the treated effluent, with significant differences in treatment efficiency at different stages. In the simulated wastewater, the three predominant MPs exhibited certain adsorption capacities for bisphenol A. Changing the temperature and pH within the range expected for wastewater could interfere with the interactions between MPs and bisphenol A, with a limited impact on adsorption. The results show that although wastewater treatment plants intercept a significant amount of MP, a considerable number of them enter the aquatic environment daily because of the high volume of wastewater discharge. These MPs, which carry pollutants such as bisphenol A, may threaten the health of fish and other aquatic organisms. However, by scientifically adjusting operational parameters, wastewater treatment plants could become "controllable sources" of MP compound pollutants.
Collapse
Affiliation(s)
- Wang Li
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Bo Zu
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Lei Li
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jian Li
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jiawen Li
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Qiujie Xiang
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| |
Collapse
|
2
|
Yakub AS, Bassey BO, Bello AI, Bello BO, Olapoju OA, Agwu OA, Balogun KJ, Igbo JK, Ajani G, Odedere AO, Izge MA. Eco-toxic Risk Assessment of microplastics in water and sediment across Nigeria Offshore, Gulf of Guinea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:906. [PMID: 39249122 DOI: 10.1007/s10661-024-13021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Globally, the environmental impacts of microplastics (MPs) as emerging pollutants have drawn a lot of attention. This study aimed to assess the distribution and associated potential ecotoxic risk of MPs in the water and sediment of Nigeria's offshore waters. Water and sediment samples were collected from sixteen (16) stations in October 2023 and analysed using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and stereomicroscopy. For physical characterization, the composition of MPs in sediment and water was 73 particles/kg and 48 particles/L, respectively, while the ATR-FTIR composition at the Eastern Zone (EZ) was 705 particles/L and 1033 particles/kg, the Central Zone (CZ) was 212 particles/L and 338 particles/kg, and the Western Zone (WZ) was 223 particles/L and 218 particles/kg. The identified MPs shapes were filaments, plastic films, fibre, and microbeads. Polychloroprene (CR) (18.10% and 16.86%) at EZ and CZ and polyvinyl alcohol (PVA) (20.64%) at WZ were most abundant in sediment, respectively. In comparison, PVA (22.3%, 22.2%, and 21.08%) was most abundant across EZ, CZ, and WZ in water. The polymer-based plastic contamination factors (ppCf) and pollution load index (pPLI) showed low contamination and pollution load, and the polymer risk index (pRi) showed medium and low risk in water and sediment, respectively. The polymer ecological risks index (pERI) showed a high-risk level (pERI: 1,001-10,000) in water and sediment across the EZ, CZ, and WZ of the Nigerian offshore waters. In marine environments, an extensive environmental monitoring program and trend forecasting for microplastics are crucial. This study will provide theoretical and technical support for developing efficient legislation or policy on the prevention and control of plastic pollution.
Collapse
Affiliation(s)
- Ademola Semiu Yakub
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Bassey Okon Bassey
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria.
| | - Adebowale Ibrahim Bello
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Beatrice Omolola Bello
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Oluwabukunola Ayokunmi Olapoju
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Ogochukwu Angela Agwu
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Kayode James Balogun
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Juliet Kelechi Igbo
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Gloria Ajani
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Adelodun Omotayo Odedere
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| | - Musa Abdullahi Izge
- Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.M.B. 12729, Lagos, Nigeria
| |
Collapse
|
3
|
Suyamud B, Pan X, Yu Y, Yuan W, Liu Y, Yang Y. First-of-Its-Kind: Nationwide meta-analysis of microplastic pollution and risk assessment in Thailand. CHEMOSPHERE 2024; 364:143041. [PMID: 39117079 DOI: 10.1016/j.chemosphere.2024.143041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Thailand ranks as the sixth largest contributor to global microplastic pollution, which is exacerbated by extensive plastic use. Despite rising concerns, no comprehensive review is available on microplastic contamination and its potential risk in Thailand. This review synthesised data on microplastic abundance and characteristics within the country from 118 peer-reviewed publications (2017-2024). We found predominant microplastic presence in crustaceans (1.69-160.15 items/g), followed by Mollusca (0.03-9.5 items/g) and fishes (0.01-28.17 items/g), with higher abundances in wastewater (4 × 102 to 6.09 × 105 items/m3) compared to that in freshwater (1.44-2.92 × 106 items/m3) and seawater (2.70 × 10-1 to 6.25 × 104 items/m3). Marine sediments (48.3-2.13 × 104 items/kg) also showed significantly higher microplastic concentrations than terrestrial sediments (3-2.92 × 103 items/kg). Predominant microplastics were identified as fibers (59.36% and 35.05% for biological and environmental samples, respectively) and fragments (24.14%, 30.68%) in blue (25.95%, 18.64%), and colourless/transparent (20.01%, 14.47%), primarily composed of polyethylene terephthalate (19.46%, 9.19%), nylon (3.23%, 9.99%), polypropylene (19.78%, 24.23%), and polyethylene (14.81%, 11.66%). The potential ecological risk was low in all ecosystems except for wastewater. Shrimp and fish were more susceptible to microplastics compared to other studies in the region. Additionally, the sources, transport, and pathways of microplastic pollution in Thailand's aquatic territories and the current measures and policies implemented by the government to address plastic pollution are discussed. This review has compiled up-to-date insights into the prevalence, distribution, and risks associated with microplastics, which is instrumental in formulating effective strategies for contaminant control and ultimately reducing plastic pollution.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China.
