1
|
Hosseini SM, Nemati S, Karimi-Abdolrezaee S. Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury. Stem Cell Reports 2024; 19:1451-1473. [PMID: 39303705 DOI: 10.1016/j.stemcr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Neural degeneration is a hallmark of spinal cord injury (SCI). Multipotent neural precursor cells (NPCs) have the potential to reconstruct the damaged neuron-glia network due to their tri-lineage capacity to generate neurons, astrocytes, and oligodendrocytes. However, astrogenesis is the predominant fate of resident or transplanted NPCs in the SCI milieu adding to the abundant number of resident astrocytes in the lesion. How NPC-derived astrocytes respond to the inflammatory milieu of SCI and the mechanisms by which they contribute to the post-injury recovery processes remain largely unknown. Here, we uncover that activated NPC-derived astrocytes exhibit distinct molecular signature that is immune modulatory and foster neurogenesis, neuronal maturity, and synaptogenesis. Mechanistically, NPC-derived astrocytes perform regenerative matrix remodeling by clearing inhibitory chondroitin sulfate proteoglycans (CSPGs) from the injury milieu through LAR and PTP-σ receptor-mediated endocytosis and the production of ADAMTS1 and ADAMTS9, while most resident astrocytes are pro-inflammatory and contribute to the pathologic deposition of CSPGs. These novel findings unravel critical mechanisms of NPC-mediated astrogenesis in SCI repair.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Shiva Nemati
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada; Children Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Hu C, Ma L, Gao S, Yang MY, Mu MD, Chang L, Huang P, Ye X, Wang W, Tao X, Zhou BH, Chen W, Tang KL. PPP1R3A inhibits osteogenesis and negatively regulates intracellular calcium levels in calcific tendinopathy. iScience 2023; 26:107784. [PMID: 37876608 PMCID: PMC10590817 DOI: 10.1016/j.isci.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Calcific tendinopathy (CT) is defined by the progressive accumulation of calcium crystals in tendonic regions that results in severe pain in patients. The etiology of CT is not fully elucidated. In this study, we elucidate the role of PPP1R3A in CT. A significant decrease in PPP1R3A expression was observed in CT patient tissues, which was further confirmed in tissues from a CT-induced rat model. Overexpression of PPP1R3A ex vivo reduced the expression of osteo/chondrogenic markers OCN and Sox9, improved tendon tissue architecture, and reduced intracellular Ca2+ levels. Overexpression of SERCA2 and knockdown of Piezo1 decreased expression of osteo/chondrogenic markers and intracellular calcium in PPP1R3A-knockdown tendon cells. Lastly, PPP1R3A expression was regulated at the posttranscriptional level by binding of HuR. Collectively, the present study indicates that PPP1R3A plays an important role in regulating calcium homeostasis in tendon cells via Piezo1/SERCA2, rendering it a promising target for therapeutic interventions of CT.
Collapse
Affiliation(s)
- Chao Hu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
- Department of Orthopedics, 904 Hospital of PLA, Wuxi 214000 Jiangsu, China
| | - Lin Ma
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Shang Gao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Ming-Yu Yang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Mi-Duo Mu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Le Chang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Pan Huang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xiao Ye
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wei Wang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xu Tao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Bing-Hua Zhou
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wan Chen
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Kang-Lai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| |
Collapse
|
3
|
James S, Daffy J, Cook J, Samiric T. Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants. Genes (Basel) 2022; 13:genes13122210. [PMID: 36553476 PMCID: PMC9777606 DOI: 10.3390/genes13122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Fluoroquinolone antibiotics are associated with increased risk of tendinopathy and tendon rupture, which can occur well after cessation of treatment. We have previously reported that the fluoroquinolone ciprofloxacin (CPX) reduced proteoglycan synthesis in equine tendon explants. This study aimed to determine the effects of CPX on proteoglycan catabolism and whether any observed effects are reversible. Equine superficial digital flexor tendon explant cultures were treated for 4 days with 1, 10, 100 or 300 µg/mL CPX followed by 8 days without CPX. The loss of [35S]-labelled proteoglycans and chemical pool of aggrecan and versican was studied as well as the gene expression levels of matrix-degrading enzymes responsible for proteoglycan catabolism. CPX suppressed [35S]-labelled proteoglycan and total aggrecan loss from the explants, although not in a dose-dependent manner, which coincided with downregulation of mRNA expression of MMP-9, -13, ADAMTS-4, -5. The suppressed loss of proteoglycans was reversed upon removal of the fluoroquinolone with concurrent recovery of MMP and ADAMTS mRNA expression, and downregulated TIMP-2 and upregulated TIMP-1 expression. No changes in MMP-3 expression by CPX was observed at any stage. These findings suggest that CPX suppresses proteoglycan catabolism in tendon, and this is partially attributable to downregulation of matrix-degrading enzymes.
Collapse
Affiliation(s)
- Stuart James
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia
| | - John Daffy
- Department of Infectious Diseases, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Jill Cook
- Sports and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tom Samiric
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
4
|
Cilek MZ, de Vega S, Shiozawa J, Yoshinaga C, Miyamae Y, Chijiiwa M, Mochizuki S, Ito M, Kaneko H, Kaneko K, Ishijima M, Okada Y. Synergistic upregulation of ADAMTS4 (aggrecanase-1) by cytokines and its suppression in knee osteoarthritic synovial fibroblasts. J Transl Med 2022; 102:102-111. [PMID: 34718343 DOI: 10.1038/s41374-021-00685-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1β, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-β markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-β, or IL-1α, TNF-α and TGF-β. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-β-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-β-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-β was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-β in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.
Collapse
Affiliation(s)
- Mehmet Zeynel Cilek
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Shiozawa
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiho Yoshinaga
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Miyamae
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Chijiiwa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Satsuki Mochizuki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Ito
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Proteoglycans and Diseases of Soft Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:127-138. [PMID: 34807417 DOI: 10.1007/978-3-030-80614-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteoglycans consist of protein cores to which at least one glycosaminoglycan chain is attached. They play important roles in the physiology and biomechanical function of tendons, ligaments, cardiovascular system, and other systems through their involvement in regulation of assembly and maintenance of extracellular matrix, and through their participation in cell proliferation together with growth factors. They can be divided into two main groups, small and large proteoglycans. The small proteoglycans are also known as small leucine-rich proteoglycans (SLRPs) which are encoded by 18 genes and are further subclassified into Classes I-V. Several members of Class I and II, such as decorin and biglycan from Class I, and Class II fibromodulin and lumican, are known to regulate collagen fibrillogenesis. Decorin limits the diameter of collagen fibrils during fibrillogenesis. The function of biglycan in fibrillogenesis is similar to that of decorin. Though biomechanical function of tendon is compromised in decorin-deficient mice, decorin can substitute for lack of biglycan in biglycan-deficient mice. New data also indicate an important role for biglycan in disorders of the cardiovascular system, including aortic valve stenosis and aortic dissection. Two members of the Class II of SLRPs, fibromodulin and lumican bind to the same site within the collagen molecule and can substitute for each other in fibromodulin- or lumican-deficient mice.Aggrecan and versican are the major representatives of the large proteoglycans. Though they are mainly found in the cartilage where they provide resilience and toughness, they are present also in tensile portions of tendons and, in slightly different biochemical form in fibrocartilage. Degradation by aggrecanase is responsible for the appearance of different forms of aggrecan and versican in different parts of the tendon where these cleaved forms play different roles. In addition, they are important components of the ventricularis of cardiac valves. Mutations in the gene for versican or in the gene for elastin (which binds to versican ) lead to severe disruptions of normal developmental of the heart at least in mice.
