1
|
Labelle-Dumais C, Mazur C, Kaya S, Obata Y, Lee B, Acevedo C, Alliston T, Gould DB. Skeletal pathology in mouse models of Gould syndrome is partially alleviated by genetically reducing TGFβ signaling. Matrix Biol 2024; 133:1-13. [PMID: 39097038 DOI: 10.1016/j.matbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Skeletal defects are hallmark features of many extracellular matrix (ECM) and collagen-related disorders. However, a biological function in bone has never been defined for the highly evolutionarily conserved type IV collagen. Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form α1α1α2 (IV) heterotrimers that represent a fundamental basement membrane constituent present in every organ of the body, including the skeleton. COL4A1 and COL4A2 mutations cause Gould syndrome, a variable and clinically heterogenous multisystem disorder generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular manifestations. We have previously identified elevated TGFβ signaling as a pathological insult resulting from Col4a1 mutations and demonstrated that reducing TGFβ signaling ameliorate ocular and cerebrovascular phenotypes in Col4a1 mutant mouse models of Gould syndrome. In this study, we describe the first characterization of skeletal defects in Col4a1 mutant mice that include a developmental delay in osteogenesis and structural, biomechanical and vascular alterations of mature bones. Using distinct mouse models, we show that allelic heterogeneity influences the presentation of skeletal pathology resulting from Col4a1 mutations. Importantly, we found that TGFβ target gene expression is elevated in developing bones from Col4a1 mutant mice and show that genetically reducing TGFβ signaling partially ameliorates skeletal manifestations. Collectively, these findings identify a novel and unsuspected role for type IV collagen in bone biology, expand the spectrum of manifestations associated with Gould syndrome to include skeletal abnormalities, and implicate elevated TGFβ signaling in skeletal pathogenesis in Col4a1 mutant mice.
Collapse
Affiliation(s)
- Cassandre Labelle-Dumais
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Courtney Mazur
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yoshihiro Obata
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Bryson Lee
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Claire Acevedo
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Douglas B Gould
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, Institute for Human Genetics, Bakar Aging Research Institute, and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Mehrotra P, Jablonski J, Toftegaard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo KCS, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun 2024; 15:9218. [PMID: 39455585 PMCID: PMC11511891 DOI: 10.1038/s41467-024-53276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kelly C S Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary, Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| | - Kirkwood E Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Cozzitorto C, Peltz Z, Flores LM, Della Santina L, Mao M, Gould DB. Evaluating neural crest cell migration in a Col4a1 mutant mouse model of ocular anterior segment dysgenesis. Cells Dev 2024; 179:203926. [PMID: 38729574 DOI: 10.1016/j.cdev.2024.203926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The periocular mesenchyme (POM) is a transient migratory embryonic tissue derived from neural crest cells (NCCs) and paraxial mesoderm that gives rise to most of the structures in front of the eye. Morphogenetic defects of these structures can impair aqueous humor outflow, leading to elevated intraocular pressure and glaucoma. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome - a multisystem disorder often characterized by variable cerebrovascular, ocular, renal, and neuromuscular manifestations. Approximately one-third of individuals with COL4A1 and COL4A2 mutations have ocular anterior segment dysgenesis (ASD), including congenital glaucoma resulting from abnormalities of POM-derived structures. POM differentiation has been a major focus of ASD research, but the underlying cellular mechanisms are still unclear. Moreover, earlier events including NCC migration and survival defects have been implicated in ASD; however, their roles are not as well understood. Vascular defects are among the most common consequences of COL4A1 and COL4A2 mutations and can influence NCC survival and migration. We therefore hypothesized that NCC migration might be impaired by COL4A1 and COL4A2 mutations. In this study, we used 3D confocal microscopy, gross morphology, and quantitative analyses to test NCC migration in Col4a1 mutant mice. We show that homozygous Col4a1 mutant embryos have severe embryonic growth retardation and lethality, and we identified a potential maternal effect on embryo development. Cerebrovascular defects in heterozygous Col4a1 mutant embryos were present as early as E9.0, showing abnormal cerebral vasculature plexus remodeling compared to controls. We detected abnormal NCC migration within the diencephalic stream and the POM in heterozygous Col4a1 mutants whereby mutant NCCs formed smaller diencephalic migratory streams and POMs. In these settings, migratory NCCs within the diencephalic stream and POM localize farther away from the developing vasculature. Our results show for the first time that Col4a1 mutations lead to cranial NCCs migratory defects in the context of early onset defective angiogenesis without affecting cell numbers, possibly impacting the relation between NCCs and the blood vessels during ASD development.
Collapse
Affiliation(s)
- Corinna Cozzitorto
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States.
| | - Zoe Peltz
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States
| | - Lourdes M Flores
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States.
| | - Mao Mao
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States; Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, United States.
| |
Collapse
|
4
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
5
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
6
|
Bersani I, Ronci S, Savarese I, Piersigilli F, Micalizzi A, Maddaloni C, Dotta A, Braguglia A, Longo D, Campi F. COL4A1 gene mutations and perinatal intracranial hemorrhage in neonates: case reports and literature review. Front Pediatr 2024; 12:1417873. [PMID: 38978838 PMCID: PMC11228817 DOI: 10.3389/fped.2024.1417873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Intracranial hemorrhage may represent a complication of the perinatal period that affects neonatal morbidity and mortality. Very poor data exist about a possible association between mutations of the type IV collagen a1 chain (COL4A1) gene and the development of intracranial hemorrhage, and only sporadic reports focus on intracerebral bleedings already developing in utero or in the neonatal period in infants with such a mutation. This study presents a case series of term neonates affected by intracranial hemorrhage, with no apparent risk factors for the development of this condition, who were carriers of COL4A1 gene variants. This study also provides a review of the most recent scientific literature on this topic, specifically focusing on the available scientific data dealing with the perinatal period.
