1
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Nieto-Fabregat F, Lenza MP, Marseglia A, Di Carluccio C, Molinaro A, Silipo A, Marchetti R. Computational toolbox for the analysis of protein-glycan interactions. Beilstein J Org Chem 2024; 20:2084-2107. [PMID: 39189002 PMCID: PMC11346309 DOI: 10.3762/bjoc.20.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Protein-glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, particularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applications of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented computational toolbox represents a valuable resource for researchers studying protein-glycan interactions and incorporates advanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein-ligand complexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computational tools in studying protein-glycan systems, revealing the capability of these tools to provide valuable insights into the binding kinetics, energetics, and structural determinants that govern specific molecular interactions.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Angela Marseglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| |
Collapse
|
3
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
4
|
Li Z, Di Vagno L, Chawla H, Ni Cheallaigh A, Critcher M, Sammon D, Briggs DC, Chung N, Chang V, Mahoney KE, Cioce A, Murphy LD, Chen YH, Narimatsu Y, Miller RL, Willems LI, Malaker SA, Huang ML, Miller GJ, Hohenester E, Schumann B. Xylosyltransferase Bump-and-hole Engineering to Chemically Manipulate Proteoglycans in Mammalian Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572522. [PMID: 38979271 PMCID: PMC11230170 DOI: 10.1101/2023.12.20.572522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian cells orchestrate signalling through interaction events on their surfaces. Proteoglycans are an intricate part of these interactions, carrying large glycosaminoglycan polysaccharides that recruit signalling molecules. Despite their importance in development, cancer and neurobiology, a relatively small number of proteoglycans have been identified. In addition to the complexity of glycan extension, biosynthetic redundancy in the first protein glycosylation step by two xylosyltransferase isoenzymes XT1 and XT2 complicates annotation of proteoglycans. Here, we develop a chemical genetic strategy that manipulates the glycan attachment site of cellular proteoglycans. By employing a tactic termed bump- and-hole engineering, we engineer the two isoenzymes XT1 and XT2 to specifically transfer a chemically modified xylose analogue to target proteins. The chemical modification contains a bioorthogonal tag, allowing the ability to visualise and profile target proteins modified by both transferases in mammalian cells. The versatility of our approach allows pinpointing glycosylation sites by tandem mass spectrometry, and exploiting the chemical handle to manufacture proteoglycans with defined GAG chains for cellular applications. Engineered XT enzymes permit a view into proteoglycan biology that is orthogonal to conventional techniques in biochemistry.
Collapse
|
5
|
Bourgeais M, Fouladkar F, Weber M, Boeri-Erba E, Wild R. Chemo-enzymatic synthesis of tetrasaccharide linker peptides to study the divergent step in glycosaminoglycan biosynthesis. Glycobiology 2024; 34:cwae016. [PMID: 38401165 PMCID: PMC11031135 DOI: 10.1093/glycob/cwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 02/26/2024] Open
Abstract
Glycosaminoglycans are extended linear polysaccharides present on cell surfaces and within the extracellular matrix that play crucial roles in various biological processes. Two prominent glycosaminoglycans, heparan sulfate and chondroitin sulfate, are covalently linked to proteoglycan core proteins through a common tetrasaccharide linker comprising glucuronic acid, galactose, galactose, and xylose moities. This tetrasaccharide linker is meticulously assembled step by step by four Golgi-localized glycosyltransferases. The addition of the fifth sugar moiety, either N-acetylglucosamine or N-acetylgalactosamine, initiates further chain elongation, resulting in the formation of heparan sulfate or chondroitin sulfate, respectively. Despite the fundamental significance of this step in glycosaminoglycan biosynthesis, its regulatory mechanisms have remained elusive. In this study, we detail the expression and purification of the four linker-synthesizing glycosyltransferases and their utilization in the production of fluorescent peptides carrying the native tetrasaccharide linker. We generated five tetrasaccharide peptides, mimicking the core proteins of either heparan sulfate or chondroitin sulfate proteoglycans. These peptides were readily accepted as substrates by the EXTL3 enzyme, which adds an N-acetylglucosamine moiety, thereby initiating heparan sulfate biosynthesis. Importantly, EXTL3 showed a preference towards peptides mimicking the core proteins of heparan sulfate proteoglycans over the ones from chondroitin sulfate proteoglycans. This suggests that EXTL3 could play a role in the decision-making step during glycosaminoglycan biosynthesis. The innovative strategy for chemo-enzymatic synthesis of fluorescent-labeled linker-peptides promises to be instrumental in advancing future investigations into the initial steps and the divergent step of glycosaminoglycan biosynthesis.