Collapse
|
6
|
Roberts JH, Halper J. Growth Factor Roles in Soft Tissue Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:139-159. [PMID: 34807418 DOI: 10.1007/978-3-030-80614-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor β (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.
Collapse
Affiliation(s)
- Jennifer H Roberts
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
8
|
Silawal S, Kohl B, Girke G, Schneider T, Schulze-Tanzil G. Complement regulation in tenocytes under the influence of leukocytes in an indirect co-culture model. Inflamm Res 2021; 70:495-507. [PMID: 33772629 DOI: 10.1007/s00011-021-01451-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/31/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The present in vitro study was undertaken to learn about the effects of leukocytes on tenocytes in respect to complement regulation simulating an inflammatory scenario of the traumatized tissue. METHODS Human hamstring tendon-derived tenocyte monolayers were co-cultured indirectly with human leukocytes (either Peripheral Blood Mononuclear Cells [PBMCs] or neutrophils) using a transwell system with/without (+ /wo) 10 ng/ml tumor necrosis factor α (TNFα) for 4 and 24 h. Tenocyte and leukocyte cell survival was assessed by live-dead assay. Tenocyte gene expression of TNFα, the anaphylatoxin receptor C5aR and the cytoprotective complement regulatory proteins (CRP) CD46, CD55 and CD59 was monitored using qPCR. TNFα was detected in the culture supernatants using ELISA. RESULTS C5aR gene expression was significantly induced by TNFα after 4 h, but impaired in the presence of leukocytes + TNFα after 24 h. At 4 h, PBMCs activated by TNFα induced the CRP CD46 gene expression. However, CD55 was significantly suppressed after 24 h by neutrophils + /woTNFα. Leukocytes activated by TNFα decreased also significantly the gene expression of the more downstream acting CRP CD59 after 4 h. TNFα gene expression and ELISA analysis revealed an amplified TNFα expression/release in tenocyte co-cultures with PBMC + /woTNFα, probably contributing to complement regulation. CONCLUSION TNFα might represent a crucial soluble mediator exerting diverse time-dependent effects on tenocyte complement regulation.
Collapse
Affiliation(s)
- Sandeep Silawal
- Institute of Anatomy and Cell Biology, Paracelsus Private Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Georg Girke
- Department of Traumatology and Reconstructive Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Tobias Schneider
- Institute of Anatomy and Cell Biology, Paracelsus Private Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Department of Traumatology and Reconstructive Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Private Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.
| |
Collapse
|
9
|
Wunderli SL, Blache U, Beretta Piccoli A, Niederöst B, Holenstein CN, Passini FS, Silván U, Bundgaard L, Auf dem Keller U, Snedeker JG. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol 2020; 89:11-26. [PMID: 31917255 DOI: 10.1016/j.matbio.2019.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
Although the molecular mechanisms behind tendon disease remain obscure, aberrant stromal matrix turnover and tissue hypervascularity are known hallmarks of advanced tendinopathy. We harness a tendon explant model to unwind complex cross-talk between the stromal and vascular tissue compartments. We identify the hypervascular tendon niche as a state-switch that gates degenerative matrix remodeling within the tissue stroma. Here pathological conditions resembling hypervascular tendon disease provoke rapid cell-mediated tissue breakdown upon mechanical unloading, in contrast to unloaded tendons that remain functionally stable in physiological low-oxygen/-temperature niches. Analyses of the stromal tissue transcriptome and secretome reveal that a stromal niche with elevated tissue oxygenation and temperature drives a ROS mediated cellular stress response that leads to adoption of an immune-modulatory phenotype within the degrading stromal tissue. Degradomic analysis further reveals a surprisingly rich set of active matrix proteases behind the progressive loss of tissue mechanics. We conclude that the tendon stromal compartment responds to aberrant mechanical unloading in a manner that is highly dependent on the vascular niche, with ROS gating a complex proteolytic breakdown of the functional collagen backbone.
Collapse
Affiliation(s)
- Stefania L Wunderli
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Ulrich Blache
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Agnese Beretta Piccoli
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Barbara Niederöst
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Claude N Holenstein
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Fabian S Passini
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Unai Silván
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland.
| |
Collapse
|
10
|
Promoter methylation status of the TIMP2 and ADAMTS4 genes and patellar tendinopathy. J Sci Med Sport 2018; 21:378-382. [DOI: 10.1016/j.jsams.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
|
11
|
Lebaschi AH, Deng XH, Camp CL, Zong J, Cong GT, Carballo CB, Album Z, Rodeo SA. Biomechanical, Histologic, and Molecular Evaluation of Tendon Healing in a New Murine Model of Rotator Cuff Repair. Arthroscopy 2018; 34:1173-1183. [PMID: 29459078 PMCID: PMC6340398 DOI: 10.1016/j.arthro.2017.10.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To develop a clinically relevant, robust murine model of rotator cuff tendon repair to examine cellular and molecular mechanisms of healing. METHODS Sixty C57BL/6 male mice underwent rotator cuff transection and repair using microsurgical techniques. A modified Kessler suturing technique was used prior to tendon detachment. Sutures were passed through 2 intersecting bone tunnels that were made at the tendon attachment site. Mice were sacrificed at 2 and 4 weeks with subsequent biomechanical, histologic, micro-CT, and gene expression evaluations. RESULTS Failure forces in the 2- and 4-week groups were 36% and 75% of the intact tendon, respectively. Histologic evaluation revealed complete reattachment of the tendon with no observable gap. Healing occurred by formation of fibrovascular tissue at the tendon-bone interface, similar to larger animal models. Molecular analysis revealed gene expression consistent with gradual healing of the reattached tendon over a period of 4 weeks. Comparisons were made using 1-way analysis of variance. CONCLUSIONS This model is distinguished by use of microsurgical suturing techniques, which provides a robust, reproducible, and economic animal model to study various aspects of rotator cuff pathology. CLINICAL RELEVANCE Improvement of clinical outcomes of rotator cuff pathology requires in-depth understanding of the underlying cellular and molecular mechanisms of healing. This study presents a robust murine model of supraspinatus repair to serve as a standard research tool for basic and translational investigations into signaling pathways, gene expression, and the effect of biologic augmentation approaches.