Collapse
Affiliation(s)
- Iliana Bersani
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Ronci
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiammetta Piersigilli
- Neonatal Intensive Care Unit, Department of Pediatrics, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Maddaloni
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Dotta
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annabella Braguglia
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Campi
- Neonatal Intensive and Sub-Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
8
|
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy. J Transl Med 2024; 22:382. [PMID: 38659022 PMCID: PMC11040975 DOI: 10.1186/s12967-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Collapse
Affiliation(s)
- Rowie Borst
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
9
|
Sapkota A, Halder SK, Milner R. Cerebral arterioles express the laminin subunits α4 and α5 in conjunction with α6β4 integrin, but strongly downregulate laminin α4 during hypoxia-induced arteriogenic remodeling. Microvasc Res 2024; 152:104625. [PMID: 37979909 PMCID: PMC10872476 DOI: 10.1016/j.mvr.2023.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Previous studies have shown that expression of the endothelial laminin receptor α6β4 integrin in the brain is uniquely restricted to arterioles. As exposure to chronic mild hypoxia (CMH, 8 % O2) stimulates robust angiogenic and arteriogenic remodeling responses in the brain, the goal of this study was to determine how CMH influences cerebrovascular expression of the β4 integrin as well as its potential ligands, laminin 411 and 511, containing the α4 and α5 laminin subunits respectively, and then define how aging impacts this expression. We observed the following: (i) CMH launched a robust arteriogenic remodeling response both in the young (10 weeks) and aged (20 months) brain, correlating with an increased number of β4 integrin+ vessels, (ii) while the laminin α4 subunit is expressed evenly across all cerebral blood vessels, laminin α5 was highly expressed preferentially on β4 integrin+ arterioles, (iii) CMH-induced arteriolar remodeling was associated with strong downregulation of the laminin α4 subunit but no change in the laminin α5 subunit, (iv) in addition to its expression on arterioles, β4 integrin was also expressed at lower levels on capillaries specifically in white matter (WM) tracts but not in the grey matter (GM), and (v), these observations were consistent in both the brain and spinal cord, and age had no obvious impact. Taken together, our findings suggest that laminin 511 may be a specific ligand for α6β4 integrin and that dynamic switching of the laminin subunits α4 and α5 might play an instructive role in arteriogenic remodeling. Furthermore, β4 integrin expression differentiates WM from GM capillaries, highlighting a novel and important difference.
Collapse
Affiliation(s)
- Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA
| | - Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA.
| |
Collapse
|
10
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
12
|
Halder SK, Sapkota A, Milner R. The importance of laminin at the blood-brain barrier. Neural Regen Res 2023; 18:2557-2563. [PMID: 37449589 DOI: 10.4103/1673-5374.373677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is a unique property of central nervous system blood vessels that protects sensitive central nervous system cells from potentially harmful blood components. The mechanistic basis of this barrier is found at multiple levels, including the adherens and tight junction proteins that tightly bind adjacent endothelial cells and the influence of neighboring pericytes, microglia, and astrocyte endfeet. In addition, extracellular matrix components of the vascular basement membrane play a critical role in establishing and maintaining blood-brain barrier integrity, not only by providing an adhesive substrate for blood-brain barrier cells to adhere to, but also by providing guidance cues that strongly influence vascular cell behavior. The extracellular matrix protein laminin is one of the most abundant components of the basement membrane, and several lines of evidence suggest that it plays a key role in directing blood-brain barrier behavior. In this review, we describe the basic structure of laminin and its receptors, the expression patterns of these molecules in central nervous system blood vessels and how they are altered in disease states, and most importantly, how genetic deletion of different laminin isoforms or their receptors reveals the contribution of these molecules to blood-brain barrier function and integrity. Finally, we discuss some of the important unanswered questions in the field and provide a "to-do" list of some of the critical outstanding experiments.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
13
|
Skaggs C, Nick S, Patricelli C, Bond L, Woods K, Woodbury L, Oxford JT, Pu X. Effects of Doxorubicin on Extracellular Matrix Regulation in Primary Cardiac Fibroblasts from Mice. BMC Res Notes 2023; 16:340. [PMID: 37974221 PMCID: PMC10655342 DOI: 10.1186/s13104-023-06621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFβ. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Collapse
Affiliation(s)
- Cameron Skaggs
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Steve Nick
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Conner Patricelli
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kali Woods
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
14
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
15
|
Kim CJ, Kim HH, Kim HK, Lee S, Jang D, Kim C, Lim DH. MicroRNA miR-263b-5p Regulates Developmental Growth and Cell Association by Suppressing Laminin A in Drosophila. BIOLOGY 2023; 12:1096. [PMID: 37626982 PMCID: PMC10451713 DOI: 10.3390/biology12081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Basement membranes (BMs) play important roles under various physiological conditions in animals, including ecdysozoans. During development, BMs undergo alterations through diverse intrinsic and extrinsic regulatory mechanisms; however, the full complement of pathways controlling these changes remain unclear. Here, we found that fat body-overexpression of Drosophila miR-263b, which is highly expressed during the larval-to-pupal transition, resulted in a decrease in the overall size of the larval fat body, and ultimately, in a severe growth defect accompanied by a reduction in cell proliferation and cell size. Interestingly, we further observed that a large proportion of the larval fat body cells were prematurely disassociated from each other. Moreover, we present evidence that miR-263b-5p suppresses the main component of BMs, Laminin A (LanA). Through experiments using RNA interference (RNAi) of LanA, we found that its depletion phenocopied the effects in miR-263b-overexpressing flies. Overall, our findings suggest a potential role for miR-263b in developmental growth and cell association by suppressing LanA expression in the Drosophila fat body.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (C.J.K.); (H.H.K.); (H.K.K.); (S.L.); (D.J.); (C.K.)
