1
|
Wang Y, Hess ME, Tan Y, Esser PR, Nyström A, Boerries M, Sayar SB, Has C. Alterations in the microenvironment of junctional epidermolysis bullosa keratinocytes: A gene expression study. Matrix Biol 2025; 135:12-23. [PMID: 39615637 DOI: 10.1016/j.matbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Integrin α6β4 subunits and type XVII collagen are critical transmembrane proteins involved in cell-matrix adhesion in skin, while laminin 332 serves as their ligand in the basement membrane zone (BMZ). Those proteins contribute to the composition of hemidesmosomes (HDs) and pathogenic variants in their corresponding genes cause junctional epidermolysis bullosa (JEB). Although the genotype-phenotype relationships in JEB have been extensively studied, the pathogenetic changes of extracellular matrix (ECM) and cell-matrix adhesion resulting from gene mutations remain unclear. We conducted a global unbiased transcriptome analysis using bulk RNA sequencing (RNA-seq) on selected JEB donor-derived cell lines lacking integrin β4 subunit (ITGB4-), type XVII collagen (COL17-) and laminin β3 chain (LAMB3-), respectively. Additional JEB cell lines and JEB donor skin samples were used for validation of relevant findings. Collectively, the results revealed similar dysregulation patterns of ECM and focal adhesion (FAs) associated genes in ITGB4- and COL17- cell lines, while LAMB3- cells displayed a relatively opposite tendency. Importantly, key nodes in the dysregulated network were associated with ECM proteins involved in wound healing processes. Additionally, a group of inflammatory-associated genes was disclosed to be up-regulated in JEB keratinocytes and could not be normalized by the adhesion rescue. The functional assay further revealed the hierarchy of stable adhesion among mutant cell lines COL17->ITGB4->LAMB3-, which correlates with the severity of their clinical manifestations. Our results indicated a wound healing associated ECM and inflammatory microenvironment established by JEB keratinocytes.
Collapse
Affiliation(s)
- Yao Wang
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Maria Elena Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yan Tan
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Centre Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; German Cancer Consortium (DKTK), a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Saliha Beyza Sayar
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Lai S, Lin C, Guo Z, Lai Y, Xie L, Wan C, Yang T, Li L. A Novel COL7A1 Mutation in a Patient With Dystrophic Epidermolysis Bullosa. Successful Treatment With Upadacitinib. Clin Cosmet Investig Dermatol 2025; 18:183-190. [PMID: 39867975 PMCID: PMC11762244 DOI: 10.2147/ccid.s499144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the COL7A1 gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the COL7A1 gene, which may be reduced in expression, remarkably reduced, or completely absent. Here, we report a case of DEB caused by a mutation in the COL7A1 gene at a novel site, where the patient achieved favorable outcomes after treatment with upadacitinib. This study further expands the known COL7A1 gene mutation sites in the DEB subtype, providing new data for understanding the genotype-phenotype correlation and treatment of this disease.
Collapse
Affiliation(s)
- Shuqin Lai
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Chunli Lin
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Zimeng Guo
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yun Lai
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Ling Xie
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Chunlei Wan
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Tao Yang
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longnian Li
- Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
3
|
Israyilova A, Peykova TZ, Kittleson B, Sprowl PC, Mohammed TO, Quave CL. From Plant to Patient: A Historical Perspective and Review of Selected Medicinal Plants in Dermatology. JID INNOVATIONS 2025; 5:100321. [PMID: 39651343 PMCID: PMC11625147 DOI: 10.1016/j.xjidi.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 12/11/2024] Open
Abstract
Skin conditions are a common health concern faced by patients of all ages. For thousands of years, plants have been used to treat various skin conditions, including acne, vitiligo, and psoriasis, to name a few. Today, with increasing patient preference for natural therapies, modern medicine is now more than ever incorporating age-old knowledge of herbal remedies useful in treating skin conditions into modern-day treatments. This review covers various plant-derived therapeutics (polyphenon E [sincatechins], psoralen, salicylic acid, anthralin, podophyllotoxin, and Filsuvez [birch triterpenes, oleogel-S10]) that have demonstrated scientific evidence of clinical efficacy for dermatologic disorders. The discovery, composition, history of use, and current uses in dermatology are summarized for each botanical ingredient.
Collapse
Affiliation(s)
- Aygun Israyilova
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratory of Microbiology, Center of Excellence, Baku State University, Baku, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Baku, Azerbaijan
| | - Tsvetomira Zhivkova Peykova
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ben Kittleson
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paul Caleb Sprowl
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Taha Osman Mohammed
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cassandra L. Quave
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024; 65:705-726. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Niebergall-Roth E, Dieter K, Frank MH, Kluth MA. Systemic treatment of recessive dystrophic epidermolysis bullosa with mesenchymal stromal cells: a scoping review of the literature and conclusions for future clinical research. J DERMATOL TREAT 2024; 35:2419931. [PMID: 39551482 DOI: 10.1080/09546634.2024.2419931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Background: The ability of mesenchymal stromal cells (MSCs) to facilitate regenerative responses in inflamed and injured tissues, coupled with preclinical data suggesting potential to restore defective collagen VII at the dermo-epidermal junction, has raised the hope that MSCs may provide an effective disease-modifying therapy for patients suffering from recessive dystrophic epidermolysis bullosa (RDEB). Methods: We present a descriptive analysis of the clinical research on systemic MSC administration to RDEB patients available in PubMed, including six early-phase studies and one case report, involving 59 patients who received 1-3 intravenous infusions of MSCs from various sources. Results: Based on 133 MSC infusions, a total of 44 mostly mild adverse events were reported as definitely, possibly or likely related to the study treatment, only two of which led to treatment discontinuation. Improvements were seen in skin manifestations, disease activity, pain, pruritus and quality of life, with considerable heterogeneity in reported outcome variables and measurement tools between studies, and large inter-patient variability within studies. Conclusions: Although the current evidence base is limited, reflecting the typical challenges of clinical research in rare diseases, the reported results suggest potential treatment benefits for patients and provide a rationale for continuing to pursue this therapeutic approach.
Collapse
Affiliation(s)
| | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | |
Collapse
|
6
|
Véliz S, Olivares A, Krämer S. Mini-implant assisted palate expansion and digital design in junctional epidermolysis bullosa and amelogenesis imperfecta: Case report. SPECIAL CARE IN DENTISTRY 2024; 44:1572-1580. [PMID: 39034598 DOI: 10.1111/scd.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Junctional epidermolysis bullosa (JEB) is one of the four major types of EB caused by genetic variants in the genes coding the proteins of the lamina lucida. All patients with this major type of EB present syndromic hypoplastic amelogenesis imperfecta (AI), with either a pits and fissures or generalized hypoplastic phenotype. Severe forms of AI are associated with compromised oral health-related quality of life (QoL) mostly due to poor dental aesthetics, dentofacial anomalies, and oral pain. AIM To present the comprehensive dental treatment of a patient with JEB and AI from the age of 20 months until the age of 18 years, including complex orthodontics and digital oral rehabilitation. MATERIALS AND METHODS A male patient with intermediate JEB (homozygous c.3228+1G>A LAMB3 variant) has been under the care of the special care dentistry clinic of the University of Chile since the age of 20 months. His complex dental needs include structural enamel abnormalities in primary and permanent dentition (hypoplastic generalized AI), severe dental crowding with maxillary compression, Class III skeletal pattern, agenesia (#45), and gingivitis. RESULTS Pediatric dental care included oral hygiene education and preventive strategies (prophylaxis and fluoride applications), maintaining the dentition free of caries. Due to AI, severe tooth sensitivity hindered proper oral hygiene and required early rehabilitation with temporary polycarbonate and metallic crowns. At the age of 16, the patient began orthodontic treatment. A maxillary expansion was performed with two consecutive mini-implant assisted rapid palate expansion (MARPE) bonded to four mini-implants in the palate. After finishing orthodontic treatment metallic multibrackets (duration 19 months), a definitive oral rehabilitation based on digital smile design with feldspathic crowns of all anterior teeth and premolars was performed. CONCLUSION Patients with severe generalized hypoplastic syndromic AI associated with JEB benefit from long-term preventive oral care. Complex orthodontic techniques, such as MARPE, and multibrackets can be successfully. Digital smile design provides a definitive oral rehabilitation technique improving oral function, aesthetics, and QoL.
Collapse
Affiliation(s)
- Sebastian Véliz
- Special Care Dentistry Unit, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Odontología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Susanne Krämer
- Special Care Dentistry Unit, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Katoh Y, Sato A, Takahashi N, Nishioka Y, Shimizu-Endo N, Ito T, Ohnuma-Koyama A, Shiga A, Yoshida T, Aoyama H. Junctional Epidermolysis Bullosa in Sprague Dawley Rats Caused by a Frameshift Mutation of Col17a1 Gene. J Transl Med 2024; 104:102132. [PMID: 39265891 DOI: 10.1016/j.labinv.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Junctional epidermolysis bullosa is an intractable cutaneous disorder in humans causing skin fragility and blistering due to mutations in genes encoding essential molecules adhering epidermis and dermis including collagen XVII. However, the pathogenesis still remains to be not fully understood perhaps because of a lack of appropriate animal models. In this study, we report novel mutant rats experiencing junctional epidermolysis bullosa, which was confirmed to be caused by a frameshift mutation of Col17a1 gene, as a rat model for investigating the underlying mechanism of pathogenesis. The mutant rats completely lacked the expression of collagen XVII and had blisters leading to infantile deaths as a homozygous condition, although their skin was apparently normal at birth by light microscopic evaluation except that immunohistochemical examination could not detect collagen XVII in any organs. These observations suggest that collagen XVII is not essential for the development of skin during the prenatal period but is indispensable for keeping epidermal-dermal connections stable after birth. Subsequent electron microscopic examinations further revealed an absence of hemidesmosomal inner plaques being composed of BP230, a binding partner of collagen XVII, and plectin in Col17a1-null newborns, albeit mRNA expressions of these molecules seemed to be unaffected at least during the fetal period. These results suggest that the lack of collagen XVII induces attenuation of hemidesmosomal inner plaques, which in turn destabilizes the epidermis-dermis connection and results in deterioration of epidermal physiology with formation of blisters after birth.