Collapse
|
12
|
Hammerman M, Blomgran P, Dansac A, Eliasson P, Aspenberg P. Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing. J Appl Physiol (1985) 2017; 123:800-815. [PMID: 28705996 DOI: 10.1152/japplphysiol.00323.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
Mechanical loading stimulates tendon healing both when applied in the inflammatory phase and in the early remodeling phase of the process, although not necessarily via the same mechanisms. We investigated the gene response to mechanical loading in these two phases of tendon healing. The right Achilles tendon in rats was transected, and the hindlimbs were unloaded by tail suspension. The rats were exposed to 5 min of treadmill running 3 or 14 days after tendon transection. Thereafter, they were resuspended for 15 min or 3 h until euthanasia. The controls were suspended continuously. Gene analysis was first performed by microarray analysis followed by quantitative RT-PCR on selected genes, focusing on inflammation. Fifteen minutes after loading, the most important genes seemed to be the transcription factors EGR1 and C-FOS, regardless of healing phase. These transcription factors might promote tendon cell proliferation and differentiation, stimulate collagen production, and regulate inflammation. Three hours after loading on day 3, inflammation was strongly affected. Seven inflammation-related genes were upregulated according to PCR: CCL20, CCL7, IL-6, NFIL3, PTX3, SOCS1, and TLR2. These genes can be connected to macrophages, T cells, and recruitment of leukocytes. According to Ingenuity Pathway Analysis, the recruitment of leukocytes was increased by loading on day 3, which also was confirmed by histology. This inflammation-related gene response was not seen on day 14 Our results suggest that the immediate gene response after mechanical loading is similar in the early and late phases of healing but the late gene response is different.NEW & NOTEWORTHY This study investigates the direct effect of mechanical loading on gene expression during different healing phases in tendon healing. One isolated episode of mechanical loading was studied in otherwise unloaded healing tendons. This enabled us to study a time sequence, i.e., which genes were the first ones to be regulated after the loading episode.
Collapse
Affiliation(s)
- Malin Hammerman
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Parmis Blomgran
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Arie Dansac
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Pernilla Eliasson
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| |
Collapse
|
13
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
14
|
Cheng P, Han P, Zhao C, Zhang S, Zhang X, Chai Y. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction. Sci Rep 2016; 6:26434. [PMID: 27210585 PMCID: PMC4876376 DOI: 10.1038/srep26434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/03/2016] [Indexed: 11/09/2022] Open
Abstract
Patients after anterior cruciate ligament (ACL) reconstruction surgery commonly encounters graft failure in the initial phase of rehabilitation. The inhibition of graft degradation is crucial for the successful reconstruction of the ACL. Here, we used biodegradable high-purity magnesium (HP Mg) screws in the rabbit model of ACL reconstruction with titanium (Ti) screws as a control and analyzed the graft degradation and screw corrosion using direct pull-out tests, microCT scanning, and histological and immunohistochemical staining. The most noteworthy finding was that tendon graft fixed by HP Mg screws exhibited biomechanical properties substantially superior to that by Ti screws and the relative area of collagen fiber at the tendon-bone interface was much larger in the Mg group, when severe graft degradation was identified in the histological analysis at 3 weeks. Semi-quantitative immunohistochemical results further elucidated that the MMP-13 expression significantly decreased surrounding HP Mg screws with relatively higher Collagen II expression. And HP Mg screws exhibited uniform corrosion behavior without displacement or loosening in the femoral tunnel. Therefore, our results demonstrated that Mg screw inhibited graft degradation and improved biomechanical properties of tendon graft during the early phase of graft healing and highlighted its potential in ACL reconstruction.
Collapse
Affiliation(s)
- Pengfei Cheng
- Department of Orthopaedic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Pei Han
- Department of Orthopaedic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoxiang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| | - Yimin Chai
- Department of Orthopaedic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
15
|
The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediators Inflamm 2015; 2015:801546. [PMID: 26696755 PMCID: PMC4677222 DOI: 10.1155/2015/801546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs. ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-α (TNF-α) form a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its structure, function, gene regulation, and inflammatory diseases involvement.
Collapse
|
16
|
Ekwueme EC, Shah JV, Mohiuddin M, Ghebes CA, Crispim JF, Saris DBF, Fernandes HAM, Freeman JW. Cross-Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro. J Cell Biochem 2015; 117:684-93. [PMID: 26308651 DOI: 10.1002/jcb.25353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022]
Abstract
Tendon and ligament (T/L) pathologies account for a significant portion of musculoskeletal injuries and disorders. Tissue engineering has emerged as a promising solution in the regeneration of both tissues. Specifically, the use of multipotent human mesenchymal stromal cells (hMSC) has shown great promise to serve as both a suitable cell source for tenogenic regeneration and a source of trophic factors to induce tenogenesis. Using four donor sets, we investigated the bidirectional paracrine tenogenic response between human hamstring tenocytes (hHT) and bone marrow-derived hMSC. Cell metabolic assays showed that only one hHT donor experienced sustained notable increases in cell metabolic activity during co-culture. Histological staining confirmed that co-culture induced elevated collagen protein levels in both cell types at varying time-points in two of four donor sets assessed. Gene expression analysis using qPCR showed the varied up-regulation of anabolic and catabolic markers involved in extracellular matrix maintenance for hMSC and hHT. Furthermore, analysis of hMSC/hHT co-culture secretome using a reporter cell line for TGF-β, a potent inducer of tenogenesis, revealed a trend of higher TGF-β bioactivity in hMSC secretome compared to hHT. Finally, hHT cytoskeletal immunostaining confirmed that both cell types released soluble factors capable of inducing favorable tenogenic morphology, comparable to control levels of soluble TGF-β1. These results suggest a potential for TGF-β-mediated signaling mechanism that is involved during the paracrine interplay between the two cell types that is reminiscent of T/L matrix remodeling/turnover. These findings have significant implications in the clinical use of hMSC for common T/L pathologies.
Collapse
Affiliation(s)
- Emmanuel C Ekwueme
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey.,MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Jay V Shah
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mahir Mohiuddin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Corina A Ghebes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - João F Crispim
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Daniël B F Saris
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo A M Fernandes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,UC-Biotech-Cantanhede, Cantanhede, Portugal
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
Dyment NA, Galloway JL. Regenerative biology of tendon: mechanisms for renewal and repair. ACTA ACUST UNITED AC 2015; 1:124-131. [PMID: 26389023 DOI: 10.1007/s40610-015-0021-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the molecular and cellular mechanisms underlying tissue turnover and repair are essential towards addressing pathologies in aging, injury and disease. Each tissue has distinct means of maintaining homeostasis and healing after injury. For some, resident stem cell populations mediate both of these processes. These stem cells, by definition, are self renewing and give rise to all the differentiated cells of that tissue. However, not all organs fit with this traditional stem cell model of regeneration, and some do not appear to harbor somatic stem or progenitor cells capable of multilineage in vivo reconstitution. Despite recent progress in tendon progenitor cell research, our current knowledge of the mechanisms regulating tendon cell homeostasis and injury response is limited. Understanding the role of resident tendon cell populations is of great importance for regenerative medicine based approaches to tendon injuries and disease. The goal of this review is to bring to light our current knowledge regarding tendon progenitor cells and their role in tissue maintenance and repair. We will focus on pressing questions in the field and the new tools, including model systems, available to address them.