| |
Collapse
|
16
|
LeBleu VS, Dai J, Tsutakawa S, MacDonald BA, Alge JL, Sund M, Xie L, Sugimoto H, Tainer J, Zon LI, Kalluri R. Identification of unique α4 chain structure and conserved antiangiogenic activity of α3NC1 type IV collagen in zebrafish. Dev Dyn 2023; 252:1046-1060. [PMID: 37002899 PMCID: PMC10524752 DOI: 10.1002/dvdy.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, Illinois, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan Tsutakawa
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA
| | - Brian A MacDonald
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Sund
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Liang Xie
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonard I Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Ready DF, Chang HC. Interommatidial cells build a tensile collagen network during Drosophila retinal morphogenesis. Curr Biol 2023; 33:2223-2234.e3. [PMID: 37209679 PMCID: PMC10247444 DOI: 10.1016/j.cub.2023.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Drosophila compound eye morphogenesis transforms a simple epithelium into an approximate hollow hemisphere comprised of ∼700 ommatidia, packed as tapering hexagonal prisms between a rigid external array of cuticular lenses and a parallel, rigid internal floor, the fenestrated membrane (FM). Critical to vision, photosensory rhabdomeres are sprung between these two surfaces, grading their length and shape accurately across the eye and aligning them to the optical axis. Using fluorescently tagged collagen and laminin, we show that that the FM assembles sequentially, emerging in the larval eye disc in the wake of the morphogenetic furrow as the original collagen-containing basement membrane (BM) separates from the epithelial floor and is replaced by a new, laminin-rich BM, which advances around axon bundles of newly differentiated photoreceptors as they exit the retina, forming fenestrae in this new, laminin-rich BM. In mid-pupal development, the interommatidial cells (IOCs) autonomously deposit collagen at fenestrae, forming rigid, tension-resisting grommets. In turn, stress fibers assemble in the IOC basal endfeet, where they contact grommets at anchorages mediated by integrin linked kinase (ILK). The hexagonal network of IOC endfeet tiling the retinal floor couples nearest-neighbor grommets into a supracellular tri-axial tension network. Late in pupal development, IOC stress fiber contraction folds pliable BM into a hexagonal grid of collagen-stiffened ridges, concomitantly decreasing the area of convex FM and applying essential morphogenetic longitudinal tension to rapidly growing rhabdomeres. Together, our results reveal an orderly program of sequential assembly and activation of a supramolecular tensile network that governs Drosophila retinal morphogenesis.
Collapse
Affiliation(s)
- Donald F Ready
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
18
|
Ijezie EC, O'Dowd JM, Kuan MI, Faeth AR, Fortunato EA. HCMV Infection Reduces Nidogen-1 Expression, Contributing to Impaired Neural Rosette Development in Brain Organoids. J Virol 2023; 97:e0171822. [PMID: 37125912 PMCID: PMC10231252 DOI: 10.1128/jvi.01718-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of birth defects in humans. These birth defects include microcephaly, sensorineural hearing loss, vision loss, and cognitive impairment. The process by which the developing fetus incurs these neurological defects is poorly understood. To elucidate some of these mechanisms, we have utilized HCMV-infected induced pluripotent stem cells (iPSCs) to generate in vitro brain organoids, modeling the first trimester of fetal brain development. Early during culturing, brain organoids generate neural rosettes. These structures are believed to model neural tube formation. Rosette formation was analyzed in HCMV-infected and mock-infected brain organoids at 17, 24, and 31 days postinfection. Histological analysis revealed fewer neural rosettes in HCMV-infected compared to mock-infected organoids. HCMV-infected organoid rosettes incurred multiple structural deficits, including increased lumen area, decreased ventricular zone depth, and decreased cell count. Immunofluorescent (IF) analysis found that nidogen-1 (NID1) protein expression in the basement membrane surrounding neural rosettes was greatly reduced by virus infection. IF analysis also identified a similar downregulation of laminin in basement membranes of HCMV-infected organoid rosettes. Knockdown of NID1 alone in brain organoids impaired their development, leading to the production of rosettes with increased lumen area, decreased structural integrity, and reduced laminin localization in the basement membrane, paralleling observations in HCMV-infected organoids. Our data strongly suggest that HCMV-induced downregulation of NID1 impairs neural rosette formation and integrity, likely contributing to many of HCMV's most severe birth defects. IMPORTANCE HCMV infection in pregnant women continues to be the leading cause of virus-induced neurologic birth defects. The mechanism through which congenital HCMV (cCMV) infection induces pathological changes to the developing fetal central nervous system (CNS) remains unclear. Our lab previously reproduced identified clinical defects in HCMV-infected infants using a three dimensional (3D) brain organoid model. In this new study, we have striven to discover very early HCMV-induced changes in developing brain organoids. We investigated the development of neural tube-like structures, neural rosettes. HCMV-infected rosettes displayed multiple structural abnormalities and cell loss. HCMV-infected rosettes displayed reduced expression of the key basement membrane protein, NID1. We previously found NID1 to be specifically targeted in HCMV-infected fibroblasts and endothelial cells. Brain organoids generated from NID1 knockdown iPSCs recapitulated the structural defects observed in HCMV-infected rosettes. Findings in this study revealed HCMV infection induced early and dramatic structural changes in 3D brain organoids. We believe our results suggest a major role for infection-induced NID1 downregulation in HCMV-induced CNS birth defects.
Collapse
Affiliation(s)
- Emmanuel C. Ijezie
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Alexandra R. Faeth
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
19
|
Branyan K, Labelle-Dumais C, Wang X, Hayashi G, Lee B, Peltz Z, Gorman S, Li BQ, Mao M, Gould DB. Elevated TGFβ signaling contributes to cerebral small vessel disease in mouse models of Gould syndrome. Matrix Biol 2023; 115:48-70. [PMID: 36435425 PMCID: PMC10393528 DOI: 10.1016/j.matbio.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of stroke and vascular cognitive impairment and dementia. Studying monogenic CSVD can reveal pathways that are dysregulated in common sporadic forms of the disease and may represent therapeutic targets. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause highly penetrant CSVD as part of a multisystem disorder referred to as Gould syndrome. COL4A1 and COL4A2 form heterotrimers [a1α1α2(IV)] that are fundamental constituents of basement membranes. However, their functions are poorly understood and the mechanism(s) by which COL4A1 and COL4A2 mutations cause CSVD are unknown. We used histological, molecular, genetic, pharmacological, and in vivo imaging approaches to characterize central nervous system (CNS) vascular pathologies in Col4a1 mutant mouse models of monogenic CSVD to provide insight into underlying pathogenic mechanisms. We describe developmental CNS angiogenesis abnormalities characterized by impaired retinal vascular outgrowth and patterning, increased numbers of mural cells with abnormal morphologies, altered contractile protein expression in vascular smooth muscle cells (VSMCs) and age-related loss of arteriolar VSMCs in Col4a1 mutant mice. Importantly, we identified elevated TGFβ signaling as a pathogenic consequence of Col4a1 mutations and show that genetically suppressing TGFβ signaling ameliorated CNS vascular pathologies, including partial rescue of retinal vascular patterning defects, prevention of VSMC loss, and significant reduction of intracerebral hemorrhages in Col4a1 mutant mice aged up to 8 months. This study identifies a novel biological role for collagen α1α1α2(IV) as a regulator of TGFβ signaling and demonstrates that elevated TGFβ signaling contributes to CNS vascular pathologies caused by Col4a1 mutations. Our findings suggest that pharmacologically suppressing TGFβ signaling could reduce the severity of CSVD, and potentially other manifestations associated with Gould syndrome and have important translational implications that could extend to idiopathic forms of CSVD.
