1
|
Pottinger AS, Geyer R, Biyani N, Martinez CC, Nathan N, Morse MR, Liu C, Hu S, de Bruyn M, Boettiger C, Baker E, McCauley DJ. Pathways to reduce global plastic waste mismanagement and greenhouse gas emissions by 2050. Science 2024; 386:1168-1173. [PMID: 39541435 DOI: 10.1126/science.adr3837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Plastic production and plastic pollution have a negative effect on our environment, environmental justice, and climate change. Using detailed global and regional plastics datasets coupled with socioeconomic data, we employ machine learning to predict that, without intervention, annual mismanaged plastic waste will nearly double to 121 million metric tonnes (Mt) [100 to 139 Mt 95% confidence interval] by 2050. Annual greenhouse gas emissions from the plastic system are projected to grow by 37% to 3.35 billion tonnes CO2 equivalent (3.09 to 3.54) over the same period. The United Nations plastic pollution treaty presents an opportunity to reshape these outcomes. We simulate eight candidate treaty policies and find that just four could together reduce mismanaged plastic waste by 91% (86 to 98%) and gross plastic-related greenhouse gas emissions by one-third.
Collapse
Affiliation(s)
- A Samuel Pottinger
- Eric and Wendy Schmidt Center for Data Science and Environment, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Roland Geyer
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nivedita Biyani
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ciera C Martinez
- Eric and Wendy Schmidt Center for Data Science and Environment, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Neil Nathan
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Molly R Morse
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chao Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Shanying Hu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Magali de Bruyn
- Eric and Wendy Schmidt Center for Data Science and Environment, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Carl Boettiger
- Eric and Wendy Schmidt Center for Data Science and Environment, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Elijah Baker
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Douglas J McCauley
- Eric and Wendy Schmidt Center for Data Science and Environment, University of California Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Shankar VS, De K, Mandal S, Jacob S, Satyakeerthy TR. Assessment of transboundary macro-litter on the remote island of Andaman and Nicobar: Unveiling the governing factors and risk assessment. MARINE POLLUTION BULLETIN 2024; 209:117145. [PMID: 39461182 DOI: 10.1016/j.marpolbul.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
The increasing occurrence of mismanaged plastic litter along India's coastline and the ominous challenges it poses to biodiversity and ecosystem health is a growing environmental concern. To address this issue, we comprehensively investigated the abundance, composition, and probable sources of marine litter on North Cinque Island, a remote uninhabited island in the Andaman and Nicobar archipelago, Bay of Bengal. This island is a designated wildlife sanctuary and serves as an important nesting site for Green, Hawksbill and Leatherback turtles. A total of 6227 litter items were enumerated, with an average concentration of 0.12 items/m2, representing 20 diverse litter types, with plastic dominating the litter composition (86 %). The cleanliness and environmental hazards of the coast due to the litter were assessed using different indices such as the Clean Coast Index (CCI), Plastic Accumulation Index (PAI), Hazardous Item Index (HII), and Clean Environment Index (CEI). CCI indicates the moderately clean-to-clean status of the surveyed sites. PAI points to low to moderate accumulation of plastic litter. HII of all five coasts fell in category II, suggesting a moderate abundance of hazardous items that can inflict injuries to the foraging turtle and their hatchlings. The CEI articulates the moderately clean to very clean status of the sites. Litter brand audit suggests a considerable amount of stranded litter on the coasts was transboundary and originated from six Indian Ocean Rim Countries (IORC), namely Thailand, Myanmar, Malaysia, Indonesia, Sri Lanka, and UAE. Joint solid waste management by the IORC is the need of the hour to avert litter accumulation on the pristine, remote islands.
Collapse
Affiliation(s)
- Venkatesan Shiva Shankar
- Faculty of Environmental Science, Mahatma Gandhi Government College, Middle & North Andaman, Andaman and Nicobar Islands 744204, India.