Collapse
Affiliation(s)
- Nathaniel A Dyment
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute
| |
Collapse
|
18
|
Sejersen MHJ, Frost P, Hansen TB, Deutch SR, Svendsen SW. Proteomics perspectives in rotator cuff research: a systematic review of gene expression and protein composition in human tendinopathy. PLoS One 2015; 10:e0119974. [PMID: 25879758 PMCID: PMC4400011 DOI: 10.1371/journal.pone.0119974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics--the comprehensive study of protein composition--in tendon research. MATERIALS AND METHODS We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. RESULTS We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro. CONCLUSIONS Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for proteomics in tendon research.
Collapse
Affiliation(s)
- Maria Hee Jung Sejersen
- Danish Ramazzini Centre, Department of Occupational Medicine, Regional Hospital West Jutland—University Research Clinic, Herning, Denmark
| | - Poul Frost
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Bæk Hansen
- Research Unit for Orthopaedics, Holstebro Regional Hospital, Holstebro, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | - Susanne Wulff Svendsen
- Danish Ramazzini Centre, Department of Occupational Medicine, Regional Hospital West Jutland—University Research Clinic, Herning, Denmark
| |
Collapse
|
19
|
Jacobsen E, Dart AJ, Mondori T, Horadogoda N, Jeffcott LB, Little CB, Smith MM. Focal experimental injury leads to widespread gene expression and histologic changes in equine flexor tendons. PLoS One 2015; 10:e0122220. [PMID: 25837713 PMCID: PMC4383631 DOI: 10.1371/journal.pone.0122220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023] Open
Abstract
It is not known how extensively a localised flexor tendon injury affects the entire tendon. This study examined the extent of and relationship between histopathologic and gene expression changes in equine superficial digital flexor tendon after a surgical injury. One forelimb tendon was hemi-transected in six horses, and in three other horses, one tendon underwent a sham operation. After euthanasia at six weeks, transected and control (sham and non-operated contralateral) tendons were regionally sampled (medial and lateral halves each divided into six 3 cm regions) for histologic (scoring and immunohistochemistry) and gene expression (real time PCR) analysis of extracellular matrix changes. The histopathology score was significantly higher in transected tendons compared to control tendons in all regions except for the most distal (P ≤ 0.03) with no differences between overstressed (medial) and stress-deprived (lateral) tendon halves. Proteoglycan scores were increased by transection in all but the most proximal region (P < 0.02), with increased immunostaining for aggrecan, biglycan and versican. After correcting for location within the tendon, gene expression for aggrecan, versican, biglycan, lumican, collagen types I, II and III, MMP14 and TIMP1 was increased in transected tendons compared with control tendons (P < 0.02) and decreased for ADAMTS4, MMP3 and TIMP3 (P < 0.001). Aggrecan, biglycan, fibromodulin, and collagen types I and III expression positively correlated with all histopathology scores (P < 0.001), whereas lumican, ADAMTS4 and MMP14 expression positively correlated only with collagen fiber malalignment (P < 0.001). In summary, histologic and associated gene expression changes were significant and widespread six weeks after injury to the equine SDFT, suggesting rapid and active development of tendinopathy throughout the entire length of the tendon. These extensive changes distant to the focal injury may contribute to poor functional outcomes and re-injury in clinical cases. Our data suggest that successful treatments of focal injuries will need to address pathology in the entire tendon, and that better methods to monitor the development and resolution of tendinopathy are required.
Collapse
Affiliation(s)
- Else Jacobsen
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Andrew J. Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Takamitsu Mondori
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research (University of Sydney) at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Neil Horadogoda
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Leo B. Jeffcott
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research (University of Sydney) at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Margaret M. Smith
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research (University of Sydney) at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- * E-mail:
| |
Collapse
|
20
|
Chhana A, Callon KE, Dray M, Pool B, Naot D, Gamble GD, Coleman B, McCarthy G, McQueen FM, Cornish J, Dalbeth N. Interactions between tenocytes and monosodium urate monohydrate crystals: implications for tendon involvement in gout. Ann Rheum Dis 2014; 73:1737-41. [PMID: 24709860 DOI: 10.1136/annrheumdis-2013-204657] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Advanced imaging studies have demonstrated that urate deposition in periarticular structures, such as tendons, is common in gout. The aim of this study was to investigate the effects of monosodium urate monohydrate (MSU) crystals on tenocyte viability and function. METHODS The histological appearance of tendons in joints affected by advanced gout was examined using light microscopy. In vitro, colorimetric assays and flow cytometry were used to assess cell viability in primary rat and primary human tenocytes cultured with MSU crystals. Real-time PCR was used to determine changes in the relative mRNA expression levels of tendon-related genes, and Sirius red staining was used to measure changes in collagen deposition in primary rat tenocytes. RESULTS In joint samples from patients with gout, MSU crystals were identified within the tendon, adjacent to and invading into tendon, and at the enthesis. MSU crystals reduced tenocyte viability in a dose-dependent manner. MSU crystals decreased the mRNA expression of tendon collagens, matrix proteins and degradative enzymes and reduced collagen protein deposition by tenocytes. CONCLUSIONS These data indicate that MSU crystals directly interact with tenocytes to reduce cell viability and function. These interactions may contribute to tendon damage in people with advanced gout.
Collapse
Affiliation(s)
- Ashika Chhana
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Karen E Callon
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Michael Dray
- Department of Histology, Waikato Hospital, Hamilton, New Zealand
| | - Bregina Pool
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Dorit Naot
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Greg D Gamble
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Geraldine McCarthy
- Department of Rheumatology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fiona M McQueen
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- Bone & Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Obika M, Vernon RB, Gooden MD, Braun KR, Chan CK, Wight TN. ADAMTS-4 and biglycan are expressed at high levels and co-localize to podosomes during endothelial cell tubulogenesis in vitro. J Histochem Cytochem 2013; 62:34-49. [PMID: 24051360 DOI: 10.1369/0022155413507727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Proteolysis of the extracellular matrix influences vascular growth. We examined the expression of ADAMTS-1, -4, and -5 metalloproteinases and their proteoglycan substrates versican, decorin, and biglycan as human umbilical vein endothelial cells (HUVECs) formed tubes within type I collagen gels in vitro. Tubulogenic and control HUVEC cultures expressed low levels of ADAMTS-1 and -5 mRNAs, but ADAMTS-4 mRNA was relatively abundant and was significantly elevated (as was ADAMTS-4 protein) in tubulogenic cultures versus controls. Immunocytochemistry revealed ADAMTS-4 in f-actin- and cortactin-positive podosome-like puncta in single cells and mature tubes. Tubulogenic and control cultures expressed low levels of versican and decorin mRNAs; however, peak levels of biglycan mRNA were 400- and 16,000-fold that of versican and decorin, respectively. Biglycan mRNA was highest at 3 hr, declined steadily through day 7 and, at 12 hr and beyond, was significantly lower in tubulogenic cultures than in controls. Western blots of extracellular matrix from tubulogenic cultures contained bands corresponding to biglycan and its cleavage products. By immunocytochemistry, biglycan was found in the pericellular matrix surrounding endothelial tubes and in cell-associated puncta that co-localized with ADAMTS-4 and cortactin. Collectively, our results suggest that ADAMTS-4 and its substrate biglycan are involved in tubulogenesis by endothelial cells.