Collapse
Affiliation(s)
- Kayla Branyan
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Xiaowei Wang
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Genki Hayashi
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bryson Lee
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Zoe Peltz
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Seán Gorman
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bo Qiao Li
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Mao Mao
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States; Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, United States.
| |
Collapse
|
20
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Jia W, He W, Wang G, Goldman J, Zhao F. Enhancement of Lymphangiogenesis by Human Mesenchymal Stem Cell Sheet. Adv Healthc Mater 2022; 11:e2200464. [PMID: 35678079 DOI: 10.1002/adhm.202200464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Preparation of human mesenchymal stem cell (hMSC) suspension for lymphedema treatment relies on conventional enzymatic digestion methods, which severely disrupts cell-cell and cell-extracellular matrix (ECM) connections, and drastically impairs cell retention and engraftment after transplantation. The objective of the present study is to evaluate the ability of hMSC-secreted ECM to augment lymphangiogenesis by using an in vitro coculturing model of hMSC sheets with lymphatic endothelial cells (LECs) and an in vivo mouse tail lymphedema model. Results demonstrate that the hMSC-secreted ECM augments the formation of lymphatic capillary-like structure by a factor of 1.2-3.6 relative to the hMSC control group, by serving as a prolymphangiogenic growth factor reservoir and facilitating cell regenerative activities. hMSC-derived ECM enhances MMP-2 mediated matrix remodeling, increases the synthesis of collagen IV and laminin, and promotes lymphatic microvessel-like structure formation. The injection of rat MSC sheet fragments into a mouse tail lymphedema model confirms the benefits of the hMSC-derived ECM by stimulating lymphangiogenesis and wound closure.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Han N, Li X, Wang Y, Li H, Zhang C, Zhao X, Zhang Z, Ruan M, Zhang C. HIF-1α induced NID1 expression promotes pulmonary metastases via the PI3K-AKT pathway in salivary gland adenoid cystic carcinoma. Oral Oncol 2022; 131:105940. [DOI: 10.1016/j.oraloncology.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
23
|
Meyer S, Kaulfuß S, Zechel S, Kummer K, Seif Amir Hosseini A, Ernst MS, Schmidt J, Pauli S, Zschüntzsch J. Evidence of Two Novel LAMA2 Variants in a Patient With Muscular Dystrophy: Facing the Challenges of a Certain Diagnosis. Front Neurol 2022; 13:893605. [PMID: 35928135 PMCID: PMC9344914 DOI: 10.3389/fneur.2022.893605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBenefits and challenges resulting from advances in genetic diagnostics are two sides of the same coin. Facilitation of a correct and timely diagnosis is paralleled by challenges in interpretation of variants of unknown significance (VUS). Focusing on an individual VUS-re-classification pipeline, this study offers a diagnostic approach for clinically suspected hereditary muscular dystrophy by combining the expertise of an interdisciplinary team.MethodsIn a multi-step approach, a thorough phenotype assessment including clinical examination, laboratory work, muscle MRI and histopathological evaluation of muscle was performed in combination with advanced Next Generation Sequencing (NGS). Different in-silico tools and prediction programs like Alamut, SIFT, Polyphen, MutationTaster and M-Cap as well as 3D- modeling of protein structure and RNA-sequencing were employed to determine clinical significance of the LAMA2 variants.ResultsTwo previously unknown sequence alterations in LAMA2 were detected, a missense variant was classified initially according to ACMG guidelines as a VUS (class 3) whereas a second splice site variant was deemed as likely pathogenic (class 4). Pathogenicity of the splice site variant was confirmed by mRNA sequencing and nonsense mediated decay (NMD) was detected. Combination of the detected variants could be associated to the LGMDR23-phenotype based on the MRI matching and literature research.DiscussionTwo novel variants in LAMA2 associated with LGMDR23-phenotype are described. This study illustrates challenges of the genetic findings due to their VUS classification and elucidates how individualized diagnostic procedure has contributed to the accurate diagnosis in the spectrum of LGMD.