| | - Yongxiang Yu
- Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wenke Yuan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| | - Yi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| |
Collapse
|
4
|
Li J, Jong MC, Hu H, Gin KYH, He Y. Size-dependent effects of microplastics on intestinal microbiome for Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134658. [PMID: 38810582 DOI: 10.1016/j.jhazmat.2024.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Microplastics pollution threatens to marine organisms, particularly bivalves that actively ingest and accumulate microplastics of certain sizes, potentially disrupting intestinal homeostasis. This study investigated the microplastic abundance in wild and farmed mussels around Singapore, and examined the size-dependent effects of nano- to micro-scale polystyrene (0.5 µm/5 µm/50 µm) on the mussel intestinal microbiome in the laboratory. The field investigation revealed higher microplastic abundance in farmed mussels compared to wild ones. Experimentally, mussels exposed to 0.6 mg/L of microplastics for 7 days, followed by a 7-day depuration period, showed substantial impacts on Spirochaetes and Proteobacteria, facilitating the proliferation of pathogenic species and differentially affecting their pathogenic contributions. Metagenomics analysis revealed that microplastic exposure reduced Spirochaeta's contribution to virulence and pathogenicity loss, did not affect Vibrio and Oceanispirochaeta's pathogenicity, and increased Treponema and Oceanispirochaeta's contributions to pathogenicity loss. Moreover, microplastics increased transmembrane transporters and impacted oxidative phosphorylation enzymes, impairing energy metabolism. These effects persisted after depuration, indicating lack of resilience in the microbiome. Nano- and micro-scale plastics perturbed the mussel microbiome composition and functions in a size-dependent manner, with nano-plastics being the most disruptive. The increasing use and sale of aquaculture equipment of plastic may exacerbate the intestinal dysbiosis in bivalves, which threatens consumers' health.
Collapse
Affiliation(s)
- Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Mui-Choo Jong
- Tsinghua Shenzhen International Graduate School, University Town, Shenzhen 518055. China
| | - Hao Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Block E1A07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
5
|
Hassan MA, Shetu MH, Miah O, Parvin F, Shammi M, Tareq SM. The seasonal variation and ecological risk of microplastics in the Lower Ganges River, Bangladesh. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11103. [PMID: 39155052 DOI: 10.1002/wer.11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Microplastic (MP) pollution has gained considerable attention in various ecosystems; however, it has received relatively less attention in freshwater-riverine environments than in other ecosystems. The Ganges River Delta, one of the world's most densely populated areas, is a potential source of MP pollution in the freshwater ecosystem. MPs were identified throughout the year in the lower Ganges River water. Seasonally, the highest abundance was observed during the monsoon (14.66 ± 2.06 MPs/L), followed by the pre-monsoon (13.46 ± 1.75 MPs/L) and post-monsoon (11.50 ± 0.40 MPs/L). Throughout the year, MP discharge was estimated at 4.12 × 1012 to 2.17 × 1013 MPs/year. Fourier transformed infrared spectroscopy identified plastic polymers in the water, like ethylene vinyl acetate, polystyrene, polypropylene, polyethylene, and nylon. Moderate contamination by MPs was assessed throughout the year. Significant correlations between MP abundance and both rainfall and discharge were observed. It is essential to implement preventative measures in the Ganges River Basin to mitigate MP pollution before the situation worsens. PRACTITIONER POINTS: Throughout the year, MP concentration ranged from 10.67 to 20.33 MPs/L The highest MP occurrence was observed in the monsoon season (14.66 ± 2.06 MPs/L) The lowest abundance was detected in the post-monsoon period (11.50 ± 0.40 MPs/L) There was a moderate level of MP contamination in the lower Ganges River water It was shown that discharge and rainfall were correlated with MP abundance.