Collapse
Affiliation(s)
- Yoshitaka Katoh
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Akira Sato
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naofumi Takahashi
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Yasushi Nishioka
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naoko Shimizu-Endo
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Tsuyoshi Ito
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Aya Ohnuma-Koyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Atsushi Shiga
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan.
| |
Collapse
|
8
|
Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A, Kopnin P. Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:10270. [PMID: 39408598 PMCID: PMC11476579 DOI: 10.3390/ijms251910270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
This detailed review describes innovative strategies and current products for gene and cell therapy at different stages of research and development to treat recessive dystrophic epidermolysis bullosa (RDEB) which is associated with the functional deficiency of collagen type VII alpha 1 (C7) caused by defects in the COL7A1 gene. The use of allogenic mesenchymal stem/stromal cells, which can be injected intradermally and intravenously, appears to be the most promising approach in the field of RDEB cell therapy. Injections of genetically modified autologous dermal fibroblasts are also worth mentioning under this framework. The most common methods of RDEB gene therapy are gene replacement using viral vectors and gene editing using programmable nucleases. Ex vivo epidermal transplants (ETs) based on autologous keratinocytes (Ks) have been developed using gene therapy methods; one such ET successively passed phase III clinical trials. Products based on the use of two-layer transplants have also been developed with both types of skin cells producing C7. Gene products have also been developed for local use. To date, significant progress has been achieved in the development of efficient biomedical products to treat RDEB, one of the most severe hereditary diseases.
Collapse
Affiliation(s)
- Alla Zorina
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Vadim Zorin
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Artur Isaev
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Andrei Ustugov
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
| |
Collapse
|
9
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
10
|
Zhou M, Zheng Z, Teng J, Yang C, Zeng M. Two sisters with recessive dystrophic epidermolysis bullosa caused by novel variants in COL7A1. Skin Res Technol 2024; 30:e13779. [PMID: 38840153 PMCID: PMC11154770 DOI: 10.1111/srt.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Mandi Zhou
- Department of DermatologyThe First Affiliated Hospital of Jinan UniversityGuangzhou Overseas Chinese HospitalJinan UniversityGuangzhouChina
| | - Zhixin Zheng
- Department of DermatologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jinglei Teng
- Department of DermatologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chao Yang
- Dermatology HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zeng
- Department of DermatologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
12
|
Hainzl S, Trattner L, Liemberger B, Bischof J, Kocher T, Ablinger M, Nyström A, Obermayer A, Klausegger A, Guttmann-Gruber C, Wally V, Bauer JW, Hofbauer JP, Koller U. Splicing Modulation via Antisense Oligonucleotides in Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:761. [PMID: 38255836 PMCID: PMC10815346 DOI: 10.3390/ijms25020761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).
Collapse
Affiliation(s)
- Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Lisa Trattner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center—University of Freiburg, 79110 Freiburg, Germany;
| | - Astrid Obermayer
- Core Facility of Electron Microscopy, Department of Environment & Biodiversity, Paris Lodron University Salzburg (PLUS Salzburg), 5020 Salzburg, Austria;
| | - Alfred Klausegger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| |
Collapse
|
13
|
Li Y, Wang X, He Z, Johnson M, A S, Lara-Sáez I, Lyu J, Wang W. 3D Macrocyclic Structure Boosted Gene Delivery: Multi-Cyclic Poly(β-Amino Ester)s from Step Growth Polymerization. J Am Chem Soc 2023; 145:17187-17200. [PMID: 37490481 PMCID: PMC10416306 DOI: 10.1021/jacs.3c04191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 07/27/2023]
Abstract
The topological structures of polymers play a critical role in determining their gene delivery efficiency. Exploring novel polymeric structures as gene delivery vectors is thus of great interest. In this work, a new generation of multi-cyclic poly(β-amino ester)s (CPAEs) with unique topology structure was synthesized for the first time via step growth polymerization. Through controlling the occurrence stage of cyclization, three types of CPAEs with rings of different sizes and topologies were obtained. In vitro experiments demonstrated that the CPAEs with macro rings (MCPAEs) significantly boosted the transgene expression comparing to their branched counterparts. Moreover, the MCPAE vector with optimized terminal group efficiently delivered the CRISPR plasmid coding both Staphylococcus aureus Cas9 nuclease and dual guide sgRNAs for gene editing therapy.
Collapse
Affiliation(s)
- Yinghao Li
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| | - Xianqing Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| | - Zhonglei He
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| | - Melissa Johnson
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
- School
of Medicine, Anhui University of Science
and Technology, Huainan 232001, China
| | - Irene Lara-Sáez
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| | - Jing Lyu
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| | - Wenxin Wang
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Dublin D04V1W8, Ireland
| |
Collapse
|
14
|
Mellerio JE, Pillay EI, Ledwaba-Chapman L, Bisquera A, Robertson SJ, Papanikolaou M, McGrath JA, Wang Y, Martinez AE, Jeffs E. Itch in recessive dystrophic epidermolysis bullosa: findings of PEBLES, a prospective register study. Orphanet J Rare Dis 2023; 18:235. [PMID: 37559055 PMCID: PMC10410928 DOI: 10.1186/s13023-023-02817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Itch is common and distressing in epidermolysis bullosa (EB) but has not previously been studied in depth in different recessive dystrophic EB (RDEB) subtypes. OBJECTIVES As part of a prospective register study of the natural history of RDEB we explored features of itch, medications used, and correlation with disease severity and quality of life. METHODS Fifty individuals with RDEB aged 8 years and above completed the Leuven Itch Scale (LIS) (total 243 reviews over a 7-year period). Data included itch frequency, severity, duration, distress, circumstances, consequences, itch surface area and medications for itch. The iscorEB disease severity score and the validated EB quality of life tool, QOLEB, were compared to LIS domains and analysed by RDEB subtype. RESULTS Itch was frequent, present in the preceding month in 93% of reviews. Itch severity and distress were significantly greater in severe (RDEB-S) and pruriginosa (RDEB-Pru) subtypes compared to intermediate RDEB (RDEB-I). Itch medications were reported in just over half of reviews including emollients, topical corticosteroids and antihistamines; the proportion of participants not using medication despite frequent pruritus suggests limited efficacy. In inversa RDEB (RDEB-Inv) and RDEB-I, LIS domains correlated with iscorEB and QOLEB. In contrast to previous studies, correlations were lacking in RDEB-S suggesting that global disease burden relatively reduces the contribution of itch. CONCLUSIONS This comprehensive study of RDEB-associated itch highlights differences between RDEB subtypes, suggests an unmet need for effective treatments and could serve as control data for future clinical trials incorporating itch as an endpoint.
Collapse
Affiliation(s)
- Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK.
- Genetic Skin Disease Group, King's College London, London, UK.
| | - Elizabeth I Pillay
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | | | | | - Susan J Robertson
- Departments of Dermatology, The Royal Children's Hospital, The Royal Melbourne Hospital and Monash Health, Melbourne, Australia
| | | | - John A McGrath
- Genetic Skin Disease Group, King's College London, London, UK
| | - Yanzhong Wang
- Department of Population Health Sciences, King's College London, London, UK
| | - Anna E Martinez
- Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Eunice Jeffs
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
15
|
Sproule TJ, Philip VM, Chaudhry NA, Roopenian DC, Sundberg JP. Seven naturally variant loci serve as genetic modifiers of Lamc2jeb induced non-Herlitz junctional Epidermolysis Bullosa in mice. PLoS One 2023; 18:e0288263. [PMID: 37437067 PMCID: PMC10337971 DOI: 10.1371/journal.pone.0288263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Epidermolysis Bullosa (EB) is a group of rare genetic disorders that compromise the structural integrity of the skin such that blisters and subsequent erosions occur after minor trauma. While primary genetic risk of all subforms of EB adhere to Mendelian patterns of inheritance, their clinical presentations and severities can vary greatly, implying genetic modifiers. The Lamc2jeb mouse model of non-Herlitz junctional EB (JEB-nH) demonstrated that genetic modifiers can contribute substantially to the phenotypic variability of JEB and likely other forms of EB. The innocuous changes in an 'EB related gene', Col17a1, have shown it to be a dominant modifier of Lamc2jeb. This work identifies six additional Quantitative Trait Loci (QTL) that modify disease in Lamc2jeb/jeb mice. Three QTL include other known 'EB related genes', with the strongest modifier effect mapping to a region including the epidermal hemi-desmosomal structural gene dystonin (Dst-e/Bpag1-e). Three other QTL map to intervals devoid of known EB-associated genes. Of these, one contains the nuclear receptor coactivator Ppargc1a as its primary candidate and the others contain related genes Pparg and Igf1, suggesting modifier pathways. These results, demonstrating the potent disease modifying effects of normally innocuous genetic variants, greatly expand the landscape of genetic modifiers of EB and therapeutic approaches that may be applied.
