1
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Saghour N, Chérifi F, Saoud S, Zebbiche Y, Meribai A, Bekkari N, Samya TM, Laraba-Djebari F. Structural, Biochemical Characterization and Molecular Mechanism of Cerastokunin: A New Kunitz-Type Peptide with Potential Inhibition of Thrombin, Factor Xa and Platelets. Protein J 2024; 43:888-909. [PMID: 39095592 DOI: 10.1007/s10930-024-10226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
The current investigation focused on separating Cerastes cerastes venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin's 3D structure had 12% α-helices and 21% β-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose-response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial's duration.
Collapse
Affiliation(s)
- Noussaiba Saghour
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatah Chérifi
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| | - Samah Saoud
- Faculty of Sciences, University of Algiers 1, Algiers, Algeria
| | - Younes Zebbiche
- Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| | - Amel Meribai
- Food Technology and Human Nutrition Research Laboratory, National Agronomic High School, Algiers, Algeria
| | - Nadjia Bekkari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | | | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| |
Collapse
|
3
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
4
|
Offor BC, Piater LA. Snake venom toxins: Potential anticancer therapeutics. J Appl Toxicol 2024; 44:666-685. [PMID: 37697914 DOI: 10.1002/jat.4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Snake venom contains a cocktail of compounds dominated by proteins and peptides, which make up the toxin. The toxin components of snake venom attack several targets in the human body including the neuromuscular system, kidney and blood coagulation system and cause pathologies. As such, the venom toxins can be managed and used for the treatment of these diseases. In this regard, Captopril used in the treatment of cardiovascular diseases was the first animal venom toxin-based drug approved by the US Food and Drug Administration and the European Medicines Agency. Cancers cause morbidity and mortality worldwide. Due to side effects associated with the current cancer treatments including chemotherapy, radiotherapy, immunotherapy, hormonal therapy and surgery, there is a need to improve the efficacy of current treatments and/or develop novel drugs from natural sources including animal toxin-based drugs. There is a long history of earlier and ongoing studies implicating snake venom toxins as potential anticancer therapies. Here, we review the role of crude snake venoms and toxins including phospholipase A2, L-amino acid oxidase, C-type lectin and disintegrin as potential anticancer agents tested in cancer cell lines and animal tumour models in comparison to normal cell lines. Some of the anti-tumour activities of snake venom toxins include induction of cytotoxicity, apoptosis, cell cycle arrest and inhibition of metastasis, angiogenesis and tumour growth. We thus propose the advancement of multidisciplinary approaches to more pre-clinical and clinical studies for enhanced bioavailability and targeted delivery of snake venom toxin-based anticancer drugs.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
5
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
6
|
Morjen M, Zakraoui O, Abdelkafi-Koubaa Z, Srairi-Abid N, Marrakchi N, Essafi-Benkhadir K, Jebali J. CC5 and CC8, Two Disintegrin Isoforms from Cerastes cerastes Snake Venom Decreased Inflammation Response In Vitro and In Vivo. Int J Mol Sci 2023; 24:12427. [PMID: 37569801 PMCID: PMC10418880 DOI: 10.3390/ijms241512427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation is associated with many pathology disorders and the malignant progression of most cancers. Therefore, targeting inflammatory pathways could provide a promising strategy for disease prevention and treatment. In this study, we experimentally investigated the anti-inflammatory effect of CC5 and CC8, two disintegrin isoforms isolated from Cerastes cerastes snake venom, on LPS-stimulated macrophages, both on human THP-1 and mouse RAW264.7 cell adherence and their underlying mechanisms by measuring cytokine release levels and Western blot assay. Equally, both molecules were evaluated on a carrageenan-induced edema rat model. Our findings suggest that CC5 and CC8 were able to reduce adhesion of LPS-stimulated macrophages both on human THP-1 and mouse RAW264.7 cells to fibrinogen and vitronectin through the interaction with the αvβ3 integrin receptor. Moreover, CC5 and CC8 reduced the levels of reactive oxygen species (ROS) mediated by the NF-κB, MAPK and AKT signaling pathways that lead to decreased production of the pro-inflammatory cytokines TNF-α, IL-6 and IL-8 and increased secretion of IL-10 in LPS-stimulated THP-1 and RAW264.7 cells. Interestingly, both molecules potently exhibited an anti-inflammatory effect in vivo by reducing paw swelling in rats. In light of these results, we can propose the CC5 and CC8 disintegrins as interesting tools to design potential candidates against inflammatory-related diseases.
Collapse
Affiliation(s)
- Maram Morjen
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Ons Zakraoui
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (O.Z.); (K.E.-B.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation, LR21SP01, Salah Azaiez Institute, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
- Medicine School of Tunis, University of Tunis El Manar, 15 Djebel Lakhdhar Street, La Rabta, Tunis 1007, Tunisia
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (O.Z.); (K.E.-B.)
| | - Jed Jebali
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| |
Collapse
|
7
|
Bhattacharya N, Kolvekar N, Mondal S, Sarkar A, Chakrabarty D. Biological activities of Vipegrin, an anti-adhesive Kunitz-type serine proteinase inhibitor purified from Russell's viper venom. Toxicon 2023:107213. [PMID: 37419286 DOI: 10.1016/j.toxicon.2023.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Vipegrin is a 6.8 kDa protein purified from Russell's viper (Vipera russelii russelii) venom. Structural assessment of Vipegrin indicates that it is a Kunitz-type serine proteinase inhibitor. Kunitz-type serine proteinase inhibitors are non-enzymatic proteins and are ubiquitous constituents of viper venoms. Vipegrin could partially (43%) inhibit the catalytic activity of trypsin. It has disintegrin-like properties and could inhibit collagen and ADP-induced platelet aggregation in a dose-dependent manner. Vipegrin is cytotoxic to human breast cancer cells, MCF7 and restricts its invasive property. Confocal microscopic analysis revealed that Vipegrin could induce apoptosis in MCF7 cells. Vipegrin disrupts cell-cell adhesion of human breast cancer MCF7 cells through its disintegrin-like activity. It also causes cell-matrix disruption of MCF7 cells from synthetic (poly L-lysine) and natural (fibronectin, laminin) matrices. Vipegrin did not cause cytotoxicity on non-cancerous HaCaT, human keratinocytes. The observed properties indicate that Vipegrin may help the development of a potent anti-cancer drug in future.