Collapse
Affiliation(s)
- Stefanie Meyer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Kaulfuß
- Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Sabrina Zechel
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ali Seif Amir Hosseini
- Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Marielle Sophie Ernst
- Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
| | - Silke Pauli
- Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Jana Zschüntzsch
| |
Collapse
|
24
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
25
|
Halder SK, Sapkota A, Milner R. The impact of genetic manipulation of laminin and integrins at the blood-brain barrier. Fluids Barriers CNS 2022; 19:50. [PMID: 35690759 PMCID: PMC9188059 DOI: 10.1186/s12987-022-00346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessels in the central nervous system (CNS) are unique in having high electrical resistance and low permeability, which creates a selective barrier protecting sensitive neural cells within the CNS from potentially harmful components in the blood. The molecular basis of this blood–brain barrier (BBB) is found at the level of endothelial adherens and tight junction protein complexes, extracellular matrix (ECM) components of the vascular basement membrane (BM), and the influence of adjacent pericytes and astrocyte endfeet. Current evidence supports the concept that instructive cues from the BBB ECM are not only important for the development and maturation of CNS blood vessels, but they are also essential for the maintenance of vascular stability and BBB integrity. In this review, we examine the contributions of one of the most abundant ECM proteins, laminin to BBB integrity, and summarize how genetic deletions of different laminin isoforms or their integrin receptors impact BBB development, maturation, and stability.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
26
|
|
27
|
Bayramoglu Z, Kılınc ANU, Omeroglu E, Yilmaz F, Bayramoglu D, Unlu Y, Aydin HA. Expression of extracellular matrix proteins nidogen-1 and legumain in endometrial carcinomas. J Obstet Gynaecol Res 2022; 48:1019-1025. [PMID: 35128760 DOI: 10.1111/jog.15158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Our purpose was to comparatively investigate the expressions of nidogen-1 (NID1) and legumain (LGMN) in patients with endometrial cancer, endometrial intraepithelial neoplasia, and proliferative endometrium. METHODS A cross-sectional, single-center study was performed by the obstetrics and gynecology and pathology departments of our institution. The relationships between descriptive data, clinicopathologic information, and immunohistochemical expressions of NID1 and LGMN were investigated. RESULTS The histological grades of endometrial cancers (n = 124) as classified by FIGO included 1 (41, 21.1%), 2 (48, 24.7%), and 3 (35, 18.0%). The medians and ranges of deep and superficial NID1 expressions were 50.00 (0-285) and 5.00 (0-100), respectively. The intensity of legumain expression was noted as negative (30, 24.2%), mild (16, 12.9%), moderate (27, 21.8%), or strong (51, 41.1%). Median disease-free survival and overall survival were 75.00 (range: 1 to 170) months and 77.00 (range: 1 to 170) months, respectively. Patients with more intense expression of NID1 and LGMN displayed a higher histological grade. These patients were more likely to have a positive peritoneal cytology, larger tumor size, higher tendency for myometrial or lymphovascular invasion, involvement of ovaries, cervix, omentum, as well as lymph node metastasis, and recurrence. CONCLUSION Our data indicated that the expressions of NID1 and LGMN may have important diagnostic implications in endometrial pathologies. Further studies should be performed to understand the significance of NID1 and LGMN in the pathogenesis of endometrial tumors.
Collapse
Affiliation(s)
| | | | - Ethem Omeroglu
- Department of Pathology, Konya City Hospital, Konya, Turkey
| | - Fatih Yilmaz
- Department of Gynecological Oncology, Konya City Hospital, Konya, Turkey
| | | | - Yasar Unlu
- Department of Pathology, Konya City Hospital, Konya, Turkey
| | - Hulya A Aydin
- Department of Gynecological Oncology, Hatay Government Hospital, Antakya, Hatay, Turkey
| |
Collapse
|
28
|
Kemp SS, Lin PK, Sun Z, Castaño MA, Yrigoin K, Penn MR, Davis GE. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol 2022; 10:943533. [PMID: 36072343 PMCID: PMC9441561 DOI: 10.3389/fcell.2022.943533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Here we address the functional importance and role of pericytes in capillary tube network assembly, an essential process that is required for vascularized tissue development, maintenance, and health. Healthy capillaries may be directly capable of suppressing human disease. Considerable advances have occurred in our understanding of the molecular and signaling requirements controlling EC lumen and tube formation in 3D extracellular matrices. A combination of SCF, IL-3, SDF-1α, FGF-2 and insulin ("Factors") in conjunction with integrin- and MT1-MMP-induced signaling are required for EC sprouting behavior and tube formation under serum-free defined conditions. Pericyte recruitment to the abluminal EC tube surface results in elongated and narrow tube diameters and deposition of the vascular basement membrane. In contrast, EC tubes in the absence of pericytes continue to widen and shorten over time and fail to deposit basement membranes. Pericyte invasion, recruitment and proliferation in 3D matrices requires the presence of ECs. A detailed analysis identified that EC-derived PDGF-BB, PDGF-DD, ET-1, HB-EGF, and TGFβ1 are necessary for pericyte recruitment, proliferation, and basement membrane deposition. Blockade of these individual factors causes significant pericyte inhibition, but combined blockade profoundly interferes with these events, resulting in markedly widened EC tubes without basement membranes, like when pericytes are absent.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Maria A Castaño
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Ksenia Yrigoin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Marlena R Penn
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
29
|
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021; 9:biomedicines9081005. [PMID: 34440209 PMCID: PMC8393745 DOI: 10.3390/biomedicines9081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
Collapse
|
30
|
Guo Y, Dong L, Gong A, Zhang J, Jing L, Ding T, Li PAA, Zhang JZ. Damage to the blood‑brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int J Mol Med 2021; 48:142. [PMID: 34080644 PMCID: PMC8175066 DOI: 10.3892/ijmm.2021.4975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia aggravates brain damage caused by cerebral ischemia/reperfusion (I/R) and increases the permeability of the blood‑brain barrier (BBB). However, there are relatively few studies on morphological changes of the BBB. The present study aimed to investigate the effect of hyperglycemia on BBB morphological changes following cerebral I/R injury. Streptozotocin‑induced hyperglycemic and citrate‑buffered saline‑injected normoglycemic rats were subjected to 30 min middle cerebral artery occlusion. Neurological deficits were evaluated. Brain infarct volume was assessed by 2,3,5‑triphenyltetrazolium chloride staining and BBB integrity was evaluated by Evans blue and IgG extravasation following 24 h reperfusion. Changes in tight junctions (TJ) and basement membrane (BM) proteins (claudin, occludin and zonula occludens‑1) were examined using immunohistochemistry and western blotting. Astrocytes, microglial cells and neutrophils were labeled with specific antibodies for immunohistochemistry after 1, 3 and 7 days of reperfusion. Hyperglycemia increased extravasations of Evan's blue and IgG and aggravated damage to TJ and BM proteins following I/R injury. Furthermore, hyperglycemia suppressed astrocyte activation and damaged astrocytic endfeet surrounding cerebral blood vessels following I/R. Hyperglycemia inhibited microglia activation and proliferation and increased neutrophil infiltration in the brain. It was concluded that hyperglycemia‑induced BBB leakage following I/R might be caused by damage to TJ and BM proteins and astrocytic endfeet. Furthermore, suppression of microglial cells and increased neutrophil infiltration to the brain may contribute to the detrimental effects of pre‑ischemic hyperglycemia on the outcome of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yongzhen Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Lingdi Dong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Ao Gong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Jingwen Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Tomas Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Ping-An Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Jian-Zhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
31
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
32
|
Biofabrication in Congenital Cardiac Surgery: A Plea from the Operating Theatre, Promise from Science. MICROMACHINES 2021; 12:mi12030332. [PMID: 33800971 PMCID: PMC8004062 DOI: 10.3390/mi12030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Despite significant advances in numerous fields of biofabrication, clinical application of biomaterials combined with bioactive molecules and/or cells largely remains a promise in an individualized patient settings. Three-dimensional (3D) printing and bioprinting evolved as promising techniques used for tissue-engineering, so that several kinds of tissue can now be printed in layers or as defined structures for replacement and/or reconstruction in regenerative medicine and surgery. Besides technological, practical, ethical and legal challenges to solve, there is also a gap between the research labs and the patients' bedside. Congenital and pediatric cardiac surgery mostly deal with reconstructive patient-scenarios when defects are closed, various segments of the heart are connected, valves are implanted. Currently available biomaterials lack the potential of growth and conduits, valves derange over time surrendering patients to reoperations. Availability of viable, growing biomaterials could cancel reoperations that could entail significant public health benefit and improved quality-of-life. Congenital cardiac surgery is uniquely suited for closing the gap in translational research, rapid application of new techniques, and collaboration between interdisciplinary teams. This article provides a succinct review of the state-of-the art clinical practice and biofabrication strategies used in congenital and pediatric cardiac surgery, and highlights the need and avenues for translational research and collaboration.
