1
|
Beghin M, Ambroise V, Lambert J, Garigliany MM, Cornet V, Kestemont P. Environmental exposure to single and combined ZnO and TiO 2 nanoparticles: Implications for rainbow trout gill immune functions and microbiota. CHEMOSPHERE 2025; 373:144148. [PMID: 39864124 DOI: 10.1016/j.chemosphere.2025.144148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
ZnO and TiO2 nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L-1) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO2 NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition. Changes in the relative abundance of potential pathogenic genera such as Candidatus Piscichlamydia and Flavobacterium were observed. Additionally, while the expression of the pro-inflammatory cytokine il1β, and antibacterial compounds (c3) was downregulated by TiO2 NPs and the mixture, ZnO NPs affected immune (mpo) and tight junction proteins (zo1). These results highlight the differences in the toxicity mechanisms existing between the single NPs and their combination, which showed higher toxicity to the gill bacterial community, but not to immune mechanisms. Furthermore, they suggest that exposure to environmental concentrations of NPs could potentially affect fish mucosal immunity and associated microbiota, highlighting the need for further research on the toxicity of NP mixtures.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| | | | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Mutien-Marie Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, FARAH Research Centre, University of Liège, Liege, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| |
Collapse
|
2
|
Huang W, Yang S, Cai W, Huang W, Liu Y, Li S, Zhou M, Tan B, Dong X. Effect of Feeding Frequency on the Growth, Body Composition, and Intestinal Health of Hybrid Grouper ( Epinephelus fuscoguttatus♀ × E. lanceolatu♂) Fed a High-Fat Diet. Animals (Basel) 2025; 15:346. [PMID: 39943116 PMCID: PMC11816143 DOI: 10.3390/ani15030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This experiment was to investigate the effects of feeding frequency on the growth performance, body composition, and intestinal health of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu ♂). Fifty-six days of feeding with four different feeding frequencies (1 time/day, 2 times/day, 3 times/day, and 4 times/day) were conducted on groupers with an initial body weight of 11.51 ± 0.02 g. The results show the following: (1) Weight gain rate (WGR) and specific growth rate (SGR) of the groupers in the 1 time/day group were significantly lower than in other groups (p < 0.05). (2) Superoxide dismutase (SOD) had the lowest value in the 1 time/day group, significantly lower than the 2 times/day and 4 times/day groups, catalase showed an upward trend, and the 4 times/day group was significantly greater than the other groups (p < 0.05). The total antioxidant capacity (T-AOC) and glutathione peroxidase (GPX) activities in the 1 time/day group were significantly lower than in the other groups (p < 0.05). (3) The increase in feeding frequency led to a significant increase in the expression levels of cat and il-6 (p < 0.05). In summary, appropriate feeding frequency can promote growth and enhance the antioxidant capacity of the fish's gut. We recommend a best feeding frequency of 2 times/day.