Collapse
Affiliation(s)
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
17
|
Oldakovskiy V, Murashkin N, Lokhmatov M, Gusev A, Tupylenko A, Budkina T, Yatzik S, Dyakonova E, Abaykhanov R, Fisenko A. Our experience of using Losartan for esophageal stenosis in children with dystrophic form of congenital epidermolysis bullosa. J Pediatr Surg 2023; 58:619-623. [PMID: 36566169 DOI: 10.1016/j.jpedsurg.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Dystrophic epidermolysis bullosa (DEB) is one of the most severe forms of congenital epidermolysis bullosa and characterized by the formation of many surgical complications. Esophageal stenosis is a common complication of DEB and occurs in almost 76% of cases. Balloon dilatation (BD) under X-ray control is the main therapeutic technique, however conservative treatment is necessary to prevent restenosis. The use of the drug losartan is promising due to its antifibrotic effect through the suppression of transforming growth factor-β1 (TGF-β1). PURPOSE To evaluate the efficacy of losartan in the prevention of restenosis after BD of esophageal stenosis in children with DEB. MATERIALS AND METHODS The study included 19 children from 2 to 16 years old (mean age 9.2 ± 3.58 years) with DEB and X-ray confirmed esophageal stenosis. All children underwent BD. In the main group 9 children after BD have received losartan, in the control group of 10 children - only standard therapy. The observation period was 12 months. RESULTS In the main group, 1 child (11.1%) required repeated dilatation, in the control group - 4 children (40%). Indicators of nutritional deficiency (THINC scale) and the disease severity index (EBDASI) were significantly lower in the group of children treated with losartan. No undesirable actions of the drug were recorded. CONCLUSIONS In this study losartan showed its safety, contributed to a decrease in the restenosis frequency and an improvement in the nutritional status of children with DEB after BD. However, further studies are required to confirm its effectiveness. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Vladislav Oldakovskiy
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Nikolay Murashkin
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Maksim Lokhmatov
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Aleksey Gusev
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198, Moscow, Russia.
| | - Artem Tupylenko
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Tatiana Budkina
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Sergey Yatzik
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Elena Dyakonova
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Rasul Abaykhanov
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Andrey Fisenko
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| |
Collapse
|
18
|
Kern JS, Sprecher E, Fernandez MF, Schauer F, Bodemer C, Cunningham T, Löwe S, Davis C, Sumeray M, Bruckner AL, Murrell DF. Efficacy and safety of Oleogel-S10 (birch triterpenes) for epidermolysis bullosa: results from the phase III randomized double-blind phase of the EASE study. Br J Dermatol 2023; 188:12-21. [PMID: 36689495 DOI: 10.1093/bjd/ljac001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a heterogeneous group of rare, difficult-to-treat, inherited multisystem diseases affecting epithelial integrity. Patients with EB are affected by mechanical fragility of epithelial surfaces including the skin and, as a result, extensive recurrent blistering is a characteristic of the condition. Chronic wounds predispose patients with EB to the development of squamous cell carcinoma, which is a major cause of premature death. OBJECTIVES EASE was a double-blind, randomized, vehicle-controlled, phase III study to determine the efficacy and safety of the topical gel Oleogel-S10 (birch triterpenes) in EB. EASE was funded by Amryt Research Limited. METHODS Patients with dystrophic EB, junctional EB or Kindler EB and a target partial-thickness wound lasting ≥ 21 days and < 9 months that was 10-50 cm2, were enrolled and randomized via computer-generated allocation tables 1 : 1 to Oleogel-S10 or control gel - both with standard-of-care dressings. Study gel was applied to all wounds at least every 4 days. The primary endpoint was the proportion of patients with first complete closure of target wound within 45 days. RESULTS A total of 223 patients were enrolled and treated (109 treated with Oleogel-S10, 114 with control gel). The primary endpoint was met; Oleogel-S10 resulted in 41·3% of patients with first complete target wound closure within 45 days, compared with 28·9% in the control gel arm (relative risk 1·44, 95% confidence interval (CI) 1·01-2·05; P = 0·013). Adverse events (AEs) occurred with similar frequency for Oleogel-S10 (81·7%) compared with control gel (80·7%). AEs were predominantly of mild-to-moderate intensity (4·6% were severe). CONCLUSIONS Oleogel-S10 is the first therapy to demonstrate accelerated wound healing in EB. Oleogel-S10 was well -tolerated.
Collapse
Affiliation(s)
- Johannes S Kern
- Dermatology Department, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Department of Dermatology, Alfred Hospital, Central Clinical School, Monash University, Melbourne, Australia
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Franziska Schauer
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Bodemer
- Department of Dermatology, Expert Centre for Genodermatoses (MAGEC) Necker-Enfants Malades Hospital, University Paris Centre, Paris, France
| | | | | | | | | | - Anna L Bruckner
- University of Colorado School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Dédée F Murrell
- Department of Dermatology, St. George Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
19
|
Lindgren O, Le Menn G, Tuusa J, Chen ZJ, Tasanen K, Kokkonen N. Absence of NC14A Domain of COLXVII/BP180 in Mice Results in IL-17‒Associated Skin Inflammation. J Invest Dermatol 2023; 143:48-56.e7. [PMID: 35985497 DOI: 10.1016/j.jid.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
The deletion of exon 18 from Col17a1 in transgenic ΔNC14A mice results in the absence of the NC14A domain. NC14A corresponds to the human NC16A domain, the immunodominant epitope in bullous pemphigoid. Before the age of 1 year, 84% of ΔNC14A mice have developed severe itch and skin erosion. Further characterization of mice with mutated CoLXVII (Bp180) revealed acanthosis; subepidermal blistering; and inflammatory cell infiltrates, especially neutrophils, eosinophils, and mast cells in the lesional skin. Direct immunofluorescence analysis detected linear complement C3, IgG, and/or IgA deposition in the dermo‒epidermal junction of symptomatic ΔNC14A mice. Elevated gene expression of IL-17‒associated cytokines was detected in the lesional skin. An increased proportion of dendritic cells, myeloid-derived suppressor cells, and NK cells and a decrease of T cells were found in both the spleen and lymph nodes of symptomatic ΔNC14A mice. The proportions of B cells and regulatory T cells were increased in lymph nodes. An 8-week treatment with an anti‒IL-17A decreased the expression of Il6, Il23a, and Cxcl1 in the nonlesional skin. Our results suggest that the absence of the NC14A domain of CoLXVII in mice causes an autoimmune response against the cutaneous basement membrane and manifests as an IL-17‒associated inflammation in the skin.
Collapse
Affiliation(s)
- Outi Lindgren
- Department of Dermatology, PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Gwenaëlle Le Menn
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jussi Tuusa
- Department of Dermatology, PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Zhi Jane Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Nina Kokkonen
- Department of Dermatology, PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
20
|
Kiener S, Mauldin EA, Jagannathan V, Casal ML, Leeb T. KRT5 missense variant in a Cardigan Welsh Corgi with epidermolysis bullosa simplex. Anim Genet 2022; 53:892-896. [PMID: 36004757 PMCID: PMC9804678 DOI: 10.1111/age.13257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023]
Abstract
Epidermolysis bullosa (EB) is a group of blistering disorders that includes several subtypes, classified according to their level of cleavage. Typical clinical signs are blisters and erosions resulting from minimal trauma. The disease has been described in many mammalian species and pathogenic variants in at least 18 different genes have been identified. In the present study, we investigated a Cardigan Welsh Corgi with congenital clinical signs consistent with epidermolysis bullosa. The puppy had blisters and erosions on the paw pads, and the oral mucosa. Histologic examination demonstrated the typical clefting between the dermis and epidermis and confirmed the clinical suspicion. We obtained whole genome sequencing data from the affected puppy and searched for variants in candidate genes known to cause EB. This revealed a heterozygous missense variant, KRT5:p.(E476K), affecting the highly conserved KLLEGE motif of keratin 5. The mutant allele in the affected puppy arose owing to a de novo mutation event as it was absent from both unaffected parents. Knowledge of the functional impact of KRT5 variants in other species together with the demonstration of the de novo mutation event establishes KRT5:p.(E476K) as causative variant for the observed EBS.
Collapse
Affiliation(s)
- Sarah Kiener
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland,DermFocusUniversity of BernBernSwitzerland
| | - Elizabeth A. Mauldin
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Vidhya Jagannathan
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland,DermFocusUniversity of BernBernSwitzerland
| | - Margret L. Casal
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tosso Leeb
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland,DermFocusUniversity of BernBernSwitzerland
| |
Collapse
|
21
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Junctional epidermolysis bullosa: genotype-phenotype correlations. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Junctional epidermolysis bullosa most commonly results from mutations in theLAMA3, LAMB3, LAMC2, COL17A1, ITGA6 and ITGB4genes. Junctional epidermolysis bullosa is characterized by clinical heterogeneity. To date, scientific findings allow to evaluate correlations between the severity of clinical manifestations and genetic defects underlying in the development of the disease. A systematic literature search was performed using PubMed and RSCI, and keywords including junctional epidermolysis bullosa, laminin 332, collagen XVII, 64 integrin. The review includes description of clinical findings of junctional epidermolysis bullosa, mutation location and types, its impact on protein production and functions. To evaluate the impact of gene mutation on protein functions, this review explores the structure and functions of lamina lucida components, including laminin 332, collagen XVII and 64 integrin, which are frequently associated with the development of junctional epidermolysis bullosa. The correlation between severe types of junctional epidermolysis bullosa and mutations resulting in premature stop codon generation and complete absence of protein expression has been described. Although, genotype-phenotype correlations should be analyzed carefully due to mechanisms which enable to improve protein expression.