| | - Kalyan De
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Sourav Mandal
- Ocean Engineering Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Sunil Jacob
- IGNOU Regional Centre, Port Blair, Andaman and Nicobar Islands 744 103, India
| | | |
Collapse
|
3
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
4
|
Ndayishimiye JC, Nyirajana J, Nyirabuhoro P, Nacumuyiki PI, Coker AO, Akintayo FO, Mazei Y, Saldaev D, Nkinahamira F, Habumugisha T, Murwanashyaka T, Hishamunda V. Determinants of environmental changes in human-modified ecosystems: Effects of plastics on moisture gradients, nutrients, and clay properties. Heliyon 2024; 10:e38738. [PMID: 39430505 PMCID: PMC11490777 DOI: 10.1016/j.heliyon.2024.e38738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/07/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Plastic pollution poses a significant threat to ecosystem health worldwide. This study examines the determinants of environmental changes in human-modified ecosystems through a quantitative-qualitative system dynamics modeling approach: field experiments conducted on a 310 m2 unsaturated clay-rich bed and a 2.5 m2 clay-rich shore of a plastic-impacted pond in Shenzhen, China, and a 1.17 ha plastic-impacted clay pit in Musanze, Rwanda; laboratory experiments involving Modified Proctor (MP) and California Bearing Ratio (CBR) tests on natural clay reinforced with polyethylene terephthalate (PET) microplastics, with diameters ranging from 0.25 to 5 mm and at concentrations of 1.25 %, 2.5 %, 3.75 %, 5 %, and 10 % by weight of clay; and plastic dynamic flows analyzed by modeling the life cycle of PET. Field experiments showed that mulch type and thickness were critical factors influencing crack distribution in a plastic-impacted pond bed. Specifically, cracks were dominant in areas with pronounced desiccation and lacking filamentous green algae and PET-dominated plastic waste. Along the 2.5 m moisture gradient in a plastic-impacted pond bed, temperature and moisture significantly influenced nutrients, particularly in pronounced desiccation zones. Laboratory experiments showed that microplastics altered the structural properties of natural clay, decreasing moisture content while increasing dry density and load-bearing capacity. The plastic life cycle underscored the roles of industrial and consumer practices, environmental conditions, and waste management and recycling inefficiencies in driving environmental changes in human-modified ecosystems. The findings underscore the need for effective plastic waste management and recycling to mitigate the ecological impacts of plastic pollution in ecosystems.
Collapse
Affiliation(s)
- Jean Claude Ndayishimiye
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- The Center for Earth and Natural Resource Sciences, Kigali, P.O. Box 4285, Rwanda
| | - Jacqueline Nyirajana
- Department of Civil Engineering, Faculty of Engineering and Technology, Institute of Applied Sciences (INES Ruhengeri), Ruhengeri, P.O. Box 155, Rwanda
- Department of Civil Engineering, University of Ibadan, Ibadan, Nigeria
| | - Pascaline Nyirabuhoro
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- The Center for Earth and Natural Resource Sciences, Kigali, P.O. Box 4285, Rwanda
| | | | | | | | - Yuri Mazei
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | - Damir Saldaev
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | | | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | | | | |
Collapse
|
5
|
Vlachogianni T, Scoullos M. Baseline assessment of macrolitter on the coastline of Algeria: Fit-for-purpose data for tailor-made measures to navigate the Plasticene Age. MARINE POLLUTION BULLETIN 2024; 205:116646. [PMID: 38936004 DOI: 10.1016/j.marpolbul.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Curbing the growing threat of marine litter requires reliable, coherent and fit-for-purpose data. The present study reports the findings of beach macrolitter surveys carried out in seventeen sites along the coastline of Algeria. The median litter density recorded along these sites amounted to 578 items per 100 m of coastline (range: 317-2684 items/100 m). Every surveyed beach exceeded the European threshold value of 20 items per 100 m of coastline by a significant margin. In addition, the evaluation conducted employing the Mediterranean threshold value of 130 items per 100 m of coastline indicated that each of the seventeen surveyed beaches resides within the non-Good Environmental Status spectrum. A significant proportion of the litter, accounting for 43 %, is attributed to food and beverage consumption-related items, highlighting the impact of single-use food packaging, including food and beverage containers resulting from unsustainable practices mainly by beach users and inadequate waste management.
