1
|
Blanco-Verea A, Carracedo Á, Brion M. Challenges of genetics in the diagnosis of sudden cardiac death. Interest for forensic and legal medicine. Med Clin (Barc) 2025; 164:e1-e7. [PMID: 39562230 DOI: 10.1016/j.medcli.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Sudden cardiac death is the leading cause of death in developed countries and a small but significant number of cases cannot be explained after a thorough autopsy process. Cases of sudden cardiac death in people under 40years of age are mainly due to structural heart disease or cardiomyopathies and arrhythmogenic diseases or channelopathies. In these cases, the search for associated genetic factors through molecular autopsy may help to find the cause of unexplained sudden cardiac death, through genetic diagnosis of previously undiagnosed channelopathies or cardiomyopathies. The finding of genetic variants classified as pathogenic associated with cardiac pathology would conclude the autopsy result and provide the possibility of genetic screening in other family members.
Collapse
Affiliation(s)
- Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, España; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, España.
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, España; Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, A Coruña, España
| | - María Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, España; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, España; Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, España
| |
Collapse
|
2
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Swart ML, Vandayar Y, Mole CG, Oghenechovwen O, Hamadziripi D, Heathfield LJ. A 10-year retrospective analysis of sudden unexpected death in the young investigated at Salt River Mortuary, Cape Town. Int J Legal Med 2025; 139:335-352. [PMID: 39284958 PMCID: PMC11732941 DOI: 10.1007/s00414-024-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/02/2024] [Indexed: 01/15/2025]
Abstract
Sudden unexpected death in the young (SUDY) is defined as the rapid, unsuspected demise of an apparently healthy individual between the ages of one and 40 years. There is a gap in research pertaining to this population in a South African context. This retrospective study aimed to explore the burden, scope of post-mortem investigation, and risk factors of SUDY admissions to Salt River Mortuary (SRM) in Cape Town between 1 January 2010 and 31 December 2019. Medico-legal case files pertaining to SUDY cases from SRM were reviewed. SRM received a total of 34 601 admissions in the 10-year period; of which 1 997 (5.77%) were SUDY cases. Nearly two-thirds (62.59%) of the SUDY admissions were male. The leading cause of death was pneumonia (17.11%), and the most prevalent organ system implicated in cause of death was the pulmonary system (45.19%). At least 32.46% of SUDY cases were infectious-related, with varying degrees of confidence. A large proportion of cases had no history of acute or chronic illness (45.43%), and no family history of illness (56.66%). In total, 52 potential candidates were identified for a molecular autopsy, of which 47 have stored biological samples for future investigations. This study advocates for the routine performance of post-mortem ancillary microbiological and toxicological testing in cases of SUD, considering the large burden of infectious disease and substance abuse in South Africa. The retention of biological samples in undetermined or non-specific natural cases is also urged, to allow for cause of death determination on a molecular level.
Collapse
Affiliation(s)
- Micaela Louise Swart
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, P.O. Box 13914, Observatory, 7925, South Africa
| | - Yuvika Vandayar
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, P.O. Box 13914, Observatory, 7925, South Africa
| | - Calvin Gerald Mole
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, P.O. Box 13914, Observatory, 7925, South Africa
| | - Ogheneochuko Oghenechovwen
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, P.O. Box 13914, Observatory, 7925, South Africa
| | - Dirk Hamadziripi
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, P.O. Box 13914, Observatory, 7925, South Africa
| | - Laura Jane Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, P.O. Box 13914, Observatory, 7925, South Africa.
| |
Collapse
|
4
|
Zhang Y, Seidel M, Rabesahala de Meritens C, Beckmann A, Ahmed S, Hurtz M, Lai FA, Zorio E, Parthimos D, Zissimopoulos S. Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies. Front Mol Biosci 2024; 11:1505698. [PMID: 39777228 PMCID: PMC11703740 DOI: 10.3389/fmolb.2024.1505698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Aims Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD). Methods and Results We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca2+ imaging revealed that R169L increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, while reducing the Ca2+ store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2G357S-expressing cells have Ca2+ handling properties similar to RyR2WT. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, and it reduces the Ca2+ store content. However, unlike R169L that displays Ca2+ transients of normal amplitude and shorter duration, Ca2+ transients for A77T are of smaller amplitude and normal duration. Conclusion The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.
Collapse
Affiliation(s)
- Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Monika Seidel
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Syeda Ahmed
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Melanie Hurtz
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Esther Zorio
- Inherited Cardiac Disease Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
- Research group CB16/11/00261, Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Dimitris Parthimos
- School of Medicine, Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| |
Collapse
|
5
|
Gray B, Behr ER, Papatheodorou E, Bakalakos A, Raju H, Wijeyeratne YD, Finocchiaro G, Malhotra A, Whiffin N, Ware JS, Esteban MT, Sheppard MN, Sharma S, Papadakis M. Influence of age and sex on the diagnostic yield of inherited cardiac conditions in sudden arrhythmic death syndrome decedents. Eur J Prev Cardiol 2024:zwae389. [PMID: 39714775 DOI: 10.1093/eurjpc/zwae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024]
Abstract
AIMS Sudden arrhythmic death syndrome (SADS) refers to a sudden death, which remains unexplained despite comprehensive post-mortem examination and a toxicological screen. We aimed to investigate the impact of age and sex on the overall diagnostic yield and underlying aetiology in decedents with SADS using a combined approach of familial evaluation (FE) and molecular autopsy (MA). METHODS AND RESULTS Consecutive referrals to a single centre for FE only, MA only or both, following a SADS death were included. First-degree family members underwent comprehensive FE and decedents with post-mortem DNA were sequenced with a 36 cardiac gene panel for MA. A Bayesian framework for analysis was performed to identify associations. Among 760 SADS decedents (66% male; mean age 31 ± 12 years) the overall diagnostic yield for an inherited cardiac condition was 37% (32-42%) and 9% (6-12%) for FE and MA cohorts. In a subset where both FE and MA were performed the diagnostic yield was 45% (38-61%). The relative risk of an FE diagnosis of long QT syndrome (LQTS) or Catecholaminergic polymorphic ventricular tachycardia (CPVT) vs. remaining unexplained declined by 5.6% [RR 0.94 (0.91-0.98)] and by 11% [RR 0.89 (0.81-0.97)], for each year increase in age. Females were more likely to have a diagnosis by both FE [40% (34-45%) vs. 36% (31-41%)] and MA [15% (10-21%) vs. 6% (3-8%)]. Females [8.1% (4.1-13.4%)], were more likely to be diagnosed with LQTS than males [1.2% (0.2-2.7%)] in the MA cohort. CONCLUSION After a SADS death, the diagnostic yield of comprehensive FE, MA, or both in an expert setting can be up to 45% with a combined approach. Females had higher diagnostic yield than males, most notable with LQTS. CPVT and LQTS diagnoses declined with increasing age. These data highlight the relative utility of FE and MA depending on age and sex for determining underlying diagnoses following SADS deaths.
Collapse
Affiliation(s)
- Belinda Gray
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elijah R Behr
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| | - Efstathios Papatheodorou
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| | - Athanasios Bakalakos
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, UK
| | - Hariharan Raju
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Yanushi D Wijeyeratne
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| | - Gherardo Finocchiaro
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| | - Aneil Malhotra
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Nicola Whiffin
- National Heart and Lung Institute, MRC Laboratory of Medical Sciences, Imperial College, London, UK
- Big Data Institute, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - James S Ware
- National Heart and Lung Institute, MRC Laboratory of Medical Sciences, Imperial College, London, UK
| | - Maria Tome Esteban
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| | - Mary N Sheppard
- Department of Cardiovascular Pathology, St George's University of London, London SW17 ORE, UK
| | - Sanjay Sharma
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| | - Michael Papadakis
- Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 OQT, UK
| |
Collapse
|
6
|
Zhang XH, Tang FL, Trouten AM, Morad M. Attempts to Create Transgenic Mice Carrying the Q3924E Mutation in RyR2 Ca 2+ Binding Site. Cells 2024; 13:2051. [PMID: 39768143 PMCID: PMC11674951 DOI: 10.3390/cells13242051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca2+ binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca2+ release, consistent with a remodeling of the calcium signaling pathway. An RNAseq heat map confirmed significant changes in calcium-associated genes, supporting the possibility of remodeling. To determine the in situ cardiac phenotype in an animal model of this mutation, we generated a knock-in mouse model of RyR2-Q3924E+/- using the CRISPR/Cas9 technique. We obtained three homozygous and one chimera mice, but they all died before reaching 3 weeks of age, preventing the establishment of germline mutation transmission in their offspring. A histo-pathological analysis of the heart showed significant cardiac hypertrophy, suggesting the Q3924E-RyR2 mutation was lethal to the mice.