Collapse
Affiliation(s)
| | - Nivedita Kolvekar
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Sukanta Mondal
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Angshuman Sarkar
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Dibakar Chakrabarty
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India.
| |
Collapse
|
8
|
Mlayah-Bellalouna S, Aissaoui-Zid D, Chantome A, Jebali J, Souid S, Ayedi E, Mejdoub H, Belghazi M, Marrakchi N, Essafi-Benkhadir K, Vandier C, Srairi-Abid N. Insights into the mechanisms governing P01 scorpion toxin effect against U87 glioblastoma cells oncogenesis. Front Pharmacol 2023; 14:1203247. [PMID: 37426811 PMCID: PMC10326281 DOI: 10.3389/fphar.2023.1203247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The emerging concept of small conductance Ca2+-activated potassium channels (SKCa) as pharmacological target for cancer treatment has significantly increased in recent years. In this study, we isolated the P01 toxin from Androctonus australis (Aa) scorpion venom and investigated its effect on biological properties of glioblastoma U87, breast MDA-MB231 and colon adenocarcinoma LS174 cancer cell lines. Our results showed that P01 was active only on U87 glioblastoma cells. It inhibited their proliferation, adhesion and migration with IC50 values in the micromolar range. We have also shown that P01 reduced the amplitude of the currents recorded in HEK293 cells expressing SK2 channels with an IC50 value of 3 pM, while it had no effect on those expressing SK3 channels. The investigation of the SKCa channels expression pattern showed that SK2 transcripts were expressed differently in the three cancer cell lines. Particularly, we highlighted the presence of SK2 isoforms in U87 cells, which could explain and rely on the specific activity of P01 on this cell line. These experimental data highlighted the usefulness of scorpion peptides to decipher the role of SKCa channels in the tumorigenesis process, and develop potential therapeutic molecules targeting glioblastoma with high selectivity.
Collapse
Affiliation(s)
- Saoussen Mlayah-Bellalouna
- LR20IPT01 Biomolécules, Venins et Application Théranostique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Dorra Aissaoui-Zid
- LR20IPT01 Biomolécules, Venins et Application Théranostique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Aurelie Chantome
- N2C UMR 1069, Institut national de la santé et de la recherche médicale, University of Tours, Tours, France
| | - Jed Jebali
- LR20IPT01 Biomolécules, Venins et Application Théranostique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Soumaya Souid
- LR16IPT04 Laboratoire d’Epidémiologie Moléculaire et Pathologie Expérimentale, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Emna Ayedi
- LR20IPT01 Biomolécules, Venins et Application Théranostique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hafedh Mejdoub
- USCR Séquenceur de Protéines, Faculté des Sciences de Sfax, Route de Soukra, Sfax, Tunisia
| | - Maya Belghazi
- Aix Marseille Université, CNRS, Plateforme Protéomique, IMM FR3479, Marseille Protéomique (MaP), Marseille, France
| | - Naziha Marrakchi
- LR20IPT01 Biomolécules, Venins et Application Théranostique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Khadija Essafi-Benkhadir
- LR16IPT04 Laboratoire d’Epidémiologie Moléculaire et Pathologie Expérimentale, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Christophe Vandier
- N2C UMR 1069, Institut national de la santé et de la recherche médicale, University of Tours, Tours, France
| | - Najet Srairi-Abid
- LR20IPT01 Biomolécules, Venins et Application Théranostique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Paolino G, Di Nicola MR, Avella I, Mercuri SR. Venomous Bites, Stings and Poisoning by European Vertebrates as an Overlooked and Emerging Medical Problem: Recognition, Clinical Aspects and Therapeutic Management. Life (Basel) 2023; 13:1228. [PMID: 37374011 PMCID: PMC10305571 DOI: 10.3390/life13061228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Europe presents a high number of venomous and poisonous animals able to elicit medically relevant symptoms in humans. However, since most of the accidents involving venomous or poisonous animals in Europe are unreported, their incidence and morbidity are severely overlooked. Here we provide an overview of the European vertebrate species of greatest toxicological interest, the clinical manifestations their toxins can cause, and their treatment. We report the clinical symptoms induced by envenomations and poisoning caused by reptiles, fishes, amphibians and mammals in Europe, ranging from mild, local symptoms (e.g., erythema, edema) to systemic and potentially deadly. The present work constitutes a tool for physicians to recognize envenomation/poisoning symptoms caused by the most medically relevant European vertebrates and to decide which approach is the most appropriate to treat them.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
- Asociación Herpetológica Española, Apartado de Correos 191, 28911 Leganés, Spain
| | - Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
| |
Collapse
|
10
|
Touihri-Barakati I, Kallech-Ziri O, Morjen M, Marrakchi N, Luis J, Hosni K. Inhibitory effect of phenolic extract from squirting cucumber ( Ecballium elaterium (L.) A. Rich) seed oil on integrin-mediated cell adhesion, migration and angiogenesis. RSC Adv 2022; 12:31747-31756. [PMID: 36380921 PMCID: PMC9638996 DOI: 10.1039/d2ra02593k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/01/2022] [Indexed: 03/10/2024] Open
Abstract
Integrin targeted therapies by natural bioactive compounds have attracted attention in the field of oncology and cancer treatment. This study evaluates the potential of phenolic extract from the medicinal herb Ecballium elaterium L. seed oil (PEO) to inhibit the adhesion and migration of the highly invasive human fibrosarcoma cell line HT1080. At safe concentrations (up to 40 μg mL-1), results show that PEO dose-dependently inhibits adhesion and migration of HT1080 to fibronectin (IC50 = 18 μg mL-1) and fibrinogen (IC50 = 12.86 μg mL-1). These observations were associated with the reduction of cell motility and migration velocity as revealed in the Boyden chamber and random motility using two-dimensional assays, respectively. Additional experiments using integrin blocking antibodies showed that PEO at the highest safe concentration (40 μg mL-1) competitively inhibited the attachment of HT1080 cell to anti-αvβ3 (>98%), anti-α5β1 (>86%), and to a lesser extent anti-α2 (>50%) immobilized antibodies, suggesting that αvβ3 and α5β1 integrins were selectively targeted by PEO. Moreover, PEO specifically targeted these integrins in human microvascular endothelial cells (HMEC-1) and dose-dependently blocked the in vitro tubulogenesis. In the CAM model, PEO inhibited the VEGF-induced neoangiogenesis confirming its anti-angiogenic effect. Collectively, these results indicate that PEO holds promise for the development of natural integrin-targeted therapies against fibrosarcoma.