Collapse
Affiliation(s)
- Thomais Vlachogianni
- Mediterranean Information Office for Environment, Culture and Sustainable Development (MIO-ECSDE), Athens, Greece.
| | - Michael Scoullos
- Mediterranean Information Office for Environment, Culture and Sustainable Development (MIO-ECSDE), Athens, Greece; Laboratory of Environmental Chemistry, Faculty of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
6
|
Oger MJL, Vermeulen O, Lambert J, Madanu TL, Kestemont P, Cornet V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124094. [PMID: 38703983 DOI: 10.1016/j.envpol.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae. Zebrafish eggs were exposed before 2 h post fertilization (hpf) to polystyrene MPs (5 μm) and NPs (250 nm) at a concentration of 1000 μg/L until 96 hpf. Physiotoxicity and neurotoxicity were assessed prior and post-hatching through several biomarkers. Response to hypoxia (upregulation of hif-1aa and hif-1ab) were found in embryos exposed to MPs, and partly found in those exposed to NPs. Embryos exposed to NPs showed significant tachycardia, reduced O2 consumption and increased apoptosis in the eyes, whereas MPs affected the expressions of all genes related to the neurodevelopment of embryos (elavl3, pax2a, pax6a, act1b). Post-hatching, physiological responses were muted. MPs and NPs exposures ended by evaluating larval behaviours during dark-and-light cycles. Both sizes of plastic particles negatively affected the visual motor response (VMR) and vibrational startle response (VSR). Thigmotaxis levels were significantly increased by NPs whereas MPs showed anxiolytic properties. This study shows that both MPs and NPs affect the physiology and neurodevelopment of zebrafish at different levels, before and after hatching.
Collapse
Affiliation(s)
- Mathilde J L Oger
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium.
| | - Océane Vermeulen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Thomas L Madanu
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| |
Collapse
|
7
|
Galgani F, Rangel-Buitrago N. White tides: The plastic nurdles problem. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134250. [PMID: 38613955 DOI: 10.1016/j.jhazmat.2024.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The proliferation of plastic pollution, particularly from nurdles (small plastic pellets used in manufacturing), poses significant environmental and ecological risks. Originating with the invention of Bakelite in 1907 and escalating post-World War II with advanced petrochemical technologies, nurdles are the second largest source of primary microplastic pollution globally. Each year an estimated 445,970 tonnes of nurdles enter the environment worldwide. Nurdle spills, such as those along Spain's Galician coast and other global incidents, underline the need for improved spill response, preventive measures, and international regulatory coordination. The environmental impact of nurdles, compared to more visible oil spills, is insidious and long-lasting due to their persistence and widespread dispersion. Current regulations, like the International Maritime Organization's (IMO) guidelines, reveal gaps in enforcement and fail to fully address the long-term consequences of spills. Recent technological innovations and policy interventions aim to mitigate risks, but there's an urgent need for coordinated global action, stricter controls, and investment in biodegradable alternatives to safeguard marine environments and ensure ecological sustainability.
Collapse
Affiliation(s)
- Francois Galgani
- Unité Ressources Marines en Polynésie Francaise, Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), BP 49, Vairao, Tahiti, French Polynesia
| | - Nelson Rangel-Buitrago
- Programade Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia.
| |
Collapse
|
8
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Cyvin JB, Nixon FC. Plastic litter affected by heat or pressure: A review of current research on remoulded plastic litter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171498. [PMID: 38458458 DOI: 10.1016/j.scitotenv.2024.171498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Pyroplastic, plastiglomerates, anthropogenic rocks, plasticrusts, pebble clasts, plastitar, plastisoil and anthropoquinas are examples of terms that have been used to describe the secondary products of plastic litter that have been melted, moulded, pressed, or cemented together with other plastic litter and/or minerogenic sediments or organic matter, either naturally or anthropogenically. Such processes may also favor the formation of new geological features containing plastics, such as coastal landforms or sedimentary rocks. Further research and classification of this secondary plastic litter is critical for understanding the implications of this emerging contaminant as well as to create well-targeted measures to reduce it. The literature review as presented includes 32 peer-reviewed articles published between 1997 and June 2023, all of which describe various burnt or otherwise remoulded plastic litter from around the world. Based on our review we propose a new umbrella term for the different forms of secondary plastic litter that have been modified by heat or pressure: Remoulded Plastic Litter (RPL). If accepted by the research community, important steps for future research and policy will be to implement RPL into the OSPAR protocol for monitoring and assessment of marine litter and thereby fill knowledge gaps of the geographic distribution of RPLs and their potential toxicities to nature and humans. It is clear that the distribution of RPL research spans the globe, however, studies in Africa, Oceania, large tracts of the polar regions, and terrestrial areas in general, are scarce to absent, as are ecotoxicological studies and recommendations for policy development.
