1
|
Mai Y, Wu S, Zhang P, Chen N, Wu J, Wei F. The anti-oxidation related bioactive materials for intervertebral disc degeneration regeneration and repair. Bioact Mater 2025; 45:19-40. [PMID: 39588482 PMCID: PMC11585838 DOI: 10.1016/j.bioactmat.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic spinal condition characterized by the deterioration of the intervertebral discs (IVD), leading to structural damage and associated pain. This degenerative process is closely linked to oxidative stress injury, which plays a pivotal role in its onset and progression. Oxidative stress in IVDD results from the excessive production of reactive oxygen species (ROS) and impaired ROS clearance mechanisms, disrupting the redox balance within the intervertebral disc. Consequently, oxidative stress contributes to the degradation of the extracellular matrix (ECM), promotes cell apoptosis, and exacerbates disc tissue damage. Current treatment options for IVDD face significant challenges in effectively alleviating the oxidative stress-induced damage and facilitating disc tissue repair. However, recent advancements in biomaterials have opened new avenues of hope for IVDD treatment by addressing oxidative stress. In this review, we first provide an overview of the pathophysiological process of IVDD and explore the mechanisms and pathways associated with oxidative stress injury. Then, we delve into the current research on antioxidant biomaterials employed in the treatment of IVDD, and outline the advantages and limitations of hydrogel, nanomaterials, polyphenol and inorganic materials. Finally, we propose the future research direction of antioxidant biomaterials in IVDD treatment. The main idea of this review is shown in Scheme 1.
Collapse
Affiliation(s)
- Yingjie Mai
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Siying Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
| | - Penghui Zhang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Ningning Chen
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong SAR, 999077, China
| | - Fuxin Wei
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
2
|
Zhang M, Zhang L, Cao Z, Zhao Y. High-symmetry cage-like molecule N 20(C 2B 2) 30: computational insight into its bonding and reactivity. Phys Chem Chem Phys 2025; 27:4246-4252. [PMID: 39912704 DOI: 10.1039/d4cp04653f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
On the basis of density functional theory (DFT) calculations and AIMD simulations, a novel Ih-symmetry cage-like molecule N20(C2B2)30 is constructed and characterized computationally. It is found that N20(C2B2)30 is structurally similar to fullerene C20, but it has high thermodynamic and kinetic stability. The designed N20(C2B2)30 exhibits strong chemical reactivities, including reactivities for the Diels-Alder reaction with butadiene (C4H6) and cyclopentadiene (C5H6), as well as for the [3+2] addition reaction with diazomethane (N2CH2). In addition, the presence of the boron site and the inverted CC bond with the charge-shift (CS) bonding in N20(C2B2)30 make it quite active not only for cycloaddition reactions but also for capture of small molecules (e.g. H2, CO, NO, and NO2). Once N20(C2B2)30 complexes with a transition metal (TM) ion, the resultant complexes (TM)N20(C2B2)30+ (TM = Cu, Ag, and Au) can bind inactive CO2 and N2O at the TM site. Furthermore, AuN20(C2B2)30+ is able to effectively separate CO2 and N2O. Owing to its unique porous structure and reactivity as well as high stability, N20(C2B2)30 may further enrich the diversity of a highly symmetrical molecular family.
Collapse
Affiliation(s)
- Miaorun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China.
| | - Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China.
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China.
| |
Collapse
|
3
|
Li Z, Chen X, Wang Y. Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes. Phys Chem Chem Phys 2025; 27:1672-1690. [PMID: 39718318 DOI: 10.1039/d4cp03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Carboncones and fullerenes are exemplary π-conjugated carbon nanomaterials with unsaturated, positively curved surfaces, enabling the attachment of atoms or functional groups to enhance their physicochemical properties. However, predicting and understanding the addition patterns in functionalized carboncones and fullerenes are extremely challenging due to the formidable complexity of the regioselectivity exhibited in the adducts. Existing predictive models fall short in systems where the carbon molecular framework undergoes severe distortion upon high degrees of addition. Here, we propose an incremental deep learning approach to predict regioselectivity in the hydrogenation of carboncones and chlorination of fullerenes. Utilizing exclusively graph-based features, our deep neural network (DNN) models rely solely on atomic connectivity, without requiring 3D molecular coordinates as input or their iterative optimization. This advantage inherently avoids the risk of obtaining chemically unreasonable optimized structures, enabling the handling of highly distorted adducts. The DNN models allow us to study regioselectivity in hydrogenated carboncones of C70H20 and C62H16, accommodating up to at least 40 and 30 additional H atoms, respectively. Our approach also correctly predicts experimental addition patterns in C50Cl10 and C76Cln (n = 18, 24, and 28), whereas in the latter cases all other known methods have been proven unsuccessful. Compared to our previously developed topology-based models, the DNN's superior predictive power and generalization ability make it a promising tool for investigating complex addition patterns in similar chemical systems.
Collapse
Affiliation(s)
- Zhengda Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Xuyang Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
4
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zhang J, Zhao W, Shi C, Zhao L, Chu Y, Ren Y, Wang Q, Chi Y, Zhou S. A Novel PVDF Ultrafiltration Membrane Modified by C 60(OH) n-Ag. Polymers (Basel) 2024; 16:3359. [PMID: 39684103 DOI: 10.3390/polym16233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ultrafiltration membranes in the fields of water treatment and biomedicine should have high permeability as well as antibacterial and antifouling capabilities. In this study, based on the hydrophilicity of fullerol (C60(OH)n) and the bacteriostatic properties of silver (Ag), a fullerol-silver (C60(OH)n-Ag) complex was prepared as a multifunctional additive. A polyvinylidene fluoride (PVDF)-composited C60(OH)n-Ag ultrafiltration membrane (C60(OH)n-Ag/PVDF) was prepared by immersion precipitation phase transformation. Addition of the C60(OH)n-Ag complex improved the permeability and retention of the traditional PVDF membrane. Compared with the traditional PVDF membrane, the surface water contact angle of the modified PVDF and C60(OH)n-Ag ultrafiltration membrane was reduced from 75.05° to 34.50°, its pure water flux increased from 224.11 L·m-2·h-1 to 804.05 L·m-2·h-1, the retention rate on bovine serum protein was increased from 75.00% to 96.44% and the flux recovery rate increased from 64.91% to 79.08%. The C60(OH)n-Ag/PVDF ultrafiltration membrane had good inhibitory effects on Escherichia coli and Staphylococcus aureus, while the PVDF ultrafiltration membrane had no obvious inhibitory effects.