Collapse
Affiliation(s)
- Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shipei Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Wenshan Cai
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Wanting Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Yansheng Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuaipeng Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Menglong Zhou
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
3
|
Zou H, Li F, Huang L, Yao J, Lin Y, Yang C, Hao R, Mkuye R, Liao Y, Deng Y. Titanium Dioxide Nanoparticles Negatively Influence Gill Metabolism in Pinctada fucata martensii. Metabolites 2024; 14:682. [PMID: 39728463 DOI: 10.3390/metabo14120682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND In recent years, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals. METHODS Therefore, we assessed the impact of TiO2 NPs (5 mg/L) on the marine bivalve, pearl oyster (Pinctada fucata martensii), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO2 NPs for 14 days, followed by 7 days of recovery in untreated seawater. Gill tissues and hepatopancreatic tissues were sampled on days 0, 14, and 21 of the experiment named C0, E14, and R7, respectively. RESULTS Metabolomic analysis identified 102 significantly different metabolites (SDMs) on gills tissue in pearl oysters following exposure to TiO2 NPs (C0 vs. E14). Compared with group C0, group E14 had 76 SDMs (such as acetylcholine, itaconic acid, citric acid, and taurine) with higher concentrations and 26 (including L-arginine and isobutyryl-L-carnitine) with lower concentrations. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that these SDMs enriched 28 pathways, including glycine, serine, and threonine metabolism, neuroactive ligand-receptor interaction, and taurine and hypotaurine metabolism. In addition, 116 SDMs were identified in E14 and R7 pearl oysters. Compared with group E14, group R7 had 74 metabolites (such as acetylcholine, 6-phosphogluconic acid, isocitric acid, and itaconic acid) with higher concentrations and 42 (including uracil, glycerophosphocholine, N-Acetyl-D-glucosamine) with lower concentrations. The SDMs identified between E14 and R7 enriched 25 pathways, including the pentose phosphate pathway, glutathione metabolism, and citrate cycle (TCA cycle). In addition, analysis of the energy metabolism-associated enzymes revealed that exposure to TiO2 NPs reduced Ca2+/Mg2+-ATPase, Na+/K+-ATPase, and Total-ATPase activities. CONCLUSIONS These findings suggested that TiO2 NPs may inhibit the energy metabolism function of gill and hepatopancreas of pearl oysters. Meanwhile, TiO2 NPs may affect the normal functioning of immune and osmoregulatory functions of pearl oysters gill and even may lead to oxidative stress and neurotoxicity. Therefore, this study may provide a reference for analyzing the bioadaptation of marine bivalves to TiO2 NPs and the potential negative effects of TiO2 NPs on bivalves.
Collapse
Affiliation(s)
- Heqi Zou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fengfeng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Luomin Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaying Yao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yujing Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Ouwehand J, Peijnenburg WJGM, Vijver MG. Microbial function matters: Microbiome-aware nano-ecotoxicology needs functional endpoints besides compositional data. CHEMOSPHERE 2024; 369:143905. [PMID: 39643017 DOI: 10.1016/j.chemosphere.2024.143905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The microbiome provides an active barrier to the external environment and aids in the metabolism of the host. Nanomaterials are known to interact with this microbiome host plane. Given the recent advances in techniques to study the microbiome, there has been a vast increase in studies trying to find causality in host response via the microbiome in nano-ecotoxicology. Our review integrates the latest advancements in understanding the microbiome's role in elucidating host health related to nanomaterial exposure, thereby explicitly emphasizing the gap between compositional and functional studies. Both the techniques used to interfere and the current understanding of microbiome-host relationships in nano-ecotoxicology are discussed. To further highlight the functional side of the microbiome, we performed an explorative meta-analysis to bridge the gap between top-down and bottom-up studies. This review gives a perspective on generalising microbiome-aware nano-ecotoxicology and discusses methodologies to enhance the interpretation of nanomaterial or chemical exposure to host-microbiome interactions. The current study discloses that correlations built on compositional data are not a good proxy for host outcome and more in-depth analysis coupled with functional analysis should be explored more in microbiome-aware nano-ecotoxicology.
Collapse
Affiliation(s)
- Jesse Ouwehand
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands
| |
Collapse
|
5
|
Araújo MJ, Vazquez M, Rodriguez-Lorenzo L, Moreda-Piñeiro A, Fonseca E, Mallo N, Pinheiro I, Quarato M, Bigorra-Ferré E, Matos A, Barreiro-Felpeto A, Turkina MV, Suárez-Oubiña C, Bermejo-Barrera P, Cabaleiro S, Vasconcelos V, Espiña B, Campos A. Diving into the metabolic interactions of titanium dioxide nanoparticles in "Sparus aurata" and "Ruditapes philippinarum". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124665. [PMID: 39116928 DOI: 10.1016/j.envpol.2024.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The biological response to nanomaterials exposure depends on their properties, route of exposure, or model organism. Titanium dioxide nanoparticles (TiO2 NPs) are among the most used nanomaterials; however, concerns related to oxidative stress and metabolic effects resulting from their ingestion are rising. Therefore, in the present work, we addressed the metabolic effects of citrate-coated 45 nm TiO2 NPs combining bioaccumulation, tissue ultrastructure, and proteomics approaches on gilthead seabream, Sparus aurata and Japanese carpet shell, Ruditapes philippinarum. Sparus aurata was exposed through artificially contaminated feeds, while R. philippinarum was exposed using TiO2 NPs-doped microalgae solutions. The accumulation of titanium and TiO2 NPs in fish liver is associated with alterations in hepatic tissue structure, and alteration to the expression of proteins related to lipid and fatty acid metabolism, lipid breakdown for energy, lipid transport, and homeostasis. While cellular structure alterations and the expression of proteins were less affected than in gilthead seabream, atypical gill cilia and microvilli and alterations in metabolic-related proteins were also observed in the bivalve. Overall, the effects of TiO2 NPs exposure through feeding appear to stem from various interactions with cells, involving alterations in key metabolic proteins, and changes in cell membranes, their structures, and organelles. The possible appearance of metabolic disorders and the environmental risks to aquatic organisms posed by TiO2 NPs deserve further study.