Collapse
Affiliation(s)
- Xiao-hua Zhang
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA;
| | - Fu-lei Tang
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Allison M. Trouten
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Martin Morad
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA;
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Isbister JC, Tadros R, Raju H, Semsarian C. Concealed cardiomyopathy as an emerging cause of sudden cardiac arrest and sudden cardiac death. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1274-1283. [PMID: 39487366 DOI: 10.1038/s44161-024-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
The inherited cardiomyopathies exhibit a broad spectrum of disease, with some patients remaining asymptomatic throughout life, while, for others, the first symptom of disease is sudden cardiac death at a young age. The risk of malignant ventricular arrhythmia in these conditions has traditionally been linked to the degree of structural myocardial abnormalities and functional impairment. However, recent advances in genetic testing and knowledge of the genetic basis of the diseases have led to the identification of concealed cardiomyopathy, in which sudden cardiac arrest or sudden cardiac death occurs in the absence of observable clinical features of cardiomyopathy, with a diagnosis being made only after the identification of a causative genetic variant. Increased awareness of concealed cardiomyopathy, a better understanding of mechanisms of arrhythmia and identification of risk modulators will be vital to improve care for families with concealed cardiomyopathy.
Collapse
Affiliation(s)
- Julia C Isbister
- Faculty of Medicine and Heath, the University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Québec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Hariharan Raju
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher Semsarian
- Faculty of Medicine and Heath, the University of Sydney, Sydney, New South Wales, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
- Agnes Ginges Centre for Molecular Cardiology at the Centenary Institute, the University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Joshi J, Albers C, Smole N, Guo S, Smith SA. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: strengths, challenges and potential solutions. Front Physiol 2024; 15:1475152. [PMID: 39328831 PMCID: PMC11424716 DOI: 10.3389/fphys.2024.1475152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels and cytoskeletal proteins in the cardiac dyad play a critical role in maintaining excitation-contraction (E-C) coupling and provide cardiac homeostasis. Functional changes in these dyad proteins, whether induced by genetic, epigenetic, metabolic, therapeutic, or environmental factors, can disrupt normal cardiac electrophysiology, leading to abnormal E-C coupling and arrhythmias. Animal models and heterologous cell cultures provide platforms to elucidate the pathogenesis of arrhythmias for basic cardiac research; however, these traditional systems do not truly reflect human cardiac electro-pathophysiology. Notably, patients with the same genetic variants of inherited channelopathies (ICC) often exhibit incomplete penetrance and variable expressivity which underscores the need to establish patient-specific disease models to comprehend the mechanistic pathways of arrhythmias and determine personalized therapies. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) inherit the genetic background of the patient and reflect the electrophysiological characteristics of the native cardiomyocytes. Thus, iPSC-CMs provide an innovative and translational pivotal platform in cardiac disease modeling and therapeutic screening. In this review, we will examine how patient-specific iPSC-CMs historically evolved to model arrhythmia syndromes in a dish, and their utility in understanding the role of specific ion channels and their functional characteristics in causing arrhythmias. We will also examine how CRISPR/Cas9 have enabled the establishment of patient-independent and variant-induced iPSC-CMs-based arrhythmia models. Next, we will examine the limitations of using human iPSC-CMs with respect to in vitro arrhythmia modeling that stems from variations in iPSCs or toxicity due to gene editing on iPSC or iPSC-CMs and explore how such hurdles are being addressed. Importantly, we will also discuss how novel 3D iPSC-CM models can better capture in vitro characteristics and how all-optical platforms provide non-invasive and high- throughput electrophysiological data that is useful for stratification of emerging arrhythmogenic variants and drug discovery. Finally, we will examine strategies to improve iPSC-CM maturity, including powerful gene editing and optogenetic tools that can introduce/modify specific ion channels in iPSC-CMs and tailor cellular and functional characteristics. We anticipate that an elegant synergy of iPSCs, novel gene editing, 3D- culture models, and all-optical platforms will offer a high-throughput template to faithfully recapitulate in vitro arrhythmogenic events necessary for personalized arrhythmia monitoring and drug screening process.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Cora Albers
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Nathan Smole
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Shuliang Guo
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Sakima A Smith
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Nguyen Tat T, Lien NTK, Luu Sy H, Ta Van T, Dang Viet D, Nguyen Thi H, Tung NV, Thanh LT, Xuan NT, Hoang NH. Identifying the Pathogenic Variants in Heart Genes in Vietnamese Sudden Unexplained Death Victims by Next-Generation Sequencing. Diagnostics (Basel) 2024; 14:1876. [PMID: 39272661 PMCID: PMC11394071 DOI: 10.3390/diagnostics14171876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
In forensics, one-third of sudden deaths remain unexplained after a forensic autopsy. A majority of these sudden unexplained deaths (SUDs) are considered to be caused by inherited cardiovascular diseases. In this study, we investigated 40 young SUD cases (<40 years), with non-diagnostic structural cardiac abnormalities, using Targeted NGS (next-generation sequencing) for 167 genes previously associated with inherited cardiomyopathies and channelopathies. Fifteen cases identified 17 variants on related genes including the following: AKAP9, CSRP3, GSN, HTRA1, KCNA5, LAMA4, MYBPC3, MYH6, MYLK, RYR2, SCN5A, SCN10A, SLC4A3, TNNI3, TNNI3K, and TNNT2. Of these, eight variants were novel, and nine variants were reported in the ClinVar database. Five were determined to be pathogenic and four were not evaluated. The novel and unevaluated variants were predicted by using in silico tools, which revealed that four novel variants (c.5187_5188dup, p.Arg1730llefsTer4 in the AKAP9 gene; c.1454A>T, p.Lys485Met in the MYH6 gene; c.2535+1G>A in the SLC4A3 gene; and c.10498G>T, p.Asp3500Tyr in the RYR2 gene) were pathogenic and three variants (c.292C>G, p.Arg98Gly in the TNNI3 gene; c.683C>A, p.Pro228His in the KCN5A gene; and c.2275G>A, p.Glu759Lys in the MYBPC3 gene) still need to be further verified experimentally. The results of our study contributed to the general understanding of the causes of SUDs. They provided a scientific basis for screening the risk of sudden death in family members of victims. They also suggested that the Targeted NGS method may be used to identify the pathogenic variants in SUD victims.
Collapse
Affiliation(s)
- Tho Nguyen Tat
- Department of Forensic Medicine, Hanoi Medical University, 1 Ton That Tung Str., Dongda, Hanoi 100000, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Hung Luu Sy
- Department of Forensic Medicine, Hanoi Medical University, 1 Ton That Tung Str., Dongda, Hanoi 100000, Vietnam
| | - To Ta Van
- Department of Pathology, National Cancer Hospital, 43 Quan Su Str., Hoan Kiem, Hanoi 100000, Vietnam
| | - Duc Dang Viet
- Cardiovascular Intensive Care Unit, Heart Institute, 108 Military Central Hospital, 1B Tran Hung Dao Str., Hai Ba Trung, Hanoi 100000, Vietnam
| | - Hoa Nguyen Thi
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Le Tat Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| |
Collapse
|
10
|
Lynge TH, Albert CM, Basso C, Garcia R, Krahn AD, Semsarian C, Sheppard MN, Behr ER, Tfelt-Hansen J. Autopsy of all young sudden death cases is important to increase survival in family members left behind. Europace 2024; 26:euae128. [PMID: 38715537 PMCID: PMC11164113 DOI: 10.1093/europace/euae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Sudden cardiac death (SCD) is an important public health problem worldwide, accounting for an estimated 6-20% of total mortality. A significant proportion of SCD is caused by inherited heart disease, especially among the young. An autopsy is crucial to establish a diagnosis of inherited heart disease, allowing for subsequent identification of family members who require cardiac evaluation. Autopsy of cases of unexplained sudden death in the young is recommended by both the European Society of Cardiology and the American Heart Association. Overall autopsy rates, however, have been declining in many countries across the globe, and there is a lack of skilled trained pathologists able to carry out full autopsies. Recent studies show that not all cases of sudden death in the young are autopsied, likely due to financial, administrative, and organizational limitations as well as awareness among police, legal authorities, and physicians. Consequently, diagnoses of inherited heart disease are likely missed, along with the opportunity for treatment and prevention among surviving relatives. This article reviews the evidence for the role of autopsy in sudden death, how the cardiologist should interpret the autopsy-record, and how this can be integrated and implemented in clinical practice. Finally, we identify areas for future research along with potential for healthcare reform aimed at increasing autopsy awareness and ultimately reducing mortality from SCD.