Collapse
Affiliation(s)
- Masanari Obika
- Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan (MO)
| | | | | | | | | | | |
Collapse
|
22
|
Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2596-2607. [PMID: 23830915 PMCID: PMC3898605 DOI: 10.1016/j.bbamcr.2013.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. Mechanical strain regulates multiple protease and matrix genes at the mRNA level. Changes in mRNA level are analogous to those induced by TGFβ stimulation. The inhibition of the TGFβ signalling pathway abrogated the strain-induced changes. A SMAD activatory soluble factor is increased in activity in response to mechanical load.
Collapse
Affiliation(s)
- Eleanor R Jones
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Gavin C Jones
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kirsten Legerlotz
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Graham P Riley
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
23
|
Samiric T, Handley CJ, Cook J, Parkinson J. GENE EXPRESSION OF MATRIX-DEGRADING ENZYMES IN PATELLAR TENDINOPATHY. Br J Sports Med 2013. [DOI: 10.1136/bjsports-2013-092459.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
|
25
|
Leone L, Vetrano M, Ranieri D, Raffa S, Vulpiani MC, Ferretti A, Torrisi MR, Visco V. Extracorporeal Shock Wave Treatment (ESWT) improves in vitro functional activities of ruptured human tendon-derived tenocytes. PLoS One 2012. [PMID: 23189160 PMCID: PMC3506633 DOI: 10.1371/journal.pone.0049759] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In vitro models of human tenocytes derived from healthy as well as from ruptured tendons were established, characterized and used at very early passage (P1) to evaluate the effects of Extracorporeal Shock Wave Treatment (ESWT). The molecular analysis of traditional tenocytic markers, including Scleraxis (Scx), Tenomodulin (Tnm), Tenascin-C (Tn-C) and Type I and III Collagens (Col I and Col III), permitted us to detect in our samples the simultaneous expression of all these genes and allowed us to compare their levels of expression in relationship to the source of the cells and treatments. In untreated conditions, higher molecular levels of Scx and Col I in tenocytes from pathological compared to healthy samples have been detected, suggesting – in the cells from injured tendon – the natural trigger of an early differentiation and repairing program, which depends by Scx and requires an increase in collagen expression. When ESWT (at the dose of 0.14 mJ/mm2) was applied to cultured tenocytes explanted from injured source, Scx and Col I were significantly diminished compared to healthy counterpart, indicating that such natural trigger maybe delayed by the treatment, in order to promote cellular repair. Herein, we show for the first time that ESWT enhances in vitro functional activities of ruptured tendon-derived tenocytes, such as proliferation and migration, which could probably contributes to tendon healing in vivo.
Collapse
Affiliation(s)
- Laura Leone
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mario Vetrano
- Department of Ortophaedics and Traumatology, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Vulpiani
- Department of Ortophaedics and Traumatology, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Andrea Ferretti
- Department of Ortophaedics and Traumatology, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Vincenzo Visco
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
- * E-mail:
| |
Collapse
|
26
|
Wang L, Pawlak E, Johnson PJ, Belknap JK, Alfandari D, Black SJ. Effects of cleavage by a disintegrin and metalloproteinase with thrombospondin motifs-4 on gene expression and protein content of versican and aggrecan in the digital laminae of horses with starch gruel-induced laminitis. Am J Vet Res 2012; 73:1047-56. [PMID: 22738057 DOI: 10.2460/ajvr.73.7.1047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine whether increased gene expression of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) in laminae of horses with starch gruel-induced laminitis was accompanied by increased enzyme activity and substrate degradation. SAMPLE Laminae from the forelimb hooves of 8 healthy horses and 17 horses with starch gruel-induced laminitis (6 at onset of fever, 6 at onset of Obel grade 1 lameness, and 5 at onset of Obel grade 3 lameness). PROCEDURES Gene expression was determined by use of cDNA and real-time quantitative PCR assay. Protein expression and processing were determined via SDS-PAGE and quantitative western blotting. Protein distribution and abundance were determined via quantitative immunofluorescent staining. RESULTS ADAMTS-4 gene expression was increased and that of versican decreased in laminitic laminae, compared with expression in healthy laminae. Catalytically active ADAMTS-4 also was increased in the tissue, as were ADAMTS-4-cleavage fragments of versican. Immunofluorescent analyses indicated that versican was depleted from the basal epithelia of laminae of horses at onset of Obel grade 3 lameness, compared with results for healthy laminae, and this was accompanied by regional separation of basal epithelial cells from the basement membrane. Aggrecan gene and protein expression were not significantly affected. CONCLUSIONS AND CLINICAL RELEVANCE Changes in gene and protein expression of ADAMTS-4 and versican in the basal epithelium of laminitic laminae indicated a fundamental change in the physiology of basal epithelial cells. This was accompanied by and may have caused detachment of these cells from the basement membrane.
Collapse
Affiliation(s)
- Le Wang
- Department of Veterinary and Animal Sciences, College of Natural Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
27
|
Burner T, Gohr C, Mitton-Fitzgerald E, Rosenthal AK. Hyperglycemia reduces proteoglycan levels in tendons. Connect Tissue Res 2012; 53:535-41. [PMID: 22891926 DOI: 10.3109/03008207.2012.710670] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE Diabetic tendinopathy is characterized by increased stiffness, thickness, and excess calcification of affected tendons. We investigated the hypothesis that proteoglycans (PGs), as key regulators of tendon structure and calcification, are altered in diabetic tendons. METHODS Adult porcine patellar tendons were incubated in iso-osmolar media with high or normal glucose levels for 2 weeks. The PG fraction was isolated and analyzed. Protein and mRNA levels of five PGs were measured. PG production was assessed in primary tenocyte monolayers by (35)S-sulfate labeling in high and normal glucose conditions with and without exposure to advanced glycation end-products (AGEs). Levels of transforming growth factor β, which commonly mediates some effects of hyperglycemia, were also measured and the effects of free radical scavengers on (35)S-sulfate incorporation were determined. RESULTS PG levels were significantly decreased in tendons exposed to high glucose media compared with tendons in iso-osmolar control media. Relative quantities of individual PGs were unchanged by exposure to hyperglycemia and mRNAs for PGs were variably affected. High glucose media decreased PG production by tenocytes as measured by (35)S-sulfate labeling, whereas AGE-modified type I collagen and free radical scavengers had no effects. Hyperglycemic conditions increased levels of transforming growth factor β1 in an AGE-independent manner. CONCLUSIONS Hyperglycemia produces a reduction in PG levels related to decreased synthesis or sulfation of glycosaminoglycans, which may contribute to the tendon pathology observed clinically in diabetes.
Collapse
Affiliation(s)
- Todd Burner
- Division of Medicine, Zablocki VA Medical Center, Milwaukee, WI 53295-1000, USA
| | | | | | | |
Collapse
|
28
|
Lundin AC, Aspenberg P, Eliasson P. Trigger finger, tendinosis, and intratendinous gene expression. Scand J Med Sci Sports 2012; 24:363-8. [PMID: 22882155 DOI: 10.1111/j.1600-0838.2012.01514.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2012] [Indexed: 11/29/2022]
Abstract
The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis.