Collapse
Affiliation(s)
- Jakob Bonnevie Cyvin
- Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Francis Chantel Nixon
- Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Andriolo U, Gonçalves G, Hidaka M, Gonçalves D, Gonçalves LM, Bessa F, Kako S. Marine litter weight estimation from UAV imagery: Three potential methodologies to advance macrolitter reports. MARINE POLLUTION BULLETIN 2024; 202:116405. [PMID: 38663345 DOI: 10.1016/j.marpolbul.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
In the context of marine litter monitoring, reporting the weight of beached litter can contribute to a better understanding of pollution sources and support clean-up activities. However, the litter scaling task requires considerable effort and specific equipment. This experimental study proposes and evaluates three methods to estimate beached litter weight from aerial images, employing different levels of litter categorization. The most promising approach (accuracy of 80 %) combined the outcomes of manual image screening with a generalized litter mean weight (14 g) derived from studies in the literature. Although the other two methods returned values of the same magnitude as the ground-truth, they were found less feasible for the aim. This study represents the first attempt to assess marine litter weight using remote sensing technology. Considering the exploratory nature of this study, further research is needed to enhance the reliability and robustness of the methods.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| | - Mitsuko Hidaka
- Research Institute for Value-Added-Information Generation (VAiG), Japan Agency for Marine - Earth Science and Technology (JAMSTEC), Yokohama, Japan; Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| | - Diogo Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; University of Coimbra, Department of Civil Engineering, Coimbra, Portugal.
| | - Luisa Maria Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; School of Technology and Management, Polytechnic of Leiria, Nova IMS University Lisbon, Portugal.
| | - Filipa Bessa
- Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal.
| | - Shin'ichiro Kako
- Research Institute for Value-Added-Information Generation (VAiG), Japan Agency for Marine - Earth Science and Technology (JAMSTEC), Yokohama, Japan; Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
11
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
12
|
Abelouah MR, Ben-Haddad M, Hajji S, Nouj N, Ouheddou M, Mghili B, De-la-Torre GE, Costa LL, Banni M, Ait Alla A. Exploring marine biofouling on anthropogenic litter in the Atlantic coastline of Morocco. MARINE POLLUTION BULLETIN 2024; 199:115938. [PMID: 38141584 DOI: 10.1016/j.marpolbul.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Today, the world is increasingly concerned about marine litter and its interaction with marine biodiversity. However, knowledge concerning the fouling organisms associated with marine litter is very limited in many of the world's marine environments. In this survey, we investigated biofouling on different types of marine litter washed up on all the coasts of the central Atlantic of Morocco. The findings revealed 21 fouling species belonging to 9 phyla (Arthropoda, Mollusca, Echinodermata, Annelida, Bryozoa, Porifera, Chlorophyta, Ochrophyta, and Ascomycota). More specifically, frequently observed fouling species include Mytilus galloprovincialis, Balanus laevis, Megabalanus coccopoma, and Pollicipes pollicipes species. Large marine litter items recorded the highest colonization of marine organisms in comparison to small ones. The frequency of occurrence (FO) of the species most commonly fouled on all coasts was Perforatus perforatus (FO = 48.60), followed by Mytilus galloprovincialis (FO = 45.80), Balanus trigonus (FO = 32.05), Balanus laevis (FO = 30.25), Megabalanus coccopoma (FO = 25.25), Bryozoa species (FO = 19.40), Spirobranchus triqueter (FO = 18.18), Lepas pectinata (FO = 14.45), and Pollicipes pollicipes (FO = 13.05). The majority of the species registered in this study are sessile. Substrate coverage by fouling taxa was significantly different between plastic substrate and other types of marine litter. Likewise, this study revealed that the proportion of fouling organisms is higher on rough surfaces. Overall, this research could be crucial to understanding the little-known subject of marine litter and its colonization by marine biota. Given that these marine litters can act as vectors and cause ecological, biogeographical, and conservation issues in the marine environment, minimizing the quantity of anthropogenic litter reaching the Moroccan Atlantic could significantly reduce its accumulation on the sea surface and seabed, thereby reducing the risk of invasion by non-indigenous species.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Nisrine Nouj
- Material and Environmental Laboratory (LME), Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Maryam Ouheddou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes CEP, Rio de Janeiro 28013-602, Brazil.