Collapse
Affiliation(s)
- Thomas H Lynge
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cristina Basso
- The Cardiovascular Pathology Unit, Azienda Ospedaliera, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Via Aristide Gabelli, 61, 35121 Padova PD, Italy
| | - Rodrigue Garcia
- Department of Cardiology, Poitiers University Hospital, Poitiers, France
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mary N Sheppard
- Cardiovascular Pathology Unit, Cardiovascular and Genetics Research Institute, St George’s, University of London, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Cardiovascular and Genetics Research Institute, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Kauferstein S, Beckmann BM. [Postmortem genetic analysis following sudden cardiac death : Background, approach, and future]. Herzschrittmacherther Elektrophysiol 2024; 35:31-38. [PMID: 38197940 DOI: 10.1007/s00399-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Sudden cardiac death (SCD) is defined as an unexpected, nontraumatic death with a possible cardiac or unknown cause. The lowest incidence is observed in infancy and childhood (1 per 100,000), and the incidence is approximately 50 per 100,000 in the middle-aged population, reaching a plateau around the age of 80 (200 per 100,000). While most SCD cases occur in older people with coronary artery disease, there is a predominance of monogenetic and polygenetic diseases in the young. METHODS Postmortem genetic analysis (molecular autopsy) using next-generation sequencing reveals a definite pathogenic genetic alteration, which can explain SCD of young patients in near 20% of the cases. Hence, postmortem genetic analysis has become an important tool to unravel the inheritable cause of death. Furthermore, early identification of a pathogenic genetic sequence variant in the deceased is crucial to reduce risk in relatives due to preventive personalized measures. RESULTS AND CONCLUSION Postmortem genetic analysis forms together with the clinical assessment the basis for early identification of at-risk relatives. A new guideline for the management of ventricular arrhythmias and prevention of sudden death was recently published by the European Society of Cardiology. The new recommendations give genetic testing, also in deceased patients a much higher priority reflecting increasing relevance of genetic testing for diagnostic evaluation, risk stratification and prevention.
Collapse
Affiliation(s)
- Silke Kauferstein
- Institut für Rechtsmedizin, Zentrum für plötzlichen Herztod und familiäre Arrhythmiesyndrome, Universitätsklinikum Frankfurt, Kennedyallee 104, 60590, Frankfurt, Deutschland.
- Partner Site Rhein-Main, DZHK (German Centre for Cardiovascular Research), Frankfurt, Deutschland.
| | - Britt-Maria Beckmann
- Institut für Rechtsmedizin, Zentrum für plötzlichen Herztod und familiäre Arrhythmiesyndrome, Universitätsklinikum Frankfurt, Kennedyallee 104, 60590, Frankfurt, Deutschland
| |
Collapse
|
12
|
Xia Y, Zhang XH, Yamaguchi N, Morad M. Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling. Cardiovasc Res 2024; 120:44-55. [PMID: 37890099 PMCID: PMC10898933 DOI: 10.1093/cvr/cvad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. METHODS AND RESULTS Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5-20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. CONCLUSION Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes.
Collapse
Affiliation(s)
- Yanli Xia
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, 68 President Street, Bioengineering building Rm 306, Charleston, SC 29425, USA
| | - Xiao-hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, 68 President Street, Bioengineering building Rm 306, Charleston, SC 29425, USA
| | - Naohiro Yamaguchi
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, 68 President Street, Bioengineering building Rm 306, Charleston, SC 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 68 President Street, Bioengineering building Rm 306, Charleston, SC 29425, USA
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, 68 President Street, Bioengineering building Rm 306, Charleston, SC 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 68 President Street, Bioengineering building Rm 306, Charleston, SC 29425, USA
| |
Collapse
|
13
|
Michel H, Potapow A, Dechant MJ, Brandstetter S, Wellmann S, Köninger A, Melter M, Apfelbacher C, Kabesch M, Gerling S. Effect of QT interval-prolonging drugs taken in pregnancy on the neonatal QT interval. Front Pharmacol 2023; 14:1193317. [PMID: 37608894 PMCID: PMC10440430 DOI: 10.3389/fphar.2023.1193317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Acquired QT interval prolongations due to drug side effects can result in detrimental arrhythmia. Maternal use of placenta-permeable drugs may lead to fetal exposure, thus leading to an increased risk of neonatal QT prolongation and arrhythmia. Objectives: This study aimed to evaluate the influence of maternal QT-prolonging medication on the neonatal QT interval. Methods: In the prospective KUNO-Kids health study, an ongoing population-based birth cohort, we classified maternal medications according to the known risk of QT interval prolongation. Effects on the neonatal QT interval were tested by linear regression analyses, correcting for perinatal confounders (birth weight, gestational age, birth mode, and age at ECG recording). Subgroup analyses were performed for selective serotonin reuptake inhibitors, proton pump inhibitors, and antihistamine dimenhydrinate. Logistic regression analysis was performed using a QTc of 450 ms as the cut-off value. Results: A total of 2,550 pregnant women received a total of 3,990 medications, of which 315 were known to increase the risk of QT prolongation, resulting in 105 (4.1%) neonates exposed in the last month of pregnancy. Overall, the mean age of the neonates at ECG was 1.9 days and the mean QTc (Bazett) was 414 ms. Univariate (regression coefficient -2.62, p = 0.288) and multivariate (regression coefficient -3.55, p = 0.146) regression analyses showed no significant effect of fetal medication exposure on the neonatal QT interval, neither in the overall nor in the subgroup analysis. Logistic regression analysis showed no association of exposure to maternal medication with an increased risk of neonatal QT interval prolongation (OR (odds ratio) 0.34, p = 0.14). Conclusion: The currently used maternal medication results in a relevant number of fetuses exposed to QT interval-prolonging drugs. In our cohort, exposure was found to have no effect on the neonatal QT interval.
Collapse
Affiliation(s)
- Holger Michel
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
| | - Antonia Potapow
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
| | - Markus-Johann Dechant
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
| | - Susanne Brandstetter
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
- Member of the Research and Development Campus Regensburg (WECARE), Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Sven Wellmann
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
| | - Angela Köninger
- Clinic of Obstetrics and Gynecology St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Michael Melter
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
- Member of the Research and Development Campus Regensburg (WECARE), Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Christian Apfelbacher
- Institute of Social Medicine and Health Economics, University of Magdeburg, Magdeburg, Germany
| | - Michael Kabesch
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
- Member of the Research and Development Campus Regensburg (WECARE), Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Stephan Gerling
- University Children’s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of John, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
14
|
Thiene G. Autopsy and sudden death. Eur Heart J Suppl 2023; 25:C118-C129. [PMID: 37125299 PMCID: PMC10132616 DOI: 10.1093/eurheartjsupp/suad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Our story dates back in the late 70s, when a series of juvenile sudden death (SD) occurred in the Veneto region, north east of Italy. A successful application for a prospective study on young people dying suddenly (<35-year-old, sudden infant death syndrome excluded) was submitted to the regional health authorities, thus implementing a network of collaboration with local anatomic and forensic pathologists, to collect all such events and to gather demographic data. The project is still in progress, and since then, we studied hundreds of consecutive juvenile SD cases, allowing to identify the culprit diseases in the various organs and cardiac structures (aorta, coronary arteries, myocardium, valves, and conduction system). The long-standing Veneto region experience clearly shows that autopsy still plays a pivotal role in the study and prevention of SD and should be carried out regularly. With time, the investigation of SD moved from the classic post-mortem study to molecular autopsy, especially in cases of SD with structurally normal heart. Sudden death prevention in the young has to be faced by an interdisciplinary team, including pathologists, cardiologists, sport physicians, and geneticists, the clinicopathologic correlation method still being the polar star. The game in the fight against SD is still played in the anatomical theatre, the place where 'death enjoys to save lives'.
Collapse
|
15
|
Furrow E, Tate N, Minor K, Martinson S, Larrabee S, Anttila M, Sleeper M, Henthorn P. An ABCC9 Missense Variant Is Associated with Sudden Cardiac Death and Dilated Cardiomyopathy in Juvenile Dogs. Genes (Basel) 2023; 14:genes14050988. [PMID: 37239348 DOI: 10.3390/genes14050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Sudden cardiac death in the young (SCDY) is a devastating event that often has an underlying genetic basis. Manchester Terrier dogs offer a naturally occurring model of SCDY, with sudden death of puppies as the manifestation of an inherited dilated cardiomyopathy (DCM). We performed a genome-wide association study for SCDY/DCM in Manchester Terrier dogs and identified a susceptibility locus harboring the cardiac ATP-sensitive potassium channel gene ABCC9. Sanger sequencing revealed an ABCC9 p.R1186Q variant present in a homozygous state in all SCDY/DCM-affected dogs (n = 26). None of the controls genotyped (n = 398) were homozygous for the variant, but 69 were heterozygous carriers, consistent with autosomal recessive inheritance with complete penetrance (p = 4 × 10-42 for the association of homozygosity for ABCC9 p.R1186Q with SCDY/DCM). This variant exists at low frequency in human populations (rs776973456) with clinical significance previously deemed uncertain. The results of this study further the evidence that ABCC9 is a susceptibility gene for SCDY/DCM and highlight the potential application of dog models to predict the clinical significance of human variants.