Collapse
Affiliation(s)
- Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - María Vazquez
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Antonio Moreda-Piñeiro
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Natalia Mallo
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Elizabeth Bigorra-Ferré
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ana Matos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro-Felpeto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Cristian Suárez-Oubiña
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Santiago Cabaleiro
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
6
|
Chandoliya R, Sharma S, Sharma V, Joshi R, Sivanesan I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2964. [PMID: 39519883 PMCID: PMC11547906 DOI: 10.3390/plants13212964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles. Titanium dioxide nanoparticles have a positive impact on plant physiology, particularly in response to biotic and abiotic stresses, depending on various factors like size, concentration, exposure of the nanoparticles and other variables. Further, titanium dioxide nanoparticles have many applications, such as being used as nano-fertilizers, adsorption of heavy metal from industrial wastewater and antimicrobial activity, as discussed in this review paper. Previous studies investigated whether titanium dioxide nanoparticles also induce genotoxicity may be due to mishandling procedure, exposure time, size, concentration and other variables. This is still contradictory and requires more research. The present review is a pragmatic approach to summarize the synthesis, application, nanotoxicity, genotoxicity and eco-friendly method of nanoparticle synthesis and disposable.
Collapse
Affiliation(s)
- Rakhi Chandoliya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Ale A, Andrade VS, Gutierrez MF, Ayech A, Monserrat JM, Desimone MF, Cazenave J. Metal-based nanomaterials in aquatic environments: What do we know so far about their ecotoxicity? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107069. [PMID: 39241467 DOI: 10.1016/j.aquatox.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The wide range of applications of nanomaterials (NM) in different fields has led to both uncontrolled production and release into environmental compartments, such as aquatic systems, where final disposal occurs. Some efforts have been made to estimate their concentrations in environmental matrices; however, little is known about the actual effects of environmental NM concentrations on biota. The aims of the present review are to (i) expose the state of the art of the most applied NM and their actual concentrations regarding how much is being released to the aquatic environment and which are the predicted ones; (ii) analyze the current literature to elucidate if the aforementioned conditions were proven to cause deleterious effects on the associated organisms; and (iii) identify gaps in the knowledge regarding whether the actual NM concentrations are harmful to aquatic biota. These novel materials are expected to being released into the environment in the range of hundreds to thousands of tons per year, with Si- and Ti-based NM being the two most important. The estimated environmental NM concentrations are in the low range of ng to µg/L, except for Ti-based ones, which concentrations reach values on the order of mg/L. Empirical information regarding the ecotoxicity of environmental NM concentrations mainly focused on metal-based NM, however, it resulted poor and unbalanced in terms of materials and test species. Given its high predicted environmental concentration in comparison with the others, the ecotoxicity of Ti-based NM has been well assessed in algae and fish, while little is known regarding other NM types. While only a few marine species were addressed, the freshwater species Daphnia magna and Danio rerio accounted for the majority of studies on invertebrate and fish groups, respectively. Most of the reported responses are related to oxidative stress. Overall, we consider that invertebrate groups are the most vulnerable, with emphasis on microcrustaceans, as environmentally realistic metal-based NM concentration even caused mortality in some species. In the case of fish, we assumed that environmental concentrations of Ti-based NM represent a growing concern and threat; however, further studies should be carried out by employing other kinds of NM. Furthermore, more ecotoxicological information is needed in the case of carbon-based NM, as they are expected to considerably increase in terms of released amounts and applications in the near future.