Collapse
Affiliation(s)
- Jie Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Wenjun Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Chengyang Shi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Liman Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yudi Chu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanan Ren
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Qun Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanxia Chi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shujing Zhou
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
6
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
7
|
Prylutskyy Y, Nozdrenko D, Motuziuk O, Prylutska S, Bogutska K, Abramchuk O, Morenko A, Franskevych D, Scharff P, Ritter U. C 60 Fullerene Reduces the Development of Post-Traumatic Dysfunction in Rat Soleus Muscle. Int J Mol Sci 2024; 25:12206. [PMID: 39596273 PMCID: PMC11594679 DOI: 10.3390/ijms252212206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic skeletal muscle injury is a complex pathology caused by high-energy trauma to muscle tissue. Previously, a positive effect was established when C60 fullerene was administered against the background of muscle ischemia, mechanical muscle injury, and other muscle dysfunctions, which probably protected the muscle tissue from damage caused by oxidative stress. Using tensiometry and biochemical analysis, the biomechanical parameters of skeletal muscle contraction and biochemical indices of the blood of rats 15 days after traumatic injury of the soleus muscle caused by myocyte destruction by compression were studied. The intraperitoneal administration of C60 fullerene aqueous solution (C60FAS) in a daily dose of 1 mg/kg improved its contractile function by 28-40 ± 2% and the values of the investigated biochemical indices of the animals' blood by 15-34 ± 2% relative to the trauma group. The obtained results indicate the potential ability of C60 fullerenes, as powerful antioxidants, to reduce the development of post-traumatic dysfunction of the soleus muscle.
Collapse
Affiliation(s)
- Yuriy Prylutskyy
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (Y.P.); (D.N.); (O.M.); (K.B.); (D.F.)
| | - Dmytro Nozdrenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (Y.P.); (D.N.); (O.M.); (K.B.); (D.F.)
| | - Olexandr Motuziuk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (Y.P.); (D.N.); (O.M.); (K.B.); (D.F.)
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine; (O.A.); (A.M.)
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine;
| | - Kateryna Bogutska
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (Y.P.); (D.N.); (O.M.); (K.B.); (D.F.)
| | - Olga Abramchuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine; (O.A.); (A.M.)
| | - Alevtyna Morenko
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine; (O.A.); (A.M.)
| | - Daria Franskevych
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (Y.P.); (D.N.); (O.M.); (K.B.); (D.F.)
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| |
Collapse
|
8
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
9
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
10
|
Rašović I, Piacenti AR, Contera S, Porfyrakis K. Hierarchical Self-Assembly of Water-Soluble Fullerene Derivatives into Supramolecular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401963. [PMID: 38850187 DOI: 10.1002/smll.202401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Controlling the self-assembly of nanoparticle building blocks into macroscale soft matter structures is an open question and of fundamental importance to fields as diverse as nanomedicine and next-generation energy storage. Within the vast library of nanoparticles, the fullerenes-a family of quasi-spherical carbon allotropes-are not explored beyond the most common, C60. Herein, a facile one-pot method is demonstrated for functionalizing fullerenes of different sizes (C60, C70, C84, and C90-92), yielding derivatives that self-assemble in aqueous solution into supramolecular hydrogels with distinct hierarchical structures. It is shown that the mechanical properties of these resultant structures vary drastically depending on the starting material. This work opens new avenues in the search for control of macroscale soft matter structures through tuning of nanoscale building blocks.
Collapse
Affiliation(s)
- Ilija Rašović
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- School of Metallurgy and Materials, University of Birmingham, Elms Road, Birmingham, B15 2TT, UK
- EPSRC Centre for Doctoral Training in Topological Design, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alba R Piacenti
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Kyriakos Porfyrakis
- Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
11
|
Radivoievych A, Schnepel S, Prylutska S, Ritter U, Zolk O, Frohme M, Grebinyk A. From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C 60-Berberine Nanocomplex on Cancer Cells. Cancers (Basel) 2024; 16:3184. [PMID: 39335156 PMCID: PMC11430052 DOI: 10.3390/cancers16183184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The primary objective of this research targeted the biochemical effects of SDT on human cervix carcinoma (HeLa) and mouse Lewis lung carcinoma (LLC) cells grown in 2D monolayer and 3D spheroid cell culture. METHODS HeLa and LLC monolayers and spheroids were treated with a 20 µM C60-Ber for 24 h, followed by irradiation with 1 MHz, 1 W/cm2 US. To evaluate the efficacy of the proposed treatment on cancer cells, assessments of cell viability, caspase 3/7 activity, ATP levels, and ROS levels were conducted. RESULTS Our results revealed that US irradiation alone had negligible effects on LLC and HeLa cancer cells. However, both monolayers and spheroids irradiated with US in the presence of the C60-Ber exhibited a significant decrease in viability (32% and 37%) and ATP levels (42% and 64%), along with a notable increase in ROS levels (398% and 396%) and caspase 3/7 activity (437% and 246%), for HeLa monolayers and spheroids, respectively. Similar tendencies were observed with LLC cells. In addition, the anticancer effects of C60-Ber surpassed those of C60, Ber, or their mixture (C60 + Ber) in both cell lines. CONCLUSIONS The detected intensified ROS generation and ATP level drop point to mitochondria dysfunction, while increased caspase 3/7 activity points on the apoptotic pathway induction. The combination of 1 W/cm2 US with C60-Ber showcased a promising platform for synergistic sonodynamic chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Aleksandar Radivoievych
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| | - Sophia Schnepel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Svitlana Prylutska
- Department of Plants Physiology, Biochemistry and Bionergetics, National University of Life and Environmental Science of Ukraine, Heroyiv Oborony Str., 15, 03041 Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany
| | - Oliver Zolk
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Institute of Clinical Pharmacology, Brandenburg Medical School, Immanuel Klinik Rüdersdorf, 15562 Rüdersdorf, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| |
Collapse
|
12
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
13
|
Bartoli M, Cardano F, Piatti E, Lettieri S, Fin A, Tagliaferro A. Interface properties of nanostructured carbon-coated biological implants: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1041-1053. [PMID: 39161465 PMCID: PMC11331541 DOI: 10.3762/bjnano.15.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The interfaces between medical implants and living tissues are of great complexity because of the simultaneous occurrence of a wide variety of phenomena. The engineering of implant surfaces represents a crucial challenge in material science, but the further improvement of implant properties remains a critical task. It can be achieved through several processes. Among them, the production of specialized coatings based on carbon-based materials stands very promising. The use of carbon coatings allows one to simultaneously fine-tune tribological, mechanical, and chemical properties. Here, we review applications of nanostructured carbon coatings (nanodiamonds, carbon nanotubes, and graphene-related materials) for the improvement of the overall properties of medical implants. We are focusing on biological interactions, improved corrosion resistance, and overall mechanical properties, trying to provide a complete overview within the field.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Francesca Cardano
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Stefania Lettieri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Andrea Fin
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| |
Collapse
|
14
|