Collapse
Affiliation(s)
- Eva Furrow
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Nicole Tate
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Katie Minor
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Shannon Martinson
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE CIA 4P3, Canada
| | - Shannon Larrabee
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | | | - Meg Sleeper
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paula Henthorn
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Zhou W, Ye D, Tester DJ, Bains S, Giudicessi JR, Haglund-Turnquist CM, Orland KM, January CT, Eckhardt LL, Maginot KR, Ackerman MJ. Elucidation of ALG10B as a Novel Long-QT Syndrome-Susceptibility Gene. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e003726. [PMID: 37071726 PMCID: PMC10844923 DOI: 10.1161/circgen.122.003726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 02/24/2023]
Abstract
BACKGROUND Long-QT syndrome (LQTS) is characterized by QT prolongation and increased risk for syncope, seizures, and sudden cardiac death. The majority of LQTS stems from pathogenic mutations in KCNQ1, KCNH2, or SCN5A. However, ≈10% of patients with LQTS remain genetically elusive. We utilized genome sequencing to identify a novel LQTS genetic substrate in a multigenerational genotype-negative LQTS pedigree. METHODS Genome sequencing was performed on 5 affected family members. Only rare nonsynonymous variants present in all affected family members were considered. The candidate variant was characterized functionally in patient-derived induced pluripotent stem cell and gene-edited, variant corrected, isogenic control induced pluripotent stem cell-derived cardiomyocytes. RESULTS A missense variant (p.G6S) was identified in ALG10B-encoded α-1,2-glucosyltransferase B protein. ALG10B (alpha-1,2-glucosyltransferase B protein) is a known interacting protein of KCNH2-encoded Kv11.1 (HERG [human Ether-à-go-go-related gene]). Compared with isogenic control, ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes showed (1) decreased protein expression of ALG10B (p.G6S, 0.7±0.18, n=8 versus control, 1.25±0.16, n=9; P<0.05), (2) significant retention of HERG in the endoplasmic reticulum (P<0.0005), and (3) a significantly prolonged action potential duration confirmed by both patch clamp (p.G6S, 531.1±38.3 ms, n=15 versus control, 324.1±21.8 ms, n=13; P<0.001) and multielectrode assay (P<0.0001). Lumacaftor-a compound known to rescue HERG trafficking-shortened the pathologically prolonged action potential duration of ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes by 10.6% (n=31 electrodes; P<0.001). CONCLUSIONS Here, we demonstrate that ALG10B-p.G6S downregulates ALG10B, resulting in defective HERG trafficking and action potential duration prolongation. Therefore, ALG10B is a novel LQTS-susceptibility gene underlying the LQTS phenotype observed in a multigenerational pedigree. ALG10B mutation analysis may be warranted, especially in genotype-negative patients with an LQT2-like phenotype.
Collapse
Affiliation(s)
- Wei Zhou
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Dan Ye
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - David J. Tester
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Sahej Bains
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - John R. Giudicessi
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
- Departments of Cardiovascular Medicine
(Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN
| | - Carla M. Haglund-Turnquist
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Kate M. Orland
- Department of Medicine, Division of Cardiovascular
Medicine, Cellular and Molecular Arrhythmia Research Program and Inherited
Arrhythmia Clinic, University of Wisconsin-Madison, Madison, WI
| | - Craig T. January
- Department of Medicine, Division of Cardiovascular
Medicine, Cellular and Molecular Arrhythmia Research Program and Inherited
Arrhythmia Clinic, University of Wisconsin-Madison, Madison, WI
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular
Medicine, Cellular and Molecular Arrhythmia Research Program and Inherited
Arrhythmia Clinic, University of Wisconsin-Madison, Madison, WI
| | - Kathleen R. Maginot
- Department of Pediatrics, University of Wisconsin School of
Medicine and Public Health, Madison, WI
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Martínez-Barrios E, Grassi S, Brión M, Toro R, Cesar S, Cruzalegui J, Coll M, Alcalde M, Brugada R, Greco A, Ortega-Sánchez ML, Barberia E, Oliva A, Sarquella-Brugada G, Campuzano O. Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death. Front Med (Lausanne) 2023; 10:1118585. [PMID: 36844202 PMCID: PMC9950119 DOI: 10.3389/fmed.2023.1118585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim's relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain,European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands,Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Simone Grassi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy
| | - María Brión
- Family Heart Disease Unit, Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain,Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain,Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain,European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands,Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - José Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain,European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands,Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mònica Coll
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain,Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain
| | - Mireia Alcalde
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain,Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain,Medical Science Department, School of Medicine, University of Girona, Girona, Spain,Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain,Cardiology Department, Hospital Josep Trueta, Girona, Spain
| | - Andrea Greco
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - María Luisa Ortega-Sánchez
- Forensic Pathology Department, Institut de Medicina Legal i Ciències Forenses de Catalunya (IMLCFC), Barcelona, Spain,School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Eneko Barberia
- Forensic Pathology Department, Institut de Medicina Legal i Ciències Forenses de Catalunya (IMLCFC), Barcelona, Spain,School of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Antonio Oliva
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, Barcelona, Spain,European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, Netherlands,Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain,Medical Science Department, School of Medicine, University of Girona, Girona, Spain,*Correspondence: Georgia Sarquella-Brugada,
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain,Medical Science Department, School of Medicine, University of Girona, Girona, Spain,Cardiovascular Genetics Center, Institut d’Investigacions Biomèdiques de Girona (IDIBGI), University of Girona, Girona, Spain,Oscar Campuzano,
| |
Collapse
|
18
|
Campuzano O, Sarquella-Brugada G. Molecular autopsy in sudden cardiac death. Glob Cardiol Sci Pract 2023; 2023:e202308. [PMID: 36890841 PMCID: PMC9988296 DOI: 10.21542/gcsp.2023.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
A post-mortem genetic analysis in the process of investigating a sudden death episode is known as 'molecular autopsy'. It is usually performed in cases without a conclusive cause of death and after a comprehensive medico-legal autopsy. In these sudden unexplained death cases, an underlying inherited arrhythmogenic cardiac disease is the main suspected cause of death. The objective is to unravel a genetic diagnosis of the victim, but it also enables cascade genetic screening of the victim's relatives. Early identification of a deleterious genetic alteration associated with an inherited arrhythmogenic disease may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death. It is important to remark that the first symptom of an inherited arrhythmogenic cardiac disease may the malignant arrhythmia and even sudden death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis. Close interaction between the forensic scientist, pathologist, cardiologist, pediatric cardiologist and geneticist has allowed a progressive increase of genetic yield in recent years, identifying the pathogenic genetic alteration. However, large numbers of rare genetic alterations remain classified as having an ambiguous role, impeding a proper genetic interpretation and useful translation into both forensic and cardiological arena.
Collapse
Affiliation(s)
- Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands
- Arrítmies pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| |
Collapse
|
19
|
Glinge C, Rossetti S, Oestergaard LB, Stampe NK, Lynge TH, Skals R, Winkel BG, Lodder EM, Bezzina CR, Gislason G, Banner J, Behr ER, Torp-Pedersen C, Jabbari R, Tfelt-Hansen J. Risk of Sudden Infant Death Syndrome Among Siblings of Children Who Died of Sudden Infant Death Syndrome in Denmark. JAMA Netw Open 2023; 6:e2252724. [PMID: 36696110 DOI: 10.1001/jamanetworkopen.2022.52724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
IMPORTANCE Sudden infant death syndrome (SIDS) remains a leading cause of death during the first year of life. The etiology of SIDS is complex and remains largely unknown. OBJECTIVE To evaluate whether siblings of children who died of SIDS have a higher risk of SIDS compared with the general pediatric population. DESIGN, SETTING, AND PARTICIPANTS This register-based cohort study used Danish nationwide registers. Participants were all infants (<1 year) in Denmark between January 1, 1978, and December 31, 2016, including siblings of children who died of SIDS. Siblings were followed up from the index cases' date of SIDS, date of birth, or immigration, whichever came first, and until age 1 year, emigration, developing SIDS, death, or study end. The median (IQR) follow-up was 1 (1-1) year. Data analysis was conducted from January 2017 to October 2022. MAIN OUTCOMES AND MEASURES Standardized incidence ratios (SIRs) of SIDS were calculated with Poisson regression models relative to the general population. RESULTS In a population of 2 666 834 consecutive births (1 395 199 [52%] male), 1540 infants died of SIDS (median [IQR] age at SIDS, 3 [2-4] months) during a 39-year study period. A total of 2384 younger siblings (cases) to index cases (first sibling with SIDS) were identified. A higher rate of SIDS was observed among siblings compared with the general population, with SIRs of 4.27 (95% CI, 2.13-8.53) after adjustment for sex, age, and calendar year and of 3.50 (95% CI, 1.75-7.01) after further adjustment for mother's age (<29 years vs ≥29 years) and education (high school vs after high school). CONCLUSIONS AND RELEVANCE In this nationwide study, having a sibling who died of SIDS was associated with a 4-fold higher risk of SIDS compared with the general population. Shared genetic and/or environmental factors may contribute to the observed clustering of SIDS. The family history of SIDS should be considered when assessing SIDS risk in clinical settings. A multidisciplinary genetic evaluation of families with SIDS could provide additional evidence.