Collapse
Affiliation(s)
- Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Santa Fe, Argentina.
| | - Victoria S Andrade
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramon Carrillo" (FBCB-UNL), Santa Fe, Argentina
| | - Alinne Ayech
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - Martín F Desimone
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil; Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| |
Collapse
|
8
|
Khan IA, Yu T, Li Y, Hu C, Zhao X, Wei Q, Zhong Y, Yang M, Liu J, Chen Z. In vivo toxicity of upconversion nanoparticles (NaYF 4:Yb, Er) in zebrafish during early life stages: Developmental toxicity, gut-microbiome disruption, and proinflammatory effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116905. [PMID: 39191133 DOI: 10.1016/j.ecoenv.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (Ln-UCNPs) have been considered promising materials for various fields, such as biomedical and industrial applications. However, data and reports regarding its toxicity and environmental risks are scarce. Under these circumstances, data must be obtained to fully understand potential toxicity and adverse outcome pathways. In the present study, the toxicity of uncoated Ln-UCNP cores (NaYF4:Yb, Er) was systematically assessed in zebrafish embryos during early developmental stages. Ln-UCNPs were found to have multiple toxic effects, such as effects on survival rates, delayed hatching times, shorter body lengths, altered heart rates and blood circulation (significantly reduced), and neurobehavioral impairments in response to photoperiod stimulation. Bioimaging showed that Ln-UCNPs were distributed on the chorion, eyes, and skin at 72 hpf. However, it accumulates in the pharynx, esophagus, and intestine after oral administration. Ln-UCNPs disrupt the diversity and abundance of host-associated microorganisms (gut microbiota) leading to an increase in the prevalence of harmful bacteria in zebrafish. Transcriptomic and Ingenuity Pathway Analysis (IPA) predicted Interleukin-8 (IL-8) signaling, neuroinflammation, cardiac hypertrophy signaling pathways, immune and inflammation-related response interferon-gamma (ifnγ), and miR-155 as key mediators in regulatory effects. Based on this, a causal network was built showing the strong links between the induced gene expression of differentially expressed genes (DEGs), such as nitric oxide synthase 2 (nos2) and tumor necrosis factor (tnf) upon Ln-UCNPs treatment, and with the downstream adverse outcomes, in particular, the promotion of apoptosis, liver damage, and inflammatory response. Finally, RT-qPCR analysis confirmed the up-regulated expression of nos2 and tnf in the exposed larvae, consistent with the observation of an increased number of fluorescence-labelled neutrophils and macrophages in lyz: DsRed transgenic zebrafish until 120 hpf exposure, which together demonstrated the proinflammatory effects of Ln-UCNPs on organisms. In conclusion, we illustrated the developmental toxicity, disruption of gut-microbiome, and proinflammatory effects of Ln-UCNP cores on zebrafish, and the causal network from IPA analysis may help further elucidate the adverse outcome pathway of Ln-UCNPs.
Collapse
Affiliation(s)
- Imran Ahamed Khan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chengzhang Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhong Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian 362200, China; Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
9
|
Li Z, Xu T, Chen H, Wang X. Microglial activation and pyroptosis induced by nano-TiO 2 in marine medaka brain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107034. [PMID: 39163698 DOI: 10.1016/j.aquatox.2024.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Recently, nano-titanium dioxide (nano-TiO2) has been widely distributed over surface water. However, there are few reports on its effects on the central nervous system of fish. In this study, we investigated whether nano-TiO2 enters the medaka brain after exposure and its effect on the brain. Marine medaka brains were examined after exposure to 0.01 g/L nano-TiO2 for 3, 10, and 20 d. Nano-TiO2-like particles were found in the telencephalon of treated fish. There was no obvious brain histopathological injury. The number of irregular mitochondria with absent cristae increased. Gene expression of the apoptosis-related genes, casp8, bcl2b, and bax, decreased significantly in the nano-TiO2 group at 3 d. In contrast, the pyroptosis-related genes, gsdmeb and casp1, and inflammation-related factor, il18, increased significantly. As an activated microglia marker, mRNA expression of cd68 increased significantly in the nano-TiO2 treated group. Moreover, CD68 protein expression also increased significantly at 10 d. Altogether, we show that nano-TiO2 can alter mitochondrial morphology in the telencephalon of medaka, leading to microglial activation and pyroptosis.