Collapse
Affiliation(s)
- A-C Lundin
- Department of Hand Surgery, Plastic Surgery and Burns, Linkoping University Hospital, Linkoping, Sweden
| | | | | |
Collapse
|
29
|
Andia I, Abate M. Platelet-rich plasma injections for tendinopathy and osteoarthritis. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/ijr.12.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Backman LJ, Fong G, Andersson G, Scott A, Danielson P. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation. PLoS One 2011; 6:e27209. [PMID: 22069500 PMCID: PMC3206074 DOI: 10.1371/journal.pone.0027209] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.
Collapse
Affiliation(s)
- Ludvig J. Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Sports Medicine, Umeå University, Umeå, Sweden
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gloria Fong
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada
| | - Gustav Andersson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Alexander Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
31
|
Puthucheary Z, Skipworth JR, Rawal J, Loosemore M, Van Someren K, Montgomery HE. Genetic Influences in Sport and Physical Performance. Sports Med 2011; 41:845-59. [DOI: 10.2165/11593200-000000000-00000] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Plaas A, Sandy JD, Liu H, Diaz MA, Schenkman D, Magnus RP, Bolam-Bretl C, Kopesky PW, Wang VM, Galante JO. Biochemical identification and immunolocalizaton of aggrecan, ADAMTS5 and inter-alpha-trypsin-inhibitor in equine degenerative suspensory ligament desmitis. J Orthop Res 2011; 29:900-6. [PMID: 21246622 DOI: 10.1002/jor.21332] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 11/15/2010] [Indexed: 02/04/2023]
Abstract
We describe analysis of suspensory ligaments from horses with advanced degenerative suspensory ligament desmitis (DSLD) to identify the major proteoglycans (PGs), ADAMTS-aggrecanases and inter-alpha-trypsin inhibitor (IαI) components associated with ligament degeneration. Specific anatomical regions of suspensory ligaments from two normal horses and four diagnosed with DSLD were analyzed by Western blot and immunohistochemistry for the following: aggrecan, aggrecan fragments, decorin, ADAMTS4, ADAMTS5, and IαI components. When compared to normal, DSLD ligaments showed about a 15-fold increase (P < 0.0014) in aggrecan levels and markedly enhanced staining with Safranin O. The aggrecan was composed of two distinct high molecular weight core protein species. The largest species was found only in DSLD samples and it co-migrated with aggrecan synthesized by equine mesenchymal stem cells (MSC). Many of the DSLD samples also contained abnormally high concentrations of ADAMTS4, ADAMTS5, and IαI. Notably, the ADAMTS5 in DSLD samples, but not normals, was present largely as a high molecular weight complex. We conclude that ligament degeneration in DSLD is associated with matrix changes characteristic of an inflammatory nonhealing wound, specifically containing chondrogenic progenitor cells. Since aggrecan accumulation is a major feature of incomplete healing in tendon and skin of the ADAMTS5 knockout mouse, we propose that ligament failure in DSLD results from a process involving tissue inflammation and the complexation of ADAMTS5.
Collapse
Affiliation(s)
- Anna Plaas
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fox AJS, Bedi A, Deng XH, Ying L, Harris PE, Warren RF, Rodeo SA. Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model. J Orthop Res 2011; 29:880-5. [PMID: 21246619 PMCID: PMC5243138 DOI: 10.1002/jor.21327] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine the effect of the diabetic phenotype on the mechanical properties of the native patellar tendon and its enthesis. Diabetes was induced via intraperitoneal injection of streptozotocin in Lewis rats. Control (n = 18) and diabetic animals (n = 20) were killed at 12 and 19 days for analysis. Statistical comparisons were performed using Student's t-tests and a two-tailed Fisher test with significance set at p < 0.05. Pre- and post-injection intraperitoneal glucose tolerance tests demonstrated significant impairment of glycemic control in the diabetic compared to control animals (p = 0.001). Mean serum hemoglobin A1c levels at 19 days was 10.6 ± 2.7% and 6.0 ± 1.0% for the diabetic and control groups, respectively (p = 0.0001). Fifteen of sixteen diabetic animals demonstrated intrasubstance failure of the patellar tendon, while only 7 of 14 control specimens failed within the tendon substance. The Young's modulus of the diabetic tendon was significantly lower than control specimens by 19 days post-induction (161 ± 10 N m(-2) compared to 200 ± 46 N m(-2) , respectively) (p = 0.02). The metabolic condition of poorly controlled diabetes negatively affects the mechanical properties of the native patellar tendon. These altered structural properties may predispose diabetic patients to a greater risk of tendinopathy and/or traumatic rupture.
Collapse
Affiliation(s)
- Alice J. S. Fox
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021
| | - Asheesh Bedi
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, 10021
| | - Xiang-Hua Deng
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021
| | - Liang Ying
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021
| | - Paul E. Harris
- Columbia University, Black Building 20-06, 650 West 168th Street, New York, New York 10032
| | - Russell F. Warren
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, 10021
| | - Scott A. Rodeo
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, 10021
| |
Collapse
|
34
|
Sharma A, Abraham T, Sampaio A, Cowan M, Underhill M, Scott A. Sodium cromolyn reduces expression of CTGF, ADAMTS1, and TIMP3 and modulates post-injury patellar tendon morphology. J Orthop Res 2011; 29:678-83. [PMID: 21437947 PMCID: PMC3951484 DOI: 10.1002/jor.21291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/04/2010] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine whether administration of a mast cell inhibitor (sodium cromolyn, SC) would influence tendon repair and extracellular matrix gene expression following acute injury. CD1 mouse patellar tendons were unilaterally injured and mast cell prevalence was determined. The effect of SC injection on tendon hypercellularity, cross-sectional area, collagen organization, and expression of extracellular matrix-related genes was examined. Mast cell prevalence was markedly increased in injured patellar tendons (p = 0.009), especially at 8 weeks post-injury (p = 0.025). SC injection increased collagen organization compared to uninjected animals at 4 weeks and attenuated the development of tendon hypercellularity and tendon thickening post-injury. Expression of CTGF, ADAMTS1, and TIMP3 in injured tendon was reduced in the SC group. SC injections moderated the structural alterations of healing tendon in association with downregulation of several genes associated with tendon fibrosis. This work corroborates previous findings pointing to a role of mast cells in tendon repair.