Collapse
Affiliation(s)
- Md Anamul Hassan
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mabia Hossain Shetu
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Osman Miah
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Fahmida Parvin
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Vibhatabandhu P, Prachayakul T, Tang-Siri J, Benmas P, Srithongouthai S, Kanokkantapong V. Effect of tidal current on the settling and accumulation of microplastics in the Chao Phraya River estuary, Thailand. MARINE POLLUTION BULLETIN 2024; 200:116068. [PMID: 38290367 DOI: 10.1016/j.marpolbul.2024.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
The deposition of MPs in a water column and surface sediment during a mixed spring tidal cycle of the Chao Phraya River estuary was investigated. The settling MPs during flood and ebb tides were collected by deploying traps at 3 m below the surface, while the settled MPs throughout the tidal cycle were collected by deploying traps at 1 m above the bottom. The settling rate of MPs was 2168 pieces/m2/h during highest to low tide, and 639 pieces/m2/h during high to lowest tide. The deposition rate of MPs after the end of the tidal cycle was 3172 pieces/m2/day, while the accumulation rate of MPs in the surface sediment was 1515 pieces/m2/day. The settling MPs tended to decrease inversely to the suspended solids and salinity. The major types of the deposited MPs were polyethylene (36 %) and polyamide (33 %), while that of the surface sediment was epoxy resin (80 %).
Collapse
Affiliation(s)
- Pathompong Vibhatabandhu
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapat Prachayakul
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradet Tang-Siri
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Graduate Program in Industrial Toxicology and Risk Assessment, Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patsharaporn Benmas
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarawut Srithongouthai
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit (RU) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit (RU) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Santucci L, Fernández-Severini MD, Rimondino GN, Colombo CV, Prieto G, Forero-López AD, Carol ES. Assessment of meso- and microplastics distribution in coastal sediments and waters at the middle estuary of the Rio De La Plata, Argentina (SW Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170026. [PMID: 38218486 DOI: 10.1016/j.scitotenv.2024.170026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.
Collapse
Affiliation(s)
- L Santucci
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina.
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Bahía Blanca, Argentina (IFISUR), Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - E S Carol
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina
| |
Collapse
|
8
|
Ge A, Zhao S, Sun C, Yuan Z, Liu L, Chen L, Li F. Comparison of three digestion methods for microplastic extraction from aquaculture feeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168919. [PMID: 38030012 DOI: 10.1016/j.scitotenv.2023.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants found in aquaculture animals that may threaten human health through the food chain. However, there is a lack of effective methods for extracting MPs from aquaculture feeds containing complex components such as organic matter and fish bones. Therefore, in the present study, the extraction efficiency of three digestion methods using 30 % H2O2, Fenton reagent, and 30 % H2O2 + HNO3 for different particle sizes and types of MPs in aquaculture feeds was investigated and compared. The total digestion efficiency of the aquaculture feeds by 30 % H2O2 was 97.3 ± 0.1 %, while the recovery efficiency of MPs was 91.3 ± 1.1 % -103.1 ± 0.9 %. However, there was a large deviation in the extraction efficiency of MPs from aquaculture feeds by the Fenton reagent and 30 % H2O2 + HNO3. Notably, the surface morphology, particle size distribution, and oxidation degree of MPs hardly changed after 30 % H2O2 digestion. More importantly, the changes in the spectral features and carbonyl index of MPs after 30 % H2O2 digestion were smaller than those of the Fenton reagent and 30 % H2O2 + HNO3, which did not affect the identification of MPs. Overall, 30 % H2O2 was more efficient in extracting MPs from aquaculture feeds, and no significant effect on the characteristics of MPs was observed. This work provides novel insights into the effect of chemical pretreatment on the extraction of MPs in aquaculture feeds and provides an optimal protocol for the detection of MPs in aquaculture feeds.