Collapse
Affiliation(s)
- Zirun Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haijin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Duan Y, Yang Y, Li H, Zhang Z, Chen X, Xiao M, Nan Y. The toxic effects of tetracycline exposure on the physiological homeostasis of the gut-liver axis in grouper. ENVIRONMENTAL RESEARCH 2024; 258:119402. [PMID: 38866314 DOI: 10.1016/j.envres.2024.119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Antibiotic residues, such as tetracycline (TET), in aquatic environments have become a global concern. The liver and gut are important for immunity and metabolism in aquatic organisms. In this study, juvenile groupers were subjected to 1 and 100 μg/L TET for 14 days, and the physiological changes of these fish were evaluated from the perspective of gut-liver axis. After TET exposure, the liver showed histopathology, lipid accumulation, and the elevated ALT activity. An oxidative stress response was induced in the liver and the metabolic pattern was disturbed, especially pyrimidine metabolism. Further, intestinal health was also affected, including the damaged intestinal mucosa, the decreased mRNA expression levels of tight junction proteins (ZO-1, Occludin, and Claudin-3), along with the increased gene expression levels of inflammation (IL-1β, IL-8, TNF-α) and apoptosis (Casp-3 and p53). The diversity of intestinal microbes increased and the community composition was altered, and several beneficial bacteria (Lactobacillus, Bacteroidales S24-7 group, and Romboutsia) and harmful (Aeromonas, Flavobacterium, and Nautella) exhibited notable correlations with hepatic physiological indicators and metabolites. These results suggested that TET exposure can adversely affect the physiological homeostasis of groupers through the gut-liver axis.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China.
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Xiaoying Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, PR China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| |
Collapse
|
11
|
Li F, Lin Y, Yang C, Yan Y, Hao R, Mkuye R, Deng Y. Effects of titanium dioxide nanoparticle exposure on the gut microbiota of pearl oyster (Pinctada fucata martensii). Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109906. [PMID: 38522712 DOI: 10.1016/j.cbpc.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
With the advancement of nanotechnology and the growing utilization of nanomaterials, titanium dioxide (TiO2) has been released into aquatic environments, posing potential ecotoxicological risks to aquatic organisms. In this study, the toxicological effects of TiO2 nanoparticles were investigated on the intestinal health of pearl oyster (Pinctada fucata martensii). The pearl oysters were subjected to a 14-day exposure to 5-mg/L TiO2 nanoparticle, followed by a 7-day recovery period. Subsequently, the intestinal tissues were analyzed using 16S rDNA high-throughput sequencing. The results from LEfSe analysis revealed that TiO2 nanoparticle increased the susceptibility of pearl oysters to potential pathogenic bacteria infections. Additionally, the TiO2 nanoparticles led to alterations in the abundance of microbial communities in the gut of pearl oysters. Notable changes included a decrease in the relative abundance of Phaeobacter and Nautella, and an increase in the Actinobacteria, which could potentially impact the immune function of pearl oysters. The abundance of Firmicutes and Bacteroidetes, as well as the expression of genes related to energy metabolism (AMPK, PK, SCS-1, SCS-2, SCS-3), were down-regulated, suggesting that TiO2 nanoparticles exposure may affect the digestive and energy metabolic functions of pearl oysters. Furthermore, the short-term recovery of seven days did not fully restore these levels to normal. These findings provide crucial insights and serve as an important reference for understanding the toxic effects of TiO2 nanoparticles on bivalves.