Collapse
Affiliation(s)
- Imen Touihri-Barakati
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Olfa Kallech-Ziri
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Maram Morjen
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - José Luis
- CNRS-UMR 7051, Institut de Neuro Physiopathologie (INP), Université Aix-Marseille 27 Bd Jean Moulin 13385 Marseille France
| | - Karim Hosni
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| |
Collapse
|
11
|
Siigur J, Siigur E. Biochemistry and toxicology of proteins and peptides purified from the venom of Vipera berus berus. Toxicon X 2022; 15:100131. [PMID: 35769869 PMCID: PMC9234072 DOI: 10.1016/j.toxcx.2022.100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
The isolation and characterization of individual snake venom components is important for a deeper understanding of the pathophysiology of envenomation and for improving the therapeutic procedures of patients. It also opens possibilities for the discovery of novel toxins that might be useful as tools for understanding cellular and molecular processes. The variable venom composition, toxicological and immunological properties of the common vipers (Vipera berus berus) have been reviewed. The combination of venom gland transcriptomics, bottom-up and top-down proteomics enabled comparison of common viper venom proteomes from multiple individuals. V. b. berus venom contains proteins and peptides belonging to 10–15 toxin families: snake venom metalloproteinase, phospholipases A2 (PLA2), snake venom serine proteinase, aspartic protease, L-amino acid oxidase (LAAO), hyaluronidase, 5′-nucleotidase, glutaminyl-peptide cyclotransferase, disintegrin, C-type lectin (snaclec), nerve growth factor, Kunitz type serine protease inhibitor, snake venom vascular endothelial growth factor, cysteine-rich secretory protein, bradykinin potentiating peptide, natriuretic peptides. PLA2 and LAAO from V. b. berus venom produce more pronounced cytotoxic effects in cancer cells than normal cells, via induction of apoptosis, cell cycle arrest and suppression of proliferation. Proteomic data of V. b. berus venoms from different parts of Russia and Slovakian Republic have been compared with analogous data for Vipera nikolskii venom. Proteomic studies demonstrated quantitative differences in the composition of V. b. berus venom from different geographical regions. Differences in the venom composition of V. berus were mainly driven by the age, sex, habitat and diet of the snakes. The venom variability of V. berus results in a loss of antivenom efficacy against snakebites. The effectiveness of antibodies is discussed. This review presents an overview with a special focus on different toxins that have been isolated and characterized from the venoms of V. b. berus. Their main biochemical properties and toxic actions are described. Vipera berus berus venom composition is variable among different populations. Venom contains about 15 protein/peptide families. It disturbs blood coagulation inducing pro- or anticoagulant effects. Venom contains different types of blood factor X activators. PLA2 and L-amino acid oxidase produce cytotoxic effects in cancer cells.
Collapse
|
12
|
Physical Forces in Glioblastoma Migration: A Systematic Review. Int J Mol Sci 2022; 23:ijms23074055. [PMID: 35409420 PMCID: PMC9000211 DOI: 10.3390/ijms23074055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
The invasive capabilities of glioblastoma (GBM) define the cancer’s aggressiveness, treatment resistance, and overall mortality. The tumor microenvironment influences the molecular behavior of cells, both epigenetically and genetically. Current forces being studied include properties of the extracellular matrix (ECM), such as stiffness and “sensing” capabilities. There is currently limited data on the physical forces in GBM—both relating to how they influence their environment and how their environment influences them. This review outlines the advances that have been made in the field. It is our hope that further investigation of the physical forces involved in GBM will highlight new therapeutic options and increase patient survival. A search of the PubMed database was conducted through to 23 March 2022 with the following search terms: (glioblastoma) AND (physical forces OR pressure OR shear forces OR compression OR tension OR torsion) AND (migration OR invasion). Our review yielded 11 external/applied/mechanical forces and 2 tumor microenvironment (TME) forces that affect the ability of GBM to locally migrate and invade. Both external forces and forces within the tumor microenvironment have been implicated in GBM migration, invasion, and treatment resistance. We endorse further research in this area to target the physical forces affecting the migration and invasion of GBM.
Collapse
|
13
|
Expression of the First Recombinant Anti-Tumoral Snake Venom Kunitz-Type Serine Protease Inhibitor. Toxins (Basel) 2022; 14:toxins14030170. [PMID: 35324668 PMCID: PMC8955015 DOI: 10.3390/toxins14030170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
PIVL is a Kunitz-type serine protease inhibitor that was previously characterized from Tunisian snake venom, Macrovipera lebetina transmediterranea. It reduced glioblastoma cells’ development and significantly blocked angiogenesis in in-vitro and ex-vivo models. PIVL exerted these effects by interfering with αvβ3 integrin. In order to produce a biological active recombinant, the cDNA cloning and expression of PIVL was performed in Escherichia coli (BL21)-DE3 cells using pET-22b (+) vector. The recombinant PIVL protein (rPIVL) was purified by nickel affinity chromatography and has recognized monoclonal anti-His antibody. Functionally, rPIVL exhibited potent anti-tumor cell effects as well as anti-angiogenesis properties. Interestingly, we found that both native PIVL (nPIVL) and rPIVL modulated PI3/AKT and MAPK signaling pathways. In all, our results showed that we have successfully expressed the first active anti-oncogenic snake venom Kunitz-type protease inhibitor that can be a potential therapeutic drug against glioblastoma, in its native or recombinant form.
Collapse
|
14
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Moslah W, Aissaoui-Zid D, Aboudou S, Abdelkafi-Koubaa Z, Potier-Cartereau M, Lemettre A, ELBini-Dhouib I, Marrakchi N, Gigmes D, Vandier C, Luis J, Mabrouk K, Srairi-Abid N. Strengthening Anti-Glioblastoma Effect by Multi-Branched Dendrimers Design of a Scorpion Venom Tetrapeptide. Molecules 2022; 27:molecules27030806. [PMID: 35164071 PMCID: PMC8838298 DOI: 10.3390/molecules27030806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells.
Collapse
Affiliation(s)
- Wassim Moslah
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
- Institut de Neurophysiopathologie (INP), UMR 7051-CNRS, Faculté de Médecine, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France;
- Correspondence: (W.M.); (N.S.-A.)
| | - Dorra Aissaoui-Zid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Soioulata Aboudou
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Marie Potier-Cartereau
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - Aude Lemettre
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - Ines ELBini-Dhouib
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Naziha Marrakchi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Didier Gigmes
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Christophe Vandier
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - José Luis
- Institut de Neurophysiopathologie (INP), UMR 7051-CNRS, Faculté de Médecine, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France;
| | - Kamel Mabrouk
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Najet Srairi-Abid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
- Correspondence: (W.M.); (N.S.-A.)