Örnek E, Alkan M, Erel S, Yığman Z, Dursun AD, Dağlı A, Sarıkaya B, Kip G, Polat Y, Arslan M. Effects of Sevoflurane and Fullerenol C60 on the Heart and Lung in Lower-Extremity Ischemia-Reperfusion Injury in Streptozotocin-Induced Diabetes Mice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1232. [PMID: 39202513 PMCID: PMC11356023 DOI: 10.3390/medicina60081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Lower-extremity ischemia-reperfusion injury can induce distant organ ischemia, and patients with diabetes are particularly susceptible to ischemia-reperfusion injury. Sevoflurane, a widely used halogenated inhalation anesthetic, and fullerenol C60, a potent antioxidant, were investigated for their effects on heart and lung tissues in lower-extremity ischemia-reperfusion injury in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: A total of 41 mice were divided into six groups: control (n = 6), diabetes-control (n = 7), diabetes-ischemia (n = 7), diabetes-ischemia-fullerenol C60 (n = 7), diabetes-ischemia-sevoflurane (n = 7), and diabetes-ischemia-fullerenol C60-sevoflurane (n = 7). Diabetes was induced in mice using a single intraperitoneal dose of 55 mg/kg STZ in all groups except for the control group. Mice in the control and diabetes-control groups underwent midline laparotomy and were sacrificed after 120 min. The DIR group underwent 120 min of lower-extremity ischemia followed by 120 min of reperfusion. In the DIR-F group, mice received 100 μg/kg fullerenol C60 intraperitoneally 30 min before IR. In the DIR-S group, sevoflurane and oxygen were administered during the IR procedure. In the DIR-FS group, fullerenol C60 and sevoflurane were administered. Biochemical and histological evaluations were performed on collected heart and lung tissues. Results: Histological examination of heart tissues showed significantly higher necrosis, polymorphonuclear leukocyte infiltration, edema, and total damage scores in the DIR group compared to controls. These effects were attenuated in fullerenol-treated groups. Lung tissue examination revealed more alveolar wall edema, hemorrhage, vascular congestion, polymorphonuclear leukocyte infiltration, and higher total damage scores in the DIR group compared to controls, with reduced injury parameters in the fullerenol-treated groups. Biochemical analyses indicated significantly higher total oxidative stress, oxidative stress index, and paraoxonase-1 levels in the DIR group compared to the control and diabetic groups. These levels were lower in the fullerenol-treated groups. Conclusions: Distant organ damage in the lung and heart tissues due to lower-extremity ischemia-reperfusion injury can be significantly reduced by fullerenol C60.
Collapse
Affiliation(s)
- Ender Örnek
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Selin Erel
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (Z.Y.); (A.D.)
- Neuroscience and Neurotechnology Center of Excellence (NOROM), Gazi University, Ankara 06560, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey; (A.D.D.); (B.S.)
| | - Aslı Dağlı
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (Z.Y.); (A.D.)
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational School of Health Services, Atılım University, Ankara 06830, Turkey
| | - Badegül Sarıkaya
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey; (A.D.D.); (B.S.)
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Yücel Polat
- Tekirdağ Dr İsmail Fehmi Cumalıoğlu City Hospital, Department of Cardiovascular Surgery, Tekirdağ 59030, Turkey;
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
- Life Sciences Application and Research Center, Gazi University, Ankara 06560, Turkey
- Laboratory Animal Breeding and Experimental Research Center (GUDAM), Gazi University, Ankara 06560, Turkey
| |
Collapse
|
15
|
Maher N, Mahmood A, Fareed MA, Kumar N, Rokaya D, Zafar MS. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res 2024:S2090-1232(24)00300-X. [PMID: 39033875 DOI: 10.1016/j.jare.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose. AIM This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials. KEY SCIENTIFIC CONCEPTS OF REVIEW Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.
Collapse
Affiliation(s)
- Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Amber Fareed
- Clinical Sciences Department College of Dentistry Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates.
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah 41311, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman 11942, Jordan; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
16
|
Akhanova NY, Negim ES, Yerlanuly Y, Batryshev DG, Eissa MM, Schur DY, Ramazanov TS, Al Azzam KM, Muratov MM, Gabdullin MT. Influence of fullerene content on the properties of polyurethane resins: A study of rheology and thermal characteristics. Heliyon 2024; 10:e33282. [PMID: 39022089 PMCID: PMC11253536 DOI: 10.1016/j.heliyon.2024.e33282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The effect of different contents of fullerene on the properties of polyurethane resins (PUs), including rheology and thermal properties, was investigated. Polyurethane resins were prepared through polyaddition reactions using different isocyanate monomers such as isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), and different polyols, such as poly(oxytetramethylene) glycol (PTMG), the triol trade name FA-703, and polypropylene glycols (PPG), at an NCO/OH ratio 0.94 and a temperature of 100 °C. IR spectroscopy was used to control the polymerization of PUs through the shifting of NCO peaks. The results showed that the rheology and thermal properties of the prepared PU resins depend on the type of isocyanates and fullerene used. Based on the type of isocyanates, the PU resin prepared by MDI has the highest viscosity and thermal stability compared to the other isocyanates investigated. On the other hand, the PU resins prepared by IPDI mixed with fullerene had the highest viscosity and thermal stability. However, the initial decomposition temperature (T onset) of the PUs decreased with the addition of fullerene without affecting the maximum decomposition temperature (PDT max) of the PU resin.
Collapse
Affiliation(s)
- Nazym Ye Akhanova
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
| | - El-Sayed Negim
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
- School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, 050013, Almaty, Kazakhstan
| | - Yerassyl Yerlanuly
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
- Kazakh Physical Society, 050040, Republic of Kazakhstan, Almaty, Al-Farabi Ave. 71, Kazakhstan
| | - Didar G. Batryshev
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
| | - Mohamed M. Eissa
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Dmitry Yu Schur
- Institute for Problems of Materials Science National Academy of Sciences in Ukraine, UA-03142, Kyiv, Ukraine
| | - Tlekkabul S. Ramazanov
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
- Kazakh Physical Society, 050040, Republic of Kazakhstan, Almaty, Al-Farabi Ave. 71, Kazakhstan
| | - Khaldun M. Al Azzam
- Department of Chemistry, Faculty of Science, The University of Jordan, 11942, Amman, Jordan
| | - Mukhit M. Muratov
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
- Kazakh Physical Society, 050040, Republic of Kazakhstan, Almaty, Al-Farabi Ave. 71, Kazakhstan
| | | |
Collapse
|
17
|
Nozdrenko D, Motuziuk O, Prylutska S, Matviienko T, Bogutska K, Franskevych D, Nurishchenko N, Abramchuk O, Prylutskyy Y. С 60 fullerene protective effect against the rat muscle soleus trauma. Heliyon 2024; 10:e32677. [PMID: 38961948 PMCID: PMC11219981 DOI: 10.1016/j.heliyon.2024.e32677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Muscle trauma is one of the most common body injuries. Severe consequences of muscle trauma are ischemic injuries of the extremities. It is known that the intensification of free radical processes takes place in almost most acute diseases and conditions, including muscle trauma. C60 fullerene (C60) with powerful antioxidant properties can be considered a potential nanoagent for developing an effective therapy for skeletal muscle trauma. Here the water-soluble C60 was prepared and its structural organization has been studied by the atomic force microscopy and dynamic light scattering techniques. The selective biomechanical parameters of muscle soleus contraction and biochemical indicators of blood in rats were evaluated after intramuscular injection of C60 1 h before the muscle trauma initiation. Analysis of the force muscle response after C60 injection (1 mg kg-1 dose) showed its protective effect against ischemia and mechanical injury at the level of 30 ± 2 % and 17 ± 1 %, accordingly, relative to the pathology group. Analysis of biomechanical parameters that are responsible for correcting precise positioning confirmed the effectiveness of C60 at a level of more than 50 ± 3 % relative to the pathology group. Moreover, a decrease in the biochemical indicators of blood by about 33 ± 2 % and 10 ± 1 % in ischemia and mechanical injury, correspondingly, relative to the pathology group occurs. The results obtained demonstrate the ability of C60 to correct the functional activity of damaged skeletal muscle.