Collapse
Affiliation(s)
- Fengfeng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yujing Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China.
| | - Yilong Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
12
|
Zhang C, Bao F, Wang F, Xue Z, Lin D. Toxic effects of nanoplastics and microcystin-LR coexposure on the liver-gut axis of Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170011. [PMID: 38220005 DOI: 10.1016/j.scitotenv.2024.170011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Plastic products and nutrients are widely used in aquaculture facilities, resulting in copresence of nanoplastics (NPs) released from plastics and microcystins (MCs) from toxic cyanobacteria. The potential effects of NPs-MCs coexposure on aquatic products require investigation. This study investigated the toxic effects of polystyrene (PS) NPs and MC-LR on the gut-liver axis of silver carp Hypophthalmichthys molitrix, a representative commercial fish, and explored the effects of the coexposure on intestinal microorganism structure and liver metabolic function using traditional toxicology and multi-omics association analysis. The results showed that the PS-NPs and MC-LR coexposure significantly shortened villi length, and the higher the concentration of PS-NPs, the more obvious the villi shortening. The coexposure of high concentrations of PS-NPs and MC-LR increased the hepatocyte space in fish, and caused obvious loss of gill filaments. The diversity and richness of the fish gut microbes significantly increased after the PS-NPs exposure, and this trend was amplified in the copresence of MC-LR. In the coexposure, MC-LR contributed more to the alteration of fish liver metabolism, which affected the enrichment pathway in glycerophospholipid metabolism and folic acid biosynthesis, and there was a correlation between the differential glycerophospholipid metabolites and affected bacteria. These results suggested that the toxic mechanism of PS-NPs and MC-LR coexposure may be pathological changes of the liver, gut, and gill tissues, intestinal microbiota disturbance, and glycerophospholipid metabolism imbalance. The findings not only improve the understanding of environmental risks of NPs combined with other pollutants, but also provide potential microbiota and glycerophospholipid biomarkers in silver carp.
Collapse
Affiliation(s)
- Chaonan Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China
| | - Feifan Bao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhihao Xue
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China.
| |
Collapse
|
13
|
Kolya H, Kang CW. Toxicity of Metal Oxides, Dyes, and Dissolved Organic Matter in Water: Implications for the Environment and Human Health. TOXICS 2024; 12:111. [PMID: 38393206 PMCID: PMC10892313 DOI: 10.3390/toxics12020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
This study delves into the critical issue of water pollution caused by the presence of metal oxides, synthetic dyes, and dissolved organic matter, shedding light on their potential ramifications for both the environment and human health. Metal oxides, ubiquitous in industrial processes and consumer products, are known to leach into water bodies, posing a significant threat to aquatic ecosystems. Additionally, synthetic dyes, extensively used in various industries, can persist in water systems and exhibit complex chemical behavior. This review provides a comprehensive examination of the toxicity associated with metal oxides, synthetic dyes, and dissolved organic matter in water systems. We delve into the sources and environmental fate of these contaminants, highlighting their prevalence in natural water bodies and wastewater effluents. The study highlights the multifaceted impacts of them on human health and aquatic ecosystems, encompassing effects on microbial communities, aquatic flora and fauna, and the overall ecological balance. The novelty of this review lies in its unique presentation, focusing on the toxicity of metal oxides, dyes, and dissolved organic matter. This approach aims to facilitate the accessibility of results for readers, providing a streamlined and clear understanding of the reported findings.
Collapse
Affiliation(s)
| | - Chun-Won Kang
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea;
| |
Collapse
|
14
|
Bellec L, Milinkovitch T, Dubillot E, Pante É, Tran D, Lefrancois C. Fish gut and skin microbiota dysbiosis induced by exposure to commercial sunscreen formulations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106799. [PMID: 38113619 DOI: 10.1016/j.aquatox.2023.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
UV filters (organic or mineral) present in sunscreen products are emerging contaminants of coastal aquatic environments. There is an urgent need to understand marine organisms responses to these compounds. In this study, we investigated the effect of exposure to dilutions of commercial sunscreen formulations on bacterial communities of mullet (Chelon sp.). The gut and skin mucus microbial communities were characterized using a metabarcoding approach targeting the 16S rRNA gene. Our results revealed that mullets had its own bacterial communities that differ from their surrounding habitats and specific to tissue. The dilutions of commercial sunscreens modified the relative abundance of Actinobacteroita, Bacteriodota and Proteobacteria for both gut and skin microbiota. They also allowed to bacteria affiliated to Mycobacterium, Nocardia and Tenacibaculum genera, known to house pathogenic species, to colonize the epithelium which may have implications for fish host health.