| |
Collapse
|
16
|
Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J Mol Evol 2020; 88:537-548. [PMID: 32696206 DOI: 10.1007/s00239-020-09959-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/04/2020] [Indexed: 11/28/2022]
Abstract
Kunitz-type domains are ubiquitously found in natural systems as serine protease inhibitors or animal toxins in venomous animals. Kunitz motif is a cysteine-rich peptide chain of ~ 60 amino acid residues with alpha and beta fold, stabilized by three conserved disulfide bridges. An extensive dataset of amino acid variations is found on sequence analysis of various Kunitz peptides. Kunitz peptides show diverse biological activities like inhibition of proteases of other classes and/or adopting a new function of blocking or modulating the ion channels. Based on the amino acid residues at the functional site of various Kunitz-type inhibitors, it is inferred that this 'flexibility within the structural rigidity' is responsible for multiple biological activities. Accelerated evolution of functional sites in response to the co-evolving molecular targets of the hosts of venomous animals or parasites, gene sharing, and gene duplication have been discussed as the most likely mechanisms responsible for the functional heterogeneity of Kunitz-domain inhibitors.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
17
|
Li R, Yu H, Li T, Li P. Comprehensive Proteome Reveals the Key Lethal Toxins in the Venom of Jellyfish Nemopilema nomurai. J Proteome Res 2020; 19:2491-2500. [PMID: 32374608 DOI: 10.1021/acs.jproteome.0c00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Jellyfish stings are a major threat to human beings in coastal areas of the world. Each year, hundreds of thousands of victims are stung by venomous jellyfish. Nemopilema nomurai is a dangerous species with a large number of victims including many deaths. N. nomurai venom is a complex cocktail that is rich in proteins and peptides, and it is secreted by nematocysts for prey or defense. Previous studies have identified hundreds of toxins in the venom of N. nomurai; however, it is unclear which toxin(s) is responsible for lethality. Herein, we isolated the lethal fraction (NnLF) from N. nomurai venom with multiple chromatography. NnLF showed strong lethality to mice, and the toxicology results were consistent with the clinical symptoms of dead patients after N. nomurai sting, which indicated that NnLF contained the key lethal toxins in the venom. Subsequently, proteomic analysis was performed to identify the toxins in NnLF, and a total of 13 toxin homologues were identified, including phospholipase, potassium channel inhibitor, hemolysin, thrombin, etc. Moreover, in vitro toxicity assays further verified the phospholipase A2 and hemolytic activity of NnLF. These results revealed that cell membrane-targeted toxins, including channel-forming toxins, potassium channel inhibitors, and especially phospholipases, played very important roles in the lethality of N. nomurai sting. Moreover, blood toxins such as thrombin-like toxin and hemolysins might be synergistically involved in lethality. These findings advance the understanding of lethality caused by N. nomurai sting and will be significant for the development of drugs to treat this jellyfish sting in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Tong Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
18
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
19
|
Siigur J, Aaspõllu A, Siigur E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 2019; 158:16-32. [DOI: 10.1016/j.toxicon.2018.11.294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022]
|
20
|
RK, the first scorpion peptide with dual disintegrin activity on α1β1 and αvβ3 integrins. Int J Biol Macromol 2018; 120:1777-1788. [DOI: 10.1016/j.ijbiomac.2018.09.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 01/25/2023]
|
21
|
El Gueder D, Maatouk M, Kalboussi Z, Daouefi Z, Chaaban H, Ioannou I, Ghedira K, Ghedira LC, Luis J. Heat processing effect of luteolin on anti-metastasis activity of human glioblastoma cells U87. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36545-36554. [PMID: 30374718 DOI: 10.1007/s11356-018-3477-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Among the flavonoïds, luteolin is a flavone that has been identified in many plants. It is known for its apoptotic potential with damage to DNA and cell cycle blockage. Many studies have shown that luteolin has anti-oxidant, anti-inflammatory, and anti-cancer activities. However, it is known that heat treatment (boiling, cooking, and treating with microwaves …) can influence the structure of flavonoïds, which often leads to changes in their activities. The present study was conducted to study the effect of heated luteolin on anti-tumor activity of glioblastoma cells U87. Glioblastoma cell viability was evaluated by MTT assay. Adhesion assay was performed on different protein matrices (collagen type 1, vitronectin, fibronectin, and poly-L-lysine); migration assay was determined by modified Boyden chambers and videomicroscopy, and finally, angiogenesis was tested in vitro by capillary network formation on Matrigel™. The results obtained show that the thermal treatment significantly reduces its cytotoxic activity and ability to inhibit cell adhesion to different protein matrices. It was also found that the heat processed significantly reduced the ability of luteolin to inhibit cell migration, cell invasion, and endothelial cell angiogenesis (HMEC-1). This suggests that heat treated luteolin has a lower anti-tumor potential than native luteolin. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Dorra El Gueder
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
- Faculty of Dental Medicine, Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, University of Monastir, Avicenne Street, 5000, Monastir, Tunisia.
| | - Mouna Maatouk
- Faculty of Dental Medicine, Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, University of Monastir, Avicenne Street, 5000, Monastir, Tunisia
| | - Zahar Kalboussi
- Faculty of Dental Medicine, Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, University of Monastir, Avicenne Street, 5000, Monastir, Tunisia
| | - Zaineb Daouefi
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- Faculty of Dental Medicine, Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, University of Monastir, Avicenne Street, 5000, Monastir, Tunisia
| | - Hind Chaaban
- National School of Agronomy and Food Industries, Laboratory of Bimolecular Engineering, National Polytechnics Institute of Lorraine ENSAIA-INPL, 54505, Vandoeuvre les, Nancy, France
| | - Irina Ioannou
- National School of Agronomy and Food Industries, Laboratory of Bimolecular Engineering, National Polytechnics Institute of Lorraine ENSAIA-INPL, 54505, Vandoeuvre les, Nancy, France
| | - Kamel Ghedira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Monastir, Avicenna Street, 5000, Monastir, Tunisia
| | - Leila Chekir Ghedira
- Faculty of Dental Medicine, Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, University of Monastir, Avicenne Street, 5000, Monastir, Tunisia
| | - José Luis
- CNRS, Institut de Neurophysiopathologie, Aix Marseille University, Marseille, France
| |
Collapse
|
22
|
Munawar A, Ali SA, Akrem A, Betzel C. Snake Venom Peptides: Tools of Biodiscovery. Toxins (Basel) 2018; 10:toxins10110474. [PMID: 30441876 PMCID: PMC6266942 DOI: 10.3390/toxins10110474] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, consisting of a variety of molecules, such as carbohydrates, nucleosides, amino acids, lipids, proteins and peptides. Proteins and peptides are the major constituents of the dry weight of snake venoms and are of main interest for scientific investigations as well as for various pharmacological applications. Snake venoms contain enzymatic and non-enzymatic proteins and peptides, which are grouped into different families based on their structure and function. Members of a single family display significant similarities in their primary, secondary and tertiary structures, but in many cases have distinct pharmacological functions and different bioactivities. The functional specificity of peptides belonging to the same family can be attributed to subtle variations in their amino acid sequences. Currently, complementary tools and techniques are utilized to isolate and characterize the peptides, and study their potential applications as molecular probes, and possible templates for drug discovery and design investigations.