Collapse
|
22
|
Wang W, Guo Q, Chen J, Zhang X, Li C, Li S, Liang J, Hao C, Wang J. Identification of a novel homozygous LAMB3 mutation in a Chinese male with junctional epidermolysis bullosa and severe urethra stenosis: A case report. Front Genet 2022; 13:965375. [PMID: 36246619 PMCID: PMC9561087 DOI: 10.3389/fgene.2022.965375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Epidermolysis bullosa (EB) is a skin fragility disorder that is caused by molecular aberrations in the epidermal basement membrane zone. Based primarily on the cleavage plane within the skin, EB is classified into four major subtypes: EB simplex; junctional EB (JEB); dystrophic EB; and Kindler EB. The junctional form (JEB) can lead to blistering and a variety of extracutaneous complications, including genitourinary tract involvement. Despite therapeutic progress, treatment modalities for urological complications of JEB are currently limited. Results: We present the case of a Chinese male with intermediate JEB and profound urinary tract stenosis. Due to the progression of the urinary tract stenosis, he presented with repeated urological symptoms, such as high frequency of urination, painful urination, and difficult voiding. After birth, multiple blisters on the fingers, feet, and limbs, as well as nail dystrophies and spare hair were noted. Mutation analysis revealed that the patient carried a homozygous frameshift mutation in the LAMB3 gene [c.1172_1179delinsTGTGTGTGCAAGGAG/p. (P391Lfs*23)]. After receiving treatment for urethral dilatation, lingual mucosa for anterior urethroplasty, and repair of urethral stricture using a ventral onlay penile skin flap, the patient still experienced a relapse of urinary tract stenosis. Finally, the patient underwent perineal urethrostomy. In contrast, his older brother with similar urological symptoms received regular urethral dilatation, and the curative effect was positive. Conclusion: Here we report on a case with a novel LAMB3 mutation that led to JEB with profound urinary tract stenosis, which has expanded our experience in the treatment of EB urological complications.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Guo
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinshan Chen
- The Second Medicine College, Shanxi Medical University, Taiyuan, China
| | - Xi Zhang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chengyong Li
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuangping Li
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jialin Liang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Hao
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chuan Hao, ; Jingqi Wang,
| | - Jingqi Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chuan Hao, ; Jingqi Wang,
| |
Collapse
|
23
|
Opelka B, Schmidt E, Goletz S. Type XVII collagen: Relevance of distinct epitopes, complement-independent effects, and association with neurological disorders in pemphigoid disorders. Front Immunol 2022; 13:948108. [PMID: 36032160 PMCID: PMC9400597 DOI: 10.3389/fimmu.2022.948108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigoid diseases (PD) are autoimmune skin blistering diseases characterized by autoantibodies directed against proteins of the cutaneous basement membrane zone (BMZ). One of the major antigens is type XVII collagen (BP180), a transmembrane glycoprotein, which is targeted in four PDs: bullous pemphigoid, mucous membrane pemphigoid, linear IgA dermatosis, and pemphigoid gestationis. To date, different epitopes on BP180 have been described to be recognized by PD disease patients’ autoantibodies. Different BP180 epitopes were associated with distinct clinical phenotypes while the underlying mechanisms are not yet fully understood. So far, the main effects of anti-BP180 reactivity are mediated by Fcγ-receptors on immune cells. More precisely, the autoantibody–antigen interaction leads to activation of complement at the BMZ and infiltration of immune cells into the upper dermis and, by the release of specific enzymes and reactive oxygen species, to the degradation of BP180 and other BMZ components, finally manifesting as blisters and erosions. On the other hand, inflammatory responses independent of Fcγ-receptors have also been reported, including the release of proinflammatory cytokines and internalization and depletion of BP180. Autoantibodies against BP180 can also be found in patients with neurological diseases. The assumption that the clinical expression of PD depends on epitope specificity in addition to target antigens, autoantibody isotypes, and antibody glycosylation is supported by the observation that epitopes of PD patients differ from those of PD patients. The aim of the present review is to describe the fine specificities of anti-BP180 autoantibodies in different PDs and highlight the associated clinical differences. Furthermore, the direct effects after binding of the autoantibodies to their target are summarized.
Collapse
Affiliation(s)
- Bianca Opelka
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- *Correspondence: Stephanie Goletz,
| |
Collapse
|
24
|
Alexeev V, Huitema L, Phillips T, Cepeda R, Cobos DDL, Perez RIM, Salas-Garza M, Fajardo-Ramirez OR, Ringpfeil F, Uitto J, Salas-Alanis JC, Igoucheva O. T cell activation and bacterial infection in skin wounds of recessive dystrophic epidermolysis bullosa patients. Exp Dermatol 2022; 31:1431-1442. [PMID: 35620886 PMCID: PMC9541540 DOI: 10.1111/exd.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) patients develop poorly healing skin wounds that are frequently colonized with microbiota. Because T cells play an important role in clearing such pathogens, we aimed to define the status of adaptive T cell‐mediated immunity in RDEB wounds. Using a non‐invasive approach for sampling of wound‐associated constituents, we evaluated microbial contaminants in cellular fraction and exudates obtained from RDED wounds. Infectivity and intracellular trafficking of inactivated Staphylococcus aureus was accessed in RDEB keratinocytes. S. aureus and microbial antigen‐specific activation of RDEB wound‐derived T cells were investigated by fluorescence‐activated cell sorting‐based immune‐phenotyping and T‐cell functional assays. We found that RDEB wounds and epithelial cells are most frequently infected with Staphylococcus sp. and Pseudomonas sp. and that S. aureus essentially infects more RDEB keratinocytes and RDEB‐derived squamous cell carcinoma cells than keratinocytes from healthy donors. The RDEB wound‐associated T cells contain populations of CD4+ and CD8+ peripheral memory T cells that respond to soluble microbial antigens by proliferating and secreting interferon gamma (IFNγ). Moreover, CD8+ cytotoxic T lymphocytes recognize S. aureus‐infected RDEB keratinocytes and respond by producing interleukin‐2 (IL‐2) and IFNγ and degranulating and cytotoxically killing infected cells. Prolonged exposure of RDEB‐derived T cells to microbial antigens in vitro does not trigger PD‐1‐mediated T‐cell exhaustion but induces differentiation of the CD4high population into CD4highCD25+FoxP3+ regulatory T cells. Our data demonstrated that adaptive T cell‐mediated immunity could clear infected cells from wound sites, but these effects might be inhibited by PD‐1/Treg‐mediated immuno‐suppression in RDEB.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | - Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | - Rodrigo Cepeda
- DEBRA MEXICO, Guadalupe, NL, Mexico.,Julio Salas Dermatology, Guadalupe, NL, Mexico
| | | | | | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| | | | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA
| |
Collapse
|
25
|
Epidermolysis Bullosa—A Different Genetic Approach in Correlation with Genetic Heterogeneity. Diagnostics (Basel) 2022; 12:diagnostics12061325. [PMID: 35741135 PMCID: PMC9222206 DOI: 10.3390/diagnostics12061325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epidermolysis bullosa is a heterogeneous group of rare genetic disorders characterized by mucocutaneous fragility and blister formation after minor friction or trauma. There are four major epidermolysis bullosa types based on the ultrastructural level of tissue cleavage: simplex, junctional, dystrophic, and Kindler epidermolysis bullosa. They are caused by mutations in genes that encode the proteins that are part of the hemidesmosomes and focal adhesion complex. Some of these disorders can be associated with extracutaneous manifestations, which are sometimes fatal. They are inherited in an autosomal recessive or autosomal dominant manner. This review is focused on the phenomena of heterogeneity (locus, allelic, mutational, and clinical) in epidermolysis bullosa, and on the correlation genotype–phenotype.
Collapse
|
26
|
Chakravarti S, Enzo E, de Barros MRM, Maffezzoni MBR, Pellegrini G. Genetic Disorders of the Extracellular Matrix: From Cell and Gene Therapy to Future Applications in Regenerative Medicine. Annu Rev Genomics Hum Genet 2022; 23:193-222. [PMID: 35537467 DOI: 10.1146/annurev-genom-083117-021702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell-cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examine genetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix-related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shukti Chakravarti
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | | | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| |
Collapse
|
27
|
Phillips GS, Huang A, Augsburger BD, Kaplan L, Peoples K, Bruckner AL, Khuu P, Tang JY, Lara-Corrales I, Pope E, Wiss K, Levin LE, Morel KD, Hook KP, Paller AS, Eichenfield LF, McCuaig CC, Powell J, Castelo-Soccio L, Levy ML, Price HN, Schachner LA, Browning JC, Jahnke M, Shwayder T, Bayliss S, Lucky AW, Glick SA. A retrospective analysis of diagnostic testing in a large North American cohort of patients with epidermolysis bullosa. J Am Acad Dermatol 2022; 86:1063-1071. [PMID: 34634382 DOI: 10.1016/j.jaad.2021.09.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/03/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accurate diagnosis of epidermolysis bullosa (EB) has significant implications for prognosis, management, and genetic counseling. OBJECTIVE To describe diagnostic testing patterns and assess diagnostic concordance of transmission electron microscopy (TEM), immunofluorescence mapping (IFM), and genetic analysis for EB. METHODS A retrospective cohort included patients enrolled in the Epidermolysis Bullosa Clinical Characterization and Outcomes Database from January 1, 2004, to July 8, 2019. Tests concluding the same EB type (EB simplex, junctional EB, dominant dystrophic EB, and recessive dystrophic EB) were considered concordant; those concluding different EB types were considered discordant; and those with nonspecific/nondefinitive results were equivocal. RESULTS A total of 970 diagnostic tests were conducted from 1984 to 2018 in 771 patients. Genetic analyses were performed chronologically later than IFM or TEM (P < .001). The likelihood of undergoing genetic analysis was greater for junctional EB and recessive dystrophic EB, and the same for dominant dystrophic EB as compared with EB simplex. TEM results in 163 patients were equivocal (55%), concordant (42%), and discordant (3%). IFM results in 185 patients were equivocal (54%), concordant (42%), and discordant (4%). LIMITATIONS Retrospective design. CONCLUSIONS Diagnostic testing has shifted in favor of genetic analysis. TEM and IFM frequently offer equivocal findings when compared to the specificity afforded by genetic analysis.