Collapse
Affiliation(s)
- Laure Bellec
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | | | - Emmanuel Dubillot
- La Rochelle Univ., CNRS, LIENSs, UMR 7266, La Rochelle F-17000, France
| | - Éric Pante
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | |
Collapse
|
15
|
Lin W, Li K, Qin Y, Han X, Chen X, Ren Y. Flunitrazepam induces neurotoxicity in zebrafish through microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165974. [PMID: 37532048 DOI: 10.1016/j.scitotenv.2023.165974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The abuse of psychoactive substances has led to their frequent detection in the environment, with unknown effects on the nervous system. In this study, zebrafish were exposed to benzodiazepine drug flunitrazepam (FLZ, 0.2 and 5 μg/L) for 30 days to assess its neurotoxicity. Results revealed that FLZ disrupted the balance of gut microbiota and caused an increase in pathogenic bacteria, such as Paracoccus and Aeromonas, leading to pathological damage to the intestine. The upregulation of intestinal pro-inflammatory factors, IL-1β and TNF-α, by 2.4 and 6.3 times, respectively, along with the downregulation of tight junction proteins, Occludin and zonula occludens 1 (ZO-1), by 80 % and 50 %, increased in intestinal permeability. Moreover, untargeted metabolomics demonstrated that FLZ interfered with intestinal nucleotide metabolism and amino acid biosynthesis. FLZ could also increase the levels of lipopolysaccharide (LPS) and malondialdehyde (MDA) in the brain by 0.9 and 3.4 times, respectively, leading to pathological changes in brain tissue. Furthermore, FLZ significantly disturbed nucleotide metabolism and amino acid biosynthesis and metabolism pathways in the brain. Correlation analysis between gut microbiota and neurochemicals confirmed that FLZ can induce neurotoxicity through the microbiota-gut-brain axis. These findings elucidate the molecular mechanisms of psychoactive drugs on microbiota-gut-brain axis and provide a theoretical basis for the ecological environmental risk assessment of various psychoactive substances.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kan Li
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xing Han
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Xiaohui Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
16
|
Kakakhel MA, Narwal N, Kataria N, Johari SA, Zaheer Ud Din S, Jiang Z, Khoo KS, Xiaotao S. Deciphering the dysbiosis caused in the fish microbiota by emerging contaminants and its mitigation strategies-A review. ENVIRONMENTAL RESEARCH 2023; 237:117002. [PMID: 37648194 DOI: 10.1016/j.envres.2023.117002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The primary barrier to nutrient absorption in fish is the intestinal epithelium, followed by a community of microorganisms known as the gut microbiota, which can be thought of as a hidden organ. The gastrointestinal microbiota of fish plays a key role in the upholding of overall health by maintaining the homeostasis and disease resistance of the host. However, emerging contaminants as the result of anthropogenic activities have significantly led to disruptions and intestinal dysbiosis in fish. Which probably results in fish mortalities and disrupts the balance of an ecosystem. Therefore, we comprehensively seek to compile the effects and consequences of emerging contaminations on fish intestinal microbiota. Additionally, the mitigation strategies including prebiotics, probiotics, plant-based diet, and Biofloc technology are being outlined. Biofloc technology (BFT) can treat toxic materials, i.e., nitrogen components, and convert them into a useful product such as proteins and demonstrated promising elevating technique for the fish intestinal bacterial composition. However, it remains unclear whether the bacterial isolate is primarily responsible for the BFT's removal of nitrate and ammonia and the corresponding removal mechanism. To answer this, real time polymerase chain reaction (RT-PCR) with metagenomics, transcriptomics, and proteomics techniques probably provides a possible solution.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zewen Jiang
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Shi Xiaotao
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
17
|