Collapse
Affiliation(s)
- Aishwariya Sharma
- Department of Cellular and Physiological Sciences, University of British Columbia
| | - Thomas Abraham
- James Hogg Centre for Cardiovascular Research, St Paul’s Hospital
| | - Arthur Sampaio
- Department of Cellular and Physiological Sciences, University of British Columbia
| | - Matthew Cowan
- Biomedical Research Centre, University of British Columbia
| | - Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute,Correspondence or reprint requests should be addressed to A Scott, Department of Physical Therapy, University of British Columbia, 212 - 2177 Wesbrook Mall, Vancouver, BC V6T 1Z3,
| |
Collapse
|
35
|
Krenn V, Kurz B, Krukemeyer MG, Knoess P, Jakobs M, Poremba C, Möllenhoff G. [Histopathological degeneration score of fibrous cartilage. Low- and high-grade meniscal degeneration]. Z Rheumatol 2011; 69:644-52. [PMID: 20213088 DOI: 10.1007/s00393-010-0609-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although histopathology of meniscal degeneration plays an important role, no criteria to assess severity of the degeneration are available to date. Our aim was to create a histopathological scoring system for meniscal degeneration with good interobserver variability, taking matrix degradation and cellularity in meniscal tissue into consideration. Degeneration is classified as follows: grade 1 (low), grade 2 (intermediate), grade 3 (high). The pattern of NITEGE deposits (G1 fragment of aggrecan) was assessed immunohistochemically (n=38) and compared with the grades of degeneration. In 48% of the patients with grade 2 or 3 degeneration extracellular NITEGE deposits (specificity 100%) were found, whereas grade 1 patients showed no deposits. Extracellular NITEGE deposits correlated positively with the grade of degeneration. In all, 30 cases (10 per grade) were assessed by three pathologists (A, B, C). Grading conformity was 70% for grade 1, 66% for grade 2 and 100% for grade 3. Cohen's Kappa coefficient was 0.6--0.7 between pairs of observers. Combining grade 1 and 2 to low-grade degeneration, compared to a grade-3 high-grade degeneration achieved Kappa coefficients of between 0.93 and 1.0. This reproducible degeneration score for fibrous cartilage could form the basis for the standardized assessment of meniscal degeneration.
Collapse
Affiliation(s)
- V Krenn
- Zentrum für Histologie, Zytologie und Molekulare Diagnostik Trier, 54296 Trier, Deutschland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Fu SC, Rolf C, Cheuk YC, Lui PP, Chan KM. Deciphering the pathogenesis of tendinopathy: a three-stages process. BMC Sports Sci Med Rehabil 2010; 2:30. [PMID: 21144004 PMCID: PMC3006368 DOI: 10.1186/1758-2555-2-30] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/13/2010] [Indexed: 01/08/2023]
Abstract
Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments.
Collapse
Affiliation(s)
- Sai-Chuen Fu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, PR China.
| | | | | | | | | |
Collapse
|
37
|
Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 2010; 26:85-94. [PMID: 20737183 DOI: 10.1007/s10103-010-0811-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 06/24/2010] [Indexed: 12/15/2022]
Abstract
Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.
Collapse
|
38
|
Krenn V, Knöss P, Rüther W, Jakobs M, Otto M, Krukemeyer MG, Heine A, Möllenhoff G, Kurz B. [Meniscal degeneration score and NITEGE expression : immunohistochemical detection of NITEGE in advanced meniscal degeneration]. DER ORTHOPADE 2010; 39:475-85. [PMID: 20221825 DOI: 10.1007/s00132-010-1606-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Meniscal degeneration (MD) is a structural change of fibrous cartilage that is common in orthopaedic diagnostics and relevant for health insurance matters. So far, there has been neither a standardised scoring system nor an immunohistochemical marker for MD. MATERIAL AND METHOD In this retrospective trial, the meniscal tissue of 60 patients was assessed immunohistochemically for NITEGE (G1 fragment of the proteoglycan aggrecan) expression. NITEGE expression was correlated with defined grades of MD: little (grade 0/1), medium (grade 2), or severe (grade 3). RESULTS Detection of extracellular NITEGE deposits in grade 2 or 3 MD had a positive predictive value and specificity of 100%, whereas no deposits were found in grade 0/1 MD. Sensitivity in advanced MD was 55%. Detection of extracellular NITEGE correlated positively with the grade of degeneration, as did patient age and the grade of degeneration. The patient age of those with grade 0/1 MD was significantly lower than for grade 3 (p<0.0001). CONCLUSION The thoroughly defined degeneration score (grade 1 - grade 3 MD) is suitable to assess the severity of degeneration. Extracellular NITEGE deposits can be regarded as an immunohistochemical marker for advanced (grades 2 and 3) MD.
Collapse
Affiliation(s)
- V Krenn
- Zentrum für Histologie, Zytologie und Molekulare Diagnostik, Max-Planck-Strasse 18+20, 54296, Trier, Deutschland.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Parkinson J, Samiric T, Ilic MZ, Cook J, Feller JA, Handley CJ. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. ACTA ACUST UNITED AC 2010; 62:3028-35. [DOI: 10.1002/art.27587] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Bedi A, Kovacevic D, Hettrich C, Gulotta LV, Ehteshami JR, Warren RF, Rodeo SA. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J Shoulder Elbow Surg 2010; 19:384-91. [PMID: 19800260 DOI: 10.1016/j.jse.2009.07.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 02/01/2023]
Abstract
HYPOTHESIS Recent studies have demonstrated a potentially critical role of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in the pathophysiology of rotator cuff tears. We hypothesize that local delivery of a MMP inhibitor after surgical repair of the rotator cuff will improve healing at the tendon-to-bone surface interface. MATERIALS AND METHODS Sixty-two male Sprague-Dawley rats underwent acute supraspinatus detachment and repair. In the control group (n=31), the supraspinatus was repaired to its anatomic footprint. In the experimental group (n=31), recombinant alpha-2-macroglobulin (A2M) protein, a universal MMP inhibitor, was applied at the tendon-bone interface with an identical surgical repair. Animals were sacrificed at 2 and 4 weeks for histomorphometry, immunohistochemistry, and biomechanical testing. Statistical comparisons were performed using unpaired t tests. Significance was set at P < .05. RESULTS Significantly greater fibrocartilage was seen at the healing enthesis in the A2M-treated specimens compared with controls at 2 weeks (P < .05). Significantly greater collagen organization was observed in the A2M-treated animals compared with controls at 4 weeks (P < .01). A significant reduction in collagen degradation was observed at both 2 and 4 weeks in the experimental group (P < .05). Biomechanical testing revealed no significant differences in stiffness or ultimate load-to-failure. CONCLUSION Local delivery of an MMP inhibitor is associated with distinct histologic differences at the tendon-to-bone interface after rotator cuff repair. Modulation of MMP activity after rotator cuff repair may offer a novel biologic pathway to augment tendon-to-bone healing after rotator cuff repair.