Collapse
Affiliation(s)
- Anqi Ge
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shasha Zhao
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
9
|
Jittalerk R, Babel S. Microplastic contamination in Thai vinegar crabs (Episesarma mederi), giant mudskippers (Periophthalmodon schlosseri), and their surrounding environment from the Bang Pu mangrove forests, Samut Prakan province, Thailand. MARINE POLLUTION BULLETIN 2024; 198:115849. [PMID: 38056288 DOI: 10.1016/j.marpolbul.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The mangrove ecosystem becomes the receptacle for both land- and marine-based plastic waste. This study examines MPs contamination in the Bang Pu mangrove forests (BPMFs) in the inner Gulf of Thailand. For this, Thai vinegar crabs (TVCs) (Episesarma mederi) and giant mudskippers (GMs) (Periophthalmodon schlosseri) were investigated with their surrounding environment in both rainy and dry seasons. Two-step digestion was employed for biota samples. MPs abundance ranged from 7.5 ± 3.8 to 15.9 ± 6.7 items/individual in TVCs and 6.2 ± 5.0 to 10.6 ± 2.6 items/individual in GMs. MPs in small-size ranges (<0.5 mm) were predominant. Fiber MPs were mostly detected in the rainy season. Most MPs were transparent with polyethylene and polypropylene as dominant polymers in all samples. Bioaccumulation was not observed in GMs. The results indicated the imperiled status of MPs contamination in TVCs and GMs with contaminated surrounding environments.
Collapse
Affiliation(s)
- Rungpilin Jittalerk
- School of Bio-Chemical Engineering & Technology, Sirindhorn International Institute of Technology, Thammasat University, Rangsit Campus, 99 Moo 18, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sandhya Babel
- School of Bio-Chemical Engineering & Technology, Sirindhorn International Institute of Technology, Thammasat University, Rangsit Campus, 99 Moo 18, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
10
|
Yang Q, Ma L, Qiu K, Feng Z, Wang Y, Zhong Z, Cheng F, Zhai T, Zeng J, Huang W. Characterization and risk assessment of microplastics in laver from the Yueqing Bay. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106258. [PMID: 37989678 DOI: 10.1016/j.marenvres.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Microplastics (MPs) pollution is regarded as a global challenge for ocean. As an important food source of human, macroalgae could suffer MP pollution and transmit MPs into human via food web. However, few studies have revealed the relationship of MP pollution between macroalgae and its habitat. In order to evaluate the trapping and accumulation of MPs in macroalgae and surface water, the present study investigated MP pollution in a typical aquaculture macroalgae species, laver (Porphyra haitanensis) in the Yueqing Bay. The results indicated MP abundance in laver (1.45 ± 0.26 items/g) was at a medium level while MP abundance in surface water (0.21 ± 0.15 item/m3) was at a relatively low level worldwide. Distribution trend and characteristics of MPs in laver and surface water showed highly similarity. Besides, heavy metal elements (Fe and Zr) were detected on the surface of MPs trapped by laver. Pollution load index (PLI) in surface water of the whole bay was low, indicating MP pollution was not serious in the Yueqing Bay. Due to the discharging of domestic sewage in recent years, fiber-shaped, textile MPs accounted for most in laver and surface water of the Yueqing Bay. These results indicated that MPs in surface water could be trapped by P. haitanensis, thus macroalgae cultivation might be a potential way to alleviate seawater MP pollution in the nearshore areas.