Collapse
Affiliation(s)
- Gregory Scott Phillips
- Department of Dermatology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Amy Huang
- Department of Dermatology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | | | - Laura Kaplan
- Department of Dermatology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | | | - Anna L Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Phuong Khuu
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Irene Lara-Corrales
- Section of Dermatology, Division of Paediatric Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elena Pope
- Section of Dermatology, Division of Paediatric Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Wiss
- Departments of Dermatology and Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Laura E Levin
- Department of Dermatology, Columbia Irving Medical Center, New York, New York
| | - Kimberly D Morel
- Department of Dermatology, Columbia Irving Medical Center, New York, New York; Department of Pediatrics, Columbia Irving Medical Center, New York, New York
| | - Kristen P Hook
- Department of Dermatology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego, San Diego, California
| | - Catherine C McCuaig
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Julie Powell
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Leslie Castelo-Soccio
- Department of Pediatrics, Section of Dermatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Moise L Levy
- Pediatric/Adolescent Dermatology, Dell Children's Medical Center, University of Texas, Austin, Texas; Departments of Pediatrics and Medicine (Dermatology), Dell Medical School, University of Texas, Austin, Texas
| | - Harper N Price
- Department of Dermatology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Lawrence A Schachner
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - John C Browning
- Department of Pediatric Dermatology, Children's Hospital San Antonio, San Antonio, Texas
| | - Marla Jahnke
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | - Tor Shwayder
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | - Susan Bayliss
- Division of Dermatology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Anne W Lucky
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sharon A Glick
- Department of Dermatology, State University of New York Downstate Health Sciences University, Brooklyn, New York.
| |
Collapse
|
28
|
Dunn C, Ambur A, Foss M, Nathoo R. Expanding the spectrum of epidermolysis bullosa simplex: Syndromic epidermolysis bullosa simplex with nephropathy and epilepsy secondary to CD151 tetraspanin defect—a case report and review of the literature. JAAD Case Rep 2022; 23:136-140. [PMID: 35519797 PMCID: PMC9061251 DOI: 10.1016/j.jdcr.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Charles Dunn
- Correspondence to: Charles Dunn, MD, Department of Dermatology, Kansas City University/Graduate Medical Education Consortium–Advanced Dermatology and Cosmetic Surgery, Orlando Dermatology Residency, 151 Southhall Lane, Ste 300, Maitland, FL 32751.
| | | | | | | |
Collapse
|
29
|
Marchili MR, Spina G, Roversi M, Mascolo C, Pentimalli E, Corbeddu M, Diociaiuti A, El Hachem M, Villani A. Epidermolysis Bullosa in children: the central role of the pediatrician. Orphanet J Rare Dis 2022; 17:147. [PMID: 35379269 PMCID: PMC8978425 DOI: 10.1186/s13023-021-02144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
Epidermolysis bullosa (EB) is a severe hereditary disease characterized by defective epithelial adhesion causing mucocutaneous fragility. The major types are EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB) and more than 35 EB subtypes. Another very rare type of EB is Kindler EB (KEB). Clinically, it is a very heterogeneous disease which ranges from localized to extensive skin lesions with frequent multisystem extra cutaneous involvement. The role of a pediatrician-dermatologist cooperation within a multidisciplinary team is fundamental for both the diagnosis and management contributing to these patients' better life expectancy. Aim of this study is to describe clinical and laboratory characteristics of the main EB subtypes focusing on nutritional and gastrointestinal aspects, providing information to aid the paediatric management of children with EB. This retrospective study reviewed the cases of 160 pediatric EB patients (76 male and 84 female): 31 patients affected by EBS (mean age ± SD: 4.37 ± 7.14), 21 patients affected by JEB (mean age ± SD: 9.26± 17.30) and 108 with DEB (mean age ± SD: 11.61 ± 13.48). All patients were admitted at the Bambino Gesù Children's Hospital in Rome, between June 2005 to June 2020. The reduced gastrointestinal absorption, chronic losses, esophageal stenosis and chronic inflammatory state, represent the basis of nutritional problems of EB patients. In particular, anemia represents one of the most important complications of DEB patients which could require transfusion-dependent patterns. Malnutrition, vitamin deficiencies and anemia have been related to growth delay in EB patients. A specific diet with a balance of all macronutrients is required and improving caloric intake with sugar limitations is fundamental to prevent dental caries and tooth decay typical of EB patients. While sepsis proved to be the major cause of morbidity and mortality in younger patients, squamous cell carcinoma was mostly observed in older patients, especially those affected by DEB. Patients with EB require regular monitoring for complications and sequelae with a frequency of evaluations which varies based on age and EB subtypes. Cooperation among medical teams involving paediatricians, dermatologists, specialist clinicians including nutritionists such as families and patient's association is fundamental to approach the disease and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Maria Rosaria Marchili
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giulia Spina
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Marco Roversi
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Cristina Mascolo
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Marialuisa Corbeddu
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a carattere Scientifico, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a carattere Scientifico, Rome, Italy
| | - Maya El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a carattere Scientifico, Rome, Italy
| | - Alberto Villani
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| |
Collapse
|
30
|
Brodsky AS, Khurana J, Guo KS, Wu EY, Yang D, Siddique AS, Wong IY, Gamsiz Uzun ED, Resnick MB. Somatic mutations in collagens are associated with a distinct tumor environment and overall survival in gastric cancer. BMC Cancer 2022; 22:139. [PMID: 35120467 PMCID: PMC8815231 DOI: 10.1186/s12885-021-09136-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gastric cancer is a heterogeneous disease with poorly understood genetic and microenvironmental factors. Mutations in collagen genes are associated with genetic diseases that compromise tissue integrity, but their role in tumor progression has not been extensively reported. Aberrant collagen expression has been long associated with malignant tumor growth, invasion, chemoresistance, and patient outcomes. We hypothesized that somatic mutations in collagens could functionally alter the tumor extracellular matrix. METHODS We used publicly available datasets including The Tumor Cancer Genome Atlas (TCGA) to interrogate somatic mutations in collagens in stomach adenocarcinomas. To demonstrate that collagens were significantly mutated above background mutation rates, we used a moderated Kolmogorov-Smirnov test along with combination analysis with a bootstrap approach to define the background accounting for mutation rates. Association between mutations and clinicopathological features was evaluated by Fisher or chi-squared tests. Association with overall survival was assessed by Kaplan-Meier and the Cox-Proportional Hazards Model. Gene Set Enrichment Analysis was used to interrogate pathways. Immunohistochemistry and in situ hybridization tested expression of COL7A1 in stomach tumors. RESULTS In stomach adenocarcinomas, we identified individual collagen genes and sets of collagen genes harboring somatic mutations at a high frequency compared to background in both microsatellite stable, and microsatellite instable tumors in TCGA. Many of the missense mutations resemble the same types of loss of function mutations in collagenopathies that disrupt tissue formation and destabilize cells providing guidance to interpret the somatic mutations. We identified combinations of somatic mutations in collagens associated with overall survival, with a distinctive tumor microenvironment marked by lower matrisome expression and immune cell signatures. Truncation mutations were strongly associated with improved outcomes suggesting that loss of expression of secreted collagens impact tumor progression and treatment response. Germline collagenopathy variants guided interpretation of impactful somatic mutations on tumors. CONCLUSIONS These observations highlight that many collagens, expressed in non-physiologically relevant conditions in tumors, harbor impactful somatic mutations in tumors, suggesting new approaches for classification and therapy development in stomach cancer. In sum, these findings demonstrate how classification of tumors by collagen mutations identified strong links between specific genotypes and the tumor environment.
Collapse
Affiliation(s)
- Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02903, USA.
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, 02912, USA.
| | - Jay Khurana
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Kevin S Guo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Elizabeth Y Wu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Ayesha S Siddique
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Ian Y Wong
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, 02912, USA
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Ece D Gamsiz Uzun
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02903, USA
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
- Currently at PathAI, 1325 Boylston St, Boston, MA, 02215, USA
| |
Collapse
|
31
|
Tella S, Sultana S, Madireddy S, Nallari P, Ananthapur V. Epidermolysis Bullosa: A Report of Three Cases with Novel Heterozygous Deletions in PLEC and Homozygous Non sense Mutations in COL7A1 Genes. Indian J Dermatol 2022; 67:45-49. [PMID: 35656234 PMCID: PMC9154161 DOI: 10.4103/ijd.ijd_880_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Epidermolysis bullosa (EB) is a group of rare inherited conditions that results in blistering of the skin and mucous membranes. Mutations in the PLEC gene cause epidermolysis bullosa simplex (EBS). Mutations in type VII collagen, encoded by COL7A1 lead to epidermolysis bullosa dystrophica (EBD). The report presents three autosomal recessive cases, one with epidermolysis bullosa simplex (EBS) with nail and muscular dystrophy showing heterozygous single base pair deletion in exon 31 (chr8:144998220delC; c. 6288del; p. Arg2097AlafsTer55) and a heterozygous two base pair deletion in exon 27 (chr8:145001693_145001694delCT; c. 4054_4055del; p. Ser1352CysfsTer68) of PLEC gene. Two cases of epidermolysis bullosa dystrophica (EBD), with a novel homozygous, nonsense mutations in exon 54 (c. 5047C > T) and exon 104 (c. 7762C > T) of COL7A1 gene. The findings of the case report, provide evidence for additional molecular heterogeneity, in epidermolysis bullosa and also emphasize the significance of PLEC and COL7A1 gene mutations in epidermolysis bullosa.