| | - Mohamed Banni
- Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
13
|
Zuri G, Karanasiou A, Lacorte S. Human biomonitoring of microplastics and health implications: A review. ENVIRONMENTAL RESEARCH 2023; 237:116966. [PMID: 37634692 DOI: 10.1016/j.envres.2023.116966] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Microplastics (MPs) are plastic particles (<5 mm) ubiquitous in water, soil, and air, indicating that humans can be exposed to MPs through ingestion of water and food, and inhalation. OBJECTIVE This review provides an overview of the current human biomonitoring data available to evaluate human exposure and health impact of MPs. METHOD We compiled 91 relevant studies on MPs in human matrices and MPs toxicological endpoints to provide evidence on MPs distribution in the different tissues and the implications this can have from a health perspective. RESULTS Human exposure to MPs has been corroborated by the detection of MPs in different human biological samples including blood, urine, stool, lung tissue, breast milk, semen and placenta. Although humans have clearance mechanisms protecting them from potentially harmful substances, health risks associated to MPs exposure include the onset of inflammation, oxidative stress, and DNA damage, potentially leading to cardiovascular and respiratory diseases, as well as cancer, as suggested by in vitro and in vivo studies. CONCLUSION Based on compiled data, MPs have been recurrently identified in different human tissues and fluids, suggesting that humans are exposed to MPs through inhalation and ingestion. Despite differences in MPs concentrations appear in exposed and non-exposed people, accumulation and distribution pathways and potential human health hazards is still at an infant stage. Human biomonitoring data enables the assessment of human exposure to MPs and associated risks, and this information can contribute to draw management actions and guidelines to minimize MP release to the environment, and thus, reduce human uptake.
Collapse
Affiliation(s)
- Giuseppina Zuri
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Angeliki Karanasiou
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sílvia Lacorte
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
14
|
Saliu F, Compa M, Becchi A, Lasagni M, Collina E, Liconti A, Suma E, Deudero S, Grech D, Suaria G. Plastitar in the Mediterranean Sea: New records and the first geochemical characterization of these novel formations. MARINE POLLUTION BULLETIN 2023; 196:115583. [PMID: 37769405 DOI: 10.1016/j.marpolbul.2023.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
A new geological formation consisting of plastic debris admixed to petroleum oil residue, termed "plastitar", has been recently described in the Canary Islands. Here, we report its widespread occurrence across the Mediterranean coast and new insights into its biogeochemical composition. Specifically, we found marked differences in the diagenetic stable indicator profiles, suggesting a heterogeneous seeps provenance. Moreover, the 801 plastic particles found in the 1372 g of tar surveyed, with a maximum concentration of 2.0 items/g, showed interesting patterns in the tar mat, with nurdles predominantly layered in the external of the tar mat and lines in the inner core. Overall, the collected observation suggests that tar entraps plastics through a stepwise process and is a sink for them.
Collapse
Affiliation(s)
- Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Montserrat Compa
- Centro Oceanográfico de Baleares, (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Elena Collina
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Arianna Liconti
- OutBe SRL, Genova, Italy; MBA, The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | | | - Salud Deudero
- Centro Oceanográfico de Baleares, (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - Daniele Grech
- IMC - International Marine Centre, Loc. Sa Mardini, 09170, Torregrande, Oristano, Italy
| | - Giuseppe Suaria
- CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Pozzuolo di Lerici, 19032 La Spezia, Italy
| |
Collapse
|
15
|