Collapse
|
33
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Sun L, Song F, Liu H, Wang C, Tang X, Li Z, Ge H, Liu P. The novel mutation P36R in LRP5L contributes to congenital membranous cataract via inhibition of laminin γ1 and c-MAF. Graefes Arch Clin Exp Ophthalmol 2020; 258:2737-2751. [PMID: 32789677 DOI: 10.1007/s00417-020-04846-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The present study investigated a pathogenic mutation and its mechanism on membranous cataract in a congenital membranous cataract family. METHODS An autosomal dominant four-generation Chinese congenital membranous cataract family was recruited and whole-exome sequencing was performed to screen for sequence variants. Candidate variants were validated using polymerase chain reaction and Sanger sequencing. Wild-type and mutant low-density lipoprotein receptor-related protein 5-like (LRP5L) plasmids were constructed and transfected into human lens epithelial cells (HLE B-3) and human anterior lens capsules. The cell lysates, nuclear and cytoplasmic proteins, and basement membrane components of HLE B-3 cells were harvested. LRP5L and laminin γ1 were knocked down in HLE B-3 cells using specific small-interfering RNA. The protein expression levels of LRP5L, laminin γ1, and c-MAF were detected using immunoblotting and immunofluorescence. RESULTS We identified a novel suspected pathogenic mutation in LRP5L (c.107C > G, p.P36R) in the congenital membranous cataract family. This mutation was absent in 300 normal controls and 300 age-related cataract patients. Bioinformatics analysis with PolyPhen-2 and SIFT suggested that LRP5L-P36R was pathogenic. LRP5L upregulated laminin γ1 expression in the cytoplasmic proteins of HLE B-3 cells and human anterior lens capsules, and LRP5L-P36R inhibited the effects of LRP5L. LRP5L upregulated c-MAF expression in the nucleus and cytoplasm of HLE B-3 cells, and LRP5L-P36R inhibited c-MAF expression via inhibition of laminin γ1. CONCLUSION Our study identified a novel gene, LRP5L, associated with congenital membranous cataract, and its mutant LRP5L-P36R contributed to membranous cataract development via inhibition of laminin γ1 and c-MAF.
Collapse
Affiliation(s)
- Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Fanqian Song
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Hanruo Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Science Key Laboratory, Capital Medical University, Beijing, 100000, China
| | - Chao Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Zhijian Li
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China.
| |
Collapse
|
35
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|
36
|
Sharath SS, Ramu J, Nair SV, Iyer S, Mony U, Rangasamy J. Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Eng Regen Med 2020; 17:123-140. [PMID: 31953618 PMCID: PMC7105544 DOI: 10.1007/s13770-019-00230-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance. METHODS Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue. RESULTS Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives. CONCLUSION In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.
Collapse
Affiliation(s)
- Siva Sankari Sharath
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Subramaniya Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
37
|
Laminin-511 Supplementation Enhances Stem Cell Localization With Suppression in the Decline of Cardiac Function in Acute Infarct Rats. Transplantation 2019; 103:e119-e127. [PMID: 30730478 DOI: 10.1097/tp.0000000000002653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The extracellular matrix, in particular basement membrane components such as laminins (LMs), is essential for stem cell differentiation and self-renewal. LM511 and LM221 are the main extracellular matrix components of the epicardium, where stem cells were abundant. Here, we examined whether LMs affected the regeneration process by modulating stem cell activities. METHODS In vitro, adhesive, and proliferative activities of mesenchymal stem cells (MSCs) were evaluated on LM511 and LM221. To examine the effects of LMs in vivo, we established an acute myocardial infarction model by ligation of the proximal part of the left anterior descending artery at the height of the left atrial appendage and then placed atelocollagen sheets with or without LM511 and LM221 over the anterolateral surface of the left ventricular wall. Four or 8 weeks later, cardiac function, histology, and cytokine expressions were analyzed. RESULTS MSCs showed greater proliferation and adhesive properties on LM511 than on LM221. In vivo, at 4 weeks, isolectin B4-positive cells were significantly higher in the LM511-transplanted group than in the control group. Moreover, some isolectin B4-positive cells expressed both platelet-derived growth factor receptor α and CD90, suggesting that LM511 enhanced MSC recruitment and attachment at the implanted site. After 8 weeks, these cells were more abundant than at 4 weeks. Transplantation with LM511-conjugated sheets increased the expression of cardioprotective and angiogenic factors. CONCLUSIONS Transplantation with LM511-conjugated sheets enhanced MSC localization to the implantation site and modulated stem cells activities, leading to angiogenesis in acute myocardial infarction rat models.