Collapse
Affiliation(s)
- Sunitha Tella
- Department of Cell Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Shehnaz Sultana
- Department of Cell Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Sujatha Madireddy
- Department of Cell Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Pratibha Nallari
- Department of Cell Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Venkateshwari Ananthapur
- Department of Cell Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
32
|
du Rand A, Hunt JMT, Feisst V, Sheppard HM. Epidermolysis Bullosa: A Review of the Tissue-Engineered Skin Substitutes Used to Treat Wounds. Mol Diagn Ther 2022; 26:627-643. [PMID: 36251245 PMCID: PMC9626425 DOI: 10.1007/s40291-022-00613-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Skin wound healing is a crucial process for regenerating healthy skin and avoiding the undesired consequences associated with open skin wounds. For epidermolysis bullosa (EB), a debilitating group of fragile skin disorders currently without a cure, skin blistering can often be severe and heal poorly, increasing susceptibility to life-threatening complications. To prevent these, investigational therapies have been exploring the use of tissue-engineered skin substitutes (TESSs) aimed at replacing damaged skin and promoting long-term wound closure. These products have either been developed in house or commercially sourced and are composed of allogeneic or autologous human skin cells, often with some form of bioscaffolding. They can be broadly classified based on their cellular composition: keratinocytes (epidermal substitutes), fibroblasts (dermal substitutes) or a combination of both (composite substitutes). Encouraging long-term wound healing has been achieved with epidermal substitutes. However, these substitutes have not demonstrated the same efficacy for all patients, which may be due to the molecular heterogeneity observed between EB subtypes. Autologous composite TESSs, which more closely resemble native human skin, are therefore being investigated and may hold promise for treating an extended range of patients. Additionally, future TESSs for EB are focused on using gene-corrected patient skin cells, which have already demonstrated remarkable long-term wound healing capabilities. In this review, we provide an overview of the different TESSs that have been investigated in clinical studies to treat patients with EB, as well as their long-term wound healing results. Where available, we describe the methods used to develop these products to inform future efforts in this field.
Collapse
Affiliation(s)
- Alex du Rand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John M. T. Hunt
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Vaughan Feisst
- The School of Biological Sciences (SBS), University of Auckland, Auckland, 1010 New Zealand
| | - Hilary M. Sheppard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Topical treatment of inherited epidermolysis bullosa. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Inherited epidermolysis bullosa is a group of genetic skin disorders characterized by skin erosions, ulceration, skin and mucosal blistering requiring topical treatment. This review demonstrates major clinical manifestations of epidermolysis bullosa and its mechanisms of development. According to these features the main principles of topical treatment and drug therapy were developed, including physical protection from trauma, moisturizing, improvement of wound healing, prevention and management of infection, itch and pain management. Drug therapy is outlined with dosage forms, drug routes of administration, age restrictions indicated in the instruction for medical use for the medications that could be used in epidermolysis bullosa patients. The authors provide indications for clinical use of antiseptics, disinfectants, antibiotics, antimicrobial agents, emollient cream and drugs reducing itch and pain.
Collapse
|
34
|
Wang X, Alshehri F, Manzanares D, Li Y, He Z, Qiu B, Zeng M, A S, Lara-Sáez I, Wang W. Development of Minicircle Vectors Encoding COL7A1 Gene with Human Promoters for Non-Viral Gene Therapy for Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:ijms222312774. [PMID: 34884578 PMCID: PMC8657908 DOI: 10.3390/ijms222312774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/31/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare autosomal inherited skin disorder caused by mutations in the COL7A1 gene that encodes type VII collagen (C7). The development of an efficient gene replacement strategy for RDEB is mainly hindered by the lack of vectors able to encapsulate and transfect the large cDNA size of this gene. To address this problem, our group has opted to use polymeric-based non-viral delivery systems and minicircle DNA. With this approach, safety is improved by avoiding the usage of viruses, the absence of bacterial backbone, and the replacement of the control viral cytomegalovirus (CMV) promoter of the gene with human promoters. All the promoters showed impressive C7 expression in RDEB skin cells, with eukaryotic translation elongation factor 1 α (EF1α) promoter producing higher C7 expression levels than CMV following minicircle induction, and COL7A1 tissue-specific promoter (C7P) generating C7 levels similar to normal human epidermal keratinocytes. The improved system developed here has a high potential for use as a non-viral topical treatment to restore C7 in RDEB patients efficiently and safely, and to be adapted to other genetic conditions.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Fatma Alshehri
- College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Darío Manzanares
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Ming Zeng
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
- Correspondence: (I.L.-S.); (W.W.)
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (X.W.); (D.M.); (Y.L.); (Z.H.); (B.Q.); (M.Z.); (S.A.)
- Correspondence: (I.L.-S.); (W.W.)
| |
Collapse
|
35
|
Kiritsi D, Dieter K, Niebergall-Roth E, Fluhr S, Daniele C, Esterlechner J, Sadeghi S, Ballikaya S, Erdinger L, Schauer F, Gewert S, Laimer M, Bauer JW, Hovnanian A, Zambruno G, El Hachem M, Bourrat E, Papanikolaou M, Petrof G, Kitzmüller S, Ebens CL, Frank MH, Frank NY, Ganss C, Martinez AE, McGrath JA, Tolar J, Kluth MA. Clinical trial of ABCB5+ mesenchymal stem cells for recessive dystrophic epidermolysis bullosa. JCI Insight 2021; 6:151922. [PMID: 34665781 PMCID: PMC8663784 DOI: 10.1172/jci.insight.151922] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. ABCB5+ dermal mesenchymal stem cells (ABCB5+ MSCs) possess immunomodulatory, inflammation-dampening, and tissue-healing capacities. In a Col7a1–/– mouse model of RDEB, treatment with ABCB5+ MSCs markedly extended the animals’ lifespans. METHODS In this international, multicentric, single-arm, phase I/IIa clinical trial, 16 patients (aged 4–36 years) enrolled into 4 age cohorts received 3 i.v. infusions of 2 × 106 ABCB5+ MSCs/kg on days 0, 17, and 35. Patients were followed up for 12 weeks regarding efficacy and 12 months regarding safety. RESULTS At 12 weeks, statistically significant median (IQR) reductions in the Epidermolysis Bullosa Disease Activity and Scarring Index activity (EBDASI activity) score of 13.0% (2.9%–30%; P = 0.049) and the Instrument for Scoring Clinical Outcome of Research for Epidermolysis Bullosa clinician (iscorEB‑c) score of 18.2% (1.9%–39.8%; P = 0.037) were observed. Reductions in itch and pain numerical rating scale scores were greatest on day 35, amounting to 37.5% (0.0%–42.9%; P = 0.033) and 25.0% (–8.4% to 46.4%; P = 0.168), respectively. Three adverse events were considered related to the cell product: 1 mild lymphadenopathy and 2 hypersensitivity reactions. The latter 2 were serious but resolved without sequelae shortly after withdrawal of treatment. CONCLUSION This trial demonstrates good tolerability, manageable safety, and potential efficacy of i.v. ABCB5+ MSCs as a readily available disease-modifying therapy for RDEB and provides a rationale for further clinical evaluation. TRIAL REGISTRATION Clinicaltrials.gov NCT03529877; EudraCT 2018-001009-98. FUNDING The trial was sponsored by RHEACELL GmbH & Co. KG. Contributions by NYF and MHF to this work were supported by the NIH/National Eye Institute (NEI) grants RO1EY025794 and R24EY028767.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | | | | | | | | | | | | | | | | | - Franziska Schauer
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Stella Gewert
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Martin Laimer
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Alain Hovnanian
- Department of Genetics at Necker Hospital and.,Department of Dermatology at Saint-Louis Hospital, INSERM UMR
| | | | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Emmanuelle Bourrat
- Department of Dermatology, Reference Center for Rare Skin Diseases MAGEC, St. Louis Hospital, Paris, France
| | - Maria Papanikolaou
- St. John's Institute of Dermatology, Guy's Hospital, King's College London, London, United Kingdom
| | - Gabriela Petrof
- Department of Dermatology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Sophie Kitzmüller
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christen L Ebens
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota M Health Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Natasha Y Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - Anna E Martinez
- Department of Dermatology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, King's College London, London, United Kingdom
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota M Health Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Mark A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| |
Collapse
|
36
|
Nyström A, Bruckner-Tuderman L, Kiritsi D. Dystrophic Epidermolysis Bullosa: Secondary Disease Mechanisms and Disease Modifiers. Front Genet 2021; 12:737272. [PMID: 34650598 PMCID: PMC8505774 DOI: 10.3389/fgene.2021.737272] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The phenotypic presentation of monogenetic diseases is determined not only by the nature of the causative mutations but also is influenced by manifold cellular, microenvironmental, and external factors. Here, heritable extracellular matrix diseases, including dystrophic epidermolysis bullosa (DEB), are no exceptions. Dystrophic epidermolysis bullosa is caused by mutations in the COL7A1 gene encoding collagen VII. Deficiency of collagen VII leads to skin and mucosal fragility, which progresses from skin blistering to severe fibrosis and cancer. Clinical and pre-clinical studies suggest that targeting of secondary disease mechanisms or employment of natural disease modifiers can alleviate DEB severity and progression. However, since many of these mechanisms are needed for tissue homeostasis, informed, selective targeting is essential for safe and efficacious treatment. Here, we discuss a selection of key disease modifiers and modifying processes active in DEB, summarize the still scattered knowledge of them, and reflect on ways forward toward their utilization for symptom-relief or enhancement of curative therapies.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Zeng M, Xu Q, Zhou D, A S, Alshehri F, Lara-Sáez I, Zheng Y, Li M, Wang W. Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev 2021; 176:113842. [PMID: 34293384 DOI: 10.1016/j.addr.2021.113842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Non-viral gene therapy for hereditary skin diseases is an attractive prospect. However, research efforts dedicated to this area are rare. Taking advantage of the branched structural possibilities of polymeric vectors, we have developed a gene delivery platform for the treatment of an incurable monogenic skin disease - recessive dystrophic epidermolysis bullosa (RDEB) - based on highly branched poly(β-amino ester)s (HPAEs). The screening of HPAEs and optimization of therapeutic gene constructs, together with evaluation of the combined system for gene transfection, were comprehensively reviewed. The successful restoration of type VII collagen (C7) expression both in vitro and in vivo highlights HPAEs as a promising generation of polymeric vectors for RDEB gene therapy into the clinic. Considering that the treatment of patients with genetic cutaneous disorders, such as other subtypes of epidermolysis bullosa, pachyonychia congenita, ichthyosis and Netherton syndrome, remains challenging, the success of HPAEs in RDEB treatment indicates that the development of viable polymeric gene delivery vectors could potentially expedite the translation of gene therapy for these diseases from bench to bedside.