Collapse
Affiliation(s)
- Charlotte Glinge
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sára Rossetti
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Louise Bruun Oestergaard
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Kjær Stampe
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Hadberg Lynge
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Regitze Skals
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
| | - Jytte Banner
- Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elijah R Behr
- Cardiology Clinical Academic Group, Cardiology Section, St George's, University of London, London, United Kingdom
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom
- Mayo Clinic Healthcare, London, United Kingdom
| | - Christian Torp-Pedersen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Cardiology, North Zealand University Hospital, Hillerød, Denmark
- Department of Public Health, University of Copenhagen, Denmark
| | - Reza Jabbari
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Latimer R, MacLeod H, Dellefave-Castillo L, Macaya D, Hart TR. Postmortem Genetic Testing Is an Increasingly Utilized Tool in Death Investigation. Acad Forensic Pathol 2022; 12:129-139. [PMID: 36545303 PMCID: PMC9761240 DOI: 10.1177/19253621221124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/16/2022] [Indexed: 11/07/2022]
Abstract
Introduction Postmortem genetic testing (PMGT) can provide valuable information about an individual's cause of death and potentially allow at-risk relatives to discern their risks for inherited cardiac disease. Postmortem genetic testing is most often successful with certain specimens. Methods Investigators collected data on postmortem referrals to GeneDx, LLC for PMGT. Orders were reviewed and stratified based on provider, specimen type, and tests ordered. Discussion This cohort included 601 deceased individuals referred for PMGT with a total of 673 genetic tests ordered from 247 different providers. The most common test categories ordered were arrhythmia (33.4%) and cardiomyopathy (29.3%). A likely pathogenic or pathogenic genetic variant was identified in approximately 15% of patients. Blood in EDTA was received for 21.6% of patients with a 95% success rate for completion of all test components. Blood samples in EDTA were most successful in completing PMGT, but sequencing was still successful in the majority of suboptimal specimens. Conclusion The use of PMGT is increasing. Obtaining optimal samples (blood in EDTA) is important for successful completion of genetic testing. Obstacles may still exist for obtaining and storing ideal specimens. Continued efforts are needed for education and awareness around appropriate specimen types, storage and shipping of specimens, DNA banking, and overall availability of PMGT. In addition, access to resources such as supplies, proper storage conditions, DNA banking, and PMGT will allow for more opportunities to complete testing.
Collapse
Affiliation(s)
| | | | | | | | - Tara R. Hart
- Tara R. Hart MS, CGC, GeneDx, LLC, 207
Perry Parkway, Gaithersburg, MD 20878;
| |
Collapse
|
21
|
Next-generation sequencing of postmortem molecular markers to support for medicolegal autopsy. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2022. [DOI: 10.1016/j.fsir.2022.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Ten-year-old boy with congenital long QT syndrome type 2 (LQTS2) and life-threatening electrical storm: a case report of successful treatment with mexiletine. Cardiol Young 2022; 32:1871-1872. [PMID: 35351227 DOI: 10.1017/s1047951122000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a case of a boy with long QT syndrome type 2, who was admitted after an out of hospital cardiac arrest due to ventricular fibrillation. Subsequently, all treatments - intravenous magnesium, optimisation of electrolytes, an isoproterenol infusion - failed to terminate his electrical storm. As a last option before left-sided cardiac sympathetic denervation, mexiletine was started and the electrical storm resolved completely.
Collapse
|
23
|
Zhou K, Cai C, He Y, Chen Z. Using machine learning to find genes associated with sudden death. Front Cardiovasc Med 2022; 9:1042842. [PMID: 36386347 PMCID: PMC9641215 DOI: 10.3389/fcvm.2022.1042842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To search for significant biomarkers associated with sudden death (SD). Methods Differential genes were screened by comparing the whole blood samples from 15 cases of accidental death (AD) and 88 cases of SD. The protein-protein interaction (PPI) network selects core genes that interact most frequently. Machine learning is applied to find characteristic genes related to SD. The CIBERSORT method was used to explore the immune-microenvironment changes. Results A total of 10 core genes (MYL1, TNNC2, TNNT3, TCAP, TNNC1, TPM2, MYL2, TNNI1, ACTA1, CKM) were obtained and they were mainly related to myocarditis, hypertrophic myocarditis and dilated cardiomyopathy (DCM). Characteristic genes of MYL2 and TNNT3 associated with SD were established by machine learning. There was no significant change in the immune-microenvironment before and after SD. Conclusion Detecting characteristic genes is helpful to identify patients at high risk of SD and speculate the cause of death.
Collapse
Affiliation(s)
- Kena Zhou
- Department of Gastroenterology, Ningbo No. 9 Hospital, Ningbo, China
| | - Congbo Cai
- Department of Emergency, Yinzhou No. 2 Hospital, Ningbo, China
| | - Yi He
- Department of Gastroenterology, Ningbo No. 9 Hospital, Ningbo, China
| | - Zhihua Chen
- Department of Emergency, Ningbo First Hospital, Ningbo, China
- *Correspondence: Zhihua Chen,
| |
Collapse
|
24
|
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022; 43:3997-4126. [PMID: 36017572 DOI: 10.1093/eurheartj/ehac262] [Citation(s) in RCA: 1219] [Impact Index Per Article: 406.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
26
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
27
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
28
|
Hamrick SK, John Kim CS, Tester DJ, Giudicessi JR, Ackerman MJ. Patient-specific, re-engineered cardiomyocyte model confirms the circumstance-dependent arrhythmia risk associated with the African-specific common SCN5A polymorphism p.S1103Y: Implications for the increased sudden deaths observed in black individuals during the COVID-19 pandemic. Heart Rhythm 2022; 19:822-827. [PMID: 34979239 DOI: 10.1016/j.hrthm.2021.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, a marked increase in sudden cardiac death (SCD) was observed. The p.S1103Y-SCN5A common variant, which is present in ∼8% of individuals of African descent, may be a circumstance-dependent, SCD-predisposing, proarrhythmic polymorphism in the setting of hypoxia-induced acidosis or QT-prolonging drug use. OBJECTIVE The purpose of this study was to ascertain the effects of acidosis and hydroxychloroquine (HCQ) on the action potential duration (APD) in a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of p.S1103Y-SCN5A. METHODS iPSC-CMs were generated from a 14-year-old p.S1103Y-SCN5A-positive African American male. The patient's variant-corrected iPSC-CMs (isogenic control [IC]) were generated using CRISPR/Cas9 technology. FluoVolt voltage-sensitive dye was used to assess APD90 values in p.S1103Y-SCN5A iPSC-CMs compared to IC before and after an acidotic state (pH 6.9) or 24 hours of treatment with 10 μM HCQ. RESULTS Under baseline conditions (pH 7.4), there was no difference in APD90 values of p.S1103Y-SCN5A vs IC iPSC-CMs (P = NS). In the setting of acidosis (pH 6.9), there was a significant increase in fold-change of APD90 in p.S1103Y-SCN5A iPSC-CMs compared to IC iPSC-CMs (P <.0001). Similarly, with 24-hour 10 μM HCQ treatment, the fold-change of APD90 was significantly higher in p.S1103Y-SCN5A iPSC-CMs compared to IC iPSC-CMs (P <.0001). CONCLUSION Although the African-specific p.S1103Y-SCN5A common variant had no effect on APD90 under baseline conditions, the physiological stress of either acidosis or HCQ treatment significantly prolonged APD90 in patient-specific, re-engineered heart cells.