Wu D, Zhou H, Hu Z, Ai F, Du W, Yin Y, Guo H. Multiple effects of ZnO nanoparticles on goldfish (Carassius auratus): Skin mucus, gut microbiota and stable isotope composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121651. [PMID: 37062409 DOI: 10.1016/j.envpol.2023.121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The skin and the gut are direct target tissues for nanoparticles, yet attention to effects of metal-based nanoparticles (MNPs) on these two and the discrepancy in these effects remain inadequate. Here, effects of ZnO nanoparticles (nZnO) on skin mucus and gut microbiota of goldfish (Carassius auratus) were investigated, as well as further elements turnover and metabolic variations. After 14 days of exposure, considerable variations in levels of biomarkers (protein, glucose, lysozyme and immunoglobulin M) in skin mucus demonstrated significant stress responses to nZnO. nZnO exposure significantly reduced the abundance of Cetobacterium in the gut while increased that of multiple pathogens, and further leading to down-regulation of pathways such as carbohydrate metabolism, translation, and replication and repair. Decreased δ15N values indicated declined N turnover in vivo, further demonstrating the negative effect of nZnO on metabolism in the organism. Integration analysis of each biomarker using the biomarker response index version 2 (IBRv2) revealed concentration-dependent effects of nZnO on skin mucus, while effects on physiology in vivo was not, demonstrating the discrepancy in the toxicity pathways and toxic effects of nZnO on different tissues. This work improved our understanding about the comprehensive toxicity of nZnO on aquatic organism.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hailing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zixuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
18
|
Wu Y, Cao X, Du H, Guo X, Han Y, McClements DJ, Decker E, Xing B, Xiao H. Adverse effects of titanium dioxide nanoparticles on beneficial gut bacteria and host health based on untargeted metabolomics analysis. ENVIRONMENTAL RESEARCH 2023; 228:115921. [PMID: 37068726 DOI: 10.1016/j.envres.2023.115921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
Titanium dioxide (TiO2) is a common additive in foods, medicines, and personal care products. In recent years, nano-scale particles in TiO2 additives have been an increasing concern due to their potential adverse effects on human health, especially gut health. The objective of this study was to determine the impact of titanium dioxide nanoparticles (TiO2 NPs, 30 nm) on beneficial gut bacteria and host response from a metabolomics perspective. In the in vitro study, four bacterial strains, including Lactobacillus reuteri, Lactobacillus gasseri, Bifidobacterium animalis, and Bifidobacterium longum were subjected to the treatment of TiO2 NPs. The growth kinetics, cell viability, cell membrane permeability, and metabolomics response were determined. TiO2 NPs at the concentration of 200 μg/mL showed inhibitory effects on the growth of all four strains. The confocal microscope results indicated that the growth inhibitory effects could be associated with cell membrane damage caused by TiO2 NPs to the bacterial strains. Metabolomics analysis showed that TiO2 NPs caused alterations in multiple metabolic pathways of gut bacteria, such as tryptophan and arginine metabolism, which were demonstrated to play crucial roles in regulating gut and host health. In the in vivo study, mice were fed with TiO2 NPs (0.1 wt% in diet) for 8 weeks. Mouse urine was collected for metabolomics analysis and the tryptophan metabolism pathway was also significantly affected in TiO2 NPs-fed mice. Moreover, four neuroprotective metabolites were significantly reduced in both in vitro bacteria and in vivo urine samples. Overall, this study provides insights into the potential adverse effects of TiO2 NPs on gut bacteria and the metabolic responses of both bacteria and host. Further research is needed to understand the causality between gut bacteria composition and the metabolism pathway, which is critical to monitor the gut-microbiome mediated metabolome changes in toxicological assessment of food components.
Collapse
Affiliation(s)
- Yanyan Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Xiaoqiong Cao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | | | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|