Collapse
|
38
|
Farokhforghani S, Fatemi MJ, Ghanooni P, Asadpour F, Araghi S, Nouri A. Epidermolysis Bullosa Registry Data in Iran. World J Plast Surg 2021; 10:99-103. [PMID: 34912673 PMCID: PMC8662693 DOI: 10.29252/wjps.10.3.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/11/2021] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND In many countries, there is no registry system to record data for Epidermolysis Bullosa patients. However, the first steps for establishing a registry system have been taken in Iran. Therefore, we decided to publish it for the first time. METHODS This was a prospective cross-sectional study. Data was obtained from 538 patients consecutively enrolled in the Iranian Epidermolysis Bullosa Registry, using a detailed instrument created by burn research center of Iran University of Medical Sciences, Tehran, Iran from Jan 2017 to Sep 2017. Patients' information such as age, gender, address, educational status, parents' family relationship and pathology result were recorded. Then a physician examined patients focusing on gastrointestinal system, teeth, ophthalmologic disorders, psychological problems and contracture of the upper and lower limbs and any other complaint. Data entered SPSS ver.19 and analyzed using ANOVA and LSD tests. RESULTS Overall, 538 EB patients were registered in Iran (6.72 patient in 100.000 person) with an approximately equal ratio between males and females. Among 103 patients whose disease type was determined by a pathologist, 78 patients (75.7%) had dystrophic type, 13 (12.6%) junctional, 9 (8.7%) simplex and 3 (2.9%) kindler type. The most common complaint of patients was dysphagia followed by tooth damage. CONCLUSION We stablished a data registry for EB patients for the first time in Iran. The frequency of EB in Iran is less than many other countries. However, data completion is to be done to include all patients as possible.
Collapse
Affiliation(s)
| | | | - Parinaz Ghanooni
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Faraz Asadpour
- Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Araghi
- Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Nouri
- Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Tabatabaei-Panah PS, Moravvej H, Alirajab M, Arghand F, Babaei H, Didehvar E, Hajmanouchehri S, Hosseine F, Karimi A, Mahdian M, Parvizi Moridani S, Sakhaie F, Ludwig RJ, Akbarzadeh R. COL17A1 gene polymorphisms are frequent in bullous pemphigoid. J Eur Acad Dermatol Venereol 2021; 35:e535-e538. [PMID: 33871111 DOI: 10.1111/jdv.17285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - H Moravvej
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Alirajab
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - F Arghand
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - H Babaei
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - E Didehvar
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S Hajmanouchehri
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - F Hosseine
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - A Karimi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M Mahdian
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S Parvizi Moridani
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - F Sakhaie
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - R J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - R Akbarzadeh
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
40
|
|
41
|
Huitema L, Phillips T, Alexeev V, Igoucheva O. Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 30:1724-1733. [PMID: 34142388 PMCID: PMC9290674 DOI: 10.1111/exd.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is a mechanobullous skin fragility disorder characterized by defective epithelial adhesion, leading to mechanical stress‐induced skin blistering. Based on the level of tissue separation within the dermal‐epidermal junction, EB is categorized into simplex (EBS), junctional (JEB), dystrophic (DEB) and Kindler syndrome. There is no cure for EB, and painful chronic cutaneous wounds are one of the major complications in recessive (RDEB) patients. Although RDEB is considered a cutaneous disease, recent data support the underlying systemic immunological defects. Furthermore, chronic wounds are often colonized with pathogenic microbiota, leading to excessive inflammation and altered wound healing. Consequently, patients with RDEB suffer from a painful sensation of chronic, cutaneous itching/burning and an endless battle with bacterial infections. To improve their quality of life and life expectancy, it is important to prevent cutaneous infections, dampen chronic inflammation and stimulate wound healing. A clear scientific understanding of the immunological events underlying the maintenance of chronic poorly healing wounds in RDEB patients is necessary to improve disease management and better understand other wound healing disorders. In this review, we summarize current knowledge of the role of professional phagocytes, such as neutrophils, macrophages and dendritic cells, the role of T‐cell‐mediated immunity in lymphoid organs, and the association of microbiota with poor wound healing in RDEB. We conclude that RDEB patients have an underlying immunity defect that seems to affect antibacterial immunity.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Kim BS, Kim JU, So KH, Hwang NS. Supercritical Fluid-Based Decellularization Technologies for Regenerative Medicine Applications. Macromol Biosci 2021; 21:e2100160. [PMID: 34121330 DOI: 10.1002/mabi.202100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Supercritical fluid-based extraction technologies are currently being increasingly utilized in high purity extract products for food industries. In recent years, supercritical fluid-based extraction technology is transformed in biomaterials process fields to be further utilized for tissue engineering and other biomedical applications. In particular, supercritical fluid-based decellularization protocols have great advantage over the conventional decellularization as it may allow preservation of extracellular matrix components and structures. In this review, the latest technological development utilizing the supercritical fluid-based decellularization for regenerative medicine is introduced.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.,Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
A Review of Acquired Autoimmune Blistering Diseases in Inherited Epidermolysis Bullosa: Implications for the Future of Gene Therapy. Antibodies (Basel) 2021; 10:antib10020019. [PMID: 34067512 PMCID: PMC8161452 DOI: 10.3390/antib10020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapy serves as a promising therapy in the pipeline for treatment of epidermolysis bullosa (EB). However, with great promise, the risk of autoimmunity must be considered. While EB is a group of inherited blistering disorders caused by mutations in various skin proteins, autoimmune blistering diseases (AIBD) have a similar clinical phenotype and are caused by autoantibodies targeting skin antigens. Often, AIBD and EB have the same protein targeted through antibody or mutation, respectively. Moreover, EB patients are also reported to carry anti-skin antibodies of questionable pathogenicity. It has been speculated that activation of autoimmunity is both a consequence and cause of further skin deterioration in EB due to a state of chronic inflammation. Herein, we review the factors that facilitate the initiation of autoimmune and inflammatory responses to help understand the pathogenesis and therapeutic implications of the overlap between EB and AIBD. These may also help explain whether corrections of highly immunogenic portions of protein through gene therapy confers a greater risk towards developing AIBD.