Ellrich JA, Ehlers SM, Furukuma S, Pogoda B, Koop JHE. Characterization of three plastic forms: Plasticoncrete, plastimetal and plastisessiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165073. [PMID: 37355116 DOI: 10.1016/j.scitotenv.2023.165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Plastic forms, including plastiglomerate, pyroplastic, plasticrusts, anthropoquinas, plastistone and plastitar, were recorded worldwide. These plastic forms derive from geochemical or geophysical interactions such as heat-induced plastic fusion with rock in campfires, incomplete plastic combustion, water motion-driven plastic abrasion in the rocky intertidal zone, plastic deposition in hardened sediments and plastic bonding with tar. Thereby, these interactions can profoundly influence the fate of plastics in the environment. This study characterized three novel plastic forms (plasticoncrete, plastimetal and plastisessiles) discovered on Helgoland island (North Sea). Plasticoncrete consisted of common polyethylene (PE) and polypropylene (PP) fibers hardened in concrete. Plastimetal included PE fibers rusted with metal. Plastisessiles consisted of PE fibers attached to benthic substrates by sessile invertebrates (oysters and polychaetes). Plasticoncrete and plastimetal are the first plastic forms composed of two man-made materials. Plastisessiles show that plastic forms not only result from human- or environment-mediated interactions but also from biological interactions between invertebrates and plastic. All plastic forms (bulk density ≥ 1.4 g/cm3) sunk during floating tests and hardly changed their positions during a 13-day field experiment and 153- to 306-day field monitorings, indicating their local formation, limited mobility and longevity. Still, experimentally detached plastic fibers floated, confirming that the formation of these plastic forms influences the fate of plastic fibers in the environment. Furthermore, the experiment showed that plasticoncrete got deposited in beach sand under wavy and windy conditions, indicating that coastal waves and onshore winds drive plasticoncrete deposition in coastal sediments. We also provide first records of plasticoncrete on Mallorca island (Mediterranean Sea) and plastimetal on Hikoshima island (Sea of Japan), respectively, which show that these plastic forms are no local phenomena. Thereby, our study contributes to the growing fundamental knowledge of plastic forms that is essential to understand the role and fate of these pollutants in coastal habitats worldwide.
Collapse
Affiliation(s)
- Julius A Ellrich
- Shelf Sea System Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498 Helgoland, Germany
| | - Sonja M Ehlers
- Department of Animal Ecology, Federal Institute of Hydrology, 56068 Koblenz, Germany.
| | - Shunji Furukuma
- Independent Researcher, 409-24 Kiwanami, Ube City, Yamaguchi 7590207, Japan
| | - Bernadette Pogoda
- Shelf Sea System Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498 Helgoland, Germany
| | - Jochen H E Koop
- Department of Animal Ecology, Federal Institute of Hydrology, 56068 Koblenz, Germany; Institute for Integrated Natural Sciences, University of Koblenz, 56070 Koblenz, Germany
| |
Collapse
|
16
|
Andriolo U, Topouzelis K, van Emmerik THM, Papakonstantinou A, Monteiro JG, Isobe A, Hidaka M, Kako S, Kataoka T, Gonçalves G. Drones for litter monitoring on coasts and rivers: suitable flight altitude and image resolution. MARINE POLLUTION BULLETIN 2023; 195:115521. [PMID: 37714078 DOI: 10.1016/j.marpolbul.2023.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Multirotor drones can be efficiently used to monitor macro-litter in coastal and riverine environments. Litter on beaches, dunes and riverbanks, along with floating litter on coastal and river waters, can be spotted and mapped from aerial drone images. Items detection and classification are prone to image resolution, which is expressed in terms of Ground Sampling Distance (GSD). The GSD is determined by drone flight altitude and camera properties. This paper investigates what is a suitable GSD value for litter survey. Drone flight altitude and camera setup should be chosen to obtain a GSD between 0.5 cm/px and 1.25 cm/px. Within this range, the lowest GSD allows litter categorization and classification, whereas the highest value should be adopted for a coarser litter census. In the vision of drawing up a global protocol for drone-based litter surveys, this work sets the ground for homogenizing data collection and litter assessments.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030-290 Coimbra, Portugal.
| | | | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands.
| | | | - João Gama Monteiro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Madeira, Portugal.
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan.