Collapse
Affiliation(s)
- Dmytro Nozdrenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Olexandr Motuziuk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, 03041, Ukraine
| | - Tetiana Matviienko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Kateryna Bogutska
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Daria Franskevych
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Nataliya Nurishchenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Olga Abramchuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Yuriy Prylutskyy
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| |
Collapse
|
18
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
19
|
Bai X, Dong C, Shao X, Rahman FU, Hao H, Zhang Y. Research progress of fullerenes and their derivatives in the field of PDT. Eur J Med Chem 2024; 271:116398. [PMID: 38614061 DOI: 10.1016/j.ejmech.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
In contemporary studies, the predominant utilization of C60 derivatives pertains to their role as photosensitizers or agents that scavenge free radicals. The intriguing coexistence of these divergent functionalities has prompted extensive investigation into water-soluble fullerenes. The photodynamic properties of these compounds find practical applications in DNA cleavage, antitumor interventions, and antibacterial endeavors. Consequently, photodynamic therapy is progressively emerging as a pivotal therapeutic modality within the biomedical domain, owing to its notable levels of safety and efficacy. The essential components of photodynamic therapy encompass light of the suitable wavelength, oxygen, and a photosensitizer, wherein the reactive oxygen species generated by the photosensitizer play a pivotal role in the therapeutic mechanism. The remarkable ability of fullerenes to generate singlet oxygen has garnered significant attention from scholars worldwide. Nevertheless, the limited permeability of fullerenes across cell membranes owing to their low water solubility necessitates their modification to enhance their efficacy and utilization. This paper reviews the applications of fullerene derivatives as photosensitizers in antitumor and antibacterial fields for the recent years.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chungeng Dong
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xinle Shao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
20
|
Iannazzo D, Giofrè SV, Espro C, Celesti C. Graphene-based materials as nanoplatforms for antiviral therapy and prophylaxis. Expert Opin Drug Deliv 2024; 21:751-766. [PMID: 38841752 DOI: 10.1080/17425247.2024.2364652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Messina, Italy
| | - Salvatore V Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Li L, Fu J, Ye J, Liu L, Sun Z, Wang H, Tan S, Zhen M, Wang C, Bai C. Developing Hypoxia-Sensitive System via Designing Tumor-Targeted Fullerene-Based Photosensitizer for Multimodal Therapy of Deep Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2310875. [PMID: 38450765 DOI: 10.1002/adma.202310875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70 ) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70 -mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.
Collapse
Affiliation(s)
- Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiahao Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangjie Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Shenoy V, Gunda R, Noble C, Haraguchi A, Stevenson S, Daniel J. Fullertubes inhibit mycobacterial viability and prevent biofilm formation by disrupting the cell wall. Cell Biochem Funct 2024; 42:e3963. [PMID: 38424684 DOI: 10.1002/cbf.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90 ) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.
Collapse
Affiliation(s)
- Varun Shenoy
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Rashmika Gunda
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Cora Noble
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Annalisa Haraguchi
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Steven Stevenson
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Jaiyanth Daniel
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| |
Collapse
|
23
|
Jian HJ, Anand A, Lai JY, Huang CC, Ma DHK, Lai CC, Chang HT. Ultrahigh-Efficacy VEGF Neutralization Using Carbonized Nanodonuts: Implications for Intraocular Anti-Angiogenic Therapy. Adv Healthc Mater 2024; 13:e2302881. [PMID: 38130100 DOI: 10.1002/adhm.202302881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Ocular angiogenesis, associated with diseases such as retinopathy of prematurity and diabetic retinopathy, is a leading cause of irreversible vision loss. Herein, carbon nanodonuts (CNDs) with a donut-shaped structure are synthesized using sodium alginate (SA) and 1,8-diaminooctane (DAO) through a one-step thermal process. The formation of SA/DAO-CNDs occurs through a crosslinking reaction between SA and DAO, creating amide bonds followed by partial carbonization. In human retinal pigment epithelial cells exposed to H2 O2 or lipopolysaccharide, the SA/DAO-CNDs display a more than fivefold reduction in reactive oxygen species and proinflammatory cytokines, such as IL-6 and IL-1β, when compared to carbonized nanomaterials produced exclusively from SA. Furthermore, the CNDs effectively inhibit vascular endothelial growth factor A-165 (VEGF-A165 )-induced cell migration and tube formation in human umbilical vein endothelial cells due to their strong affinity for VEGF-A165 , with a dissociation constant of 2.2 × 10-14 M, over 1600 times stronger than the commercial drug bevacizumab (Avastin). Trypsin digestion coupled with LC-MS/MS analysis reveals that VEGF-A165 interacts with SA/DAO-CNDs through its heparin-binding domain, leading to activity loss. The SA/DAO-CNDs demonstrate excellent biocompatibility and potent anti-angiogenic effects in chicken embryos and rabbit eyes. These findings suggest that SA/DAO-CNDs hold promise as a therapeutic agent for treating various angiogenesis-related ocular diseases.