Collapse
Affiliation(s)
- Asheesh Bedi
- Sports Medicine and Shoulder Surgery, Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 2010; 6:262-8. [PMID: 20308995 DOI: 10.1038/nrrheum.2010.43] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tendons are designed to withstand considerable loads. Mechanical loading of tendon tissue results in upregulation of collagen expression and increased synthesis of collagen protein, the extent of which is probably regulated by the strain experienced by the resident fibroblasts (tenocytes). This increase in collagen formation peaks around 24 h after exercise and remains elevated for about 3 days. The degradation of collagen proteins also rises after exercise, but seems to peak earlier than the synthesis. Despite the ability of tendons to adapt to loading, repetitive use often results in injuries, such as tendinopathy, which is characterized by pain during activity, localized tenderness upon palpation, swelling and impaired performance. Tendon histological changes include reduced numbers and rounding of fibroblasts, increased content of proteoglycans, glycosaminoglycans and water, hypervascularization and disorganized collagen fibrils. At the molecular level, the levels of messenger RNA for type I and III collagens, proteoglycans, angiogenic factors, stress and regenerative proteins and proteolytic enzymes are increased. Tendon microrupture and material fatigue have been suggested as possible injury mechanisms, thus implying that one or more 'weak links' are present in the structure. Understanding how tendon tissue adapts to mechanical loading will help to unravel the pathogenesis of tendinopathy.
Collapse
Affiliation(s)
- S Peter Magnusson
- Institute of Sports Medicine, Bispebjerg Hospital and Center for Healthy Aging, University of Copenhagen, Bispebjerg Bakke, Copenhagen NV, Denmark
| | | | | |
Collapse
|
42
|
Lin EA, Liu CJ. The role of ADAMTSs in arthritis. Protein Cell 2010; 1:33-47. [PMID: 21203996 DOI: 10.1007/s13238-010-0002-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family consists of 19 proteases. These enzymes are known to play important roles in development, angiogenesis and coagulation; dysregulation and mutation of these enzymes have been implicated in many disease processes, such as inflammation, cancer, arthritis and atherosclerosis. This review briefly summarizes the structural organization and functional roles of ADAMTSs in normal and pathological conditions, focusing on members that are known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (ADAMTS-4 and ADAMTS-5), ADAMTS-7 and ADAMTS-12, the latter two are associated with cartilage oligomeric matrix protein (COMP), a component of the cartilage extracellular matrix (ECM). We will discuss the expression pattern and the regulation of these metalloproteinases at multiple levels, including their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP), and activation (e.g., syndecan-4, PACE-4).
Collapse
Affiliation(s)
- Edward A Lin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | | |
Collapse
|
43
|
Bedi A, Fox AJS, Kovacevic D, Deng XH, Warren RF, Rodeo SA. Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair. Am J Sports Med 2010; 38:308-17. [PMID: 19826139 DOI: 10.1177/0363546509347366] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recent studies demonstrate a potentially critical role of matrix metalloproteinases (MMPs) and their inhibitors in the pathophysiology of rotator cuff tears. HYPOTHESIS Doxycycline-mediated MMP inhibition after rotator cuff repair will improve tendon-to-bone healing. STUDY DESIGN Controlled laboratory study. METHODS Rats (n = 183) underwent acute detachment and repair of the supraspinatus tendon and the animals were divided into 4 groups: In controls (n = 66), the supraspinatus was repaired to its anatomical footprint. In experimental groups, an identical surgery was performed with doxycycline (130 mg/kg/d) administered orally at (1) preoperative day 1 (n = 66), (2) postoperative day (POD) 5 (n = 28), or (3) POD 14 (n = 23). Animals were sacrificed at 5 days, 8 days, 2 weeks, and 4 weeks. Tendon-bone interface was evaluated with histomorphometry. Enzyme-linked immunosorbent assay for local MMP-13 activity was performed at 8 days and 4 weeks. Biomechanical testing of the healing enthesis was performed at 8 days, 2 weeks, and 4 weeks. Serum doxycycline levels were measured at sacrifice. Statistical analysis was performed using unpaired t tests and 2-way analysis of variance (P < .05). RESULTS Serum doxycycline levels were significantly higher in all treated groups compared with controls (1830 +/- 835 vs 3 +/- 3 ng/mL, respectively; P < .001). Doxycycline-treated animals demonstrated greater metachromasia and improved collagen organization at the healing enthesis at POD 5 (P < .06), POD 8 (P < .03), and 2 weeks (P < .04). The MMP-13 activity was significantly reduced in doxycycline-treated compared with control animals at POD 8 (6740 +/- 2770 vs 10400 +/- 2930 relative fluorescent units [RFU], respectively; P < .02) but not at 4 weeks (3600 +/- 3280 vs 4530 +/- 2720 RFU, respectively). The healing enthesis of animals started on doxycycline preoperatively or at POD 5 had an increased load to failure compared to controls at 2 weeks (13.6 +/- 1.8 and 13.2 +/- 1.94 N vs 9.1 +/- 2.5 N, respectively; P < .01). CONCLUSION/CLINICAL RELEVANCE Modulation of MMP-13 activity after rotator cuff repair may offer a novel biological pathway to augment tendon-to-bone healing.
Collapse
Affiliation(s)
- Asheesh Bedi
- Laboratory for Soft Tissue Research, Hospital For Special Surgery, 535 East 70th Street, New York City, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Pasternak B, Aspenberg P. Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 2009; 80:693-703. [PMID: 19968600 PMCID: PMC2823312 DOI: 10.3109/17453670903448257] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and related enzymes (ADAMs, ADAMTS) and their inhibitors control matrix turnover and function. Recent advances in our understanding of musculoskeletal conditions such as tendinopathy, arthritis, Dupuytren's disease, degenerative disc disease, and bone and soft tissue healing suggest that MMPs have prominant roles. Importantly, MMPs are amenable to inhibition by cheap, safe, and widely available drugs such as the tetracycline antibiotics and the bisphosphonates. This indicates that these MMP inhibitors, if proven effective for any novel indication, may be quickly brought into clinical practice.
Collapse
Affiliation(s)
| | - Per Aspenberg
- Orthopaedics and Sports Medicine, IKE, Linköping University, Linköping
| |
Collapse
|
45
|
Abstract
The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) comprise a family of secreted zinc metalloproteinases with a precisely ordered modular organization. These enzymes play an important role in the turnover of extracellular matrix proteins in various tissues and their dysregulation has been implicated in disease-related processes such as arthritis, atherosclerosis, cancer, and inflammation. ADAMTS-7 and ADAMTS-12 share a similar domain organization to each other and form a subgroup within the ADAMTS family. Emerging evidence suggests that ADAMTS-7 and ADAMTS-12 may play an important role in the development and pathogenesis of various kinds of diseases. In this review, we summarize what is currently known about the roles of these two metalloproteinases, with a special focus on their involvement in chondrogenesis, endochondral ossification, and the pathogenesis of arthritis, atherosclerosis, and cancer. The future study of ADAMTS-7 and ADAMTS-12, as well as the molecules with which they interact, will help us to better understand a variety of human diseases from both a biological and therapeutic standpoint.
Collapse
Affiliation(s)
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery; Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
46
|
Abate M, Silbernagel KG, Siljeholm C, Di Iorio A, De Amicis D, Salini V, Werner S, Paganelli R. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther 2009; 11:235. [PMID: 19591655 PMCID: PMC2714139 DOI: 10.1186/ar2723] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies.
Collapse
Affiliation(s)
- Michele Abate
- Postgraduate School of Physical Medicine and Rehabilitation, University G d'Annunzio, Chieti-Pescara, 66013 Chieti Scalo, CH, Italy.
| | | | | | | | | | | | | | | |
Collapse
|