Collapse
Affiliation(s)
- Aisha Munawar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| | - Syed Abid Ali
- H.E. J. Research Institute of Chemistry, (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Christian Betzel
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, 22607 Hamburg, Germany.
- Laboratory for Structural Biology of Infection and Inflammation, DESY, Build. 22a, Notkestr. 85, 22603 Hamburg, Germany.
| |
Collapse
|
23
|
Rima M, Alavi Naini SM, Karam M, Sadek R, Sabatier JM, Fajloun Z. Vipers of the Middle East: A Rich Source of Bioactive Molecules. Molecules 2018; 23:molecules23102721. [PMID: 30360399 PMCID: PMC6222703 DOI: 10.3390/molecules23102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022] Open
Abstract
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. The venoms of these vipers have been the subject of many studies and are considered as a promising source of bioactive molecules. In this review, we present an overview of these three vipers, with a special focus on their venom composition as well as their biological activities, and we discuss further frameworks for the exploration of each venom.
Collapse
Affiliation(s)
- Mohamad Rima
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France.
| | - Seyedeh Maryam Alavi Naini
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France.
| | - Marc Karam
- Department of Biology, Faculty of Sciences, University of Balamand, Kourah3843, Lebanon.
| | - Riyad Sadek
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Jean-Marc Sabatier
- Laboratory INSERM UMR 1097, Aix-Marseille University, 163, Parc Scientifique et Technologique de Luminy, Avenue de Luminy, Bâtiment TPR2, Case 939, 13288 Marseille, France.
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon.
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon.
| |
Collapse
|
24
|
Morjen M, Othman H, Abdelkafi-Koubaa Z, Messadi E, Jebali J, El Ayeb M, Abid NS, Luis J, Marrakchi N. Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis. Int J Biol Macromol 2018; 117:790-799. [DOI: 10.1016/j.ijbiomac.2018.05.230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023]
|
25
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
26
|
Liu W, Mo F, Jiang G, Liang H, Ma C, Li T, Zhang L, Xiong L, Mariottini GL, Zhang J, Xiao L. Stress-Induced Mucus Secretion and Its Composition by a Combination of Proteomics and Metabolomics of the Jellyfish Aurelia coerulea. Mar Drugs 2018; 16:E341. [PMID: 30231483 PMCID: PMC6165293 DOI: 10.3390/md16090341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Jellyfish respond quickly to external stress that stimulates mucus secretion as a defense. Neither the composition of secreted mucus nor the process of secretion are well understood. METHODS Aurelia coerulea jellyfish were stimulated by removing them from environmental seawater. Secreted mucus and tissue samples were then collected within 60 min, and analyzed by a combination of proteomics and metabolomics using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), respectively. RESULTS Two phases of sample collection displayed a quick decrease in volume, followed by a gradual increase. A total of 2421 and 1208 proteins were identified in tissue homogenate and secreted mucus, respectively. Gene Ontology (GO) analysis showed that the mucus-enriched proteins are mainly located in extracellular or membrane-associated regions, while the tissue-enriched proteins are distributed throughout intracellular compartments. Tryptamine, among 16 different metabolites, increased with the largest-fold change value of 7.8 in mucus, which is consistent with its involvement in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 'tryptophan metabolism'. We identified 11 metalloproteinases, four serpins, three superoxide dismutases and three complements, and their presence was speculated to be related to self-protective defense. CONCLUSIONS Our results provide a composition profile of proteins and metabolites in stress-induced mucus and tissue homogenate of A. coerulea. This provides insight for the ongoing endeavors to discover novel bioactive compounds. The large increase of tryptamine in mucus may indicate a strong stress response when jellyfish were taken out of seawater and the active self-protective components such as enzymes, serpins and complements potentially play a key role in innate immunity of jellyfish.
Collapse
Affiliation(s)
- Wenwen Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Guixian Jiang
- Clinical Medicine, Grade 2015, Second Military Medical University, Shanghai 200433, China.
| | - Hongyu Liang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Chaoqun Ma
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Tong Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Lulu Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Liyan Xiong
- Department of Traditional Chinese Medicine Identification, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, I-16132 Genova, Italy.
| | - Jing Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
27
|
Native and recombinant phospholipases A2 of Scorpio maurus venom glands impair angiogenesis by targeting integrins α5β1 and αvβ3. Int J Biol Macromol 2018; 116:305-315. [DOI: 10.1016/j.ijbiomac.2018.04.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
|
28
|
Kvetkina AN, Leychenko EV, Yurchenko EA, Pislyagin EA, Peigneur S, Tytgat Y, Isaeva MP, Aminin DL, Kozlovskaya EP. A New Iq-Peptide of the Kunitz Type from the Heteractis magnifica Sea Anemone Exhibits Neuroprotective Activity in a Model of Alzheimer’s Disease. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s106816201804012x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Aissaoui D, Mlayah-Bellalouna S, Jebali J, Abdelkafi-Koubaa Z, Souid S, Moslah W, Othman H, Luis J, ElAyeb M, Marrakchi N, Essafi-Benkhadir K, Srairi-Abid N. Functional role of Kv1.1 and Kv1.3 channels in the neoplastic progression steps of three cancer cell lines, elucidated by scorpion peptides. Int J Biol Macromol 2018; 111:1146-1155. [DOI: 10.1016/j.ijbiomac.2018.01.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/11/2022]
|
30
|
Krayem N, Abdelkefi-Koubaa Z, Gargouri Y, Luis J. Integrin-mediated human glioblastoma cells adhesion, migration and invasion by native and recombinant phospholipases of Scorpio maurus venom glands. Arch Biochem Biophys 2018; 645:19-25. [DOI: 10.1016/j.abb.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 02/08/2023]
|
31
|
Anti-angiogenic effect of phospholipases A2 from Scorpio maurus venom glands on Human Umbilical Vein Endothelial Cells. Toxicon 2018; 145:6-14. [DOI: 10.1016/j.toxicon.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 11/18/2022]
|
32
|
Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins (Basel) 2017; 9:toxins9120390. [PMID: 29189742 PMCID: PMC5744110 DOI: 10.3390/toxins9120390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported on (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
Collapse
|
33
|
Affiliation(s)
- Hassan M. Akef
- National Organization for Research and Control of Biologicals (NORCB), Giza, Egypt
| |
Collapse
|
34
|
Thakur R, Mukherjee AK. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors. Toxicon 2017; 131:37-47. [DOI: 10.1016/j.toxicon.2017.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
|
35
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
36
|
Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis. Eur J Pharmacol 2017; 797:153-161. [DOI: 10.1016/j.ejphar.2017.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
|
37
|