Collapse
Affiliation(s)
- Hong-Jyuan Jian
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - David Hui-Kang Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| |
Collapse
|
24
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
25
|
Chen TY, Cheng KC, Yang PS, Shrestha LK, Ariga K, Hsu SH. Interaction of vascular endothelial cells with hydrophilic fullerene nanoarchitectured structures in 2D and 3D environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315014. [PMID: 38419801 PMCID: PMC10901190 DOI: 10.1080/14686996.2024.2315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 μm and 3.4 ± 0.4 μm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 μm and 1.2 ± 0.2 μm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 μg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 μg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Pei-Syuan Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- Supermolecules Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, R.O.C
| |
Collapse
|
26
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|
27
|
Ribeiro MEA, Huaman NRC, Folly MM, Gomez JGC, Sánchez Rodríguez RJ. A potential hybrid nanocomposite of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fullerene for bone tissue regeneration and sustained drug release against bone infections. Int J Biol Macromol 2023; 251:126531. [PMID: 37634778 DOI: 10.1016/j.ijbiomac.2023.126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Developing a multifunctional biomaterial for bone filling and local antibiotic therapy is a complex challenge for bone tissue engineering. Hybrid nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with nanohydroxyapatite (nHA), fullerene (C60), and vancomycin (VC) were produced by injection. Fullerene was successfully impregnated with VC, as seen in FTIR. The crystallinity degree of PHBHV was slightly reduced in the presence of C60 and VC (64.3 versus 60.8 %), due to the plasticizing effect of these particles. It also resulted in a decrease in the glass transition temperature (Tg), observed by differential scanning calorimetry (DSC). Dense PHBHV/nHA/C60/VC had a flexural elastic modulus 29 % higher than PHBHV, as a result of the good interface between PHBHV, C60, and nHA - particles of high elastic modulus. Dense disks released 25.03 ± 4.27 % of VC for 14 days, which demonstrated its potential to be an alternative treatment to bone infections. Porous scaffolds of PHBHV/nHA/C60/VC were 3D printed with a porosity of 50 % and porous size of 467 ± 70 μm, and had compression elastic modulus of 0.022 GPa, being a promising material to trabecular bone replacement. The plasticizing effect of C60 improved the printability of the material. The hybrid nanocomposite was non-cytotoxic and showed good ability in adhering macrophage cells.
Collapse
Affiliation(s)
- Maria Eduarda Araújo Ribeiro
- Advanced Materials Laboratory - LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, 28015-620 Campos dos Goytacazes, RJ, Brazil.
| | | | - Márcio Manhães Folly
- Animal Health Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, Brazil
| | | | - Rubén J Sánchez Rodríguez
- Advanced Materials Laboratory - LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, 28015-620 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
28
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
29
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
30
|
Di Sante M, Kaltenbrunner A, Lombardo M, Danielli A, Costantini PE, Di Giosia M, Calvaresi M. Putting a "C 60 Ball" and Chain to Chlorin e6 Improves Its Cellular Uptake and Photodynamic Performances. Pharmaceuticals (Basel) 2023; 16:1329. [PMID: 37765138 PMCID: PMC10538216 DOI: 10.3390/ph16091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Chlorin e6 (Ce6) and fullerene (C60) are among the most used photosensitizers (PSs) for photodynamic therapy (PDT). Through the combination of the chemical and photophysical properties of Ce6 and C60, in principle, we can obtain an "ideal" photosensitizer that is able to bypass the limitations of the two molecules alone, i.e., the low cellular uptake of Ce6 and the scarce solubility and absorption in the red region of the C60. Here, we synthesized and characterized a Ce6-C60 dyad. The UV-Vis spectrum of the dyad showed the typical absorption bands of both fullerene and Ce6, while a quenching of Ce6 fluorescence was observed. This behavior is typical in the formation of a fullerene-antenna system and is due to the intramolecular energy, or electron transfer from the antenna (Ce6) to the fullerene. Consequently, the Ce6-C60 dyad showed an enhancement in the generation of reactive oxygen species (ROS). Flow cytometry measurements demonstrated how the uptake of the Ce6 was strongly improved by the conjugation with C60. The Ce6-C60 dyad exhibited in A431 cancer cells low dark toxicity and a higher PDT efficacy than Ce6 alone, due to the enhancement of the uptake and the improvement of ROS generation.
Collapse
Affiliation(s)
- Manuele Di Sante
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (M.D.S.); (M.L.)
| | - Alena Kaltenbrunner
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (A.K.); (A.D.)
| | - Marco Lombardo
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (M.D.S.); (M.L.)
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (A.K.); (A.D.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (A.K.); (A.D.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (M.D.S.); (M.L.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (M.D.S.); (M.L.)
| |
Collapse
|
31
|
Kukaliia ON, Ageev SV, Petrov AV, Kirik OV, Korzhevskii DE, Meshcheriakov AA, Jakovleva AA, Poliakova LS, Novikova TA, Kolpakova ME, Vlasov TD, Molchanov OE, Maistrenko DN, Murin IV, Sharoyko VV, Semenov KN. C 60 adduct with L-arginine as a promising nanomaterial for treating cerebral ischemic stroke. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102698. [PMID: 37507062 DOI: 10.1016/j.nano.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
The work aimed to investigate the biocompatibility and biological activity of the water-soluble fullerene adduct C60-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of neuroprotectors. It has been suggested that a putative mechanism of the protective action of the C60-Arg adduct is associated with its antioxidant properties, the ability to penetrate the blood-brain barrier, and release nitrogen monoxide as a result of the catabolism of L-arginine residues, which promote vascular relaxation. The action of the C60-Arg adduct was compared with the action of such an antioxidant as Edaravone, which is approved in Japan for the treatment of ischemic and haemorrhagic strokes.
Collapse
Affiliation(s)
- Olegi N Kukaliia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia
| | - Olga V Kirik
- Institute of Experimental Medicine, 12 Akademika Pavlova Str., Saint Petersburg, 197022, Russia
| | - Dmitrii E Korzhevskii
- Institute of Experimental Medicine, 12 Akademika Pavlova Str., Saint Petersburg, 197022, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Anastasia A Jakovleva
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Liudmila S Poliakova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Tatiana A Novikova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Maria E Kolpakova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Timur D Vlasov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia
| | - Dmitriy N Maistrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia.
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia.
| |
Collapse
|
32
|
Jia W, Li X, Zhang T, Wang C, Zhen M. Efficiently normalizing leukopoiesis by gadofullerene nanoparticles to ameliorate radiation-triggered myelosuppression. J Mater Chem B 2023; 11:7401-7409. [PMID: 37431674 DOI: 10.1039/d3tb00599b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Myelosuppression is a predominant side-effect of radiotherapy, which manifests as the lower activity of blood cell precursors in bone marrow. Though progress in anti-myelosuppression has been made by the application of growth factors e.g., the granulocyte colony-stimulating factor (G-CSF), the side-effects (e.g., bone-pain, liver injury, and lung toxicity) limit their applications in clinic. Herein, we developed a strategy of efficiently normalizing leukopoiesis using gadofullerene nanoparticles (GFNPs) against myelosuppression triggered by radiation. Specifically, GFNPs with high radical-scavenging abilities elevated the generation of leukocytes and alleviated the bone marrow's pathological state under myelosuppression. Notably, GFNPs potentiated the differentiation, development, and maturation of leukocytes (neutrophils, lymphocytes) in radiation bearing mice even better than what G-CSF did. In addition, GFNPs had little toxicity towards the main organs including the heart, liver, spleen, lung, and kidney. This work provides an in-depth understanding of how advanced nanomaterials mitigate myelosuppression by regulating leukopoiesis.