Collapse
Affiliation(s)
- Qikun Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Lukuo Ma
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Kecheng Qiu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Youji Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Zhen Zhong
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Fangping Cheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Tianqi Zhai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
11
|
Lu H, Ou Y, Zhao M, Ni Z. Microplastic enrichment capacity of Ctenochaetus striatus from the habitat environment - An example in Xisha, South China Sea. MARINE POLLUTION BULLETIN 2023; 197:115756. [PMID: 37976586 DOI: 10.1016/j.marpolbul.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Microplastic pollution is a widespread concern in the global marine environment. In this study, microplastic pollution status in Xisha waters was investigated. Microplastics were found in all seawater samples, and 90.76 % of C. striatus samples were detected with microplastics. The average abundance of microplastics in seawater samples was 0.64 ± 0.39 items/L, and the abundance of microplastics in the gills and gastrointestinal tracts (GITs)of C. striatus was 1.14 ± 0.41 items/L and 1.80 ± 0.49 items/L, respectively. Shapes of microplastics in the seawater and in the gills and GITs of C. striatus were mainly fibers and films, and the majority of the particle sizes being <1 mm, and the polymers were mainly PET. In addition, the abundance of microplastics in the gills and GITs of C. striatus was positively correlated with that in the seawater, and the correlation was higher in the gills than in the GITs, which means that the accumulation of microplastics in the gills was more closely related to their habitats. The positive correlation between microplastic abundance in the gills and GITs of C. striatus and its body size may be due to the fact that larger individuals have greater energetic demands, require more energy requirements, consume more food, and thus increase the chances of ingesting microplastics.
Collapse
Affiliation(s)
- Huajie Lu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, MNRs, Shanghai 201306, China; National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuzhe Ou
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Maolin Zhao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenyu Ni
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
12
|
Sau D, Hazra T, Shiuly A. Microplastics in lentic environments: implications for Indian ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114756-114778. [PMID: 37910348 DOI: 10.1007/s11356-023-30604-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The paper focused on occurrence, characterization, and analytical methods of microplastic (MP) pollution in the lentic environment mainly for the Indian scenario. To understand the flow of MP from plastic waste, a material flow diagram was developed using STAN, assigning the transfer coefficients based on existing scientific literature and primary survey from local recycling facilities and industries. The quantity, morphology, and polymers of MP in the water and sediments of the lentic environment were compared for various states from 2011 to 2022. The reasons for the geographical heterogeneity in microplastics may be the migratory routes of MPs in the ecosystems like commercial uses and wastewater characteristics which possibly discharged in lentic system. Factors like particle density, water surface area, water surface depth, wind speed and direction, and water flow size mainly affect MP concentrations in the lentic water body, and mainly PHI and PLI are keys to MP risk analysis. The surface characteristics of MPs reveal that it absorbs many toxic contaminants including heavy metals. The impacts of MP on ecosystem and human health were also discussed. The impacts of socioeconomic conditions on MP concentrations for different states in India were also added. Proposed methods for plastic waste generation control also included which will help for developing policy in future to prevent MP pollution in lentic environments and also motivate future researchers to establish new standardized methods of MP analysis.
Collapse
Affiliation(s)
- Debasis Sau
- Department of Civil Engineering, Jadavpur University, 188, Raja S C Mullick Street, Kolkata, 700032, India
| | - Tumpa Hazra
- Department of Civil Engineering, Jadavpur University, 188, Raja S C Mullick Street, Kolkata, 700032, India.
| | - Amit Shiuly
- Department of Civil Engineering, Jadavpur University, 188, Raja S C Mullick Street, Kolkata, 700032, India
| |
Collapse
|
13
|
Tran HT, Hadi M, Nguyen TTH, Hoang HG, Nguyen MK, Nguyen KN, Vo DVN. Machine learning approaches for predicting microplastic pollution in peatland areas. MARINE POLLUTION BULLETIN 2023; 194:115417. [PMID: 37639864 DOI: 10.1016/j.marpolbul.2023.115417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
This study explored the potential for predicting the quantities of microplastics (MPs) from easily measurable parameters in peatland sediment samples. We first applied correlation and Bayesian network analysis to examine the associations between physicochemical variables and the number of MPs measured from three districts of the Long An province in Vietnam. Further, we trained and tested three machine learning models, namely Least-Square Support Vector Machines (LS-SVM), Random Forest (RF), and Long Short-Term Memory (LSTM) to predict the composite quantities of MPs using physicochemical parameters and sediment characteristics as predictors. The results indicate that the quantity of MPs and characteristics such as color and shape in the samples were mostly influenced by pH, TOC, and salinity. All three predictive models demonstrated considerable accuracies when applied to the testing dataset. This study lays the groundwork for using basic physicochemical variables to predict MP pollution in peatland sediments and potentially locations and environments.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), Aalesund, Norway.
| | - Thi Thu Hang Nguyen
- Faculty of Health Sciences, Dong Nai Technology University, Bien Hoa, Dong Nai 76000, Vietnam
| | - Hong Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa, Dong Nai 76000, Vietnam.