Latinović Z, Leonardi A, Šribar J, Sajevic T, Žužek MC, Frangež R, Halassy B, Trampuš-Bakija A, Pungerčar J, Križaj I. Venomics of Vipera berus berus to explain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: Therapeutic implications. J Proteomics 2016; 146:34-47. [PMID: 27327134 DOI: 10.1016/j.jprot.2016.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Vipera berus berus (Vbb) is the most widely distributed and Vipera ammodytes ammodytes (Vaa) the most venomous viper in Europe. In particular areas of the Old continent their toxic bites constitute a considerable public health problem. To make the current envenomation therapy more effective we have analysed the proteome of Vbb venom and compared it with that of Vaa. We found the proteome of Vbb to be much less complex and to contain smaller levels of particularly snaclecs and sPLA2s. Snaclecs are probably responsible for thrombocytopenia. The neurotoxic sPLA2s, ammodytoxins, are responsible for the most specific feature of the Vaa venom poisoning - induction of signs of neurotoxicity in patients. These molecules were not found in Vbb venom. Both venoms induce haemorrhage and coagulopathy in man. As Vaa and Vbb venoms possess homologous P-III snake venom metalloproteinases, the main haemorrhagic factors, the severity of the haemorrhage is dictated by concentration and specific activity of these molecules. The much greater anticoagulant effect of Vaa venom than that of Vbb venom lies in its higher extrinsic pathway coagulation factor-proteolysing activity and content of ammodytoxins which block the prothrombinase complex formation. BIOLOGICAL SIGNIFICANCE Envenomations by venomous snakes constitute a considerable public health problem worldwide, and also in Europe. In the submitted work we analysed the venom proteome of Vipera berus berus (Vbb), the most widely distributed venomous snake in Europe and compared it with the venom proteome of the most venomous viper in Europe, Vipera ammodytes ammodytes (Vaa). We have offered a possible explanation, at the molecular level, for the differences in clinical pictures inflicted by the Vbb and Vaa venoms. We have provided an explanation for the effectiveness of treatment of Vbb envenomation by Vaa antiserum and explained why full protection of Vaa venom poisoning by Vbb antiserum should not be always expected, especially not in cases of severe poisoning. The latter makes a strong case for Vaa antiserum production as we are faced with its shortage due to ceasing of production of two most frequently used products.
Collapse
Affiliation(s)
- Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Croatia
| | | | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
38
|
Vivas J, Ibarra C, Salazar AM, Neves-Ferreira AGC, Sánchez EE, Perales J, Rodríguez-Acosta A, Guerrero B. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:107-15. [PMID: 26419785 PMCID: PMC4729579 DOI: 10.1016/j.cbpc.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/14/2015] [Accepted: 09/19/2015] [Indexed: 01/21/2023]
Abstract
A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1nM). Aprotinin (2nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05nM) was inhibited by 67% following incubation with TP1 (0.1nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2nM) acts like aprotinin (0.4nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed.
Collapse
Affiliation(s)
- Jeilyn Vivas
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | - Carlos Ibarra
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | - Ana M Salazar
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | | | - Elda E Sánchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Jonás Perales
- Laboratorio de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | - Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
| |
Collapse
|
39
|
Mokdad-Bzeouich I, Kovacic H, Ghedira K, Chebil L, Ghoul M, Chekir-Ghedira L, Luis J. Esculin and its oligomer fractions inhibit adhesion and migration of U87 glioblastoma cells and in vitro angiogenesis. Tumour Biol 2015; 37:3657-64. [PMID: 26459313 DOI: 10.1007/s13277-015-4209-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Cancer metastasis is the major cause of cancer-related death. Chemoprevention is defined as the use of natural or synthetic substances to prevent cancer formation or cancer progress. In the present study, we investigate the antitumor activity of esculin and its oligomer fractions in U87 glioblastoma cells. We showed that esculin and its oligomers reduced U87 cell growth in a dose dependent manner. They also inhibited cell adhesion to collagen IV and vitronectin by interfering with the function of their respective receptors α2β1 and αvβ5 integrins. Furthermore, the tested samples were able to reduce migration of U87 cells towards another extracellular matrix fibronectin. Moreover, esculin and its oligomer fractions inhibited in vitro angiogenesis of endothelial cells (HMEC-1). In summary, our data provide the first evidence that esculin and its oligomer fractions are able to reduce adhesion, migration of glioblastoma cells and in vitro angiogenesis. Esculin and its oligomers may thus exert multi-target functions against cancer cells.
Collapse
Affiliation(s)
- Imen Mokdad-Bzeouich
- Laboratoire de biologie cellulaire et moléculaire. Faculté de Médecine dentaire. Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisie.,Unité de Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisie
| | - Hervé Kovacic
- INSERM UMR 911-CRO2, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Kamel Ghedira
- Unité de Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisie
| | - Latifa Chebil
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Mohamed Ghoul
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Leila Chekir-Ghedira
- Laboratoire de biologie cellulaire et moléculaire. Faculté de Médecine dentaire. Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisie. .,Unité de Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisie.
| | - José Luis
- INSERM UMR 911-CRO2, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
| |
Collapse
|
40
|
Ozen MO, İğci N, Yalçin HT, Goçmen B, Nalbantsoy A. Screening of cytotoxic and antimicrobial activity potential of AnatolianMacrovipera lebetina obtusa(Ophidia: Viperidae) crude venom. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1055862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
41
|
Zhang Y, Zeng Z, Cao Y, Du X, Wan Z. Effect of urinary protease inhibitor (ulinastatin) on cardiopulmonary bypass: a meta-analysis for China and Japan. PLoS One 2014; 9:e113973. [PMID: 25500819 PMCID: PMC4263539 DOI: 10.1371/journal.pone.0113973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/01/2014] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES A meta-analysis was conducted to investigate the effects of ulinastatin treatment on adult patients undergoing cardiac surgery under cardiopulmonary bypass (CPB). METHODS Seven electronic databases were searched for reports of randomized, controlled trials conducted up to February 2014 in which patients undergoing cardiac surgery with CPB were administered ulinastatin in the perioperative period. RESULTS Fifty-two studies with 2025 patients were retained for analysis. The results showed that the ulinastatin can attenuate the plasma levels of pro-inflammatory cytokines and enhance the anti-inflammatory cytokine levels in patients undergoing cardiac surgery with CPB. Meanwhile, the ulinastatin had a significant beneficial effect on myocardial injury. The mean differences (MD) and 95% confidence intervals (95% CI) of biochemical markers were -63.54 (-79.36, -47.72) for lactate dehydrogenase, -224.99 (-304.83, -145.14) for creatine kinase, -8.75 (-14.23, -3.28) for creatine kinase-MB, and -0.14 (-0.20, -0.09] for troponin I (all P<0.01). However, neither hemodynamics nor cardiac function improved significantly, except that the MD and 95% CI of mean arterial pressure were 2.50 (0.19, 4.80) (P = 0.03). There were no statistically significant differences in the use of inotropes, postoperative bleeding, postoperative complications, the intensive care unit (ICU) stay, and the hospital stay; however, the frequency of auto resuscitation increased significantly (OR 1.98, 95%CI 1.19 to 3.30, P<0.01), the duration of intubation (MD -1.58, 95%CI -2.84 to -0.32, P<0.01) and the duration of mechanical ventilation (MD -3.29, 95%CI -4.41 to -2.17, P<0.01) shortened significantly in patients who were treated with ulinastatin. CONCLUSIONS Ulinastatin can reduce the plasma levels of pro-inflammatory cytokines and elevate anti-inflammatory cytokine in patients from China and Japan undergoing cardiac surgery with CPB. Ulinastatin treatment may have protective effects on myocardial injury, and can increase the frequency of auto resuscitation, shorten the duration of intubation and mechanical ventilation.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Emergency, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Zeng
- Department of Emergency, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiaodong Du
- Department of Emergency, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Wan
- Department of Emergency, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
42
|
Rakashanda S, Qazi AK, Majeed R, Andrabi SM, Hamid A, Sharma PR, Amin S. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro. Nutr Cancer 2014; 67:156-66. [PMID: 25412192 DOI: 10.1080/01635581.2015.967876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.