Collapse
Affiliation(s)
- Samantha K Hamrick
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - C S John Kim
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Clinician-Investigator Training Program, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
29
|
Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev 2022; 11:e20. [PMID: 36644199 PMCID: PMC9820193 DOI: 10.15420/aer.2022.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/02/2022] [Indexed: 01/17/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterised by adenergically mediated bidirectional and/or polymorphic ventricular tachycardia. CPVT is a significant cause of autopsy-negative sudden death in children and adolescents, although it can also affect adults. It is often caused by pathogenic variants in the cardiac ryanodine receptor gene as well as other rarer genes. Early identification and risk stratification is of major importance. β-blockers are the cornerstone of therapy. Sodium channel blockers, specifically flecainide, have an additive role. Left cardiac sympathetic denervation is playing an increasing role in suppression of arrhythmia and symptoms. Concerns have been raised, however, about the efficacy of implantable cardioverter defibrillator therapy and the risk of catecholamine driven proarrhythmic storms. In this review, we summarise the clinical characteristics, genetics, and diagnostic and therapeutic strategies for CPVT and describe recent advances and challenges.
Collapse
Affiliation(s)
- Mohamed Abbas
- Department of Cardiology, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Chris Miles
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Elijah Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Neubauer J, Kissel CK, Bolliger SA, Barbon D, Thali MJ, Kloiber D, Bode PK, Kovacs B, Graf U, Maspoli A, Berger W, Saguner AM, Haas C. Benefits and outcomes of a new multidisciplinary approach for the management and financing of sudden unexplained death cases in a forensic setting in Switzerland. Forensic Sci Int 2022; 334:111240. [DOI: 10.1016/j.forsciint.2022.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
|
31
|
Li Z, Wang Y, Li L, He H, Lin L, Pan M, Yang T, Liu Q. A bibliometric analysis of the cause of sudden unexplained death in forensic medicine: Research trends, hot spots and prospects. Comput Biol Med 2022; 144:105330. [DOI: 10.1016/j.compbiomed.2022.105330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023]
|
32
|
Burke A. Overview of sudden cardiac deaths. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_139_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
OUP accepted manuscript. Cardiovasc Res 2022; 118:1615-1617. [DOI: 10.1093/cvr/cvac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
|
34
|
Cheng J, Wei W, Fang Y, Zhou N, Wu Q, Zhao Q. Sudden cardiac death and cardiac sodium channel diseases. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_123_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation. Proc Natl Acad Sci U S A 2021; 118:2115140118. [PMID: 34930847 PMCID: PMC8719874 DOI: 10.1073/pnas.2115140118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Approximately 400 United States children 1 y of age and older die suddenly from unexplained causes annually. We studied whole-exome sequence data from 124 “trios” (decedent child and living parents) to identify genetic risk factors. Nonsynonymous mutations, mostly de novo (present in child but absent in both biological parents), were highly enriched in genes associated with cardiac and seizure disorders relative to controls, and contributed to 9% of deaths. We found significant overtransmission of loss-of-function or pathogenic missense variants in cardiac and seizure disorder genes. Most pathogenic variants were de novo in origin, highlighting the importance of trio studies. Many of these pathogenic de novo mutations altered a protein network regulating calcium-related excitability at submembrane junctions in cardiomyocytes and neurons. Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 “trios” (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10−4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C. Both RYR2 mutations are pathogenic (P = 1.7 × 10−7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10−7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.
Collapse
|
36
|
Monda E, Lioncino M, Rubino M, Caiazza M, Cirillo A, Fusco A, Pacileo R, Fimiani F, Amodio F, Borrelli N, Colonna D, D'Onofrio B, Frisso G, Drago F, Castelletti S, Sarubbi B, Calabrò P, Russo MG, Limongelli G. The Risk of Sudden Unexpected Cardiac Death in Children: Epidemiology, Clinical Causes, and Prevention. Heart Fail Clin 2021; 18:115-123. [PMID: 34776073 DOI: 10.1016/j.hfc.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
"Sudden unexplained death (SUD) is a tragic event for both the family and community, particularly when it occurs in young individuals. Sudden cardiac death (SCD) represents the leading form of SUD and is defined as an unexpected event without an obvious extracardiac cause, occurring within 1 hour after the onset of symptoms. In children, the main causes of SCD are inherited cardiac disorders, whereas coronary artery diseases (congenital or acquired), congenital heart diseases, and myocarditis are rare. The present review examines the current state of knowledge regarding SCD in children, discussing the epidemiology, clinical causes, and prevention strategies."
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Roberta Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Federica Amodio
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Nunzia Borrelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Diego Colonna
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Barbara D'Onofrio
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Fabrizio Drago
- Istituto Auxologico Italiano, IRCCS-Center for Cardiac Arrhythmias of Genetic Origin, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS-Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy
| | - Berardo Sarubbi
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy; Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, Grower Street, London WC1E 6DD, UK.
| |
Collapse
|
37
|
Scrocco C, Bezzina CR, Ackerman MJ, Behr ER. Genetics and genomics of arrhythmic risk: current and future strategies to prevent sudden cardiac death. Nat Rev Cardiol 2021; 18:774-784. [PMID: 34031597 DOI: 10.1038/s41569-021-00555-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
A genetic risk of sudden cardiac arrest and sudden death due to an arrhythmic cause, known as sudden cardiac death (SCD), has become apparent from epidemiological studies in the general population and in patients with ischaemic heart disease. However, genetic susceptibility to sudden death is greatest in young people and is associated with uncommon, monogenic forms of heart disease. Despite comprehensive pathology and genetic evaluations, SCD remains unexplained in a proportion of young people and is termed sudden arrhythmic death syndrome, which poses challenges to the identification of relatives from affected families who might be at risk of SCD. In this Review, we assess the current understanding of the epidemiology and causes of SCD and evaluate both the monogenic and the polygenic contributions to the risk of SCD in the young and SCD associated with drug therapy. Finally, we analyse the potential clinical role of genomic testing in the prevention of SCD in the general population.
Collapse
Affiliation(s)
- Chiara Scrocco
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Connie R Bezzina
- Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.,Windland Smith Rice Genetic Heart Rhythm Clinic and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
38
|
Pelletti G, Leone O, Gavelli S, Rossi C, Foà A, Agostini V, Pelotti S. Sudden Unexpected Death after a mild trauma: The complex forensic interpretation of cardiac and genetic findings. Forensic Sci Int 2021; 328:111004. [PMID: 34597909 DOI: 10.1016/j.forsciint.2021.111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
A 55-year-old man affected by a psychotic disorder suddenly died during a quarrel with his father. The autopsy excluded traumatic causes of death, and the cardiac examination identified a severe cardiomegaly with biventricular dilatation of very likely multifactorial origin. Toxicological and pharmacogenetic analyses excluded a fatal intoxication and identified the presence of the antipsychotic drug fluphenazine in the therapeutic range in a normal metabolizer. The screening for genetic variations highlighted a novel heterozygous single-nucleotide variant in the exon 36: c 0.4750C>A (p.Pro1584Thr) of the Ryanodine Receptor Type 2 (RYR2) gene. The mutation detected can be classified as Likely Pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria. RYR2 variation has been associated to catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease currently recognized as one of the most malignant cardiac channelopathies, expressed mostly in young patients, normally in the absence of structural heart disease. The victim late middle age, compared to juvenile onset of CPVT reported in literature, his clinical history, his structurally altered heart, circumstances at death and the absence of phenotype-related variations of dilated cardiomyopathy genes, suggested that the fatal arrhythmia could have been caused by an acquired form of dilated cardiopathy/cardiomyopathy. However, the contribution of the genetic variant to death cannot be completely ruled out, since the significance of a VUS or of a novel variant depends on the data available at the time of investigation, and should be periodically evaluated. We discuss the contribution of the structural alteration and of the variant detected, as well as the role of the molecular autopsy in forensic examination, which can make a significant contribution for inferring both cause and manner of death.
Collapse
Affiliation(s)
- Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Ornella Leone
- Cardiovascular Pathology Unit, Division of Pathology, IRCCS S.Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Simone Gavelli
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Cesare Rossi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Alberto Foà
- Cardiology Unit, Department of Experimental Diagnostic and Specialty Medicine, IRCCS S. Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Valentina Agostini
- Cardiovascular Pathology Unit, Division of Pathology, IRCCS S.Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
39
|
Molecular Autopsy of Sudden Cardiac Death in the Genomics Era. Diagnostics (Basel) 2021; 11:diagnostics11081378. [PMID: 34441312 PMCID: PMC8394514 DOI: 10.3390/diagnostics11081378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular autopsy is the process of investigating sudden death through genetic analysis. It is particularly useful in cases where traditional autopsy is negative or only shows non-diagnostic features, i.e., in sudden unexplained deaths (SUDs), which are often due to an underlying inherited arrhythmogenic cardiac disease. The final goal of molecular autopsy in SUD cases is to aid medico-legal inquiries and to guide cascade genetic screening of the victim’s relatives. Early attempts of molecular autopsy relied on Sanger sequencing, which, despite being accurate and easy to use, has a low throughput and can only be employed to analyse a small panel of genes. Conversely, the recent adoption of next-generation sequencing (NGS) technologies has allowed exome/genome wide examination, providing an increase in detection of pathogenic variants and the discovery of newer genotype-phenotype associations. NGS has nonetheless brought new challenges to molecular autopsy, especially regarding the clinical interpretation of the large number of variants of unknown significance detected in each individual.