Collapse
Affiliation(s)
- Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhang
- Beijing ChaoYang Hospital, Beijing 100020, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Zhang G, Fang H, Chang S, Chen R, Li L, Wang D, Liu Y, Sun R, Zhao Y, Li B. Fullerene [60] encapsulated water-soluble supramolecular cage for prevention of oxidative stress-induced myocardial injury. Mater Today Bio 2023; 21:100693. [PMID: 37404456 PMCID: PMC10316085 DOI: 10.1016/j.mtbio.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
A water-soluble cube-like supramolecular cage was constructed by an engagement of six molecules through a hydrophobic effect in the water. The obtained cage could perfectly encapsulate one fullerene C60 molecule inside of the cavity and significantly improve the water-solubility of the C60 without changing the original structure. The water-soluble complex was further applied to reduce the reactive oxygen species (R.O.S.) in cardiomyocytes (FMC84) through Akt/Nrf2/HO-1 pathway. Furthermore, in the mouse model of myocardial ischemia-reperfusion injury, the application of C60 was found to be effective in reducing myocardial injury and improving cardiac function. It also reduced the levels of R.O.S. in myocardial tissue, inhibited myocardial apoptosis, and mitigated myocardial inflammatory responses. The present study provides a new guideline for constructing water-soluble C60 and verifies the important role of C60 in preventing oxidative stress-related cardiovascular disease injury.
Collapse
Affiliation(s)
- Guanzhao Zhang
- Department of Cardiology, Binzhou Medical University, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| | - Hui Fang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Shuting Chang
- Weifang Medical University, NO.7166, Baotong West Street, Weifang, 261053, China
| | - Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Li
- Department of Cardiology, Binzhou Medical University, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| |
Collapse
|
34
|
Dreszer D, Szewczyk G, Szubka M, Maroń AM, Urbisz AZ, Małota K, Sznajder J, Rost-Roszkowska M, Musioł R, Serda M. Uncovering nanotoxicity of a water-soluble and red-fluorescent [70]fullerene nanomaterial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163052. [PMID: 36963679 DOI: 10.1016/j.scitotenv.2023.163052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Engineered fullerene materials have attracted the attention of researchers in the biomedical sciences, especially when their synthetic methodology is developed to endow them with significant levels of water-solubility and bioavailability. In this study, we synthesized and characterized a water-soluble and red-fluorescent [70]fullerene nanomaterial, which fluoresced at 693 nm with a quantum yield of 0.065 and a large Stokes shift (around 300 nm). The fullerene nanomaterial generated mainly singlet oxygen after illumination with blue LED light, while superoxide anion radical production was minimal. The transmission electron microscopy as well as fluorescent studies of Drosophila melanogaster revealed that prepared [70]fullerene nanoparticles had better bioavailability than pristine [70]fullerene nanoparticles. The designed nanomaterials were observed in the apical, perinuclear, and basal regions of digestive cells, as well as the basal lamina of the digestive system's epithelium, with no damage to cell organelles and no activation of degenerative processes and cell death. Our findings provide a new perspective for understanding the in vivo behavior of fullerene nanomaterials and their future application in bioimaging and light-activated nanotherapeutics.
Collapse
Affiliation(s)
- Dominik Dreszer
- Institute of Chemistry, University of Silesia in Katowice, Poland
| | - Grzegorz Szewczyk
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | | | - Anna M Maroń
- Institute of Chemistry, University of Silesia in Katowice, Poland
| | - Anna Z Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Justyna Sznajder
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Poland.
| |
Collapse
|
35
|
Hada V, Chaturvedi K, Singhwane A, Siraj N, Gupta A, Sathish N, Chaurasia JP, Srivastava AK, Verma S. Nanoantibiotic effect of carbon-based nanocomposites: epicentric on graphene, carbon nanotubes and fullerene composites: a review. 3 Biotech 2023; 13:147. [PMID: 37124988 PMCID: PMC10140225 DOI: 10.1007/s13205-023-03552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Carbon in many different forms especially, Graphene, Carbon nanotubes (CNTs), and Fullerene is emerging as an important material in the areas of the biomedical field for various applications. This review comprehensively describes the nano antibiotic effect of carbon-based nanocomposites: epicenter on graphene, carbon nanotubes, and fullerene Composites. It summarises the studies conducted to evaluate their antimicrobial applications as they can disrupt the cell membrane of bacteria resulting in cell death. The initial section gives a glimpse of both "Gram"-positive and negative bacteria, which have been affected by Graphene, CNTs, and Fullerene-based nanocomposites. These bacteria include Staphylococcus Aureus, Bacillus Thuringiensis, Enterococcus faecalis, Enterococcus faecium, Bacillus subtilis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeroginosa, Pseudomonas syringae , Shigella flexneri,Candida Albicans, Mucor. Another section is dedicated to the insight of Graphene, and its types such as Graphene Oxide (GO), Reduced graphene oxide (rGO), Graphene Nanoplatelets (GNPs), Graphene Nanoribbons (GNRs), and Graphene Quantum Dots (GQDs). Insight into CNT, including both the types SWCNT and MWCNT, studied, followed by understanding fullerene is also reported. Another section is dedicated to the antibacterial mechanism of Graphene, CNT, and Fullerene-based nanocomposites. Further, an additional section is dedicated to a comprehensive review of the antibacterial characteristics of Graphene, CNT, and nanocomposites based on fullerene. Future perspectives and recommendations have also been highlighted in the last section.
Collapse
Affiliation(s)
- Vaishnavi Hada
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Kamna Chaturvedi
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Anju Singhwane
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Naved Siraj
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Ayush Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhopal, MP 462026 India
| | - N. Sathish
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - J. P. Chaurasia
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - A. K. Srivastava
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Sarika Verma
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| |
Collapse
|
36
|
Du M, Advincula PA, Ding X, Tour JM, Xiang C. Coal-Based Carbon Nanomaterials: En Route to Clean Coal Conversion toward Net Zero CO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300129. [PMID: 37078773 DOI: 10.1002/adma.202300129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 05/03/2023]
Abstract
As the world is committed to reach carbon peak by 2030 and net zero by 2050, the use of coal as an energy source is facing unprecedented challenges. According to the International Energy Agency (IEA), global annual coal demand is estimated to drop from more than 5640 million tonnes of coal equivalent (Mtce) in 2021 to 540 Mtce in 2050 under the net zero emission scenario, mostly being replaced by renewable energy such as solar and wind. Therefore, the coal industry is vigorously seeking alternative applications to keep it thriving, and nanotechnology can be one of the contributors. Herein, the challenges to coal-based carbon nanomaterials syntheses are outlined, along with a path toward commercialization. Coal-based carbon nanomaterials can be promising contributors to the concept of clean coal conversion, initiating its migration from an energy source to a high-value-added carbon source.