Collapse
Affiliation(s)
- Syed Rakashanda
- a Department of Biochemistry , The University of Kashmir , Srinagar , India
| | | | | | | | | | | | | |
Collapse
|
43
|
Morjen M, Honoré S, Bazaa A, Abdelkafi-Koubaa Z, Ellafi A, Mabrouk K, Kovacic H, El Ayeb M, Marrakchi N, Luis J. PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvasc Res 2014; 95:149-56. [PMID: 25173589 DOI: 10.1016/j.mvr.2014.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/17/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022]
Abstract
Development and homeostasis of the vascular system requires integrin-promoting endothelial cell adhesion, migration and survival. Nowadays, integrins represent potential targets for pharmacological agents and open new avenues for the control of metastatic spread in the treatment of tumor malignancies. We have already reported that PIVL, a serine protease inhibitor isolated from Macrovipera lebetina venom, displays an anti-tumor effect through interference with integrin receptor function. Here, we report that PIVL inhibits human vascular endothelial cell adhesion and migration onto fibrinogen and fibronectin in a dose-dependent manner without any cytotoxicity. Furthermore, we show that PIVL increases microtubule dynamic instability in HMEC-1 transfected with EGFP-tagged α-tubulin. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrate that PIVL exhibits a strong anti-angiogenic effect both in vitro and in vivo. Interestingly, results herein reveal that the potent anti-angiogenic properties of PIVL are mediated by its RGD-like motif ((41)RGN(43)).
Collapse
Affiliation(s)
- Maram Morjen
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia.
| | - Stéphane Honoré
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, UMR_S 911, Marseille, France; APHM, Hôpital Timone, Service Pharmacie, Marseille, France
| | - Amine Bazaa
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia
| | | | - Ameneallah Ellafi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia
| | - Kamel Mabrouk
- Equipe CROPS, Institut de Chimie Radicalaire - UMR 7273, Université d'Aix-Marseille, Site de Saint Jérôme, Av. Escadrille Normandie Niemen, 13397 Marseille, France
| | - Hervé Kovacic
- APHM, Hôpital Timone, Service Pharmacie, Marseille, France
| | - Mohamed El Ayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia; Faculté de Médecine de Tunis, Tunisia
| | - José Luis
- APHM, Hôpital Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
44
|
Jebali J, Fakhfekh E, Morgen M, Srairi-Abid N, Majdoub H, Gargouri A, El Ayeb M, Luis J, Marrakchi N, Sarray S. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231. Toxicon 2014; 86:16-27. [PMID: 24814013 DOI: 10.1016/j.toxicon.2014.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023]
Abstract
C-type lectins like proteins display various biological activities and are known to affect especially platelet aggregation. Few of them have been reported to have anti-tumor effects. In this study, we have identified and characterized a new C-type lectin like protein, named lebecin. Lebecin is a heterodimeric protein of 30 kDa. The N-terminal amino acid sequences of both subunits were determined by Edman degradation and the entire amino acid sequences were deduced from cDNAs. The precursors of both lebecin subunits contain a 23-amino acid residue signal peptide and the mature α and β subunits are composed of 129 and 131 amino acids, respectively. Lebecin is shown to be a potent inhibitor of MDA-MB231 human breast cancer cells proliferation. Furthermore, lebecin dose-dependently inhibited the integrin-mediated attachment of these cells to different adhesion substrata. This novel C-type lectin also completely blocked MDA-MB231 cells migration towards fibronectin and fibrinogen in haptotaxis assays.
Collapse
Affiliation(s)
- Jed Jebali
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia.
| | - Emna Fakhfekh
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Maram Morgen
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Najet Srairi-Abid
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Hafedh Majdoub
- USCR séquenceur de protéines, Faculté des sciences de Sfax, Route de Soukra, km 3.5, BP 1171, 3000 Sfax, Tunisia
| | - Ali Gargouri
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes, Centre de la Biotechnologie de Sfax (CBS), Tunisia
| | - Mohamed El Ayeb
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - José Luis
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, UMR_S 911, Marseille, France
| | - Naziha Marrakchi
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Sameh Sarray
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia; Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
| |
Collapse
|
45
|
Zu G, Wang H, Wang J, Dou Y, Zhao W, Sun Y. Rhizoma Pinelliae trypsin inhibitor separation, purification and inhibitory activity on the proliferation of BGC-823 gastric adenocarcinoma cells. Exp Ther Med 2014; 8:248-254. [PMID: 24944630 PMCID: PMC4061196 DOI: 10.3892/etm.2014.1701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/18/2014] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to isolate and purify Rhizoma Pinelliae trypsin inhibitor (RPTI), determine its N-terminal amino acid sequence and evaluate its inhibitory effect on the proliferation of poorly differentiated BGC-823 human gastric adenocarcinoma cells. RPTI was separated and purified from a 40% (NH4)2SO4 precipitate of crude protein extract of Pinellia ternata tuber using affinity chromatography with trypsin as the ligand. The N-terminal amino acid sequence of RPTI was determined using the Edman degradation method. The inhibitory effect of RPTI on BGC-823 cell proliferation was detected in vitro using the MTT method and in vivo in tumour-bearing mice. The purified RPTI showed a single band under SDS-PAGE, its molecular weight was 14 kDa and its N-terminal amino acid sequence was DPVVDG. RPTI inhibited trypsin activity, with an inhibition ratio of 1:6.78 (mass). RPTI significantly inhibited the proliferation of BGC-823 cells in vitro. The IC50 of RPTI was 16.96 μg/ml within 48 h after treatment and 9.61 μg/ml within 72 h after treatment. Subcutaneous injection of RPTI around the tumour significantly inhibited BGC-823 tumour growth in mice. The tumour inhibitory effect was concentration- and dose-dependent. RPTI did not significantly influence the spleen coefficient of the mice. In conclusion, RPTI is a serine proteinase inhibitor with antitumour activity.