Collapse
|
44
|
Vahidnezhad H, Youssefian L, Saeidian AH, Boyden LM, Touati A, Harvey N, Naji M, Zabihi M, Barzegar M, Sotoudeh S, Liu L, Guy A, Kariminejad A, Zeinali S, Choate KA, McGrath JA, Uitto J. Kindler epidermolysis bullosa-like skin phenotype and downregulated basement membrane zone gene expression in poikiloderma with neutropenia and a homozygous USB1 mutation. Matrix Biol 2021; 99:43-57. [PMID: 34004352 DOI: 10.1016/j.matbio.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/24/2022]
Abstract
Epidermolysis bullosa (EB) is a genotypically heterogeneous group of disorders characterized by cutaneous blistering and erosions with a tremendous spectrum of severity. One of the distinct forms of EB, Kindler EB (KEB), manifests with blistering and poikiloderma; this subtype of EB is caused by mutations in the FERMT1 gene encoding kindlin-1. In this study, we investigated a patient clinically diagnosed as KEB with reduced FERMT1 gene expression and intensity of immunostaining for kindlin-1. Transmission electron microscopy showed lamina densa reduplication, frequently observed in KEB. However, no mutations were identified in FERMT1 in this patient with consanguineous parents, and this gene resided outside of genomic regions of homozygosity (ROH). Instead, whole-exome sequencing and homozygosity mapping identified a homozygous sequence variant at the +4 position of intron 2 in the USB1 gene, encoding an exoribonuclease required for processing of U6 snRNA, a critical component of spliceosomes. Examination of the patient's RNA by RNA-Seq confirmed the pathogenicity of this variant, causing aberrant splicing predicted to result in loss of function of USB1. Mutations in this gene have been reported in patients with poikiloderma and neutropenia, with a few reported cases in association with skin fragility, a condition distinct from the KEB phenotype. Transcriptome analysis revealed that several genes, expressed in the cutaneous basement membrane zone and previously associated with different subtypes of EB, were differentially downregulated at the mRNA level. EB-associated mRNA downregulation was confirmed at protein levels by skin immunofluorescence. These observations provide a novel mechanism for blistering and erosions in the skin as a result reduced presence of adhesion complexes critical for stable association of epidermis and dermis at the level of cutaneous basement membrane zone.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Genetics, Genomics, and Cancer Biology PhD Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Lynn M Boyden
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Andrew Touati
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nailah Harvey
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Mahtab Naji
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | | | | | - Soheila Sotoudeh
- Department of Dermatology, Children's Medical Center, Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Lu Liu
- Viapath, St Thomas' Hospital, London, United Kingdom
| | - Alyson Guy
- Viapath, St Thomas' Hospital, London, United Kingdom
| | | | - Sirous Zeinali
- Kawsar Human Genetics Research Center, Tehran, Iran; Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Keith A Choate
- Departments of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven, CT 06510, United States
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London, Guy's Campus, London, United Kingdom
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
45
|
Castiglia D, Fortugno P, Condorelli AG, Barresi S, De Luca N, Pizzi S, Neri I, Graziano C, Trojan D, Ponzin D, Rossi S, Zambruno G, Tartaglia M. A Novel Phenotype of Junctional Epidermolysis Bullosa with Transient Skin Fragility and Predominant Ocular Involvement Responsive to Human Amniotic Membrane Eyedrops. Genes (Basel) 2021; 12:716. [PMID: 34064633 PMCID: PMC8151857 DOI: 10.3390/genes12050716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Junctional epidermolysis bullosa (JEB) is a clinically and genetically heterogeneous skin fragility disorder frequently caused by mutations in genes encoding the epithelial laminin isoform, laminin-332. JEB patients also present mucosal involvement, including painful corneal lesions. Recurrent corneal abrasions may lead to corneal opacities and visual impairment. Current treatments are merely supportive. We report a novel JEB phenotype distinguished by the complete resolution of skin fragility in infancy and persistent ocular involvement with unremitting and painful corneal abrasions. Biallelic LAMB3 mutations c.3052-5C>G and c.3492_3493delCG were identified as the molecular basis for this phenotype, with one mutation being a hypomorphic splice variant that allows residual wild-type laminin-332 production. The reduced laminin-332 level was associated with impaired keratinocyte adhesion. Then, we also investigated the therapeutic power of a human amniotic membrane (AM) eyedrop preparation for corneal lesions. AM were isolated from placenta donors, according to a procedure preserving the AM biological characteristics as a tissue, and confirmed to contain laminin-332. We found that AM eyedrop preparation could restore keratinocyte adhesion in an in vitro assay. Of note, AM eyedrop administration to the patient resulted in long-lasting remission of her ocular manifestations. Our findings suggest that AM eyedrops could represent an effective, non-invasive, simple-to-handle treatment for corneal lesions in patients with JEB and possibly other EB forms.
Collapse
Affiliation(s)
- Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, 00167 Rome, Italy; (P.F.); (N.D.L.)
| | - Paola Fortugno
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, 00167 Rome, Italy; (P.F.); (N.D.L.)
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.B.); (S.P.); (M.T.)
| | - Naomi De Luca
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, 00167 Rome, Italy; (P.F.); (N.D.L.)
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.B.); (S.P.); (M.T.)
| | - Iria Neri
- Department of Experimental, Diagnostic and Specialty Medicine, Division of Dermatology, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Claudio Graziano
- Medical Genetics, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | | | - Diego Ponzin
- The Veneto Eye Bank Foundation, 30174 Venice, Italy;
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.B.); (S.P.); (M.T.)
| |
Collapse
|
46
|
Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmun Rev 2021; 20:102852. [PMID: 33971341 DOI: 10.1016/j.autrev.2021.102852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Autoimmune blistering diseases are a heterogenous group of dermatological disorders characterized by blisters and erosions of the skin and/or mucous membranes induced by autoantibodies against structural proteins of the desmosome or the dermal-epidermal adhesion complex including the hemidesmosome. They consist of the two major disease groups, pemphigus and pemphigoid diseases (PPDs). The diagnosis is based on clinical findings, histopathology, direct immunofluorescence, and detection of circulating autoantibodies. The pathogenesis is not fully elucidated, prognostic factors are lacking, and to date, there is no cure for PPDs. MicroRNAs (miRNAs) represent small, non-coding RNAs that play a pivotal role in the posttranscriptional regulation of gene expression. Their dysfunction was highlighted to play a significant role in the pathogenesis of various diseases. Even though a link between miRNAs and autoimmune blistering diseases had been suggested, the research of their involvement in the pathogenesis of PPDs is still in its infancy. miRNAs hold promise for uncovering new layers in the pathogenesis of PPDs, in order to improve diagnosis and also to develop potential therapeutic options. In the current article, we provide an overview regarding current knowledge of miRNAs in terms of complex pathogenesis of PPDs, and, also, their potential role as biomarkers, predictive factors and therapeutic targets.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany.
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Khan FF, Khan N, Rehman S, Ejaz A, Ali U, Erfan M, Ahmed ZM, Naeem M. Identification and Computational Analysis of Novel Pathogenic Variants in Pakistani Families with Diverse Epidermolysis Bullosa Phenotypes. Biomolecules 2021; 11:620. [PMID: 33921969 PMCID: PMC8143555 DOI: 10.3390/biom11050620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermolysis bullosa (EB) includes a group of rare gesnodermatoses that result in blistering and erosions of the skin and mucous membranes. Genetically, pathogenic variants in around 20 genes are known to alter the structural and functional integrity of intraepidermal adhesion and dermo-epidermal anchorage, leading to four different types of EB. Here we report the underlying genetic causes of EB phenotypes segregating in seven large consanguineous families, recruited from different regions of Pakistan. Whole exome sequencing, followed by segregation analysis of candidate variants through Sanger sequencing, identified eight pathogenic variants, including three novel (ITGB4: c.1285G>T, and c.3373G>A; PLEC: c.1828A>G) and five previously reported variants (COL7A1: c.6209G>A, and c.1573C>T; FERMT1: c.676insC; LAMA3: c.151insG; LAMB3: c.1705C>T). All identified variants were either absent or had very low frequencies in the control databases. Our in-silico analyses and 3-dimensional (3D) molecular modeling support the deleterious impact of these variants on the encoded proteins. Intriguingly, we report the first case of a recessively inherited form of rare EBS-Ogna associated with a homozygous variant in the PLEC gene. Our study highlights the clinical and genetic diversity of EB in the Pakistani population and expands the mutation spectrum of EB; it could also be useful for prenatal diagnosis and genetic counseling of the affected families.
Collapse
Affiliation(s)
- Fehmida F. Khan
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.F.K.); (N.K.)
| | - Naima Khan
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.F.K.); (N.K.)
| | - Sakina Rehman
- Laboratory of Neurogenetics and Translational Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amir Ejaz
- Army Medical College, Rawalpindi 46000, Pakistan;
| | - Uzma Ali
- Department of Dermatology, Capital Hospital, Islamabad 44000, Pakistan;
| | - Muhammad Erfan
- Department of Dermatology, Federal Government Polyclinic Hospital, Islamabad 44000, Pakistan;
| | - Zubair M. Ahmed
- Laboratory of Neurogenetics and Translational Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Muhammad Naeem
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.F.K.); (N.K.)
| |
Collapse
|
48
|
Taghdiri M, Naeimi S, Fardaei M, Tabei SMB. The novel mutation in the COL7A1 gene in the patient with dystrophic forms of epidermolysis bullosa. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Prodinger C, Bauer JW, Laimer M. Translational perspectives to treat Epidermolysis bullosa-Where do we stand? Exp Dermatol 2020; 29:1112-1122. [PMID: 33043517 PMCID: PMC7756480 DOI: 10.1111/exd.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Epidermolysis bullosa (EB) is the prototypical example of genetic skin fragility disorders. Genotypic heterogeneity, modifier genes, epigenetic, biochemical and environmental factors alter and determine pathogenic traits and, ultimately, the wide and striking phenotypic variability in EB. Besides the primary structural-functional defect, chronic tissue damage with induction and dysregulation of inflammatory pathways is a common pathogenic mechanism in EB. In localized variants, the inflammatory aberrations may mainly affect the micromilieu of lesional skin, while a systemic inflammatory response was shown to contribute to the systemic morbidity in severe EB subtypes with extensive cutaneous involvement. Our continued understanding of the pathophysiology of EB, as well as advances in molecular technologies, has paved the way for translational therapeutic approaches. The spectrum comprises of corrective and symptom-relieving therapies that include innovative therapeutic options garnered from the bench, repurposed drugs approved for other diseases, as well as strategies for gene-, protein- and cell-based therapies. Immunological traits further define new targets of therapy, aimed at improving skin barrier restoration, microbial surveillance and infection control, wound healing and anti-neoplastic effects. Clinical availability and feasibility of these approaches for all EB patients and subtypes are currently limited, reflecting issues of efficacy, specificity, tolerability and safety. A multistep targeting approach and highly individualized, risk-stratified combinatory treatment plans will thus be essential for sustained efficacy and improved overall quality of life in EB.
Collapse
Affiliation(s)
- Christine Prodinger
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Johann W Bauer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Martin Laimer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| |
Collapse
|
50
|
Abstract
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Collapse
Affiliation(s)
- Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Helen M Blau
- Baxter Foundation Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|