Collapse
|
38
|
Kozel BA, Mecham RP. Elastic fiber ultrastructure and assembly. Matrix Biol 2019; 84:31-40. [PMID: 31669522 DOI: 10.1016/j.matbio.2019.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Studies over the years have described a filamentous structure to mature elastin that suggests a complicated packing arrangement of tropoelastin subunits. The currently accepted mechanism for tropoelastin assembly requires microfibrils to serve as a physical extracellular scaffold for alignment of tropoelastin monomers during and before crosslinking. However, recent evidence suggests that the initial stages of tropoelastin assembly occur within the cell or at unique assembly sites on the plasma membrane where tropoelastin self assembles to form elastin aggregates. Outside the cell, elastin aggregates transfer to growing elastic fibers in the extracellular matrix where tensional forces on microfibrils generated through cell movement help shape the growing fiber. Overall, these observations challenge the widely held idea that interaction between monomeric tropoelastin and microfibrils is a requirement for elastin assembly, and point to self-assembly of tropoelastin as a driving force in elastin maturation.
Collapse
Affiliation(s)
- Beth A Kozel
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
40
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
41
|
Characterization of dystroglycan binding in adhesion of human induced pluripotent stem cells to laminin-511 E8 fragment. Sci Rep 2019; 9:13037. [PMID: 31506597 PMCID: PMC6737067 DOI: 10.1038/s41598-019-49669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6β1. However, the involvement of non-integrin receptors remains unknown in stem cell culture using LM511-E8. Here, we show that dystroglycan (DG) is strongly expressed in hiPSCs. The fully glycosylated DG is functionally active for laminin binding, and although it has been suggested that LM511-E8 lacks DG binding sites, the fragment does weakly bind to DG. We further identified the DG binding sequence in LM511-E8, using synthetic peptides, of which, hE8A5-20 (human laminin α5 2688–2699: KTLPQLLAKLSI) derived from the laminin coiled-coil domain, exhibited DG binding affinity and cell adhesion activity. Deletion and mutation studies show that LLAKLSI is the active core sequence of hE8A5-20, and that, K2696 is a critical amino acid for DG binding. We further demonstrated that hiPSCs adhere to hE8A5-20-conjugated chitosan matrices. The amino acid sequence of DG binding peptides would be useful to design substrata for culture system of undifferentiated and differentiated stem cells.
Collapse
|
42
|
Yu ZH, Wang YM, Jiang YZ, Ma SJ, Zhong Q, Wan YY, Wang XW. NID2 can serve as a potential prognosis prediction biomarker and promotes the invasion and migration of gastric cancer. Pathol Res Pract 2019; 215:152553. [PMID: 31362888 DOI: 10.1016/j.prp.2019.152553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Nidogen-2 (NID2) is a ubiquitous component in the basement membrane and plays an important role in the development of malignant tumors. However, the specific function and mechanism of the NID2 gene in gastric cancer remains unclear. In this study, we aimed to investigate the role of NID2 in gastric cancer(GC). METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of NID2 in 67 GC tissues and adjacent normal tissues. The relationship between NID2 expression and clinicopathological features was further analyzed. In addition, we evaluated the expression of NID2 in GC based on data from the GEPIA and Kaplan-Meier Plotter database and compared the database results with our own experimental results. Invasion and wound healing assays were used to detect the function of NID2 in MKN45 and SGC7901 cells. Finally, the NID2 network and its possible related genes are constructed by the bioinformatics framework. RESULTS The expression level of NID2 was found to be significantly over-expressed in gastric cancer cells and tissues compared with normal controls and positively associated with TNM stage, showing a poor prognosis of GC patients. In vitro experiments indicated that NID2 was able to promote the ability of invasion and migration in GC cells. Bioinformatics prediction showed NID2 might regulate the progression of GC via protein digestion and absorption, amoebiasis, PI3K-AKt-signaling pathway, focal adhesion and ECM-receptor interaction pathways. CONCLUSION Our study demonstrates that up-regulated NID2 plays an important role in promoting the invasion and migration of GC cells and has a potential of being a novel biomarker for diagnosis, treatment and prognosis of GC in the future.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Department of Intensive Care Unit (ICU), The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Yue-Mei Wang
- Department of Operation Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Yu-Zhang Jiang
- Department of Clinical Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Shi-Jie Ma
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Qing Zhong
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Yi-Yuan Wan
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Xiao-Wei Wang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China.
| |
Collapse
|
43
|
Shin Y, Moriya A, Tohnishi Y, Watanabe T, Imamura Y. Basement membrane-like structures containing NTH α1(IV) are formed around the endothelial cell network in a novel in vitro angiogenesis model. Am J Physiol Cell Physiol 2019; 317:C314-C325. [PMID: 31188637 PMCID: PMC6732425 DOI: 10.1152/ajpcell.00353.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenesis is a process through which new blood vessels are formed by sprouting and elongating from existing blood vessels. Several methods have been used to replicate angiogenesis in vitro, including culturing vascular endothelial cells on Matrigel and coculturing with endothelial cells and fibroblasts. However, the angiogenesis elongation process has not been completely clarified in these models. We therefore propose a new in vitro model of angiogenesis, suitable for observing vascular elongation, by seeding a spheroid cocultured from endothelial cells and fibroblasts into a culture dish. In this model, endothelial cells formed tubular networks elongated from the spheroid with a lumen structure and were connected with tight junctions. A basement membrane (BM)-like structure was observed around the tubular network, similarly to blood vessels in vivo. These results suggested that blood vessel-like structure could be reconstituted in our model. Laminin and type IV collagen, main BM components, were highly localized around the network, along with nontriple helical form of type IV collagen α1-chain [NTH α1(IV)]. In an ascorbic acid-depleted condition, laminin and NTH α1(IV) were observed around the network but not the triple-helical form of type IV collagen and the network was unstable. These results suggest that laminin and NTH α1(IV) are involved in the formation of tubular network and type IV collagen is necessary to stabilize the network.