Collapse
Affiliation(s)
- Guohong Zu
- Department of Radiation Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Houwei Wang
- Department of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Jie Wang
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yan Dou
- Department of Radiation Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Weichong Zhao
- Department of Radiation Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yuping Sun
- Department of Radiation Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
46
|
Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, Li P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J Proteomics 2014; 106:17-29. [PMID: 24747124 DOI: 10.1016/j.jprot.2014.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/18/2014] [Accepted: 04/05/2014] [Indexed: 01/22/2023]
Abstract
UNLABELLED Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. However, the composition of the venom is still unclear. Both proteomics and transcriptomics approaches were applied in present study to investigate the major components and their possible relationships to the sting. The proteomics of the venom from S. meleagris was conducted by tryptic digestion of the crude venom followed by RP-HPLC separation and MS/MS analysis of the tryptic peptides. The venom gland transcriptome was analyzed using a high-throughput Illumina sequencing platform HiSeq 2000 with de novo assembly. A total of 218 toxins were identified including C-type lectin, phospholipase A₂ (PLA₂), potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, most of which should be responsible for the sting. Among them, serine protease inhibitor, PLA₂, potassium channel inhibitor and metalloprotease are predominant, representing 28.44%, 21.56%, 16.06% and 15.14% of the identified venom proteins, respectively. Overall, our combined proteomics and transcriptomics approach provides a systematic overview of the toxins in the venom of jellyfish S. meleagris and it will be significant to understand the mechanism of the sting. BIOLOGICAL SIGNIFICANCE Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. It often bloomed in the coast of China in recent years and caused thousands of people stung and even deaths every year. However, the components which caused sting are still unknown yet. In addition, no study about the venomics of jellyfish S. meleagris has been reported. In the present study, both proteomics and transcriptomics approaches were applied to investigate the major components related to the sting. The result showed that major component included C-type lectin, phospholipase A₂, potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, which should be responsible for the effect of sting. This is the first research about the venomics of jellyfish S. meleagris. It will be significant to understand the mechanism of the biological effects and helpful to develop ways to deal with the sting.
Collapse
Affiliation(s)
- Rongfeng Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wei Xue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yang Yue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Song Liu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
47
|
Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 2014; 57:6301-15. [PMID: 24568695 DOI: 10.1021/jm5000547] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions: thrombosis, angiogenesis, and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress toward development of antagonists targeting two or more members of the Arg-Gly-Asp (RGD) binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics.
Collapse
Affiliation(s)
- Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford , Bradford, BD7 1DP, U.K
| | | |
Collapse
|
48
|
Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, Marcussi S, Nomizo A, Fernandes CFC, Zuliani JP, Carvalho BMA, da Silva SL, Stábeli RG, Soares AM. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203639. [PMID: 24683541 PMCID: PMC3943284 DOI: 10.1155/2014/203639] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/07/2013] [Accepted: 12/08/2013] [Indexed: 02/06/2023]
Abstract
For more than half a century, cytotoxic agents have been investigated as a possible treatment for cancer. Research on animal venoms has revealed their high toxicity on tissues and cell cultures, both normal and tumoral. Snake venoms show the highest cytotoxic potential, since ophidian accidents cause a large amount of tissue damage, suggesting a promising utilization of these venoms or their components as antitumoral agents. Over the last few years, we have studied the effects of snake venoms and their isolated enzymes on tumor cell cultures. Some in vivo assays showed antineoplastic activity against induced tumors in mice. In human beings, both the crude venom and isolated enzymes revealed antitumor activities in preliminary assays, with measurable clinical responses in the advanced treatment phase. These enzymes include metalloproteases (MP), disintegrins, L-amino acid oxidases (LAAOs), C-type lectins, and phospholipases A2 (PLA2s). Their mechanisms of action include direct toxic action (PLA2s), free radical generation (LAAOs), apoptosis induction (PLA2s, MP, and LAAOs), and antiangiogenesis (disintegrins and lectins). Higher cytotoxic and cytostatic activities upon tumor cells than normal cells suggest the possibility for clinical applications. Further studies should be conducted to ensure the efficacy and safety of different snake venom compounds for cancer drug development.
Collapse
Affiliation(s)
- Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Kayena D. Zaqueo
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andrea A. de Moura
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Amy N. Grabner
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maurício V. Mazzi
- Fundação Hermínio Ometto, UNIARARAS, Núcleo de Ciências da Saúde-NUCISA, 13607-339 Araras, SP, Brazil
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras, UFLA, 37200-000 Lavras, MG, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Carla F. C. Fernandes
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Bruna M. A. Carvalho
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil
| | - Saulo L. da Silva
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil
| | - Rodrigo G. Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| |
Collapse
|
49
|
Yang W, Feng J, Wang B, Cao Z, Li W, Wu Y, Chen Z. BF9, the first functionally characterized snake toxin peptide with Kunitz-type protease and potassium channel inhibiting properties. J Biochem Mol Toxicol 2013; 28:76-83. [PMID: 24243656 DOI: 10.1002/jbt.21538] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/16/2013] [Indexed: 12/14/2022]
Abstract
Although numerous Kunitz-type toxins were isolated from snake venom, no bifunctional Kunitz-type snake toxins with protease and potassium channel inhibiting properties have been reported till now. With the help of bioinformatics analyses and biological experiments, we characterized Kunitz-type snake toxin BF9 as a bifunctional peptide. Enzyme and inhibitor reaction kinetics experiments showed that BF9 inhibited α-chymotrypsin with Ki value of 1.8 × 10⁻⁸ M. Electrophysiological experiments showed that BF9 inhibited the Kv1.3 potassium channel with an IC₅₀ of 120.0 nM, which demonstrated that serine protease inhibitor BF9 could also inhibit potassium channels. In addition, the key amino acids of BF9 responsible for the unique bifunctional mechanism are further investigated. To the best of our knowledge, BF9 is the first Kunitz-type snake peptide with the unique bifunctionality of potassium channel and serine protease inhibiting properties, providing novel insights into divergent evolution and functional applications of snake Kunitz-type peptides.
Collapse
Affiliation(s)
- Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals. Mar Drugs 2013; 11:2069-112. [PMID: 23771044 PMCID: PMC3721222 DOI: 10.3390/md11062069] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.
Collapse
|