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
14
|
Qian Y, Shang Y, Zheng Y, Jia Y, Wang F. Temporal and spatial variation of microplastics in Baotou section of Yellow River, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117803. [PMID: 37027953 DOI: 10.1016/j.jenvman.2023.117803] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Freshwater rivers play the key role in providing drinking water sources and building the bridge of oceans and lands. Hence, environmental pollutants can be transferred into drinking water through a water treatment process and transported land-based microplastics into the ocean. Microplastics are considered a new pollutant that is becoming a threat to freshwater ecosystems. The present study investigated the temporal and spatial variation of microplastics abundance and their characteristics of occurrence in surface water, sediment and soil samples of Baotou section of Yellow River in China in March 2021 and September 2021. According to the LDIR analysis, the average abundances of microplastics in wet season (surface water 2510.83 ± 2971.27n/L, sediment 6166.67 ± 2914.56n/kg) were higher than that in dry season(surface water 432.5 ± 240.54n/L, sediment 3766.67 ± 1625.63n/kg), particularly being significant difference in the dry and wet seasons of surface water. The predominant polymer types in surface water (PBS and PET during the dry season, PP during the wet season) demonstrated that the temporal variation of microplastics abundance in surface water could be attributed to the combined effect of the regional precipitation, fishing activities and improper disposal of plastic waste. And the results of spatial abundances of microplastics showed that the microplastics abundance of soil and sediment was higher than that in river water and microplastics abundance in the river of the south side was the higher than other water sampling sites, revealing the differences of microplastics burden at the different sampling sites. Moreover, it is worth noting that a large amount of PAM was detected in sediments and soil, but not in water, and the biodegradable plastics PBS and PLA were also detected in the Yellow River. It was a very useful information for evaluating environmental impacts and ecological effects of degradable plastics compared to the traditional plastics after the implementation of a new environmental policy in the future. Thus, this study provided insights into the temporal-spatial characteristics of microplastics in an urban river and raised environmental management awareness of the long-term threat to drinking water safety by microplastics.
Collapse
Affiliation(s)
- Yaru Qian
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Yunxu Shang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yixin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yuqiao Jia
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, 014040, China.
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China.
| |
Collapse
|
15
|
Zhang W, Zhang S, Qu L, Ju M, Huo C, Wang J. Seasonal distribution of microplastics in the surface waters of the Yellow Sea, China. MARINE POLLUTION BULLETIN 2023; 193:115051. [PMID: 37336044 DOI: 10.1016/j.marpolbul.2023.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/02/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023]
Abstract
Different studies are filling the gaps in the distribution map of global marine microplastics. However, the data on the seasonal variation is relatively limited, which may lead to overestimation or underestimation of the distribution level of microplastics. To understand baseline data and seasonal variations of the microplastics in the surface seawater of the Yellow Sea, a survey over four seasons was conducted during 2017-2018. Microplastics were collected using a 330 μm manta net. It was found that the abundance of microplastics was 0.63 ± 0.57 particles/m3. The seasonal abundance variation was spring > summer ≈ winter > autumn. The main categories were foam, line, and fragments, accounting for 32 %, 19 %, and 19 % of the total amount, respectively, and the dominant components were polypropylene, polyethylene, and polyethylene terephthalate, accounting for 38 %, 22 %, and 22 % of particles, respectively. The factors affecting the variation included wind-induced mixing, river input, and environmental topography.
Collapse
Affiliation(s)
- Weiwei Zhang
- National Marine Environmental Monitoring Center, China
| | | | - Ling Qu
- National Marine Environmental Monitoring Center, China
| | - Maowei Ju
- National Marine Environmental Monitoring Center, China
| | - Cheng Huo
- National Marine Environmental Monitoring Center, China
| | - Juying Wang
- National Marine Environmental Monitoring Center, China.