Collapse
Affiliation(s)
- Yongchol Shin
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Japan.,Graduate School of Engineering, Kogakuin University, Hachioji, Japan
| | - Akane Moriya
- Graduate School of Engineering, Kogakuin University, Hachioji, Japan
| | - Yuta Tohnishi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Japan
| | - Takafumi Watanabe
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasutada Imamura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Japan.,Graduate School of Engineering, Kogakuin University, Hachioji, Japan
| |
Collapse
|
44
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
45
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
46
|
Bhuvanesh T, Machatschek R, Lysyakova L, Kratz K, Schulz B, Ma N, Lendlein A. Collagen type-IV Langmuir and Langmuir-Schäfer layers as model biointerfaces to direct stem cell adhesion. ACTA ACUST UNITED AC 2019; 14:024101. [PMID: 30524033 DOI: 10.1088/1748-605x/aaf464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schäfer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m-1. Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m-1 onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m-1 on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.
Collapse
Affiliation(s)
- Thanga Bhuvanesh
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, D-14513, Teltow, Germany. Institute of Chemistry, University of Potsdam, D-14476, Potsdam, Germany. Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, D-14513, Teltow, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Located at the interface of the circulation system and the CNS, the basement membrane (BM) is well positioned to regulate blood-brain barrier (BBB) integrity. Given the important roles of BBB in the development and progression of various neurological disorders, the BM has been hypothesized to contribute to the pathogenesis of these diseases. After stroke, a cerebrovascular disease caused by rupture (hemorrhagic) or occlusion (ischemic) of cerebral blood vessels, the BM undergoes constant remodeling to modulate disease progression. Although an association between BM dissolution and stroke is observed, how each individual BM component changes after stroke and how these components contribute to stroke pathogenesis are mostly unclear. In this review, I first briefly introduce the composition of the BM in the brain. Next, the functions of the BM and its major components in BBB maintenance under homeostatic conditions are summarized. Furthermore, the roles of the BM and its major components in the pathogenesis of hemorrhagic and ischemic stroke are discussed. Last, unsolved questions and potential future directions are described. This review aims to provide a comprehensive reference for future studies, stimulate the formation of new ideas, and promote the generation of new genetic tools in the field of BM/stroke research.
Collapse
Affiliation(s)
- Yao Yao
- Yao Yao, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 340 Pharmacy South Building, 250 West Green Street, Athens, GA 30602, USA.
| |
Collapse
|
48
|
Saemisch M, Balcells M, Riesinger L, Nickmann M, Bhaloo SI, Edelman ER, Methe H. Subendothelial matrix components influence endothelial cell apoptosis in vitro. Am J Physiol Cell Physiol 2018; 316:C210-C222. [PMID: 30566394 DOI: 10.1152/ajpcell.00005.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. Dysregulation of apoptosis has been linked with embryonal death and is involved in the pathophysiology of various diseases. Specifically, endothelial apoptosis plays pivotal roles in atherosclerosis whereas prevention of endothelial apoptosis is a prerequisite for neovascularization in tumors and metastasis. Endothelial biology is intertwined with the composition of subendothelial basement membrane proteins. Apoptosis was induced by addition of tumor necrosis factor-α to cycloheximide-sensitized endothelial cells. Cells were either grown on polystyrene culture plates or on plates precoated with healthy basement membrane proteins (collagen IV, fibronectin, or laminin) or collagen I. Our results reveal that proteins of healthy basement membrane alleviate cytokine-induced apoptosis whereas precoating with collagen type I had no significant effect on apoptosis by addition of tumor necrosis factor-α to cycloheximide-sensitized endothelial cells compared with cells cultured on uncoated plates. Yet, treatment with transforming growth factor-β1 significantly reduced the rate of apoptosis endothelial cells grown on collagen I. Detailed analysis reveals differences in intracellular signaling pathways for each of the basement membrane proteins studied. We provide additional insights into the importance of basement membrane proteins and the respective cytokine milieu on endothelial biology. Exploring outside-in signaling by basement membrane proteins may constitute an interesting target to restore vascular function and prevent complications in the atherosclerotic cascade.
Collapse
Affiliation(s)
- Michael Saemisch
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Department of Internal Medicine, Kliniken Neumarkt, Neumarkt, Germany
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Biological Engineering, IQS School of Engineering, Universitat Ramon Llull , Barcelona , Spain
| | - Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany
| | - Markus Nickmann
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| |
Collapse
|
49
|
Sato Y, Kiyozumi D, Futaki S, Nakano I, Shimono C, Kaneko N, Ikawa M, Okabe M, Sawamoto K, Sekiguchi K. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol Biol Cell 2018; 30:56-68. [PMID: 30379609 PMCID: PMC6337917 DOI: 10.1091/mbc.e18-05-0286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells (NSCs) are retained in the adult ventricular–subventricular zone (V-SVZ), a specialized neurogenic niche with a unique cellular architecture. It currently remains unclear whether or how NSCs utilize basement membranes (BMs) in this niche. Here, we examine the molecular compositions and functions of BMs in the adult mouse V-SVZ. Whole-mount V-SVZ immunostaining revealed that fractones, which are fingerlike processes of extravascular BMs, are speckled BMs unconnected to the vasculature, and differ in their molecular composition from vascular BMs. Glial fibrillary acidic protein (GFAP)-positive astrocytes and NSCs produce and adhere to speckled BMs. Furthermore, Gfap-Cre-mediated Lamc1flox(E1605Q) knockin mice, in which integrin-binding activities of laminins are specifically nullified in GFAP-positive cells, exhibit a decreased number and size of speckled BMs and reduced in vitro neurosphere-forming activity. Our results reveal niche activities of fractones/speckled BMs for NSCs and provide molecular insights into how laminin–integrin interactions regulate NSCs in vivo.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sugiko Futaki
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Itsuko Nakano
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chisei Shimono
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8610, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Okabe
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8610, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Spermatogonial stem cells differentiation and testicular lobules formation in a seasonal breeding teleost: The evidence from the heat-induced masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Theriogenology 2018; 120:68-78. [DOI: 10.1016/j.theriogenology.2018.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/21/2023]
|