Collapse
Affiliation(s)
- Marie Bourgeais
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Farah Fouladkar
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Margot Weber
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044 Grenoble, France
| | | | - Rebekka Wild
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044 Grenoble, France
| |
Collapse
|
6
|
Oshima K, Siddiqui N, Orfila JE, Carter D, Laing J, Han X, Zakharevich I, Iozzo RV, Ghasabyan A, Moore H, Zhang F, Linhardt RJ, Moore EE, Quillinan N, Schmidt EP, Herson PS, Hippensteel JA. A role for decorin in improving motor deficits after traumatic brain injury. Matrix Biol 2024; 125:88-99. [PMID: 38135163 PMCID: PMC10922985 DOI: 10.1016/j.matbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI. In this study, we sought to delineate the dynamics of glycosaminoglycan alterations after TBI and discover the precise biologic processes responsible for observed glycosaminoglycan changes after injury. We performed state-of-the art mass spectrometry on brain tissues isolated from mice after TBI or craniotomy-alone. We observed dynamic changes in glycosaminoglycans at Day 1 and 7 post-TBI, with heparan sulfate, chondroitin sulfate, and hyaluronan remaining significantly increased after a week vis-à-vis craniotomy-alone tissues. We did not observe appreciable changes in circulating glycosaminoglycans in mice after experimental TBI compared to craniotomy-alone nor in patients with TBI and severe polytrauma compared to control patients with mild injuries, suggesting increases in injury site glycosaminoglycans are driven by local synthesis. We subsequently performed an unbiased whole genome transcriptomics analysis on mouse brain tissues 7 days post-TBI and discovered a significant induction of hyaluronan synthase 2, glypican-3, and decorin. The functional role of decorin after injury was further examined through multimodal behavioral testing comparing wild-type and Dcn-/- mice. We discovered that genetic ablation of Dcn led to an overall negative effect of TBI on function, exacerbating motor impairments after TBI. Collectively, our results provide a spatiotemporal characterization of post-TBI glycosaminoglycan alterations in the brain ECM and support an important adaptive role for decorin upregulation after TBI.
Collapse
Affiliation(s)
- Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah Siddiqui
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Danelle Carter
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin Laing
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Igor Zakharevich
- Department of Biochemistry, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Arsen Ghasabyan
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Hunter Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
7
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Gou L, Yang G, Ma S, Ding T, Sun L, Liu F, Huang J, Gao W. Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification. J Biomed Res 2023; 37:418-430. [PMID: 37977559 PMCID: PMC10687530 DOI: 10.7555/jbr.37.20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy and lacks effective treatment. Bulk-sequencing of different gene transcripts by comparing HCC tissues and adjacent normal tissues provides some clues for investigating the mechanisms or identifying potential targets for tumor progression. However, genes that are exclusively expressed in a subpopulation of HCC may not be enriched or detected through such a screening. In the current study, we performed a single cell-clone-based screening and identified galectin-14 as an essential molecule in the regulation of tumor growth. The aberrant expression of galectin-14 was significantly associated with a poor overall survival of liver cancer patients with database analysis. Knocking down galectin-14 inhibited the proliferation of tumor growth, whereas overexpressing galectin-14 promoted tumor growth in vivo. Non-targeted metabolomics analysis indicated that knocking down galectin-14 decreased glycometabolism; specifically that glycoside synthesis was significantly changed. Further study found that galectin-14 promoted the expression of cell surface heparan sulfate proteoglycans (HSPGs) that functioned as co-receptors, thereby increasing the responsiveness of HCC cells to growth factors, such as epidermal growth factor and transforming growth factor-alpha. In conclusion, the current study identifies a novel HCC-specific molecule galectin-14, which increases the expression of cell surface HSPGs and the uptake of growth factors to promote HCC cell proliferation.
Collapse
Affiliation(s)
- Liming Gou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Core Laboratory, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gang Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sujuan Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tong Ding
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luan Sun
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fang Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Huang
- Department of Gastroenterology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Wei Gao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Gastroenterology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| |
Collapse
|
9
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
10
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
11
|
Noborn F, Nilsson J, Sihlbom C, Nikpour M, Kjellén L, Larson G. Mapping the Human Chondroitin Sulfate Glycoproteome Reveals an Unexpected Correlation Between Glycan Sulfation and Attachment Site Characteristics. Mol Cell Proteomics 2023; 22:100617. [PMID: 37453717 PMCID: PMC10424144 DOI: 10.1016/j.mcpro.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) control key events in human health and disease and are composed of chondroitin sulfate (CS) polysaccharide(s) attached to different core proteins. Detailed information on the biological effects of site-specific CS structures is scarce as the polysaccharides are typically released from their core proteins prior to analysis. Here we present a novel glycoproteomic approach for site-specific sequencing of CS modifications from human urine. Software-assisted and manual analysis revealed that certain core proteins carried CS with abundant sulfate modifications, while others carried CS with lower levels of sulfation. Inspection of the amino acid sequences surrounding the attachment sites indicated that the acidity of the attachment site motifs increased the levels of CS sulfation, and statistical analysis confirmed this relationship. However, not only the acidity but also the sequence and characteristics of specific amino acids in the proximity of the serine glycosylation site correlated with the degree of sulfation. These results demonstrate attachment site-specific characteristics of CS polysaccharides of CSPGs in human urine and indicate that this novel method may assist in elucidating the biosynthesis and functional roles of CSPGs in cellular physiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
12
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|