Collapse
|
40
|
Heidbuchel H, Arbelo E, D'Ascenzi F, Borjesson M, Boveda S, Castelletti S, Miljoen H, Mont L, Niebauer J, Papadakis M, Pelliccia A, Saenen J, Sanz de la Garza M, Schwartz PJ, Sharma S, Zeppenfeld K, Corrado D. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace 2021; 23:147-148. [PMID: 32596731 DOI: 10.1093/europace/euaa106] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper belongs to a series of recommendation documents for participation in leisure-time physical activity and competitive sports by the European Association of Preventive Cardiology (EAPC). Together with an accompanying paper on supraventricular arrhythmias, this second text deals specifically with those participants in whom some form of ventricular rhythm disorder is documented, who are diagnosed with an inherited arrhythmogenic condition, and/or who have an implanted pacemaker or cardioverter defibrillator. A companion text on recommendations in athletes with supraventricular arrhythmias is published in the European Journal of Preventive Cardiology. Since both texts focus on arrhythmias, they are the result of a collaboration between EAPC and the European Heart Rhythm Association (EHRA). The documents provide a framework for evaluating eligibility to perform sports, based on three elements, i.e. the prognostic risk of the arrhythmias when performing sports, the symptomatic impact of arrhythmias while performing sports, and the potential progression of underlying structural problems as the result of sports.
Collapse
Affiliation(s)
- Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mats Borjesson
- Centre for Health and Performance (CHP), Department of Food, Nutrition and Sport Sciences, Gothenburg University, Sweden.,Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Serge Boveda
- Cardiology Department, Clinique Pasteur, 45 Avenue de Lombez, 31076 Toulouse, France
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Hielko Miljoen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Josef Niebauer
- Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Antonio Pelliccia
- National Institute of Sports Medicine, Italian National Olympic Committee, Via dei Campi Sportivi 46, Rome, Italy
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | | | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Domenico Corrado
- Department of Cardiology, University of Padova, Padova, Italy.,Department of Pathology, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Erickson CC, Salerno JC, Berger S, Campbell R, Cannon B, Christiansen J, Moffatt K, Pflaumer A, Snyder CS, Srinivasan C, Valdes SO, Vetter VL, Zimmerman F. Sudden Death in the Young: Information for the Primary Care Provider. Pediatrics 2021; 148:peds.2021-052044. [PMID: 34155130 DOI: 10.1542/peds.2021-052044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There are multiple conditions that can make children prone to having a sudden cardiac arrest (SCA) or sudden cardiac death (SCD). Efforts have been made by multiple organizations to screen children for cardiac conditions, but the emphasis has been on screening before athletic competition. This article is an update of the previous American Academy of Pediatrics policy statement of 2012 that addresses prevention of SCA and SCD. This update includes a comprehensive review of conditions that should prompt more attention and cardiology evaluation. The role of the primary care provider is of paramount importance in the evaluation of children, particularly as they enter middle school or junior high. There is discussion about whether screening should find any cardiac condition or just those that are associated with SCA and SCD. This update reviews the 4 main screening questions that are recommended, not just for athletes, but for all children. There is also discussion about how to handle post-SCA and SCD situations as well as discussion about genetic testing. It is the goal of this policy statement update to provide the primary care provider more assistance in how to screen for life-threatening conditions, regardless of athletic status.
Collapse
Affiliation(s)
- Christopher C Erickson
- Children's Specialty Physicians, University of Nebraska Medical Center, University of Nebraska, Omaha, Nebraska .,Creighton University Medical Center, Creighton University, Omaha, Nebraska
| | - Jack C Salerno
- Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, Washington
| | - Stuart Berger
- Lurie Children's Hospital and Northwestern University, Chicago, Illinois
| | - Robert Campbell
- Children's Healthcare of Atlanta Sibley Heart Center and School of Medicine, Emory University, Atlanta, Georgia
| | | | - James Christiansen
- Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, Washington
| | - Kody Moffatt
- Children's Specialty Physicians, University of Nebraska Medical Center, University of Nebraska, Omaha, Nebraska
| | - Andreas Pflaumer
- The Royal Children's Hospital and University of Melbourne, Melbourne, Australia
| | - Christopher S Snyder
- Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| | - Chandra Srinivasan
- McGovern Medical School, The University of Texas and The University of Texas Health Science Center, Houston, Texas
| | - Santiago O Valdes
- Lillie Frank Abercrombie Section of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Victoria L Vetter
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
42
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Juang JMJ, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. J Arrhythm 2021; 37:481-534. [PMID: 34141003 PMCID: PMC8207384 DOI: 10.1002/joa3.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School Faculty of Medicine and Health Science The University of Auckland Hamilton New Zealand
| | - Arthur A M Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam University Medical Center University of Amsterdam Amsterdam the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | | | - Martina C Cornel
- Amsterdam University Medical Center Vrije Universiteit Amsterdam Clinical Genetics Amsterdam Public Health Research Institute Amsterdam the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology Department of Internal Medicine National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Stefan Kääb
- Department of Medicine I University Hospital LMU Munich Munich Germany
| | | | | | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry Okemos MI USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital Bangkok Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University Cleveland OH USA
- St Luke's Medical Center Boise ID USA
| | - Luciana Sacilotto
- Heart Institute University of São Paulo Medical School São Paulo Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | - Wataru Shimizu
- Department of Cardiovascular Medicine Nippon Medical School Tokyo Japan
| | | | - Jacob Tfelt-Hansen
- Department of Forensic Medicine Faculty of Medical Sciences Rigshospitalet Copenhagen Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
43
|
|
44
|
Genetic investigations of 100 inherited cardiac disease-related genes in deceased individuals with schizophrenia. Int J Legal Med 2021; 135:1395-1405. [PMID: 33973092 DOI: 10.1007/s00414-021-02595-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Cardiac diseases and sudden cardiac death (SCD) are more prevalent in individuals diagnosed with schizophrenia compared to the general population, with especially coronary artery disease (CAD) as the major cardiovascular cause of death. Antipsychotic medications, genetics, and lifestyle factors may contribute to the increased SCD in individuals with schizophrenia. The role of antipsychotic medications and lifestyle factors have been widely investigated, while the genetic predisposition to inherited cardiac diseases in schizophrenia is poorly understood. In this study, we examined 100 genes associated with inherited cardiomyopathies and cardiac channelopathies in 97 deceased individuals diagnosed with schizophrenia for the prevalence of genetic variants associated with SCD. The deceased individuals had various causes of death and were included in the SURVIVE project, a prospective, autopsy-based study of mentally ill individuals in Denmark. This is the first study of multiple inherited cardiac disease-related genes in deceased individuals with diagnosed schizophrenia to shed light on the genetic predisposition to SCD in individuals with schizophrenia. We found no evidence for an overrepresentation of rare variants with high penetrance in inherited cardiac diseases, following the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG) consensus guidelines. However, we found that the deceased individuals had a statistically significantly increased polygenic burden caused by variants in the investigated heart genes compared to the general population. This indicates that common variants with smaller effects in heart genes may play a role in schizophrenia.