| | - Mitsuko Hidaka
- Research Institute for Value-Added-Information Generation (VAiG), Japan Agency for Marine - Earth Science and Technology (JAMSTEC), Yokohama, Japan; Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| | - Shin'ichiro Kako
- Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| | - Tomoya Kataoka
- Department of Civil and Environmental Engineering, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030-290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| |
Collapse
|
17
|
Ben-Haddad M, Charroud I, Mghili B, Abelouah MR, Hajji S, Aragaw TA, Rangel-Buitrago N, Alla AA. Examining the influence of COVID-19 lockdowns on coastal water quality: A study on fecal bacteria levels in Moroccan seawaters. MARINE POLLUTION BULLETIN 2023; 195:115476. [PMID: 37677975 DOI: 10.1016/j.marpolbul.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fecal bacteria in bathing seawater pose a substantial public health risk and require rigorous monitoring. The unexpected beach closures during the COVID-19 lockdowns have afforded unique opportunities to evaluate the impact of human activities on bathing water quality (BWQ). This study examined the temporal changes in fecal coliforms (FC) and streptococci (FS) within bathing seawater across a popular coastal region in Morocco during two lockdown periods (2020 L and 2021 L), comparing these data with observations from pre-lockdown years (2018, 2019) and post-lockdown periods (2020, 2021, 2022). Our findings illuminate the influential role the hiatus periods played in enhancing bathing water quality, attaining an "excellent" status with marked reductions in fecal coliform and streptococci levels. Consequently, the FC/FS analysis exposed a clear preponderance of humans as the primary sources of fecal contamination, a trend that aligns with the burgeoning coastal tourism and the escalating numbers of beach visitors. Additionally, the presence of domestic animals like camels and horses used for tourist rides, coupled with an increase in wild animals such as dogs during the lockdown periods, compounded the potential sources of fecal bacteria in the study area. Furthermore, occasional sewage discharge from tourist accommodations and wastewater treatment plants may also contribute to fecal contamination. To effectively mitigate these concerns and bolster public health, a commitment to relentless surveillance efforts, leveraging novel and innovative tools, is essential. These findings underline the crucial interplay between human activities and the health of our coastal ecosystems, emphasizing the need for sustainable practices for a safer and healthier future.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Imane Charroud
- Laboratory of Biotechnologies and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Biology and Ecology of Deep Marine Ecosystems (BEEP), UMR 6197 (UBO, CNRS, Ifremer), Plouzané, France.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
18
|
Vlachogianni T, Scoullos M. Assessing marine macrolitter on the coastline of the Asterousia Biosphere Reserve: Insights from a community-based study. MARINE POLLUTION BULLETIN 2023; 195:115474. [PMID: 37672921 DOI: 10.1016/j.marpolbul.2023.115474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Even in pristine and remote environments of the Mediterranean, marine litter is building up threatening habitats and species and inhibiting sustainable development. The present study reports the findings of beach litter surveys carried out by 250 local community members in nine sites along the coastline of the Asterousia Biosphere Reserve, situated in the southernmost end of Europe. The average recorded litter density along these sites amounted to 125 items per 100 meters of coastline (range: 22-510) and to 0.05 items per square meter of beach (range: 0.01-0.13). Only two of the nine surveyed beaches were found to be in good environmental status, in compliance with the European threshold value for beach litter. The other seven studied beaches surpassed the European threshold value. The primary sources of the litter identified in the study can be attributed to unsustainable practices and inadequate waste management by individuals, communities and municipalities using the coastal and marine environment. Additionally, unsustainable waste management practices within the agricultural sector were also found to be a significant contributor to marine litter pollution.
Collapse
Affiliation(s)
- Thomais Vlachogianni
- Mediterranean Information Office for Environment, Culture and Sustainable Development, Athens, Greece.
| | - Michael Scoullos
- Mediterranean Information Office for Environment, Culture and Sustainable Development, Athens, Greece; Laboratory of Environmental Chemistry, Faculty of Chemistry, University of Athens, Greece
| |
Collapse
|
19
|
Andriolo U, Gonçalves G. The octopus pot on the North Atlantic Iberian coast: A plague of plastic on beaches and dunes. MARINE POLLUTION BULLETIN 2023; 192:115099. [PMID: 37267867 DOI: 10.1016/j.marpolbul.2023.115099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
This baseline focuses on the octopus pot, a litter item found on the North Atlantic Iberian coast. Octopus pots are deployed from vessels in ropes, with several hundred units, and placed on the seabed, to capture mostly Octopus Vulgaris. The loss of gears due to extreme seas state, bad weather and/or fishing-related unforeseen circumstances, cause the octopus pots contaminating beaches and dunes, where they are transported by sea current, waves and wind actions. This work i) gives an overview of the use of octopus pot on fisheries, ii) analyses the spatial distribution of this item on the coast, and iii) discusses the potential measures for tackling the octopus pot plague on the North Atlantic Iberian coast. Overall, it is urgent to promote conducive policies and strategies for a sustainable waste management of octopus pots, based on Reduce, Reuse and Recycle hierarchical framework.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| |
Collapse
|