Collapse
Affiliation(s)
- Mingjin Du
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, Shaanxi, 710049, China
| | - Paul A Advincula
- Department of Chemistry, Rice University, 6100 Main Street, Houston Texas, 77005, USA
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, Shaanxi, 710049, China
| | - James M Tour
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute, the NanoCarbon Center, and The Welch Institute for Advanced Materials and Department of Computer Science, Rice University, 6100 Main Street, Houston Texas, 77005, USA
| | - Changsheng Xiang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
37
|
Patrick B, Akhtar T, Kousar R, Huang CC, Li XG. Carbon Nanomaterials: Emerging Roles in Immuno-Oncology. Int J Mol Sci 2023; 24:ijms24076600. [PMID: 37047572 PMCID: PMC10095276 DOI: 10.3390/ijms24076600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer immunotherapy has made breakthrough progress in cancer treatment. However, only a subset of patients benefits from immunotherapy. Given their unique structure, composition, and interactions with the immune system, carbon nanomaterials have recently attracted tremendous interest in their roles as modulators of antitumor immunity. Here, we focused on the latest advances in the immunological effects of carbon nanomaterials. We also reviewed the current preclinical applications of these materials in cancer therapy. Finally, we discussed the challenges to be overcome before the full potential of carbon nanomaterials can be utilized in cancer therapies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Tahira Akhtar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 406040, Taiwan
| | - Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
38
|
Su S, Zhen M, Zhou C, Cao X, Sun Z, Xu Y, Li L, Jia W, Wu Z, Wang C. Efficiently Inhibiting Systemic Inflammatory Cascades by Fullerenes for Retarding HFD-Fueled Atherosclerosis. Adv Healthc Mater 2023; 12:e2202161. [PMID: 36623263 DOI: 10.1002/adhm.202202161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Atherosclerosis accounts for major mortality of cardiac-cerebral vascular diseases worldwide. Pathologically, persistent inflammation dominates the progression of atherosclerosis, which can be accelerated by a high-fat diet (HFD), possibly through triggering local intestinal oxidative stress and ensuing gut barrier dysfunction. Current pharmacotherapy has been disappointing, ascribed to limited therapeutic efficacy and undesirable side effects. Hence it is compelling to explore novel efficient anti-atherosclerotic drugs with minimal toxicity. Herein, two fullerene-based therapies with exceptional antioxidant capacity, in the form of water-soluble injectable fullerene nanoparticles (IFNPs) and oral fullerene tablets (OFTs), are demonstrated to retard HFD-fueled atherosclerosis in ApoE-/- mice with favorable biosafety. Especially, OFTs afford robust anti-atherosclerotic therapeutic even against advanced plaques, besides stabilizing plaques with less lipid deposition and improved collagen expression. Specifically, it is identified that OFTs can ameliorate HFD-induced dysregulated intestinal redox homeostasis and restore gut barrier integrity, thereby restraining the translocation of luminal lipopolysaccharide (LPS) into the bloodstream. Furthermore, significantly reduced circulating LPS after OFTs treatment contributes to down-regulated LPS/TLR4/NF-κB signaling in aortic focal, which further mitigates local inflammation and disease development. Overall, this study confirms the universal anti-atherosclerotic effect of fullerenes and provides a novel therapeutic mechanism via modulating intestinal barrier to attenuate atherosclerosis.
Collapse
Affiliation(s)
- Sheng'e Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Kausar A. Cutting-edge Shape Memory Polymer/Fullerene Nanocomposite: Design and Contemporary Status. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
40
|
Li YY, Ma XX, Song XY, Ma LL, Li YY, Meng X, Chen YJ, Xu KX, Moosavi-Movahedi AA, Xiao BL, Hong J. Glucose Biosensor Based on Glucose Oxidase Immobilized on BSA Cross-Linked Nanocomposite Modified Glassy Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2023; 23:3209. [PMID: 36991919 PMCID: PMC10051639 DOI: 10.3390/s23063209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Glucose sensors based blood glucose detection are of great significance for the diagnosis and treatment of diabetes because diabetes has aroused wide concern in the world. In this study, bovine serum albumin (BSA) was used to cross-link glucose oxidase (GOD) on a glassy carbon electrode (GCE) modified by a composite of hydroxy fullerene (HFs) and multi-walled carbon nanotubes (MWCNTs) and protected with a glutaraldehyde (GLA)/Nafion (NF) composite membrane to prepare a novel glucose biosensor. The modified materials were analyzed by UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The prepared MWCNTs-HFs composite has excellent conductivity, the addition of BSA regulates MWCNTs-HFs hydrophobicity and biocompatibility, and better immobilizes GOD on MWCNTs-HFs. MWCNTs-BSA-HFs plays a synergistic role in the electrochemical response to glucose. The biosensor shows high sensitivity (167 μA·mM-1·cm-2), wide calibration range (0.01-3.5 mM), and low detection limit (17 μM). The apparent Michaelis-Menten constant Kmapp is 119 μM. Additionally, the proposed biosensor has good selectivity and excellent storage stability (120 days). The practicability of the biosensor was evaluated in real plasma samples, and the recovery rate was satisfactory.
Collapse
Affiliation(s)
- Yang-Yang Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Xin-Yan Song
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Lin-Lin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Ying Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Xin Meng
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Jie Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Ke-Xin Xu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | | | - Bao-Lin Xiao
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
41
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
42
|
Sapra R, Gupta M, Khare K, Chowdhury PK, Haridas V. Fluorescence by self-assembly: autofluorescent peptide vesicles and fibers. Analyst 2023; 148:973-984. [PMID: 36756978 DOI: 10.1039/d3an00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of oxidized cysteinyl peptides ([P-Cys-X-OMe]2; P = Boc or H; X = Trp or Glu) showed vesicular and fibrillar assemblies. The anatomy of the self-assembled vesicles from the water-soluble cystine peptide [Cys-Trp-OMe]2 (1a) has been investigated by using various fluorescent probes such as ammonium 8-anilinonaphthalene-1-sulfonate, Nile Red and pyrene. The morphological characterization was carried out by fluorescence lifetime imaging microscopy (FLIM) and super resolution-structured illumination microscopy (SR-SIM) utilizing the autofluorescence of the vesicles stemming from the self-assembly. The self-assembled structures are also observed in solution as evident from the quantitative phase images obtained using a dual-mode digital holographic microscope (DHM) system. Present investigations show that the self-assembly is enthalpy- and entropy-driven in the aqueous medium. Based on the CD spectral studies, we proposed that 1a organizes into vesicles through the sequestration of indole units. We observed that the solutions of dipeptides 1a-b exhibit autofluorescence in the blue region upon excitation at a wavelength >350 nm. Detailed spectroscopic studies on the peptides lacking tryptophan 2a-b unequivocally showed that the autofluorescence stems exclusively from peptide aggregation. Our experimental results with appropriate controls revealed that the clustering of carbonyl chromophores is central to autofluorescence. Autofluorescence was also used to probe the vesicle formation without using any external fluorescent probe. To the best of our knowledge, this is the first report on autofluorescent vesicles formed by the spontaneous association of dipeptides. We also found that the vesicles formed by 1a can act as a host for guests like C60. The biocompatibility and biodegradability of these peptides along with the autofluorescent nature and guest binding ability of peptide-based vesicles offer numerous applications in the biomedical area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Kedar Khare
- Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
43
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
44
|
Kausar A. Fullerene grafting in polymeric nanocomposite—a promising strategy. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2175219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad, Pakistan
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West, South Africa
| |
Collapse
|
45
|
Govindappa M, Vishaka A, Akshatha BS, Popli D, Sunayana N, Srinivas C, Pugazhendhi A, Raghavendra VB. An endophytic fungus, Penicillium simplicissimum conjugated with C60 fullerene for its potential antimitotic, anti-inflammatory, anticancer and photodegradation activities. ENVIRONMENTAL TECHNOLOGY 2023; 44:817-831. [PMID: 34559029 DOI: 10.1080/09593330.2021.1985621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, endophytic fungus, Penicillium simplicissimum isolated from Loranthus micranthus was used to analyze phytochemical studies by qualitative and GC-MS methods. The endophytic fungus P. simplicissimum yielded novel compound penisimplicissin identified through GC-MS studies. Further, P. simplicissimum was conjugated with C60 fullerene nanoparticles (Ps-FNPs) were verified using UV-vis spectra, XRD, FTIR, DLS, EDX and SEM. Ps-FNPs was confirmed using UV-visible spectra with a peak at 260 nm. The IR bands were recorded at 2085, 1428, 1181, 661, 652, 644, 628, and 604 cm-1. The Ps-FNPs treated cells showed a nucleolar shrinkage and cell arrest atprophase, binuclear and multinucleolar cells, a chromosomal bridge and diversion at anaphase was observed, whereas, chromosomal fragment and abnormal distribution at metaphase stage. The Ps-FNPs exhibited a noteworthy anticancer activity on lung cancer cell line H1975 through cytotoxicity. The cytotoxicity was induced by increasing caspase-3, 7, and 9 activities and also showed highest inhibition in xanthine oxidase and COX-II assay proved good anti-inflammatory activity. Ps-FNPs have been extensively studied for photocatalytic activity test against Rhodamine B, Methylene blue and nigrosine showed potential dye degradation in the presence of sunlight proved to be novel photocatalysts. With all the results recorded, Ps-FNPs also have a synergetic effect having on anti-mitotic, anticancer, anti-inflammation potential and photocatalytic degradation of dyes. Hence, the conjugated Ps-FNPs could be one of the potent nano-drug formulations in future. Thus, the present study gives a clear idea of the multifaceted therapeutic and photocatalytic applications.
Collapse
Affiliation(s)
- M Govindappa
- Department of Studies in Botany, Davanagere University, Davanagere, India
| | - A Vishaka
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - B S Akshatha
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Dimple Popli
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - N Sunayana
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - C Srinivas
- Department of Biotechnology and Microbiology, Bangalore University, Bengaluru, India
| | | | | |
Collapse
|
46
|
Lee SS, Paliouras M, Trifiro MA. Functionalized Carbon Nanoparticles as Theranostic Agents and Their Future Clinical Utility in Oncology. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010108. [PMID: 36671680 PMCID: PMC9854994 DOI: 10.3390/bioengineering10010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Over the years, research of nanoparticle applications in pre-clinical and clinical applications has greatly advanced our therapeutic and imaging approaches to many diseases, most notably neoplastic disorders. In particular, the innate properties of inorganic nanomaterials, such as gold and iron oxide, as well as carbon-based nanoparticles, have provided the greatest opportunities in cancer theranostics. Carbon nanoparticles can be used as carriers of biological agents to enhance the therapeutic index at a tumor site. Alternatively, they can also be combined with external stimuli, such as light, to induce irreversible physical damaging effects on cells. In this review, the recent advances in carbon nanoparticles and their use in cancer theranostics will be discussed. In addition, the set of evaluations that will be required during their transition from laboratory investigations toward clinical trials will be addressed.
Collapse
Affiliation(s)
- Seung S. Lee
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| | - Mark A. Trifiro
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
47
|
Silent Death by Sound: C 60 Fullerene Sonodynamic Treatment of Cancer Cells. Int J Mol Sci 2023; 24:ijms24021020. [PMID: 36674528 PMCID: PMC9864357 DOI: 10.3390/ijms24021020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure's sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60's ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.
Collapse
|
48
|
Shilpi S, Gulbake AS, Chouhan S, Kumar P. Functionalized Carbon Nanotubes, Graphene Oxide, Fullerenes, and Nanodiamonds: Emerging Theranostic Nanomedicines. MULTIFUNCTIONAL AND TARGETED THERANOSTIC NANOMEDICINES 2023:187-213. [DOI: 10.1007/978-981-99-0538-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
C 60 fullerene attenuates muscle force reduction in a rat during fatigue development. Heliyon 2022; 8:e12449. [PMID: 36590525 PMCID: PMC9801117 DOI: 10.1016/j.heliyon.2022.e12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
C60 fullerene (C60) as a nanocarbon particle, compatible with biological structures, capable of penetrating through cell membranes and effectively scavenging free radicals, is widely used in biomedicine. A protective effect of C60 on the biomechanics of fast (m. gastrocnemius) and slow (m. soleus) muscle contraction in rats and the pro- and antioxidant balance of muscle tissue during the development of muscle fatigue was studied compared to the same effect of the known antioxidant N-acetylcysteine (NAC). C60 and NAC were administered intraperitoneally at doses of 1 and 150 mg kg-1, respectively, daily for 5 days and 1 h before the start of the experiment. The following quantitative markers of muscle fatigue were used: the force of muscle contraction, the level of accumulation of secondary products of lipid peroxidation (TBARS) and the oxygen metabolite H2O2, the activity of first-line antioxidant defense enzymes (superoxide dismutase (SOD) and catalase (CAT)), and the condition of the glutathione system (reduced glutathione (GSH) content and the activity of the glutathione peroxidase (GPx) enzyme). The analysis of the muscle contraction force dynamics in rats against the background of induced muscle fatigue showed, that the effect of C60, 1 h after drug administration, was (15-17)% more effective on fast muscles than on slow muscles. A further slight increase in the effect of C60 was revealed after 2 h of drug injection, (7-9)% in the case of m. gastrocnemius and (5-6)% in the case of m. soleus. An increase in the effect of using C60 occurred within 4 days (the difference between 4 and 5 days did not exceed (3-5)%) and exceeded the effect of NAC by (32-34)%. The analysis of biochemical parameters in rat muscle tissues showed that long-term application of C60 contributed to their decrease by (10-30)% and (5-20)% in fast and slow muscles, respectively, on the 5th day of the experiment. At the same time, the protective effect of C60 was higher compared to NAC by (28-44)%. The obtained results indicate the prospect of using C60 as a potential protective nano agent to improve the efficiency of skeletal muscle function by modifying the reactive oxygen species-dependent mechanisms that play an important role in the processes of muscle fatigue development.
Collapse
|
50
|
Timoshen K, Khrebina A, Lebedev V, Loglio G, Miller R, Sedov V, Noskov B. Dynamic surface properties of carboxyfullerene solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|