| |
Collapse
|
16
|
Nikhil VG, Ranjeet K, Varghese GK. Spatio-temporal evaluation and risk assessment of microplastics in nearshore surface waters post-2018 Kerala deluge along the southwest coast of India. MARINE POLLUTION BULLETIN 2023; 192:115058. [PMID: 37210987 DOI: 10.1016/j.marpolbul.2023.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Spatial and temporal distribution of microplastics along the nearshore surface waters of Kerala after the floods of 2018 was studied. Results indicated a seven-fold increase in its mean concentration (7.14 ± 3.03 items/m3) post deluge. The average abundance was highest during pre-monsoon (8.27 ± 3.09 items/m3). Fibres were the dominant group, with blue and black being the most prevalent colours. Polyethylene and polypropylene were the most commonly found polymers, possibly gaining entry through sewage waste or land-based plastic litter. Highest abundance of microplastic was recorded off Kochi categorising it at Hazard Level I under Pollution Load Index assessment. Similarly high levels of Pollution Hazard Index and Potential Ecological Risk Index were also reported due to the presence of hazardous polymers PVC and PU that can cause concern to marine life. The differential weathering pattern and surface morphology analysis suggested microplastics to be relatively old that had undergone substantial mechanical and oxidative weathering.
Collapse
Affiliation(s)
- V G Nikhil
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - K Ranjeet
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, India.
| | - George K Varghese
- Department of Civil Engineering, National Institute of Technology, Kozhikode, India
| |
Collapse
|
17
|
Yang Q, Wang Y, Ma L, Chen S, Zeng J, Dong H, Yang H, Bai H, Liu R, Huang W. A comprehensive evaluation of microplastic pollution in the Xiangshan Bay of China with special reference to seasonal variation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162350. [PMID: 36822424 DOI: 10.1016/j.scitotenv.2023.162350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Marine microplastic (MP) pollution has drawn global attention due to its potential risk to ecosystem. In the present study, we investigated MP pollution in surface water and sediment of a semi-closed bay: the Xiangshan Bay in the East China Sea in spring and summer. The results showed that MP abundance in surface water increased significantly in summer than spring (0.233 and 0.036 item/m3, respectively), while MP abundance in sediment was relatively steady. Meanwhile, the smaller size MPs (diameter < 1000 μm) and land-input fragment-shaped and film-shaped PP and PE increased in surface water in summer compared to spring. Surface microstructure of MPs showed that there were more cracks on MPs in summer comparing to spring. Based on diversity index, MP pollution in the Xiangshan Bay was at a low level and the composition was relatively uncomplicated. The source tracing analysis indicated main contributor of MPs were different in two seasons: textile industry was the dominate source of MPs in spring while fishery production were the dominate source in summer. Our results indicate that the pollution source of MPs could be various in different seasons due to the different climate and human activities, and provide a reference in the prevention and control of MP pollution in semi-closed bay ecosystems.
Collapse
Affiliation(s)
- Qikun Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| | - Lukuo Ma
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Siyang Chen
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou 310007, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Han Dong
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Hailing Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Hua Bai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ruijuan Liu
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou 310007, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200230, China.
| |
Collapse
|
18
|
Huang CW, Li YL, Lin C, Bui XT, Vo TDH, Ngo HH. Seasonal influence on pollution index and risk of multiple compositions of microplastics in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160021. [PMID: 36356754 DOI: 10.1016/j.scitotenv.2022.160021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Emerging contaminant microplastics (MPs) are getting worldwide attention for their ubiquitous occurrence and potential risk to the environment. However, the seasonal influence on freshwater MP pollution remains poorly understood. To better understand and evaluate the riverine MPs in different seasons, this study conducted the risk assessment of MPs in an urban river, Houjin River, during the different seasons. The present study found that the MPs (0.1-5 mm, mostly 0.1-2 mm) were more abundant in the dry season (183.33 ± 128.95 items/m3) compared with the wet season (102.08 ± 45.80 items/m3). Similarly, the mixture of different MPs polymers was more diverse in the dry season. The related pollution indices such as the contamination factor (CF) and pollution load index (PLI) showed that average CF and PLI were 5.15 and 2.10 in the dry season, which significantly decreased to 1.58 and 1.25, respectively, in the wet season (p < 0.05). Additionally, significant difference of the average risk quotient (RQ) was observed, which was 0.037 in the dry season and 0.021 in the wet season (p < 0.05). To sum up, the results of this study indicate the seasonal effects on the pollution and risk of multiple compositions of MPs in the urban river, suggesting higher impacts of riverine MPs pollution in the dry season, as well as the potential increase of MPs, may lead to environmental risk in the future.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Yi-Lin Li
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|