Collapse
|
45
|
Muerte súbita de jóvenes: rendimiento diagnóstico de un programa autonómico de autopsia molecular con secuenciación masiva. Rev Esp Cardiol 2021. [DOI: 10.1016/j.recesp.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Ripoll-Vera T, Pérez Luengo C, Borondo Alcázar JC, García Ruiz AB, Sánchez Del Valle N, Barceló Martín B, Poncela García JL, Gutiérrez Buitrago G, Dasi Martínez C, Canós Villena JC, Moyano Corvillo S, Esgueva Pallarés R, Sancho Sancho JR, Guitart Pinedo G, Hernández Marín E, García García E, Vingut López A, Álvarez Rubio J, Govea Callizo N, Gómez Pérez Y, Melià Mesquida C, Heine D, Rosell Andreo J, Socías Crespí L. Sudden cardiac death in persons aged 50 years or younger: diagnostic yield of a regional molecular autopsy program using massive sequencing. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:402-413. [PMID: 32917565 DOI: 10.1016/j.rec.2020.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION AND OBJECTIVES Sudden cardiac death (SCD) in young people often has a genetic cause. Consequently, the results of "molecular autopsy" may have important implications for their relatives. Our objective was to evaluate the diagnostic yield of a molecular autopsy program using next-generation sequencing. METHODS We performed a prospective study of a cohort of consecutive patients who died from nonviolent SCD, aged ≤ 50 years, and who underwent molecular autopsy using large panels of next-generation sequencing, with subsequent clinical and genetic family screening. We analyzed demographic, clinical, toxicological, and genetic data. RESULTS We studied 123 consecutive cases of SCD in persons aged ≤ 50 years. The incidence of SCD was 5.8 cases/100 000 individuals/y, mean age was 36.15±12.7 years, and 95 were men (77%). The cause was cardiac in 53%, unexplained SCD in 24%, toxic in 10.6%, and infant SCD in 4%. Among cardiac causes, ischemic heart disease accounted for 38% of deaths, arrhythmogenic cardiomyopathy for 7%, hypertrophic cardiomyopathy for 5%, and idiopathic left ventricular hypertrophy for 11%. Genetic analysis was performed in 62 cases (50.4%). Genetic variants were found in 42 cases (67.7%), with a mean of 3.4±4 genetic variants/patient, and the variant found was considered to be pathogenic or probably pathogenic in 30.6%. In unexplained SCD, 70% showed some genetic variant. Family screening diagnosed 21 carriers or affected individuals, 5 of whom were at risk, indicating an implantable cardiac defibrillator. CONCLUSIONS Protocol-based and exhaustive study of SCD from cardiac causes in persons aged ≤ 50 years is feasible and necessary. In a high percentage of cases, the cause is genetic, indicating the existence of relatives at risk who could benefit from early diagnosis and treatment to avoid complications.
Collapse
Affiliation(s)
- Tomás Ripoll-Vera
- Servicio de Cardiología, Hospital Universitario Son Llàtzer, Palma de Mallorca, Islas Baleares, Spain; Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain.
| | - Consuelo Pérez Luengo
- Instituto de Medicina Legal de las Islas Baleares, Palma de Mallorca, Islas Baleares, Spain
| | | | - Ana Belén García Ruiz
- Instituto de Medicina Legal de las Islas Baleares, Palma de Mallorca, Islas Baleares, Spain
| | | | - Bernardino Barceló Martín
- Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain; Servicio de Análisis Clínicos y Toxicología, Hospital Universitario Son Espases, Palma de Mallorca, Islas Baleares, Spain
| | | | | | - Concepción Dasi Martínez
- Servicio de Histopatología, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona, Spain
| | | | - Susana Moyano Corvillo
- Servicio de Histopatología, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona, Spain
| | - Raquel Esgueva Pallarés
- Servicio de Histopatología, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona, Spain
| | | | | | - Elena Hernández Marín
- Servicio de Química, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona, Spain
| | - Estela García García
- Servicio de Química, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona, Spain
| | - Albert Vingut López
- Servicio de Química, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona, Spain
| | - Jorge Álvarez Rubio
- Servicio de Cardiología, Hospital Universitario Son Llàtzer, Palma de Mallorca, Islas Baleares, Spain; Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain
| | - Nancy Govea Callizo
- Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain; Sección de Genética, Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitario Son Espases, Palma de Mallorca, Islas Baleares, Spain
| | - Yolanda Gómez Pérez
- Servicio de Cardiología, Hospital Universitario Son Llàtzer, Palma de Mallorca, Islas Baleares, Spain; Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain
| | - Catalina Melià Mesquida
- Servicio de Cardiología, Hospital Universitario Son Llàtzer, Palma de Mallorca, Islas Baleares, Spain; Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain
| | - Damián Heine
- Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain; Sección de Genética, Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitario Son Espases, Palma de Mallorca, Islas Baleares, Spain
| | - Jordi Rosell Andreo
- Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain; Sección de Genética, Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitario Son Espases, Palma de Mallorca, Islas Baleares, Spain
| | - Lorenzo Socías Crespí
- Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma de Mallorca, Islas Baleares, Spain; Servicio de Medicina Intensiva, Hospital Universitario Son Llàtzer, Palma de Mallorca, Islas Baleares, Spain
| |
Collapse
|
47
|
Identification of loss-of-function RyR2 mutations associated with idiopathic ventricular fibrillation and sudden death. Biosci Rep 2021; 41:228220. [PMID: 33825858 PMCID: PMC8062958 DOI: 10.1042/bsr20210209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.
Collapse
|
48
|
Grassi S, Campuzano O, Coll M, Cazzato F, Sarquella-Brugada G, Rossi R, Arena V, Brugada J, Brugada R, Oliva A. Update on the Diagnostic Pitfalls of Autopsy and Post-Mortem Genetic Testing in Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22084124. [PMID: 33923560 PMCID: PMC8074148 DOI: 10.3390/ijms22084124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Inherited cardiomyopathies are frequent causes of sudden cardiac death (SCD), especially in young patients. Despite at the autopsy they usually have distinctive microscopic and/or macroscopic diagnostic features, their phenotypes may be mild or ambiguous, possibly leading to misdiagnoses or missed diagnoses. In this review, the main differential diagnoses of hypertrophic cardiomyopathy (e.g., athlete's heart, idiopathic left ventricular hypertrophy), arrhythmogenic cardiomyopathy (e.g., adipositas cordis, myocarditis) and dilated cardiomyopathy (e.g., acquired forms of dilated cardiomyopathy, left ventricular noncompaction) are discussed. Moreover, the diagnostic issues in SCD victims affected by phenotype-negative hypertrophic cardiomyopathy and the relationship between myocardial bridging and hypertrophic cardiomyopathy are analyzed. Finally, the applications/limits of virtopsy and post-mortem genetic testing in this field are discussed, with particular attention to the issues related to the assessment of the significance of the genetic variants.
Collapse
Affiliation(s)
- Simone Grassi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
- Correspondence:
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Mònica Coll
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Francesca Cazzato
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Riccardo Rossi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00147 Rome, Italy;
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| |
Collapse
|
49
|
Schön U, Holzer A, Laner A, Kleinle S, Scharf F, Benet-Pagès A, Peschel O, Holinski-Feder E, Diebold I. HPO-driven virtual gene panel: a new efficient approach in molecular autopsy of sudden unexplained death. BMC Med Genomics 2021; 14:94. [PMID: 33789662 PMCID: PMC8011092 DOI: 10.1186/s12920-021-00946-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Molecular autopsy represents an efficient tool to save the diagnosis in up to one-third of sudden unexplained death (SUD). A defined gene panel is usually used for the examination. Alternatively, it is possible to carry out a comprehensive genetic assessment (whole exome sequencing, WES), which also identifies rare, previously unknown variants. The disadvantage is that a dramatic number of variants must be assessed to identify the causal variant. To improve the evaluation of WES, the human phenotype ontology (HPO) annotation is used internationally for deep phenotyping in the field of rare disease. However, a HPO-based evaluation of WES in SUD has not been described before. METHODS We performed WES in tissue samples from 16 people after SUD. Instead of a fixed gene panel, we defined a set of HPO terms and thus created a flexible "virtual gene panel", with the advantage, that recently identified genes are automatically associated by HPO terms in the HPO database. RESULTS We obtained a mean value of 68,947 variants per sample. Stringent filtering ended up in a mean value of 276 variants per sample. Using the HPO-driven virtual gene panel we developed an algorithm that prioritized 1.4% of the variants. Variant interpretation resulted in eleven potentially causative variants in 16 individuals. CONCLUSION Our data introduce an effective diagnostic procedure in molecular autopsy of SUD with a non-specific clinical phenotype.
Collapse
Affiliation(s)
- Ulrike Schön
- MGZ - Medical Genetics Center Munich, Munich, Germany
| | - Anna Holzer
- Institute of Legal Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Laner
- MGZ - Medical Genetics Center Munich, Munich, Germany
| | | | | | | | - Oliver Peschel
- Institute of Legal Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Isabel Diebold
- MGZ - Medical Genetics Center Munich, Munich, Germany.
- Department of Pediatrics, Technical University of Munich School of Medicine, Munich, Germany.
| |
Collapse
|
50
|
Abstract
In this section of the European Resuscitation Council Guidelines 2021, key information on the epidemiology and outcome of in and out of hospital cardiac arrest are presented. Key contributions from the European Registry of Cardiac Arrest (EuReCa) collaboration are highlighted. Recommendations are presented to enable health systems to develop registries as a platform for quality improvement and to inform health system planning and responses to cardiac arrest.
Collapse
|